CN110279393B - Microvessel detection device and method - Google Patents
Microvessel detection device and method Download PDFInfo
- Publication number
- CN110279393B CN110279393B CN201810222949.4A CN201810222949A CN110279393B CN 110279393 B CN110279393 B CN 110279393B CN 201810222949 A CN201810222949 A CN 201810222949A CN 110279393 B CN110279393 B CN 110279393B
- Authority
- CN
- China
- Prior art keywords
- point
- maximum
- digital image
- blood vessel
- marking point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0064—Body surface scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1075—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1079—Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Hematology (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Image Analysis (AREA)
Abstract
本发明公开一种微血管检测装置,待测一手指放在一指槽中,经由一手指皮下组织中的至少一微血管影像,检测所述微血管的血流流速以及管径,包含有:一计算机,具有一显示器以及一处理器;一感光耦合组件,电性讯号链接该计算机;以及一显微镜镜头,经由显微镜镜头撷取所述微血管影像,该微血管影像由该感光耦合组件形成复数帧数字影像,其中时间连续的复数帧该数字影像,经由该处理器显示于该显示器。
The invention discloses a microvessel detection device. A finger to be tested is placed in a finger groove, and the blood flow velocity and diameter of the microvessel are detected through at least one microvessel image in the subcutaneous tissue of the finger. The device includes: a computer, It has a display and a processor; a photosensitive coupling component, which is electrically connected to the computer; and a microscope lens, through which the microvascular image is captured, and the microvascular image is formed into a plurality of frames of digital images by the photosensitive coupling component, wherein The multiple frames of the digital image in continuous time are displayed on the display through the processor.
Description
技术领域technical field
本发明涉及一种人体血管的检测装置和方法,更具体的说,是指一种检测微血管的血流流速以及管径的微血管检测装置和方法。The present invention relates to a detection device and method for human blood vessels, more specifically, a detection device and method for detecting blood flow velocity and diameter of microvessels.
背景技术Background technique
现有技术的微血管检测,如中国台湾专利号为I246910的专利,该发明提出一种直接实时检测微血管血流流速的方法与微循环功能的评估装置。包括利用红外光雷射血管显微摄影仪的影像动画,以指针选取影像中特定微血管分支,沿着微血管纵向标定分析范围,透过连续的动画处理,可以绘制实时红血球位移影像。侦测实时血球位移影像的斜率变化可以分析红血球的位移速度变化及加速度。综合此部位各个微血管流速,进行统计分析,可以观察微血管群的特性差异。Microvascular detection in the prior art, such as Taiwan Patent No. I246910, proposes a method for directly and real-time detection of microvascular blood flow velocity and an evaluation device for microcirculatory function. Including using the image animation of the infrared laser vascular micrographer, using the pointer to select the specific microvascular branch in the image, and marking the analysis range along the longitudinal direction of the microvessel. Through continuous animation processing, real-time red blood cell displacement images can be drawn. Detecting the slope change of the real-time blood cell displacement image can analyze the change of displacement velocity and acceleration of the red blood cell. By integrating the flow velocity of each microvessel at this site and performing statistical analysis, it is possible to observe the difference in characteristics of the microvessel group.
上述常用的红外光雷射血管显微摄影仪,用灰阶判定的方式容易有误差;再者,计算路径方式单一化,无其他计算路径方式变化来做为参考;此外,目前用于微血管检测的装置大都昂贵的专用仪器,无法普及应于一般人的居家护理使用。The above-mentioned commonly used infrared laser blood vessel micrographs are prone to errors in the gray scale judgment method; moreover, the calculation path method is simplified, and there are no other calculation path changes as a reference; in addition, it is currently used for microvascular detection Most of the devices are expensive special instruments, which cannot be popularized and used in the home care of ordinary people.
有鉴于此,本发明人乃潜心研思、设计组制,期能提供一种廉价且可简便操作以便快速检测微血管的装置和方法,其以简易低价的显微摄像装置搭配一般家庭计算机使用即可快速地自我检测微血管的血流流速以及管径,让使用者随时自我简易检测评估血液循环状态,以便注意维护身体健康。In view of this, the inventors have devoted themselves to research, design and assembly, hoping to provide a cheap and easy-to-operate device and method for rapid detection of microvessels, which uses a simple and low-cost microscopic imaging device with a general home computer. It can quickly self-test the blood flow rate and diameter of the microvessels, allowing users to self-test and evaluate the blood circulation status at any time, so as to pay attention to maintaining their health.
发明内容Contents of the invention
本发明的主要目的,在于提供一种利用白血球定位以及像素运算,来达到检测微血管的血流流速以及管径的目的。The main purpose of the present invention is to provide a method for detecting the blood flow velocity and diameter of microvessels by using white blood cell positioning and pixel calculation.
为达上述目的,本发明的一实施例为一种微血管检测装置,经由一手指皮下组织中的至少一微血管影像,检测所述微血管的血流流速以及管径,包含有:一计算机,具有一显示器以及一处理器;一感光耦合组件,电性讯号链接该计算机;以及一显微镜镜头,经由该显微镜镜头撷取该微血管影像,该微血管影像由该感光耦合组件形成复数帧数字影像,其中时间连续的复数帧该数字影像,经由该处理器显示于该显示器。To achieve the above purpose, an embodiment of the present invention is a microvessel detection device, which detects the blood flow velocity and diameter of the microvessel through at least one microvessel image in the subcutaneous tissue of a finger, including: a computer with a A display and a processor; a photosensitive coupling component, which is electrically connected to the computer; and a microscope lens, through which the microvascular image is captured, and the microvascular image is formed by the photosensitive coupling component into a plurality of frames of digital images, wherein the time is continuous The multiple frames of the digital image are displayed on the display through the processor.
所述检测装置在一实施例中,该处理器标定复数帧该数字影像,对应该微血管中一白血球的时间连续的标示点,包括一起点标示点以及一终点标示点,该起点标示点以及该终点标示点的时间差为第1时间差,该处理器计算加总连续标示点的第1路径长,第1路径长除以第1时间差的一血流流速值,于该显示器显示该血流流速值。In one embodiment of the detection device, the processor calibrates multiple frames of the digital image, corresponding to a time-continuous marker point of a white blood cell in the microvessel, including a starting point marker point and an end point marker point, the starting point marker point and the The time difference between the marked points at the end point is the first time difference. The processor calculates and adds up the first path length of the consecutive marked points, and divides the first path length by a blood flow velocity value of the first time difference, and displays the blood flow velocity value on the display. .
所述检测装置在一实施例中,该处理器标定复数帧该数字影像,对应该微血管中一白血球的时间连续的标示点,包括一起点标示点以及一终点标示点,该处理器具有一工字型框架的模块,包含有45度标点、90度标点、以及135度标点的路经搜寻到一最大边缘位置,该处理器计算一血管中心标示点,由该血管中心标示点,经由该工字型框架的模块,依次标示出至少一计算标示点,直到该终点标示点,该起点标示点以及该终点标示点的时间差为第2时间差,该处理器计算加总连续的该计算标示点的第2路径长,除以第2时间差的一血流流速值,于该显示器显示该血流流速值。In one embodiment of the detection device, the processor calibrates the multiple frames of the digital image, corresponding to the time-continuous marker points of a white blood cell in the microvessel, including a starting point marker point and an end point marker point, and the processor has an I-shaped The module of the type frame, including the 45-degree punctuation, 90-degree punctuation, and 135-degree punctuation, searches for a maximum edge position, the processor calculates a blood vessel center mark point, from the blood vessel center mark point, through the I-shaped The module of the type frame marks at least one calculation mark point in turn until the end mark point, the time difference between the start mark point and the end point mark point is the second time difference, and the processor calculates and sums up the consecutive calculation mark points. 2 The path length is divided by a blood flow velocity value of the second time difference, and the blood flow velocity value is displayed on the display.
所述检测装置在一实施例中,该处理器扫描复数帧该数字影像成灰阶讯号,由纵轴灰阶讯号加总值最大值,标定该微血管管径的两边缘端点,该处理器由横轴该微血管的两边缘端点的相应像素值,计算该微血管的一管径值,于该显示器显示该微血管的该管径值。In one embodiment of the detection device, the processor scans multiple frames of the digital image to form gray-scale signals, and uses the maximum value of the sum of the gray-scale signals on the vertical axis to mark the two edge endpoints of the microvascular diameter, and the processor consists of The horizontal axis corresponds to the pixel values of the two edge endpoints of the microvessel, calculates a diameter value of the microvessel, and displays the diameter value of the microvessel on the display.
本发明的另一实施例为一种微血管检测方法,分解该数字影像作为量测一微血管的一血流流速值,其中,检测步骤,包含有:点选该数字影像中一白血球起始位置;找出时间连续的该数字影像中同一个该白血球的位置,并点选该白血球的位置,搜寻到路径,则标示路径并计算该血流流速值;以及搜寻不到路径,则显示错误,并重新回到点选该数字影像中该白血球起始位置的步骤。Another embodiment of the present invention is a microvessel detection method, which is to decompose the digital image to measure a blood flow velocity value of a microvessel, wherein the detection step includes: clicking on the initial position of a white blood cell in the digital image; Find the position of the same white blood cell in the time-continuous digital image, and click on the position of the white blood cell. If the path is found, the path will be marked and the blood flow velocity value will be calculated; if the path cannot be found, an error will be displayed, and Go back to the step of selecting the initial position of the white blood cell in the digital image.
在一实施例中,分解该数字影像作为量测一微血管的一管径值,其中,检测步骤,包含有:点选该数字影像中该微血管内的任一位置;找出该微血管内的两边缘端点位置,并量测该微血管的管径;以及手动微调量测位置,并显示该微血管的该管径值于该显示器。In one embodiment, the digital image is decomposed to measure a diameter value of a microvessel, wherein the detection step includes: clicking any position in the microvessel in the digital image; finding two positions in the microvessel position of the edge endpoint, and measure the diameter of the microvessel; and manually fine-tune the measurement position, and display the value of the diameter of the microvessel on the display.
所述检测方法在一实施例中,分解该数字影像作为量测一微血管的一血流流速值,其中,同一个该白血球在时间连续的该数字影像中的位置,被标定为一起点标示点以及一终点标示点、以及至少一追踪点,计算所有该追踪点的一平均位置点,各追踪点和平均位置的角度,依角度进行排序,得到该白血球流经的顺序,该起点标示点以及该终点标示点的时间差为第1时间差,依序加总相邻距离,得到流经该微血管的第1路径长,第1路径长除以第1时间差的一血流流速值;以及于该显示器显示该血流流速值。In one embodiment of the detection method, the digital image is decomposed to measure a blood flow velocity value of a microvessel, wherein the position of the same white blood cell in the time-continuous digital image is marked as a common point marker point and an end mark point, and at least one tracking point, calculate an average position point of all the tracking points, the angles between each tracking point and the average position, and sort them according to the angle to obtain the sequence of the white blood cells flowing through, the starting point mark point and The time difference of the end point marked point is the first time difference, and the adjacent distances are summed up in order to obtain the first path length flowing through the microvessel, and a blood flow velocity value obtained by dividing the first path length by the first time difference; and on the display Displays the blood flow velocity value.
所述检测方法在一实施例中,分解该数字影像作为量测一微血管的一血流流速值,其中,检测步骤,更包含有:点选该数字影像中该白血球的一起点标示点以及一终点标示点;使用一工字型框架,以45度标点、90度标点、以及135度标点的路经搜寻到一最大边缘位置;计算一血管中心标示点;由该血管中心标示点,经由该工字型框架依次标示出至少一计算标示点,直到该终点标示点;该起点标示点以及该终点标示点的时间差为第2时间差,计算加总连续的该计算标示点的第2路径长,除以第2时间差的一血流流速值;以及于该显示器显示该血流流速值。In one embodiment of the detection method, the digital image is decomposed to measure a blood flow velocity value of a microvessel, wherein the detection step further includes: clicking on a marked point of the white blood cell in the digital image and a End mark point; use an I-shaped frame, search for a maximum edge position with the path of 45-degree punctuation, 90-degree punctuation, and 135-degree punctuation; calculate a blood vessel center mark point; from the blood vessel center mark point, through the The I-shaped frame marks at least one calculation mark point in turn until the end mark point; the time difference between the start mark point and the end point mark point is the second time difference, and the second path length of the continuous calculation mark points is calculated and summed up, dividing a blood flow velocity value by the second time difference; and displaying the blood flow velocity value on the display.
所述检测方法在一实施例中,找出该微血管内的两边缘端点位置,其步骤,包含:由扫描该数字影像成灰阶讯号,形成纵轴灰阶讯号值,横轴像素值;纵轴灰阶讯号加总值最大值,标定该微血管管径的两边缘端点;该微血管管径的两边缘端点的相应横轴像素值,计算该微血管的该管径值;以及于该显示器显示该微血管的该管径值。In one embodiment of the detection method, the position of the two edge endpoints in the microvessel is found. The steps include: scanning the digital image into a grayscale signal to form a grayscale signal value on the vertical axis and a pixel value on the horizontal axis; The maximum value of the gray-scale signal sum of the axis is used to mark the two edge endpoints of the microvessel diameter; the corresponding horizontal axis pixel values of the two edge endpoints of the microvessel diameter are used to calculate the diameter value of the microvessel; and display the microvessel diameter on the display The value of the diameter of the microvessel.
本“发明内容”是以简化形式介绍一些选定概念,在下文的“具体实施方式”中将进一步对其进行描述。本“发明内容”并非意欲辨识申请专利的关键特征或基本特征,亦非意欲用于限制申请专利的保护范围。This Summary presents a selection of concepts in a simplified form that are further described below in the Detailed Description. This "Summary of the Invention" is not intended to identify the key features or essential features of the patent application, nor is it intended to be used to limit the scope of protection of the patent application.
附图说明Description of drawings
图1为本发明装置示意图。Figure 1 is a schematic diagram of the device of the present invention.
图2为本发明起点标示点示意图。Fig. 2 is a schematic diagram of the marking point of the starting point of the present invention.
图3为本发明终点标示点示意图。Fig. 3 is a schematic diagram of the end point marking points of the present invention.
图4为本发明以白血球解析路径示意图。Fig. 4 is a schematic diagram of the analysis path of leukocytes in the present invention.
图5为本发明以沿血管边缘解析路径示意图。Fig. 5 is a schematic diagram of analyzing a path along a blood vessel edge according to the present invention.
图6为本发明量测管径示意图。Fig. 6 is a schematic diagram of measuring pipe diameter in the present invention.
图7为本发明微血管血流流速检测方法步骤图。Fig. 7 is a step diagram of the method for detecting the blood flow velocity of microvessels of the present invention.
图8为本发明以白血球析路径的分解画面示意图。FIG. 8 is a schematic diagram of an exploded view of the leukocyte analysis path in the present invention.
图9为本发明微血管血流流速检测方法步骤图。Fig. 9 is a step diagram of the method for detecting the blood flow velocity of microvessels in the present invention.
图10为本发明由平均位置的角度,计算流经路径长示意图。Fig. 10 is a schematic diagram of calculating the flow path length from the angle of the average position according to the present invention.
图11为本发明以沿血管边缘解析路径的分解画面示意图。FIG. 11 is a schematic diagram of an exploded screen for analyzing a path along a blood vessel edge according to the present invention.
图12为本发明以血管边缘解析路径的初始搜寻路径。FIG. 12 shows the initial search path of the present invention based on the analysis of the path by the edge of the blood vessel.
图13A为本发明工字型框架135度搜寻示意图。Fig. 13A is a schematic diagram of the 135-degree search of the I-shaped frame of the present invention.
图13B为本发明工字型框架90度搜寻示意图。Fig. 13B is a schematic diagram of the 90-degree search of the I-shaped frame of the present invention.
图13C为本发明工字型框架45度搜寻示意图。Fig. 13C is a schematic diagram of the 45-degree search of the I-shaped frame of the present invention.
图14为本发明最大边缘位置中心定位示意图。Fig. 14 is a schematic diagram of positioning the center of the maximum edge position in the present invention.
图15为本发明以沿血管边缘解析路径的前进标示示意图。FIG. 15 is a schematic diagram of the present invention to indicate progress along the analytical path along the edge of a blood vessel.
图16A为本发明工字型框架135度搜寻示意图。Fig. 16A is a schematic diagram of the 135-degree search of the I-shaped frame of the present invention.
图16B为本发明工字型框架90度搜寻示意图。Fig. 16B is a schematic diagram of the 90-degree search of the I-shaped frame of the present invention.
图16C为本发明工字型框架45度搜寻示意图。Fig. 16C is a schematic diagram of the 45-degree search of the I-shaped frame of the present invention.
图17为本发明最大边缘位置中心定位示意图。Fig. 17 is a schematic diagram of positioning the center of the maximum edge position in the present invention.
图18为本发明以血管边缘解析路径的轨迹图。Fig. 18 is a trajectory diagram of the path analyzed by the edge of the blood vessel in the present invention.
图19为本发明以沿血管边缘解析路径血流流速计算示意图。Fig. 19 is a schematic diagram of the present invention to calculate the blood flow velocity along the blood vessel edge analysis path.
图20为本发明管径量测示意图。Fig. 20 is a schematic diagram of pipe diameter measurement in the present invention.
符号说明:Symbol Description:
11 计算机11 computer
12 显示器12 monitors
13 感光耦合组件13 Optical coupling components
14 显微镜镜头14 microscope lens
15 指槽15 finger groove
16 手指16 fingers
17 处理器17 processors
21 微血管21 microvessels
22 白血球22 white blood cells
24 第1标线24 1st marking line
25 第2标线25 2nd marking line
81 起点标示点81 starting point marking point
82 终点标示点82 end mark point
85 135度标点85 135 degree punctuation
86 90度标点86 90 degree punctuation
87 45度标点87 45 degree punctuation
88 工字型框架88 I-shaped frame
89 最大边缘位置89 Maximum edge position
90 血管中心标示点90 Marking point of blood vessel center
91 计算标示点91 Calculation of marked points
92 范围外白血球92 out of range leukocytes
101 平均位置点101 average position points
102 第1追踪点102 1st Tracking Point
103 第2追踪点103 2nd Tracking Point
104 第3追踪点104 3rd Tracking Point
105 第4追踪点105 4th Tracking Point
106 第5追踪点106 5th Tracking Point
107 第6追踪点107
110 第1分布图110 1st Distribution Map
111 第1曲线图111 1st Curve
120 第2分布图120 2nd Distribution Map
121 第2曲线图121 2nd Curve
具体实施方式Detailed ways
图1所示,为本发明装置示意图。在一实施例中,本发明提供一种微血管检测装置,经由一手指16皮下组织中的至少一微血管21影像,检测该微血管21的血流流速以及管径,本发明装置包含有:计算机11、感光耦合组件13(charge-coupled device,CCD)、以及显微镜镜头14。其中该计算机11,具有一显示器12以及一处理器17;该感光耦合组件13,电性讯号链接该计算机11,例如使用通讯传输接口的USB接口、IEEE 1394接口、Ethernet接口、以及CVBS加上影像撷取卡接口等。以及该显微镜镜头14具有放大显微影像功能,经由该显微镜镜头14撷取该微血管21影像,该微血管21影像由该感光耦合组件13形成复数帧数字影像,其中时间连续的复数帧该数字影像,经由该处理器17显示于该显示器12。As shown in Fig. 1, it is a schematic diagram of the device of the present invention. In one embodiment, the present invention provides a microvessel detection device, which detects the blood flow velocity and diameter of the
图2和图3所示,该处理器17标定复数帧该数字影像,对应该微血管21中一白血球22的时间连续的标示点,包括一起点标示点81以及一终点标示点82,该起点标示点81以及该终点标示点82的时间差为第1时间差,该处理器17计算加总连续标示点的第1路径长,第1路径长除以第1时间差的一血流流速值,于该显示器12显示该血流流速值。As shown in Figures 2 and 3, the
图4和图5所示为本发明两种血流流速值的显示结构,图4所示为本发明白血球22解析路径,找出若干分解图中被选取血管的白血球22,并分析其流动路径。以及图5所示为本发明沿微血管21边缘解析路径。从微血管21内一点选位置出发,沿微血管21边缘,找到另一点选位置。由流动路径长度,及总共有的分解数字影像的图数,即可得到总时间,以便可计算出血流流速。Figure 4 and Figure 5 show the display structure of two kinds of blood flow velocity values of the present invention, and Figure 4 shows the analysis path of
图6所示,是量测管径示意图。为本发明一实施例,经由处理器17计算,显示在显示器12的功能显示画面,包括显示微血管21的管径值,以及微调左(left)的第1标线24的边境值,微调右(right)的第2标线25的边境值,以及使用鼠标点选第1标线24、以及第2标线25的位置后,处理器17计算微血管21的管径值,图6显示画面,与图7中步骤S71、S72、以及S73的共享该显示器12的功能。显示在显示器12的功能显示画面的下端,是图形功能接口的选项。As shown in Figure 6, it is a schematic diagram of measuring pipe diameter. As an embodiment of the present invention, the function display screen displayed on the
图7所示,在另一实施中,是本发明微血管21血流流速检测方法步骤图。其中,检测步骤,包含有:步骤S1,待测一手指16放在一指槽15中;步骤S2,使一感光耦合组件13取得一数字影像;步骤S3,经传输将该数字影像显示在一计算机11的一显示器12;步骤S4,依该显示器12的该数字影像调整该手指16的位置及一显微镜镜头14的焦距;以及步骤S5,撷取该数字影像并依连续时间分解该数字影像。As shown in FIG. 7 , in another implementation, it is a step diagram of the method for detecting the blood flow velocity of the
图7所示,由步骤S6,功能选择,来选择分解该数字影像作为量测一微血管21的一血流流速值,其中,检测步骤,包含有:步骤S81,点选该数字影像中一白血球22起始位置;步骤S82,找出时间连续的该数字影像中同一个该白血球22的位置,并点选该白血球22的位置;步骤S85,搜寻到路径,则标示路径并计算该血流流速值;以及步骤S84,搜寻不到路径,则显示错误,并重新回到点选该数字影像中该白血球22起始位置的步骤。As shown in FIG. 7, step S6, function selection, selects and decomposes the digital image as a measurement of a blood flow velocity value of a
图7所示,由步骤S6,功能选择,来选择分解该数字影像作为量测一微血管21的一管径值,其中,检测步骤,包含有:步骤S71,点选该数字影像中该微血管21内的任一位置;步骤S72,找出该微血管21内的两边缘端点位置,并量测该微血管21的管径;以及步骤S73,手动微调量测位置,并显示该微血管21的该管径值于该显示器12。As shown in FIG. 7, step S6, function selection, selects and decomposes the digital image as a measurement of a diameter value of a
图7至图10所示,分解该数字影像作为量测一微血管21的一血流流速值,其中,同一个该白血球22在时间连续的该数字影像中的位置,被标定为一起点标示点81以及一终点标示点82、以及至少一追踪点,图10所示,第1追踪点102、第2追踪点103、到第6追踪点107;计算所有该追踪点的一平均位置点101,各追踪点和平均位置的角度,依角度进行排序;得到该白血球22流经的顺序,该起点标示点81以及该终点标示点82的时间差为第1时间差;依序加总相邻距离,得到流经该微血管21的第1路径长;第1路径长除以第1时间差的一血流流速值;以及于该显示器12显示该血流流速值。As shown in FIGS. 7 to 10, the digital image is decomposed to measure a blood flow velocity value of a
图9中,同一白血球22的选取,以影像分析各分解图间的灰阶差异,找出其间所有白血球22位置,并去除选取范围外白血球92。In FIG. 9 , for the selection of the same
图8中,使用者选取分解画面的白血球22起点,并在后续几张分解画面中选取白血球22终点,依计算机11效能,录像压缩后,可以从数字图像文件案得知图框率(FrameRate),以下以每秒25张的图框率(Frame Rate),举例:每张为1/25秒,分解图的数字影像有9张,头尾间隔8/25秒。图10中,假设上述路径长计算得96像素(pixel),而显微镜镜头14撷取的数字影像,像素比为1.164594μm/pixel.,第2路径长是96像素(pixel)乘以1.164594μm/pixel=111.801024μm,显微镜镜头14撷取的数字影像,每秒有25张数字影像,由此算出该起点标示点81以及该终点标示点82的时间差为第1时间差,因此第2路径长除以第1时间差,可以计算血流流速,[96pixels/(8/25sec)]X 1.164594μm/pixel=349μm/sec≒0.35mm/sec。In Fig. 8, the user selects the starting point of the
图11至图19中,是本发明一实施例工字型框架88计算血流流速值。本发明分解该数字影像作为量测一微血管21的一血流流速值,其中,检测步骤,更包含有:图11所示,点选该数字影像中该白血球22的一起点标示点81以及一终点标示点82;图12至图13C所示,使用一工字型框架88,以45度标点87、90度标点86、以及135度标点85的路经,图14所示,搜寻到一最大边缘位置89;图14所示,计算一血管中心标示点90;由该血管中心标示点90,图15至图17所示,经由该工字型框架88依次标示出至少一计算标示点91,直到该终点标示点82;该起点标示点81以及该终点标示点82的时间差为第2时间差,图18所示,计算加总连续的该计算标示点91的第2路径长,除以第2时间差的一血流流速值;以及于该显示器12显示该血流流速值。In Fig. 11 to Fig. 19, the blood flow velocity values calculated by the I-shaped
图12所示,是由起点标示点81或终点标示点82较低者搜寻,初始的搜寻方向是向上的90度方向。本发明,内定每一步的搜寻角度是+/-45度。所以下一步的候选位置为135、90,45度,如图13A至图13C所示,三点位置。由左至右分别是往135、90,45度前进的位置。工字型框架88为搜寻范围,从血管外部往中心方向计算该角度的最大边缘量,其中,最大边缘量定义是依点选位置沿着工字型框架88的工字型左右两侧的箭头方向,从血管外部往中心方向各扫描若干像素(pixels)的范围,扫描方法先产生邻近像素间灰阶值差异,并将工字型框架88的工字型中轴方向的灰阶值加总,结果得到工字型框架88的工字型左右侧的曲线图,找出左右侧曲线中的坡峰,即差异最大处,为该角度的左侧的最大边缘量(Lmax),以及右侧的最大边缘量(Rmax)。As shown in FIG. 12 , the
左右两侧最大边缘量的总和(Lmax+Rmax),是此角度的总边缘量。如图13A实施例中135度的右侧的最大边缘量(Rmax)=181,左侧的最大边缘量(Lmax)=29,因此,135度的总边缘量181+29=210。如图13B实施例中90度的右侧的最大边缘量(Rmax)=354,左侧的最大边缘量(Lmax)=672,90度的总边缘量672+354=1026。如图13C实施例中45度的右侧的最大边缘量(Rmax)=229,左侧的最大边缘量(Lmax)=243,因此,45度的总边缘量229+243=472。由上述计算,90度总边缘量大于45度总边缘量,大于135度总边缘量,所以最大总边缘量是90度总边缘量的值,即1026。由于在此阶段的最大总边缘量是90度的值,即1026,所以此阶段的方向往最大总边缘量,即90度前进。The sum of the maximum edge amounts on the left and right sides (Lmax+Rmax) is the total edge amount at this angle. As shown in the embodiment of Fig. 13A, the maximum edge amount (Rmax) on the right side of 135 degrees = 181, and the maximum edge amount (Lmax) on the left side = 29. Therefore, the total edge amount of 135 degrees is 181+29=210. In the embodiment shown in Fig. 13B, the maximum edge amount (Rmax) on the right side of 90 degrees is 354, the maximum edge amount on the left side (Lmax) is 672, and the total edge amount of 90 degrees is 672+354=1026. As shown in Fig. 13C embodiment, the maximum edge amount (Rmax) on the right side of 45 degrees is 229, and the maximum edge amount (Lmax) on the left side is 243. Therefore, the total edge amount of 45 degrees is 229+243=472. According to the above calculation, the total edge amount of 90 degrees is greater than the total edge amount of 45 degrees, and greater than the total edge amount of 135 degrees, so the maximum total edge amount is the value of the total edge amount of 90 degrees, that is, 1026. Since the maximum total edge amount at this stage is the value of 90 degrees, that is, 1026, the direction of this stage advances toward the maximum total edge amount, that is, 90 degrees.
工字型框架88两侧各有一个最大边缘量,两侧最大边缘量的总和,是此角度的总边缘量。假设此阶段的最大总边缘量是90度,所以此阶段的方向往90度前进,如图14所示。在图14中,90度标点86为90度方向的候选位置。算法会根据此最大边缘量的位置于两侧的位置,即,最大边缘位置89,将候选坐标,在图14中,90度标点86往血管中心方向调整到血管中心标示点90。最后,此一血管中心标示点90即是此一阶段中,所找出的下一开启搜索点的位置,而下一步的候选位置,是以血管中心标示点90为开启搜索点,继续向135、90,45度方向搜索。Both sides of the I-shaped
如图15所示。以90度方向一步步往前计算,可以以血管中心标示点90为开启搜索点,逐次找出最大总边缘量的方向,前进的计算标示点91位置。如图16A至图16C所示,以起始搜索的计算标示点91位置,重新上述工字型框架88的搜寻,搜寻方向是向上的90度方向。本发明的算法,内定每一步的可旋转角度是+/-45度。所以图16A至图16C所示的下一步的候选位置为135、90,45度,如图16A至图16C所示的三个位置,包括:45度标点87、90度标点86、以及135度标点85的位置。由左至右分别是往135、90,45度前进的位置。As shown in Figure 15. To calculate step by step in the direction of 90 degrees, the
以工字型框架88为搜寻范围,从血管外部往中心方向计算该角度的最大边缘量。其中,最大边缘量定义是依点选位置沿着工字型框架88的工字型左右两侧的箭头方向,从血管外部往中心方向各扫描若干像素(pixels)的范围,扫描方法先产生邻近像素间灰阶值差异,并将工字型框架88的工字型中轴方向的灰阶值加总,结果得到工字型框架88的工字型左右侧的曲线图,找出左右侧曲线中的坡峰,即差异最大处,为该角度的左侧的最大边缘量(Lmax),以及右侧的最大边缘量(Rmax)。Taking the I-shaped
左右两侧最大边缘量的总和(Lmax+Rmax),是此角度的总边缘量。如图16A实施例中135度的右侧的最大边缘量(Rmax)=473,左侧的最大边缘量(Lmax)=29,因此,135度的总边缘量473+29=502。如图16B实施例中90度的右侧的最大边缘量(Rmax)=701,左侧的最大边缘量(Lmax)=540,90度的总边缘量701+540=1241。如图16C实施例中45度的右侧的最大边缘量(Rmax)=758,左侧的最大边缘量(Lmax)=979,因此,45度的总边缘量758+979=1737。由上述计算,45度总边缘量大于90度总边缘量,90度总边缘量大于135度总边缘量,所以最大总边缘量是45度总边缘量的值,即1737。由于在此阶段的最大总边缘量是45度的值,即1737,所以此阶段的方向往最大总边缘量,即45度前进。The sum of the maximum edge amounts on the left and right sides (Lmax+Rmax) is the total edge amount at this angle. As shown in the embodiment of Fig. 16A, the maximum edge amount (Rmax) on the right side of 135 degrees = 473, and the maximum edge amount (Lmax) on the left side = 29. Therefore, the total edge amount of 135 degrees is 473+29=502. As shown in the embodiment of Fig. 16B, the maximum edge amount (Rmax) on the right side of 90 degrees = 701, the maximum edge amount on the left side (Lmax) = 540, and the total edge amount of 90 degrees is 701 + 540 = 1241. As shown in the embodiment of Fig. 16C, the maximum edge amount (Rmax) on the right side of 45 degrees is 758, and the maximum edge amount (Lmax) on the left side is 979. Therefore, the total edge amount of 45 degrees is 758+979=1737. According to the above calculation, the total margin of 45 degrees is greater than the total margin of 90 degrees, and the total margin of 90 degrees is greater than the total margin of 135 degrees, so the maximum total margin is the value of the total margin of 45 degrees, that is, 1737. Since the maximum total edge amount at this stage is the value of 45 degrees, ie 1737, the direction at this stage is towards the maximum total edge amount, ie 45 degrees.
如图16A至图16C所示,工字型框架88为搜寻范围,沿着双箭头方向,从血管外部往双箭头中心方向计算该角度的边缘量。工字型框架88两侧各有一个最大边缘位置89,两侧最大边缘位置89的总和,即是此角度的总边缘量。假设此阶段的最大总边缘量是45度,所以此阶段的方向往45度前进,如图17所示。As shown in FIG. 16A to FIG. 16C , the I-shaped
在图17中,45度方向的候选位置是45度标点87。假设最大边缘位置89在两侧形成,算法会根据此两侧的最大边缘位置89,将候选坐标的45度标点87往血管中心方向调整到血管中心标示点90。最后血管中心标示点90即是此一阶段所找出的下一点起始搜索点的位置,而下一步的候选位置,是以血管中心标示点90为开启搜索点,继续向135、90,45度方向搜索。In FIG. 17 , the candidate position for the 45-degree direction is the 45-
在图18中,是依照上述方法,一步一步往下一个计算出来的位置推进,并且调整行进方向,直到进入终点区域的终点标示点82,即找出此条微血管21的轨迹。In FIG. 18 , according to the above method, advance to the next calculated position step by step, and adjust the traveling direction until entering the
图11中,使用者选取分解画面的白血球22起点,并在后续几张分解画面中选取白血球22终点,依计算机11效能,录像压缩后,可以从数字图像文件案得知图框率(FrameRate),以下以每秒25张的图框率(Frame Rate),举例:每张为1/25秒,分解图的数字影像有9张,头尾间隔8/25秒。图18以及图19中,假设上述路径长计算得86像素(pixel),而显微镜镜头14撷取的数字影像,像素比为1.164594μm/pixel.,第2路径长是86像素(pixel)乘以1.164594μm/pixel=100.155084μm,显微镜镜头14撷取的数字影像,每秒有25张数字影像,由此算出该起点标示点81以及该终点标示点82的时间差为第2时间差,因此第2路径长除以第2时间差,可以计算血流流速,86pixels/(8/25sec)乘以1.164594μm/pixel=294μm/s=0.29mm/s。In Fig. 11, the user selects the starting point of the
图20中,找出该微血管21内的两边缘端点位置,其步骤,包含:由扫描该数字影像成灰阶讯号,形成纵轴灰阶讯号值,横轴像素值;纵轴灰阶讯号加总值最大值,标定该微血管21管径的两边缘端点;该微血管21管径的两边缘端点的相应横轴像素值,计算该微血管21的该管径值;以及于该显示器12显示该微血管21的该管径值。In FIG. 20 , the steps of finding the positions of the two edge endpoints in the
图20中,依点选位置,左右各扫描16像素(pixel),正方型范围,如果找不到自动再向左右扩大扫描,扫描方法先产生像素间灰阶值差异,结果得到如图20中第1分布图110、以及第2分布图120的像素间灰阶值差异分布图,再将垂直方向的灰阶值加总,结果得到如图20中的第1曲线图111以及第2曲线图121的曲线图。找出曲线中的坡峰,如图中的差异最大值,即为微血管21边缘,依显微镜镜头14,撷取的数字影像,像素比为1.164594μm/pixel,图20中左侧坡峰,在第7像素(pixel)处,右侧在第10像素(pixel)处,因此共间隔16像素(pixel)。计算出微血管21管径,为16像素(pixel)乘以1.164594μm/pixel等于18.6μm。In Figure 20, according to the selected position, scan 16 pixels (pixels) on the left and right, and the square-shaped range. If it cannot be found, it will automatically expand the scan to the left and right. The scanning method first produces the difference in grayscale values between pixels, and the result is as shown in Figure 20. The first distribution diagram 110 and the distribution diagram of gray scale value differences between pixels in the second distribution diagram 120, and then sum the gray scale values in the vertical direction, the result is the
虽然本发明已以实施例公开如上,然其并非用以限定本发明,任何熟悉此技术者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围以权利要求书为准。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any skilled person can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection is based on the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810222949.4A CN110279393B (en) | 2018-03-19 | 2018-03-19 | Microvessel detection device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810222949.4A CN110279393B (en) | 2018-03-19 | 2018-03-19 | Microvessel detection device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110279393A CN110279393A (en) | 2019-09-27 |
CN110279393B true CN110279393B (en) | 2023-04-28 |
Family
ID=68000787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810222949.4A Active CN110279393B (en) | 2018-03-19 | 2018-03-19 | Microvessel detection device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110279393B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111956200B (en) * | 2020-09-01 | 2023-07-21 | 徐州利华电子科技发展有限公司 | Microcirculation high-speed blood flow measuring and calculating system and measuring and calculating method |
CN117752298B (en) * | 2023-12-29 | 2024-05-24 | 山东大学 | Capillary blood flow velocity measurement method and system based on OCTA |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85201718U (en) * | 1985-04-28 | 1986-05-28 | 清华大学 | Multiple variables combined meter for microcirculation |
JPH0765154A (en) * | 1993-08-31 | 1995-03-10 | Toshiba Corp | Device and method for quantitatively analyzing blood vessel image |
TW200618774A (en) * | 2004-12-01 | 2006-06-16 | Yio-Wha Shau | Real time inspection system and inspection method for micro-circulation |
JP2008017961A (en) * | 2006-07-12 | 2008-01-31 | Image One Co Ltd | Method and device for measuring blood flow rate |
JP2010075354A (en) * | 2008-09-25 | 2010-04-08 | Takenori Uchiyama | Blood capillary blood flow measurement apparatus, blood capillary blood flow measurement method, and program |
CN101779967A (en) * | 2009-01-21 | 2010-07-21 | 重庆医科大学超声影像学研究所 | Method for directly measuring blood flowing velocity by using ultrasound microbubble (microsphere) contrast agent |
CN101984916A (en) * | 2010-11-17 | 2011-03-16 | 哈尔滨工程大学 | Blood vessel diameter measuring method based on digital image processing technology |
TW201309264A (en) * | 2011-08-26 | 2013-03-01 | Univ Nat Sun Yat Sen | Automatic nailfold microcirculation analysis system |
-
2018
- 2018-03-19 CN CN201810222949.4A patent/CN110279393B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85201718U (en) * | 1985-04-28 | 1986-05-28 | 清华大学 | Multiple variables combined meter for microcirculation |
JPH0765154A (en) * | 1993-08-31 | 1995-03-10 | Toshiba Corp | Device and method for quantitatively analyzing blood vessel image |
TW200618774A (en) * | 2004-12-01 | 2006-06-16 | Yio-Wha Shau | Real time inspection system and inspection method for micro-circulation |
JP2008017961A (en) * | 2006-07-12 | 2008-01-31 | Image One Co Ltd | Method and device for measuring blood flow rate |
JP2010075354A (en) * | 2008-09-25 | 2010-04-08 | Takenori Uchiyama | Blood capillary blood flow measurement apparatus, blood capillary blood flow measurement method, and program |
CN101779967A (en) * | 2009-01-21 | 2010-07-21 | 重庆医科大学超声影像学研究所 | Method for directly measuring blood flowing velocity by using ultrasound microbubble (microsphere) contrast agent |
CN101984916A (en) * | 2010-11-17 | 2011-03-16 | 哈尔滨工程大学 | Blood vessel diameter measuring method based on digital image processing technology |
TW201309264A (en) * | 2011-08-26 | 2013-03-01 | Univ Nat Sun Yat Sen | Automatic nailfold microcirculation analysis system |
Also Published As
Publication number | Publication date |
---|---|
CN110279393A (en) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110858394A (en) | Image quality evaluation method and device, electronic equipment and computer readable storage medium | |
Callaway | Measuring kinematic variables in front crawl swimming using accelerometers: A validation study | |
CN110279393B (en) | Microvessel detection device and method | |
US11808857B2 (en) | Multi-sensor superresolution scanning and capture system | |
Goh et al. | Automated service height fault detection using computer vision and machine learning for badminton matches | |
CN109493334A (en) | Measure the method and device of spinal curvature | |
CN110533686A (en) | Line-scan digital camera line frequency and the whether matched judgment method of speed of moving body and system | |
CN116503954A (en) | Physical education testing method and system based on human body posture estimation | |
US12189844B2 (en) | Eye-gaze tracking apparatus and a method of eye-gaze tracking | |
TWI796317B (en) | Microvascular detection device and method | |
JP2010075354A (en) | Blood capillary blood flow measurement apparatus, blood capillary blood flow measurement method, and program | |
TWM563247U (en) | Microvascular detection device | |
CN107958202A (en) | Human body detecting device, the control method of human body detecting device and storage medium | |
CN111754486B (en) | Image processing method, device, electronic equipment and storage medium | |
JP5478520B2 (en) | People counting device, people counting method, program | |
TW202248892A (en) | Posture evaluating apparatus, method and system | |
CN112284983A (en) | Method for measuring contact angle by image processing | |
CN112884852B (en) | Portable oral scanner and oral scanning system | |
CN111091910B (en) | Intelligent evaluation system based on painting clock test | |
CN113361360A (en) | Multi-person tracking method and system based on deep learning | |
CN102810042B (en) | Method and system for generating image thumbnail layout | |
JPH06319737A (en) | Ultrasonic color Doppler diagnostic device | |
CN111582153A (en) | Method and device for determining document orientation | |
CN118552989B (en) | Palm vein recognition method and vein recognition terminal based on feature calibration | |
CN110956130A (en) | Method and system for four-level face detection and key point regression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |