CN110277454B - Negative capacitance field effect transistor and process method thereof - Google Patents
Negative capacitance field effect transistor and process method thereof Download PDFInfo
- Publication number
- CN110277454B CN110277454B CN201910530011.3A CN201910530011A CN110277454B CN 110277454 B CN110277454 B CN 110277454B CN 201910530011 A CN201910530011 A CN 201910530011A CN 110277454 B CN110277454 B CN 110277454B
- Authority
- CN
- China
- Prior art keywords
- layer
- field effect
- effect transistor
- negative capacitance
- capacitance field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/681—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
- H10D64/685—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/701—IGFETs having ferroelectric gate insulators, e.g. ferroelectric FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/689—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having ferroelectric layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供一种负电容场效应晶体管,包括硅基底及位于其上的闸极堆叠结构;闸极堆叠结构自下而上依次由内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极构成。本发明还提供一种负电容场效应晶体管的工艺方法,提供硅基底;在硅基底上依次自下而上形成内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极。本发明的负电容场效应晶体管可使器件的亚阈值摆幅突破物理极限,从而使工作电压下限降低,能耗降级,提升器件的性能;通过铁电层与高介电层间TiN/TaN的双层设计,可阻碍铁电层离子向高介电层的扩散,提升器件的可靠性;无需增加额外光罩,新增并修改数步工艺,即可实现本发明28/22HKMG NCFET的工艺集成。
The present invention provides a negative capacitance field effect transistor, comprising a silicon substrate and a gate stack structure thereon; the gate stack structure consists of an inner layer, a high dielectric layer, a bottom barrier layer, a ferroelectric layer, an inner layer, a high dielectric layer, a bottom barrier layer, a ferroelectric layer, A strained layer, a work function layer and a metal gate are formed. The invention also provides a process method for a negative capacitance field effect transistor, which provides a silicon substrate; an inner layer, a high dielectric layer, a bottom barrier layer, a ferroelectric layer, a strained layer, and a work function are sequentially formed on the silicon substrate from bottom to top layer and metal gate. The negative capacitance field effect transistor of the invention can make the sub-threshold swing of the device break through the physical limit, thereby reducing the lower limit of the working voltage, reducing the energy consumption, and improving the performance of the device; through the TiN/TaN between the ferroelectric layer and the high dielectric layer The double-layer design can hinder the diffusion of ions from the ferroelectric layer to the high dielectric layer and improve the reliability of the device; the process integration of the 28/22HKMG NCFET of the present invention can be realized without adding additional masks, adding and modifying several steps of processes .
Description
技术领域technical field
本发明涉及半导体制造领域,特别是涉及一种负电容场效应晶体管及其工艺方法。The invention relates to the field of semiconductor manufacturing, in particular to a negative capacitance field effect transistor and a process method thereof.
背景技术Background technique
自从二十世纪六十年代摩尔定律提出开始,半个世纪以来,半导体器件的尺寸不断微缩,电路集成度越来越高。然而,在室温下,由于电子的玻尔兹曼分布特征,亚阈值摆幅(SS)极限值约60mV/dec,导致传统金属-氧化物-半导体场效应晶体管(MOSFET)集成电路的发展受到挑战。如图1所示,图1显示为现有技术中的闸极堆叠结构的示意图,所述闸极堆叠结构位于硅基底01上,该闸极堆叠结构自下而上依次由内层02、高介电层03、TiN层04、TaN层05、功函数层06以及金属闸极07构成。通过将铁电材料引入器件形成负电容场效应晶体管(NCFET),可利用铁电材料负电容特性,使得器件的亚阈值摆幅(SS)突破极限值进一步减小,从而带来功耗降低等显著的器件性能提升。然而,负电容场效应晶体管目前仍处于实验室研究层面。Since Moore's Law was put forward in the 1960s, the size of semiconductor devices has been shrinking and the circuit integration has been getting higher and higher for half a century. However, at room temperature, the development of conventional metal-oxide-semiconductor field-effect transistor (MOSFET) integrated circuits is challenged by the subthreshold swing (SS) limit of about 60 mV/dec due to the Boltzmann distribution of electrons. . As shown in FIG. 1 , which is a schematic diagram of a gate stack structure in the prior art, the gate stack structure is located on a
因此,提供一种工艺简单、易于代工厂集成的负电容场效应晶体管器件的结构及工艺方法,成为本领域技术人员亟待解决的重要技术问题。Therefore, it is an important technical problem to be solved urgently by those skilled in the art to provide a structure and a process method of a negative capacitance field effect transistor device with a simple process and easy integration by a foundry.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种负电容场效应晶体管及其工艺方法,用于解决现有技术中金属-氧化物-半导体场效应晶体管亚阈值摆幅高,工作电压下限高的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a negative capacitance field effect transistor and a process method thereof, which are used to solve the high subthreshold swing of the metal-oxide-semiconductor field effect transistor in the prior art, The problem of high operating voltage lower limit.
为实现上述目的及其他相关目的,本发明提供一种负电容场效应晶体管,至少包括:硅基底及位于其上的闸极堆叠结构;所述闸极堆叠结构自下而上依次由内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极构成。In order to achieve the above purpose and other related purposes, the present invention provides a negative capacitance field effect transistor, which at least includes: a silicon substrate and a gate stack structure located thereon; A high dielectric layer, a bottom barrier layer, a ferroelectric layer, a strained layer, a work function layer and a metal gate are formed.
优选地,所述负电容场效应晶体管还包括位于所述硅基底上、所述闸极堆叠结构两侧的源极和漏极;位于所述硅基底上、用于隔离器件结构的浅沟道隔离区;与所述源极、漏极、所述闸极堆叠结构接触的接触孔;与所述接触孔连接的金属线层;与所述金属线层接触连接的金属焊垫。Preferably, the negative capacitance field effect transistor further comprises a source electrode and a drain electrode on the silicon substrate and on both sides of the gate stack structure; a shallow trench on the silicon substrate for isolating the device structure an isolation region; a contact hole in contact with the source electrode, the drain electrode, and the gate stack structure; a metal wire layer connected with the contact hole; and a metal pad in contact with the metal wire layer.
优选地,所述底部阻碍层为由TiN层和位于该TiN层上的TaN层构成的双层界面结构。Preferably, the bottom barrier layer is a double-layer interface structure composed of a TiN layer and a TaN layer located on the TiN layer.
优选地,所述铁电层由HfAlOx或HfZrOx构成。Preferably, the ferroelectric layer is composed of HfAlO x or HfZrO x .
优选地,所述应变层为TaN层。Preferably, the strained layer is a TaN layer.
优选地,所述金属闸极的侧壁设有所述功函数层。Preferably, the work function layer is provided on the sidewall of the metal gate.
优选地,所述闸极堆叠结构的侧壁具有侧壁层结构,该侧壁层结构的底部接触于所述硅基底。Preferably, the sidewall of the gate stack structure has a sidewall layer structure, and the bottom of the sidewall layer structure is in contact with the silicon substrate.
优选地,所述侧壁层结构的两侧形成有层间介质层。Preferably, interlayer dielectric layers are formed on both sides of the sidewall layer structure.
优选地,所述层间介质层为氧化层结构。Preferably, the interlayer dielectric layer has an oxide layer structure.
本发明还提供一种负电容场效应晶体管的工艺方法,该方法至少包括以下步骤:步骤一、提供硅基底;步骤二、在所述硅基底上依次自下而上形成内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极。The present invention also provides a process method for a negative capacitance field effect transistor, the method includes at least the following steps: step 1, providing a silicon substrate; step 2, forming an inner layer, a high dielectric layer on the silicon substrate sequentially from bottom to top layer, bottom barrier layer, ferroelectric layer, strained layer, work function layer and metal gate.
优选地,步骤二中形成所述底部阻碍层包括形成TiN层和位于该TiN层上的TaN层。Preferably, forming the bottom barrier layer in step 2 includes forming a TiN layer and a TaN layer on the TiN layer.
优选地,所述TaN层的形成方法为物理气相沉积法。Preferably, the formation method of the TaN layer is a physical vapor deposition method.
优选地,步骤二中形成所述铁电层的方法为原子层沉积法。Preferably, the method for forming the ferroelectric layer in step 2 is atomic layer deposition.
优选地,步骤二中形成所述铁电层后,采用快速热处理的方法处理该铁电层。Preferably, after the ferroelectric layer is formed in step 2, the ferroelectric layer is treated by a rapid heat treatment method.
优选地,该方法用于28nm和22nm的高介电金属栅极工艺中。Preferably, this method is used in 28nm and 22nm high dielectric metal gate processes.
如上所述,本发明的负电容场效应晶体管及其工艺方法,具有以下有益效果:本发明的负电容场效应晶体管可使器件的亚阈值摆幅(SS)突破物理极限,从而使工作电压下限降低,能耗降级,提升器件的性能;通过铁电层与高介电层间TiN/TaN的双层设计,可阻碍铁电层离子向高介电层的扩散,提升器件的可靠性;本发明无需增加额外光罩,新增并修改数步工艺,即可实现本发明28/22HKMG NCFET的工艺集成。As mentioned above, the negative capacitance field effect transistor of the present invention and the process method thereof have the following beneficial effects: the negative capacitance field effect transistor of the present invention can make the sub-threshold swing (SS) of the device break through the physical limit, so that the lower limit of the operating voltage is reduce the energy consumption, and improve the performance of the device; through the double-layer design of TiN/TaN between the ferroelectric layer and the high dielectric layer, the diffusion of ions from the ferroelectric layer to the high dielectric layer can be hindered, and the reliability of the device can be improved; The invention can realize the process integration of the 28/22HKMG NCFET of the present invention without adding an additional mask, adding and modifying several steps of processes.
附图说明Description of drawings
图1显示为现有技术中的闸极堆叠结构的示意图;FIG. 1 is a schematic diagram of a gate stack structure in the prior art;
图2显示为本发明的闸极堆叠结构的示意图;FIG. 2 is a schematic diagram of the gate stack structure of the present invention;
图3为本发明的负电容场效应晶体管的结构示意图。FIG. 3 is a schematic structural diagram of the negative capacitance field effect transistor of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图3。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1 through 3. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, and the drawings only show the components related to the present invention rather than the number, shape and number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
参考图2,图2显示为本发明的闸极堆叠结构的示意图。本发明的所述闸极堆叠结构包括硅基底01及位于其上的闸极堆叠结构;其中所述闸极堆叠结构自下而上依次由内层02、高介电层03、底部阻碍层、铁电层10、应变层11、功函数层06以及金属闸极(MG)07构成。本发明优选地,所述底部阻碍层为由TiN层04和位于该TiN层04上的TaN层05构成的双层界面结构。也就是如图2中所示的,所述底部阻碍层包括TiN层04和TaN层05,其中所述TaN层05位于所述TiN层04上表面。Referring to FIG. 2 , FIG. 2 is a schematic diagram of the gate stack structure of the present invention. The gate stack structure of the present invention includes a
现有技术底部阻碍层(BBM)TaN层在RMG-loop(金属闸极替换多晶硅闸极阶段)通过物理气相淀积(PVD)沉积,本发明在Gate-loop(闸极氧化层形成阶段)通过物理气相淀积沉积,由于Gate-loop沉积前晶圆表面较平整,降低了填充难度;在Gate-loop完成TiN/TaN双层(Bi-layer)的沉积,由于双层界面结构,可有效阻止铁电层中的离子在后续工艺中向高介电层(HK)中扩散,提高了器件的可靠性。In the prior art, the bottom barrier layer (BBM) TaN layer is deposited by physical vapor deposition (PVD) in the RMG-loop (metal gate replaces the polysilicon gate stage), and the present invention is deposited in the Gate-loop (gate oxide layer formation stage) by For physical vapor deposition deposition, since the wafer surface is flat before the gate-loop deposition, the filling difficulty is reduced; the deposition of the TiN/TaN bi-layer (Bi-layer) is completed in the gate-loop, due to the bi-layer interface structure, it can effectively prevent The ions in the ferroelectric layer diffuse into the high dielectric layer (HK) in the subsequent process, improving the reliability of the device.
如图3所示,图3为本发明的负电容场效应晶体管的结构示意图。本实施例中,所述负电容场效应晶体管还包括位于所述硅基底(Si)上、所述闸极堆叠结构两侧的源极S和漏极D;位于所述硅基底(Si)上、用于隔离器件结构的浅沟道隔离区(STI);与所述源极、漏极、所述闸极堆叠结构接触的接触孔(CT);与所述接触孔连接的金属线层(M1);与所述金属线层接触连接的金属焊垫(PAD)。As shown in FIG. 3 , FIG. 3 is a schematic structural diagram of the negative capacitance field effect transistor of the present invention. In this embodiment, the negative capacitance field effect transistor further includes a source S and a drain D located on the silicon substrate (Si) and on both sides of the gate stack structure; located on the silicon substrate (Si) , a shallow trench isolation region (STI) for isolating the device structure; a contact hole (CT) in contact with the source, drain, and gate stack structures; a metal wire layer ( M1); a metal pad (PAD) in contact with the metal wire layer.
在该负电容场效应晶体管中,所述硅基底的被所述浅沟道隔离区STI隔离为有源区,所述有源区用于制作如本发明涉及的负电容场效应晶体管,如本发明的图3中所示的负电容场效应晶体管位于所述两个浅沟道隔离区STI之间;所述负电容场效应晶体管的硅基底两侧为源极和漏极,在所述源漏极之间为栅极,具体包含闸极堆叠结构和位于该闸极堆叠结构上的金属闸极。所述闸极堆叠结构和金属闸极的两侧设有侧壁,所述金属闸极、所述源极和漏极与接触孔CT连接,所述接触孔CT中填充有金属,用于将所述源漏极、所述金属闸极与金属线层M1连接起来,所述金属线层M1的金属线连接有金属焊垫PAD,所述金属焊垫在测试过程中与探针接触为测试所用。In the negative capacitance field effect transistor, the silicon substrate is isolated as an active region by the shallow trench isolation region STI, and the active region is used to fabricate the negative capacitance field effect transistor according to the present invention, as shown in the present invention The negative capacitance field effect transistor shown in FIG. 3 of the invention is located between the two shallow trench isolation regions STI; the two sides of the silicon substrate of the negative capacitance field effect transistor are the source and the drain, and the source and the drain are on both sides of the silicon substrate of the negative capacitance field effect transistor. Between the drains is a gate, which specifically includes a gate stack structure and a metal gate located on the gate stack structure. The gate stack structure and the metal gate are provided with sidewalls on both sides, the metal gate, the source electrode and the drain electrode are connected to the contact hole CT, and the contact hole CT is filled with metal for connecting The source and drain electrodes and the metal gate electrode are connected to the metal wire layer M1, and the metal wire of the metal wire layer M1 is connected with a metal pad PAD, and the metal pad is in contact with the probe during the test process. Used.
本发明优选地,所述铁电层由HfAlOx或HfZrOx构成。也就是说,所述铁电层为HfAlOx或HfZrOx。如图2所示,本发明更进一步地,所述应变层11为TaN层。所述TaN层中可以通过控制TaN中氮含量调整应力,可调节铁电层负电容特性,此应变TaN层还具备底部阻碍层BBM TaN作为功函数层刻蚀阻止层的作用。Preferably, in the present invention, the ferroelectric layer is composed of HfAlO x or HfZrO x . That is, the ferroelectric layer is HfAlO x or HfZrO x . As shown in FIG. 2 , in the present invention, further, the
本发明优选地,如图2所示,所述金属闸极07的侧壁设有所述功函数层06。也就是说,在所述应变层11的上表面设有的所述功函数层06构成一个凹槽,所述金属闸极07填充在该凹槽中。本发明更进一步地,参考图2,所述闸极堆叠结构的侧壁具有侧壁层结构08,该侧壁层结构的底部接触于所述硅基底01。也就是说,所述内层02、高介电层03、底部阻碍层(TiN层04和TaN层05)、铁电层10、应变层11以及功函数层06的侧壁都具有所述侧壁层结构08,并且所述侧壁层结构08的底部是直接与所述硅基底的上表面接触。Preferably, in the present invention, as shown in FIG. 2 , the
本发明优选地,在所述侧壁层结构08的两侧形成有层间介质层09。本实施例中,所述层间介质层09与硅基底之间还存在CESL层(CT刻蚀停止层),图2中省去了该CESL层。本发明更进一步地,所述层间介质层为氧化层结构。Preferably, in the present invention, interlayer
本发明还提供一种层间介质层为氧化层结构,该方法至少包括以下步骤:The present invention also provides an oxide layer structure for the interlayer dielectric layer, and the method at least comprises the following steps:
步骤一、提供硅基底;该硅基底用于后期在其上制作器件结构。Step 1, providing a silicon substrate; the silicon substrate is used for fabricating device structures thereon in the later stage.
步骤二、在所述硅基底上依次自下而上形成内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极。所形成的内层、高介电层、底部阻碍层、铁电层、应变层、功函数层以及金属闸极共同构成本发明所述的闸极堆叠结构。其中,形成所述底部阻碍层包括现在所述高介电层上形成TiN层,之后在所述TiN层上形成TaN层。在步骤中形成所述TaN层的形成方法为物理气相沉积法。现有技术BBM TaN在RMG-loop通过物理气相淀积(PVD)沉积,本发明在Gate-loop通过物理气相淀积沉积,由于Gate-loop沉积前晶圆表面较平整,降低了填充难度;在Gate-loop完成TiN/TaN双层(Bi-layer)沉积,由于双层界面结构,可有效阻止铁电层中的离子在后续工艺中向高介电层(HK)中扩散,提高器件的可靠性。Step 2, forming an inner layer, a high dielectric layer, a bottom barrier layer, a ferroelectric layer, a strained layer, a work function layer and a metal gate on the silicon substrate sequentially from bottom to top. The formed inner layer, high dielectric layer, bottom barrier layer, ferroelectric layer, strained layer, work function layer and metal gate together constitute the gate stack structure of the present invention. Wherein, forming the bottom barrier layer includes now forming a TiN layer on the high dielectric layer, and then forming a TaN layer on the TiN layer. The formation method of forming the TaN layer in the step is a physical vapor deposition method. In the prior art, BBM TaN is deposited by physical vapor deposition (PVD) in the RMG-loop, and the present invention is deposited by physical vapor deposition in the gate-loop. Because the wafer surface is relatively flat before the gate-loop deposition, the filling difficulty is reduced; The gate-loop completes the deposition of the TiN/TaN bi-layer (Bi-layer). Due to the bi-layer interface structure, the ions in the ferroelectric layer can be effectively prevented from diffusing into the high dielectric layer (HK) in the subsequent process, improving the reliability of the device. sex.
本发明进一步地,步骤二中形成所述铁电层的方法为原子层沉积法(ALD)。如图2所示,在所述底部阻碍层TaN层05的上表面,通过原子层沉积法沉积一层铁电层,本发明中,沉积的所述铁电层优选为HfAlOx或HfZrOx。通过原子层沉积(ALD)技术沉积HfAlOx或HfZrOx等铁电层,提供铁电层负电容及电压放大特性。In the present invention, further, the method for forming the ferroelectric layer in step 2 is atomic layer deposition (ALD). As shown in FIG. 2 , a ferroelectric layer is deposited on the upper surface of the bottom barrier
进一步地,步骤二中形成所述铁电层后,采用快速热处理(RTA)的方法处理该铁电层。Further, after the ferroelectric layer is formed in step 2, the ferroelectric layer is treated by a rapid thermal treatment (RTA) method.
同时本发明进一步地,本发明的所述负电容场效应晶体管的工艺方法适用于28nm和22nm的高介电金属栅极工艺中。At the same time, further in the present invention, the process method of the negative capacitance field effect transistor of the present invention is suitable for the high-dielectric metal gate process of 28 nm and 22 nm.
综上所述,本发明在Gate-Loop添加了铁电层沉积等相关工艺,无需增加光罩数,工艺技术为物理气相淀积(PVD),原子层沉积(ALD),快速热处理(RTA)等,易于集成于28/22HKMG的工艺流程。通过对28/22HKMG NCFET结构设计,可使器件的亚阈值摆幅(SS)突破物理极限,从而使工作电压下限降低,能耗降级,提升器件的性能;通过铁电层(FE)与高介电层(HK)间TiN/TaN双层(Bi-layer)设计,可阻碍铁电层离子向高介电层的扩散,提升器件的可靠性所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention adds ferroelectric layer deposition and other related processes to the Gate-Loop, without increasing the number of masks, and the process technology is physical vapor deposition (PVD), atomic layer deposition (ALD), rapid thermal processing (RTA) etc., easy to integrate in the process flow of 28/22HKMG. By designing the 28/22HKMG NCFET structure, the sub-threshold swing (SS) of the device can break through the physical limit, thereby reducing the lower limit of the operating voltage, reducing the energy consumption and improving the performance of the device; through the ferroelectric layer (FE) and high dielectric The design of the TiN/TaN bi-layer (Bi-layer) between the electrical layers (HK) can hinder the diffusion of ions from the ferroelectric layer to the high dielectric layer and improve the reliability of the device. Therefore, the present invention effectively overcomes various problems in the prior art. It has high industrial utilization value due to its shortcomings.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910530011.3A CN110277454B (en) | 2019-06-19 | 2019-06-19 | Negative capacitance field effect transistor and process method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910530011.3A CN110277454B (en) | 2019-06-19 | 2019-06-19 | Negative capacitance field effect transistor and process method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110277454A CN110277454A (en) | 2019-09-24 |
CN110277454B true CN110277454B (en) | 2022-08-09 |
Family
ID=67961195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910530011.3A Active CN110277454B (en) | 2019-06-19 | 2019-06-19 | Negative capacitance field effect transistor and process method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110277454B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6737689B1 (en) * | 1998-12-10 | 2004-05-18 | Infineon Technologies Ag | FEMFET device and method for producing same |
CN1618123A (en) * | 2001-11-29 | 2005-05-18 | 塞姆特里克斯公司 | Lanthanide layered superlattice materials for integrated circuit applications |
CN106711224A (en) * | 2015-11-16 | 2017-05-24 | 台湾积体电路制造股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9391162B2 (en) * | 2014-04-04 | 2016-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel MOSFET with ferroelectric gate stack |
TWI726128B (en) * | 2017-07-17 | 2021-05-01 | 聯華電子股份有限公司 | Semiconductor device and method for fabricating the same |
-
2019
- 2019-06-19 CN CN201910530011.3A patent/CN110277454B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6737689B1 (en) * | 1998-12-10 | 2004-05-18 | Infineon Technologies Ag | FEMFET device and method for producing same |
CN1618123A (en) * | 2001-11-29 | 2005-05-18 | 塞姆特里克斯公司 | Lanthanide layered superlattice materials for integrated circuit applications |
CN106711224A (en) * | 2015-11-16 | 2017-05-24 | 台湾积体电路制造股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
Also Published As
Publication number | Publication date |
---|---|
CN110277454A (en) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103426928B (en) | The manufacturing method of semiconductor devices and the device | |
CN107958873B (en) | Fin-type field effect transistor and method of forming the same | |
CN102468221A (en) | Method for Preparing Contact Holes in CMOS Devices Using Gate-last Technology | |
CN102035533A (en) | Semiconductor device | |
TW201025608A (en) | Semiconductor device and method for manufacturing the same | |
CN107516668A (en) | Semiconductor device and manufacturing method thereof | |
CN103579112B (en) | CMOS and formation method thereof | |
CN102640280A (en) | Semiconductor device and process for production thereof | |
CN104201193A (en) | Double-gate SOI (Signal Operation Instruction) device structure and manufacturing method thereof | |
CN101924110B (en) | SOI (Silicon On Insulator) transistor structure of body contact and preparation method thereof | |
CN203038894U (en) | Semiconductor structure | |
CN110277454B (en) | Negative capacitance field effect transistor and process method thereof | |
TWI686949B (en) | Semiconductor device and the method of manufacturing the same | |
TW202226601A (en) | Semi-groove power metal oxide semiconductor field effect transistor structure and manufacturing method thereof including a substrate, an epitaxial layer formed on a first surface of the substrate and including a groove structure, a gate electrode structure formed in the groove structure and a side of the epitaxial layer, and a drain electrode formed on a second surface of the substrate | |
CN104425606B (en) | Tunneling field-effect transistor and forming method thereof | |
CN106971977A (en) | Semiconductor device and its manufacture method | |
CN108054132A (en) | Semiconductor devices and preparation method thereof | |
CN101930920B (en) | MOS (Metal Oxide Semiconductor) transistor and manufacture method thereof | |
CN118231414B (en) | PDSOI transistor and method for manufacturing the same | |
CN117497420B (en) | Semiconductor device and method for manufacturing the same | |
TWI231989B (en) | Method of fabricating a MOSFET device | |
CN113809176B (en) | Method for forming semiconductor structure | |
CN104617046B (en) | The forming method of CMOS transistor | |
CN110071067A (en) | Semiconductor structure and forming method thereof | |
CN101364610B (en) | Trench power metal oxide semiconductor transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |