CN110266511A - Bandwidth configuration method and device - Google Patents
Bandwidth configuration method and device Download PDFInfo
- Publication number
- CN110266511A CN110266511A CN201910288722.4A CN201910288722A CN110266511A CN 110266511 A CN110266511 A CN 110266511A CN 201910288722 A CN201910288722 A CN 201910288722A CN 110266511 A CN110266511 A CN 110266511A
- Authority
- CN
- China
- Prior art keywords
- network
- bandwidth
- service
- network bandwidth
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000005540 biological transmission Effects 0.000 claims description 57
- 238000012545 processing Methods 0.000 claims description 24
- 230000005055 memory storage Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 45
- 238000004891 communication Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006855 networking Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000003370 grooming effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0086—Network resource allocation, dimensioning or optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请提供一种带宽配置方法和装置,涉及通信领域,能够使OTN和PeOTN根据Flex E的带宽大小调整光网络带宽,提高业务侧网络带宽调整的灵活性。该方法包括:若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量;根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。该方法用于使OTN和PeOTN根据Flex E的带宽大小调整光网络带宽。
The present application provides a bandwidth configuration method and device, which relate to the communication field, and can enable OTN and PeOTN to adjust optical network bandwidth according to the bandwidth of Flex E, and improve the flexibility of network bandwidth adjustment on the service side. The method includes: if it is determined that the network protocol of the first network is a preset network protocol, acquiring a first network bandwidth; wherein, the first network bandwidth is a network allocated for a service to be transmitted in the first network Bandwidth; according to the ratio of the first network bandwidth to the first preset parameter, determine the number of time slots required for the service to be transmitted in the second network; according to the product of the number of time slots and the second preset parameter Determine a second network bandwidth; wherein, the second network bandwidth is the network bandwidth allocated for the service to be transmitted in the second network. This method is used to make the OTN and PeOTN adjust the bandwidth of the optical network according to the bandwidth of the Flex E.
Description
技术领域technical field
本申请涉及通信领域,尤其涉及一种带宽配置方法和装置。The present application relates to the communication field, and in particular to a bandwidth configuration method and device.
背景技术Background technique
近年来随着移动互联网、云计算、数据中心、视频业务等爆炸式增长,通信网络对各类接口带宽的要求越来越高。传统以太网已经无法满足客户业务需求灵活性及大带宽要求,为了解决客户业务需求与以太网标准定义的固定速率之间的矛盾,光学互连论坛(optical internetworking forum,OIF)制定了灵活以太网技术(flexible ethernet,Flex E),以现有的以太网标准为基础,通过在以太网架构中加入Flex E垫层并且大量完整地重用以太网物理编码子层(physical coding sublayer,PCS)以下的层网络功能,形成了Flex E技术规范,该技术成为了解决满足灵活组网需求的优选组网技术。In recent years, with the explosive growth of mobile Internet, cloud computing, data centers, and video services, communication networks have higher and higher requirements for the bandwidth of various interfaces. The traditional Ethernet has been unable to meet the flexibility and large bandwidth requirements of customers' business needs. In order to solve the contradiction between the customer's business needs and the fixed rate defined by the Ethernet standard, the Optical Internetworking Forum (OIF) formulated the Flexible Ethernet The technology (flexible ethernet, Flex E) is based on the existing Ethernet standard, by adding the Flex E cushion layer to the Ethernet architecture and reusing a large number of components under the Ethernet physical coding sublayer (physical coding sublayer, PCS). Layer network functions have formed the Flex E technical specification, and this technology has become the preferred networking technology to meet the flexible networking requirements.
数据单元的无中断调整(通用成帧规程)(hitless adjustment of ODUflex(generic framing procedure),G.Hao)是近年来国际电信联盟电信标准分局(international telecommunication union-telecommunication standardizationsector,ITU-T)发布的标准,用于光传送网(optical transport network,OTN)实现基于光通路数据单元(optical channel data unit,ODU)的捆绑,即灵活速率光数字单元ODUflex帧结构,用于支持分组业务的无损带宽调整,满足分组业务灵活速率的带宽需求,并支持分组业务在线的无损带宽调整。分组增强型光传送网(packet enhanced optical transportnetwork,PeOTN)是在OTN技术基础上增加对以太交换、多协议标签交换传送应用(multi-protocol label switching-transport profile,MPLS-TP)的支持和虚拟通道(virtualchannel,VC)交换的支持之后的升级技术,PeOTN因此同样支持与OTN技术一样的G.hao技术。The hitless adjustment of ODUflex (generic framing procedure) (G.Hao) was released by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) in recent years. Standard for optical transport network (OTN) to realize bundling based on optical channel data unit (ODU), that is, flexible rate optical digital unit ODUflex frame structure, used to support lossless bandwidth adjustment of packet services , to meet the bandwidth requirements of the flexible rate of the packet service, and support online lossless bandwidth adjustment of the packet service. Packet enhanced optical transport network (PeOTN) is based on OTN technology to add support for Ethernet switching, multi-protocol label switching-transport profile (MPLS-TP) and virtual channels (virtualchannel, VC) is an upgraded technology after the exchange support, so PeOTN also supports the same G.hao technology as the OTN technology.
现有技术中,Flex E是一种业务侧的带宽配置技术,G.Hao中的灵活速率光数字单元ODUflex是一种网络侧带宽调整技术。现有的光传送网无法支持Flex E协议,因此在根据业务需求在Flex E中分配带宽之后,需要人工在光传送网中进行带宽配置,无法自动的在光传送网中进行配置带宽。In the prior art, Flex E is a service-side bandwidth configuration technology, and the flexible rate optical digital unit ODUflex in G.Hao is a network-side bandwidth adjustment technology. The existing optical transport network cannot support the Flex E protocol. Therefore, after allocating bandwidth in Flex E according to service requirements, it is necessary to manually configure bandwidth in the optical transport network, and cannot automatically configure bandwidth in the optical transport network.
发明内容Contents of the invention
本申请提供一种带宽配置方法和装置,能够使光传送网根据Flex E的带宽大小调整光网络带宽,能够自动的在光传送网中进行配置带宽。The present application provides a bandwidth configuration method and device, which can enable the optical transport network to adjust the bandwidth of the optical network according to the bandwidth of the Flex E, and can automatically configure the bandwidth in the optical transport network.
为达到上述目的,本申请采用如下技术方案:In order to achieve the above object, the application adopts the following technical solutions:
第一方面,本申请提供一种带宽配置方法,该方法包括:若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量;根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。In a first aspect, the present application provides a bandwidth configuration method, the method comprising: if it is determined that the network protocol of the first network is a preset network protocol, then obtaining the first network bandwidth; wherein, the first network bandwidth is at The network bandwidth allocated for the service to be transmitted in the first network; determining the number of time slots required for the service to be transmitted in the second network according to the ratio of the first network bandwidth to the first preset parameter; The product of the number of time slots and a second preset parameter determines a second network bandwidth; wherein, the second network bandwidth is a network bandwidth allocated for the service to be transmitted in the second network.
第二方面,本申请提供一种带宽配置装置,该装置包括:处理单元,用于若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;所述处理单元,还用于根据所述第一网络带宽和第一预设参数的比值确定时隙数量;所述处理单元,还用于根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。In a second aspect, the present application provides a bandwidth configuration device, which includes: a processing unit configured to obtain the first network bandwidth if it is determined that the network protocol of the first network is a preset network protocol; wherein, the first network A network bandwidth is the network bandwidth allocated for the service to be transmitted in the first network; the processing unit is further configured to determine the number of time slots according to the ratio of the first network bandwidth to a first preset parameter; the The processing unit is further configured to determine a second network bandwidth according to the product of the number of time slots and a second preset parameter; wherein the second network bandwidth is allocated for the service to be transmitted in the second network network bandwidth.
第三方面,本申请提供另一种带宽配置装置,该带宽配置装置包括:处理器和存储器。其中,存储器用于存储一个或多个程序。该一个或多个程序包括计算机执行指令,当该带宽配置装置运行时,处理器执行该存储器存储的该计算机执行指令,以使该带宽配置装置执行第一方面及其各种可选的实现方式中任意之一所述的带宽配置方法。In a third aspect, the present application provides another device for configuring bandwidth. The device for configuring bandwidth includes: a processor and a memory. Among them, the memory is used to store one or more programs. The one or more programs include computer-executable instructions, and when the bandwidth configuration device is running, the processor executes the computer-executable instructions stored in the memory, so that the bandwidth configuration device executes the first aspect and various optional implementation manners thereof The bandwidth configuration method described in any one of.
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当计算机执行该指令时,该计算机执行上述第一方面及其各种可选的实现方式中任意之一所述的带宽配置方法。In a fourth aspect, the present application provides a computer-readable storage medium, in which instructions are stored. When a computer executes the instructions, the computer executes any of the above-mentioned first aspect and its various optional implementations. One of the bandwidth configuration methods.
第五方面,本申请提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述第一方面及其各种可选的实现方式中任意之一所述的带宽配置方法。In a fifth aspect, the present application provides a computer program product containing instructions, which, when the computer program product is run on a computer, causes the computer to execute any one of the above-mentioned first aspect and its various optional implementation modes The bandwidth configuration method described above.
本申请提供一种带宽配置方法和装置,应用于业务传输系统中,所述业务传输系统包括第一网络和第二网络,所述第一网络与所述第二网络连接并进行业务传输;所述方法包括:若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量;根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。本申请提供的带宽配置方法,能够使光传送网根据Flex E的带宽大小调整光网络带宽,能够自动的在光传送网中进行配置带宽。The present application provides a bandwidth configuration method and device, which are applied in a service transmission system, where the service transmission system includes a first network and a second network, and the first network is connected to the second network and performs service transmission; The method includes: if it is determined that the network protocol of the first network is a preset network protocol, obtaining a first network bandwidth; wherein, the first network bandwidth is a network allocated for a service to be transmitted in the first network Bandwidth; according to the ratio of the first network bandwidth to the first preset parameter, determine the number of time slots required for the service to be transmitted in the second network; according to the product of the number of time slots and the second preset parameter Determine a second network bandwidth; wherein, the second network bandwidth is the network bandwidth allocated for the service to be transmitted in the second network. The bandwidth configuration method provided in this application can make the optical transport network adjust the bandwidth of the optical network according to the bandwidth of the Flex E, and can automatically configure the bandwidth in the optical transport network.
附图说明Description of drawings
图1为现有技术中的Flex E通用架构;FIG. 1 is a general architecture of Flex E in the prior art;
图2为本申请实施例提供的一种业务传输系统结构示意图;FIG. 2 is a schematic structural diagram of a service transmission system provided by an embodiment of the present application;
图3为本申请实施例提供的带宽配制方法的流程图;FIG. 3 is a flowchart of a bandwidth allocation method provided in an embodiment of the present application;
图4为本申请实施例提供的带宽配制装置的结构示意图一;FIG. 4 is a schematic structural diagram of a bandwidth configuration device provided in an embodiment of the present application;
图5为本申请实施例提供的带宽配制装置的结构示意图二;Fig. 5 is a schematic structural diagram II of the bandwidth allocation device provided by the embodiment of the present application;
图6为本申请实施例提供的带宽配置装置的又一种可能的结构示意图。FIG. 6 is a schematic diagram of another possible structure of a bandwidth configuration device provided in an embodiment of the present application.
具体实施方式Detailed ways
下面结合附图对本申请实施例提供的带宽配置方法和装置进行详细地描述。The bandwidth configuration method and device provided in the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。The term "and/or" in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。The terms "first" and "second" in the specification and drawings of the present application are used to distinguish different objects, or to distinguish different processes for the same object, rather than to describe a specific sequence of objects.
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。In addition, the terms "including" and "having" mentioned in the description of the present application and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also includes Other steps or elements inherent to the process, method, product or apparatus are included.
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。It should be noted that, in the embodiments of the present application, words such as "exemplary" or "for example" are used as examples, illustrations or descriptions. Any embodiment or design scheme described as "exemplary" or "for example" in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as "exemplary" or "such as" is intended to present related concepts in a concrete manner.
在本申请的描述中,除非另有说明,“多个”的含义是指两个或两个以上。In the description of the present application, unless otherwise specified, the meaning of "plurality" refers to two or more.
以下,对本申请涉及的技术进行解释,以方便读者理解:Below, the technologies involved in this application are explained for the convenience of readers:
以太网:目前应用最广泛的局域网通讯方式,同时也是一种协议。以太网协议定义了一系列软件和硬件标准,从而将不同的计算机设备连接在一起。以太网设备组网的基本元素有交换机、路由器、集线器、光纤和普通网线以及以太网协议和通讯规则,其分层模型包括应用层、表示层、会话层、传输层和网络层。Ethernet: Currently the most widely used LAN communication method, it is also a protocol. The Ethernet protocol defines a series of software and hardware standards to connect different computer devices together. The basic elements of Ethernet equipment networking are switches, routers, hubs, optical fibers and ordinary network cables, as well as Ethernet protocols and communication rules. Its layered model includes application layer, presentation layer, session layer, transport layer and network layer.
灵活以太网Flex E:近年来,随着云计算、视频以及移动通信等业务的兴起,用户对互联网协议(internet protocol,IP)网络的诉求从以带宽为主逐渐转移到业务体验、服务质量和组网效率上。为满足上述需求,作为底层连接技术的以太网在保持既有低成本、高可靠、可运维等优势之外,还需要具备以下能力:多粒度速率灵活可变:提供更加灵活的带宽颗粒度;与光传送能力解耦:与光传输网络速率解耦,最大限度地利用现有光传送网络实现对新型超大带宽以太网接口的传输和承载;IP与光融合组网:在以太网与光传送能力解耦基础上,通过以太网与光传送网络之间的简单映射承载,简化网络,提高灵活性,进而实现流量灵活疏导与调度优化;面向多业务承载的增强服务质量能力:以太网在物理层接口上提供通道化的硬件隔离功能,在物理层保证业务基于不同分片的隔离,进一步与上层网络/应用配合,在多业务承载条件下实现增强服务质量能力。为满足高速传送、带宽配置灵活等需求和增强服务质量的要求,灵活以太网技术由此应运而生。如图1所示,为现有技术中的Flex E通用架构。Flexible Ethernet Flex E: In recent years, with the rise of services such as cloud computing, video, and mobile communications, users' demands on Internet protocol (internet protocol, IP) networks have gradually shifted from bandwidth-based to service experience, service quality and In terms of networking efficiency. In order to meet the above requirements, Ethernet, as the underlying connection technology, needs to have the following capabilities in addition to maintaining the existing advantages of low cost, high reliability, and operability: Multi-granularity flexible rate: provide more flexible bandwidth granularity ; Decoupling from optical transmission capability: decoupling from the rate of optical transmission network, maximizing the use of existing optical transmission network to realize the transmission and bearing of new ultra-large bandwidth Ethernet interfaces; On the basis of the decoupling of transport capabilities, the simple mapping between Ethernet and optical transport network can simplify the network, improve flexibility, and then realize flexible flow grooming and scheduling optimization; the enhanced service quality capability for multi-service bearer: Ethernet in The channelized hardware isolation function is provided on the physical layer interface, which ensures the isolation of services based on different fragments at the physical layer, further cooperates with the upper layer network/application, and realizes enhanced service quality capabilities under the condition of multi-service bearing. In order to meet the requirements of high-speed transmission, flexible bandwidth configuration and enhanced service quality, the flexible Ethernet technology emerges as the times require. As shown in FIG. 1 , it is a general architecture of Flex E in the prior art.
灵活以太网功能包括:捆绑:多路物理层(physical layer,PHY)一起工作,支持更高速率。如8路100GE PHY实现800G媒体访问控制(media access control,MAC)速率。通道化:多路低速率MAC数据流共享一路或者多路PHY。如在100G PHY上承载25G、35G、20G与20G的四路MAC数据流,或者在三路100G PHY上复用承载125G、150G与25G的MAC数据流。子速率:单一低速率MAC数据流共享一路或者多路PHY,实现降速工作。如在100G PHY上仅仅承载50GMAC数据流。Flexible Ethernet features include: Bonding: Multiple physical layers (physical layers, PHYs) work together to support higher rates. For example, 8-channel 100GE PHY realizes 800G media access control (media access control, MAC) rate. Channelization: Multiple low-rate MAC data streams share one or multiple PHYs. For example, four MAC data streams of 25G, 35G, 20G and 20G are carried on the 100G PHY, or MAC data streams of 125G, 150G and 25G are multiplexed on three 100G PHYs. Sub-rate: A single low-rate MAC data stream shares one or more PHYs to achieve speed reduction. For example, only 50GMAC data streams are carried on the 100G PHY.
G.Hao:近年来ITU-T发布的标准,标准号是G.7044/Y.1347,是用于OTN实现基于ODU0时隙的捆绑,即ODUFlex帧结构,用于满足分组业务灵活的带宽需求,并支持分组业务在线的无损带宽调整。G.Hao中的ODUFlex带宽调整,是一种网络侧带宽调整技术,支持带宽的端到端调整。G.Hao: The standard released by ITU-T in recent years, the standard number is G.7044/Y.1347, which is used for OTN to realize the bundling based on ODU0 time slot, that is, the ODUFlex frame structure, which is used to meet the flexible bandwidth requirements of packet services , and supports online lossless bandwidth adjustment for packet services. ODUFlex bandwidth adjustment in G.Hao is a network-side bandwidth adjustment technology that supports end-to-end bandwidth adjustment.
OTN/PeOTN:OTN以波分复用技术为基础,在光层组织网络中的传送网。OTN是通过G.Hao等一系列ITU-T的标准所规范的新一代“数字传送体系”和“光传送体系”,解决了传统波分复用(wavelength division multiplexing,WDM)网络无波长/子波长业务调度能力差、组网能力弱、保护能力弱等问题。OTN处理的基本对象是波长级业务,它将传送网推进到真正的多波长光网络阶段。由于结合了光域和电域处理的优势,OTN可以提供巨大的传送容量、完全透明的端到端波长/子波长连接以及电信级的保护,是传送宽带大颗粒业务的最优技术。OTN/PeOTN: OTN is based on wavelength division multiplexing technology and organizes the transport network in the network at the optical layer. OTN is a new generation of "digital transmission system" and "optical transmission system" regulated by a series of ITU-T standards such as G.Hao, which solves the problem of traditional wavelength division multiplexing (wavelength division multiplexing, WDM) network without wavelength/sub Poor wavelength service dispatching capability, weak networking capability, weak protection capability, etc. The basic object dealt with by OTN is wavelength-level business, which advances the transport network to a real multi-wavelength optical network stage. Due to the combination of the advantages of optical domain and electrical domain processing, OTN can provide huge transmission capacity, fully transparent end-to-end wavelength/sub-wavelength connection and carrier-level protection, and is the optimal technology for transmitting broadband large-grained services.
Flex E与光传送网OTN的映射模式包括:不感知模式、终结模式和感知模式三种模式,其中不感知模式与传统以太网接口在光传送网中通过PCS一致,该模式下可充分利用现有光传送网络设备,在无需硬件升级的情况下实现对Flex E的承载,并可基于捆绑功能实现跨光传送网络的端到端超大带宽通道。终结模式下,光传送网络感知Flex E用户侧接口并恢复出Flex E子接口数据流,再进一步映射到光传送网络中进行传输承载。这种模式与传统以太网接口在光传送网络上的承载一致,可以在光传送网络中实现对不同Flex E子接口流量的疏导等功能。感知模式要利用了Flex E的子速率特性。当作为用户侧的灵活以太网接口通过感知模式在光传送网络中映射时,光传送网络直接丢弃无效时隙,按照原始数据流带宽提取需要承载的数据,进而映射到速率匹配的光传送网络密集波分复用(densewave-length division multiplexing,DWDM)传输管道。光传送网络设备需要与作为用户侧的Flex E接口配置保持一致,从而感知Flex E用户侧接口并进行承载传输。The mapping modes between Flex E and OTN include three modes: non-aware mode, termination mode, and sensing mode. The non-aware mode is consistent with the traditional Ethernet interface through PCS in the optical transport network. In this mode, the existing With optical transport network equipment, Flex E can be carried without hardware upgrades, and end-to-end ultra-large bandwidth channels across optical transport networks can be realized based on the bundling function. In the termination mode, the optical transport network senses the Flex E user-side interface and recovers the data flow of the Flex E sub-interface, and then further maps it to the optical transport network for transmission and bearer. This mode is consistent with the bearer of traditional Ethernet interfaces on the optical transport network, and can implement functions such as grooming the traffic of different Flex E sub-interfaces in the optical transport network. The perceptual mode takes advantage of the sub-rate feature of the Flex E. When the flexible Ethernet interface on the user side is mapped in the optical transport network through the perceptual mode, the optical transport network directly discards invalid time slots, extracts the data to be carried according to the bandwidth of the original data stream, and then maps to the dense optical transport network that matches the rate. A wavelength division multiplexing (densewave-length division multiplexing, DWDM) transmission pipeline. Optical transport network equipment needs to be consistent with the configuration of the user-side Flex E interface, so as to perceive the Flex E user-side interface and carry out bearer transmission.
本申请实施例提供一种带宽配置的方法,应用于业务传输系统100中,如图2所示,所述业务传输系统包括第一网络101和第二网络102和终端104。其中,所述终端104依次通过所述第一网络101和所述第二网络102进行业务传输,所述第二网络102还用于与数据中心103连接,进行业务传输。示例性的,所述终端104可以为路由器、交换机等网络设备,用于向计算机、手机的用户设备提供网络连接,进行业务传输。The embodiment of the present application provides a bandwidth configuration method, which is applied in a service transmission system 100. As shown in FIG. 2, the service transmission system includes a first network 101, a second network 102, and a terminal 104. Wherein, the terminal 104 performs service transmission through the first network 101 and the second network 102 in sequence, and the second network 102 is also used to connect with a data center 103 for service transmission. Exemplarily, the terminal 104 may be network devices such as routers and switches, and is used to provide network connections to user equipment such as computers and mobile phones for service transmission.
所述第一网络101与所述第二网络102所支持的网络协议不同,所述第二网络102能够识别自身网络协议外的又一种预设网络协议。The network protocols supported by the first network 101 and the second network 102 are different, and the second network 102 can identify another preset network protocol other than its own network protocol.
本申请实施例提供一种带宽配置方法,应用于如图2所示的业务传输系统中,下面以所述第一网络101为灵活以太网网络,所述第二网络102为光传送网络为例,对本申请内容进行详细说明。如图3所示,所述带宽配置方法可以包括步骤S301-S303:The embodiment of the present application provides a bandwidth configuration method, which is applied to the service transmission system shown in Figure 2. The following assumes that the first network 101 is a flexible Ethernet network and the second network 102 is an optical transport network as an example. , to describe the content of this application in detail. As shown in Figure 3, the bandwidth configuration method may include steps S301-S303:
S301、若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽。S301. If it is determined that the network protocol of the first network is a preset network protocol, acquire a first network bandwidth.
其中,所述第一网络带宽为在所述第一网络中为所述待传输业务分配的网络带宽。所述待传输业务的业务需求包括客户申请开通的业务所需带宽。Wherein, the first network bandwidth is the network bandwidth allocated for the service to be transmitted in the first network. The service requirement of the service to be transmitted includes the required bandwidth of the service that the customer applies for.
具体的,首先确定所述待传输业务的业务需求。该待传输业务的业务需求中包括业务类型、业务源目的节点、业务所需带宽等。根据上述业务类型和业务源目的节点分别在第一网络和第二网络中为其选择传输路由(例如为其选择传输节点和链路,在该传输节点和链路上传输该业务)。在确定好传输路由之后。根据上述业务所需带宽在第一网络中为其分配的传输路径中为其分配对应的第一网络带宽,为其传输数据。Specifically, first determine the service requirements of the service to be transmitted. The service requirements of the service to be transmitted include service type, service source and destination nodes, service required bandwidth, and the like. According to the above service type and service source and destination nodes, respectively select transmission routes for it in the first network and the second network (for example, select a transmission node and a link for it, and transmit the service on the transmission node and link). After determining the transmission route. Allocate corresponding first network bandwidth to it in the transmission path allocated to it in the first network according to the bandwidth required by the above service, and transmit data to it.
示例性的,所述第一网络为Flex E,Flex E支持各种带宽的以太网MAC数据流(如10G、40G和a×25G数据流,甚至非标准速率数据流)。在根据待传输业务的业务类型和业务源目的节点在第一网络和第二网络中为其选择传输路径之后,确定所述待传输业务的业务所需带宽为150G,则在第一网络为其分配的传输路径中为其分配150G的第一网络带宽为其传输数据。所述第二网络为OTN,所述预设网络协议为Flex E协议。此时所述第二网络能够根据预设网络协议获取第一网络的第一网络带宽。Exemplarily, the first network is Flex E, and Flex E supports Ethernet MAC data streams of various bandwidths (such as 10G, 40G and a×25G data streams, even non-standard rate data streams). After selecting the transmission path in the first network and the second network according to the service type of the service to be transmitted and the service source and destination node, it is determined that the service required bandwidth of the service to be transmitted is 150G, then in the first network for it The first network bandwidth of 150G is allocated to it in the allocated transmission path to transmit data for it. The second network is OTN, and the preset network protocol is Flex E protocol. At this time, the second network can obtain the first network bandwidth of the first network according to a preset network protocol.
在本步骤的一种实施方式中,所述业务需求中包括传输所述待传输业务所需的业务带宽;在获取第一网络带宽之前所述方法还包括:In an implementation manner of this step, the service requirement includes the service bandwidth required to transmit the service to be transmitted; before obtaining the first network bandwidth, the method further includes:
获取所述业务带宽,所述业务带宽为所述带传输业务所需的业务带宽。根据如下三种方式中的任一种方式在第一网络中分配与该业务所需带宽对应的第一网络带宽。Obtain the service bandwidth, where the service bandwidth is the service bandwidth required by the belt transmission service. Allocate the first network bandwidth corresponding to the bandwidth required by the service in the first network according to any one of the following three manners.
方式一,通过捆绑的方法确定所述第一网络带宽:Mode 1, the first network bandwidth is determined by bundling:
获取第一网络中的多个第三网络带宽;其中,每个所述第三网络带宽均小于所述业务带宽;若所述第三网络带宽之和等于所述业务带宽,则将所述多个第三网络带宽进行合并得到所述第一网络带宽。Obtain multiple third network bandwidths in the first network; wherein, each of the third network bandwidths is smaller than the service bandwidth; if the sum of the third network bandwidths is equal to the service bandwidth, then the multiple The third network bandwidths are combined to obtain the first network bandwidth.
方式二,通过通道化的方法确定所述第一网络带宽:Mode 2, determining the first network bandwidth through a channelization method:
获取第一网络中的多个第三网络带宽;其中,每个所述第三网络带宽均小于所述业务带宽;若所述第三网络带宽之和大于所述业务带宽,则将所述多个第三网络带宽进行合并得到第四网络带宽;并对所述第四网络带宽进行拆分以获得所述第一网络带宽。Obtain multiple third network bandwidths in the first network; wherein, each of the third network bandwidths is smaller than the service bandwidth; if the sum of the third network bandwidths is greater than the service bandwidth, the multiple combining the third network bandwidth to obtain the fourth network bandwidth; and splitting the fourth network bandwidth to obtain the first network bandwidth.
方式三,通过子速率的方法确定所述第一网络带宽:Mode 3, determining the first network bandwidth by sub-rate method:
获取第一网络中的第五网络带宽,所述第五网络带宽大于所述业务带宽;对所述第五网络带宽进行拆分以获得所述第一网络带宽。Acquiring a fifth network bandwidth in the first network, where the fifth network bandwidth is greater than the service bandwidth; splitting the fifth network bandwidth to obtain the first network bandwidth.
示例性的,用户侧所需业务带宽为120G,第一网络内带宽包括:多个40G PHY、多个50G PHY、多个120G PHY、多个100G PHY和多个200G PHY等,PHY与MAC连接,用于承载网络数据。Exemplarily, the service bandwidth required by the user side is 120G, and the bandwidth in the first network includes: multiple 40G PHYs, multiple 50G PHYs, multiple 120G PHYs, multiple 100G PHYs, and multiple 200G PHYs, etc., and the PHYs are connected to the MAC , used to carry network data.
根据所述业务带宽和Flex E功能,依据上述三种方式对上述示例进行详细说明。According to the service bandwidth and the Flex E function, the above example is described in detail according to the above three methods.
方式一的实现方法为:所述第三网络带宽选取三路40G PHY,对三路40G PHY进行捆绑实现120G的MAC数据流。The implementation method of mode 1 is: the third network bandwidth selects three 40G PHYs, and bundles the three 40G PHYs to realize a 120G MAC data flow.
方式二的实现方法为:所述第三网络带宽选取两路100G PHY,在两路100G PHY上复用承载120G和80G的MAC数据流,即对两路100G PHY进行捆绑后,进行通道化处理。The implementation method of mode 2 is: select two 100G PHYs for the third network bandwidth, and multiplex the MAC data streams carrying 120G and 80G on the two 100G PHYs, that is, after bundling the two 100G PHYs, perform channelization processing .
方式三的实现方法为:所述第三网络带宽选取一路200G PHY,在该200G PHY上承载120G的MAC数据流。The implementation method of the third mode is as follows: a 200G PHY is selected as the third network bandwidth, and a 120G MAC data flow is carried on the 200G PHY.
可选的,所述第一网络带宽也可以选取一路120G PHY,在该120G PHY上承载MAC数据流。Optionally, the first network bandwidth may also select a 120G PHY, and the MAC data stream is carried on the 120G PHY.
S302、根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量。S302. Determine the number of time slots required to be occupied by the service to be transmitted in the second network according to a ratio between the bandwidth of the first network and a first preset parameter.
在本步骤的一种实现方式中,该步骤可以具体实现为:将所述第一网络带宽除以第一预设参数得到时隙参数,对所述时隙参数向上取整得到所述时隙数量。In an implementation manner of this step, this step may be specifically implemented as: dividing the first network bandwidth by a first preset parameter to obtain a time slot parameter, and rounding up the time slot parameter to obtain the time slot quantity.
示例性的,该步骤可以由公式n=ceiling(BF/1.24416)实现,其中,第一预设参数1.24416为ODUflex的最小通道速率,单位为G,BF为所述第一网络带宽,n为所述第一网络带宽在第二网络内所对应带宽需占用的时隙数量。Exemplarily, this step can be realized by the formula n=ceiling(B F /1.24416), wherein, the first preset parameter 1.24416 is the minimum channel rate of ODUflex, the unit is G, and B F is the first network bandwidth, n It is the number of time slots to be occupied by the corresponding bandwidth of the first network bandwidth in the second network.
S303、根据所述时隙数量和第二预设参数的乘积确定第二网络带宽。S303. Determine a second network bandwidth according to a product of the number of time slots and a second preset parameter.
其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。Wherein, the second network bandwidth is the network bandwidth allocated for the service to be transmitted in the second network.
在本步骤的一种实现方式中,该步骤可以具体实现为:将所述时隙数量乘以第二预设参数得到所述第二网络带宽。In an implementation manner of this step, this step may be specifically implemented as: multiplying the number of time slots by a second preset parameter to obtain the second network bandwidth.
示例性的,该步骤可以由公式BG=n×1.24416实现,其中,n为所述第一网络带宽在第二网络内所对应的带宽需占用的时隙数量,BG为所述第二网络带宽,所述第二预设参数与所述第一预设参数相同。Exemplarily, this step can be realized by the formula B G =n×1.24416, wherein, n is the number of time slots required for the bandwidth corresponding to the first network bandwidth in the second network, and B G is the second For network bandwidth, the second preset parameter is the same as the first preset parameter.
示例性的,对上述步骤S302-S303进行举例说明:Exemplarily, the above steps S302-S303 are illustrated as follows:
当所述第一网络带宽选取三路40G PHY时,所述第一网络带宽需占用第二网络的时隙数量n=ceiling(40÷1.24416)×3=99,此时第二网络带宽BG=99×1.24416=123.17184,即此时所述第二网络带宽为123.17184G。When the first network bandwidth selects three channels of 40G PHY, the first network bandwidth needs to occupy the number of time slots of the second network n=ceiling(40÷1.24416)×3=99, at this time the second network bandwidth B G =99×1.24416=123.17184, that is, the bandwidth of the second network at this time is 123.17184G.
当所述第一网络带宽选取两路100G PHY时,此时需要对所述两路100G PHY进行合并后再分拆得到120G的MAC数据流,所述第一网络带宽需占用第二网络的时隙数量n=ceiling(120÷1.24416)=97,此时第二网络带宽BG=97×1.24416=120.68352,即此时所述第二网络带宽为120.68352G。When two 100G PHYs are selected for the first network bandwidth, the two 100G PHYs need to be combined and then split to obtain a 120G MAC data flow, and the first network bandwidth needs to occupy the time of the second network. Number of slots n=ceiling(120÷1.24416)=97, at this time the second network bandwidth B G =97×1.24416=120.68352, that is, the second network bandwidth at this time is 120.68352G.
当所述第一网络带宽选取一路200G PHY时,此时需要在200G PHY上承载120G的MAC数据流,所述第一网络带宽需占用第二网络的时隙数量n=ceiling(120÷1.24416)=97,此时第二网络带宽BG=97×1.24416=120.68352,即此时所述第二网络带宽为120.68352G。When a 200G PHY is selected for the first network bandwidth, a 120G MAC data flow needs to be carried on the 200G PHY at this time, and the first network bandwidth needs to occupy the number of time slots of the second network n=ceiling(120÷1.24416) =97, at this time the second network bandwidth B G =97×1.24416=120.68352, that is, the second network bandwidth at this time is 120.68352G.
本申请提供的带宽配置方法,应用于业务传输系统中,所述业务传输系统包括第一网络和第二网络,所述第一网络与所述第二网络连接并进行业务传输;所述方法包括:若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量;根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。本申请提供的带宽配置方法能够使光传送网根据FlexE的带宽大小调整光网络带宽,能够自动的在光传送网中进行配置带宽。The bandwidth configuration method provided by this application is applied in a service transmission system, the service transmission system includes a first network and a second network, and the first network is connected to the second network and performs service transmission; the method includes : if it is determined that the network protocol of the first network is a preset network protocol, then obtain the first network bandwidth; wherein, the first network bandwidth is the network bandwidth allocated for the service to be transmitted in the first network; according to The ratio of the first network bandwidth to the first preset parameter determines the number of time slots required for the service to be transmitted in the second network; the second is determined according to the product of the number of time slots and the second preset parameter. Network bandwidth; wherein, the second network bandwidth is the network bandwidth allocated for the service to be transmitted in the second network. The bandwidth configuration method provided in this application can enable the optical transport network to adjust the bandwidth of the optical network according to the bandwidth of the FlexE, and can automatically configure the bandwidth in the optical transport network.
本申请实施例可以根据上述方法示例对带宽配置装置进行功能模块或者功能单元的划分,例如,可以对应各个功能划分各个功能模块或者功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块或者功能单元的形式实现。其中,本申请实施例中对模块或者单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。In the embodiment of the present application, the bandwidth configuration device may be divided into functional modules or functional units according to the above method examples. For example, each functional module or functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing module. The above-mentioned integrated modules can be implemented in the form of hardware, or in the form of software function modules or functional units. Wherein, the division of modules or units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
图4示出了一种带宽配置装置,应用于图2所示的业务传输系统中,所述业务传输系统包括第一网络101和第二网络102和终端104。其中,所述终端104依次通过所述第一网络101和所述第二网络102进行业务传输,所述第二网络102还用于与数据中心103连接,进行业务传输。所述装置包括处理单元401。FIG. 4 shows a bandwidth configuration device, which is applied in the service transmission system shown in FIG. 2 , and the service transmission system includes a first network 101 , a second network 102 and a terminal 104 . Wherein, the terminal 104 performs service transmission through the first network 101 and the second network 102 in sequence, and the second network 102 is also used to connect with a data center 103 for service transmission. The apparatus includes a processing unit 401 .
所述处理单元401,用于若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为所述待传输业务分配的网络带宽。The processing unit 401 is configured to acquire a first network bandwidth if it is determined that the network protocol of the first network is a preset network protocol; wherein, the first network bandwidth is the The network bandwidth allocated by the service to be transmitted.
所述处理单元401,还用于根据所述第一网络带宽和第一预设参数的比值确定所述待传输业务在第二网络中所需占用的时隙数量。The processing unit 401 is further configured to determine the number of time slots required to be occupied by the service to be transmitted in the second network according to a ratio between the bandwidth of the first network and a first preset parameter.
所述处理单元401,还用于根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。The processing unit 401 is further configured to determine a second network bandwidth according to the product of the number of time slots and a second preset parameter; wherein, the second network bandwidth is the to-be-transmitted The network bandwidth allocated by the service.
结合图4,如图5所示,在本申请实施例的一种实现方式中,所述带宽配置装置还包括:Referring to FIG. 4, as shown in FIG. 5, in an implementation manner of the embodiment of the present application, the device for configuring bandwidth further includes:
获取单元501,用于获取所述业务带宽。The obtaining unit 501 is configured to obtain the service bandwidth.
所述获取单元501,还用于获取第一网络中的多个第三网络带宽;其中,每个所述第三网络带宽均小于所述业务带宽。The obtaining unit 501 is further configured to obtain multiple third network bandwidths in the first network; wherein each of the third network bandwidths is smaller than the service bandwidth.
所述处理单元401,还用于若所述第三网络带宽之和等于所述业务带宽,则将所述多个第三网络带宽进行合并得到所述第一网络带宽。The processing unit 401 is further configured to combine the multiple third network bandwidths to obtain the first network bandwidth if the sum of the third network bandwidths is equal to the service bandwidth.
如图5所示,在本申请实施例的又一种实现方式中,所述带宽配置装置还包括:As shown in FIG. 5, in another implementation manner of the embodiment of the present application, the device for configuring bandwidth further includes:
获取单元501,用于获取所述业务带宽。The obtaining unit 501 is configured to obtain the service bandwidth.
所述获取单元501,还用于获取第一网络中的多个第三网络带宽;其中,每个所述第三网络带宽均小于所述业务带宽。The obtaining unit 501 is further configured to obtain multiple third network bandwidths in the first network; wherein each of the third network bandwidths is smaller than the service bandwidth.
所述处理单元401,还用于若所述第三网络带宽之和大于所述业务带宽,则将所述多个第三网络带宽进行合并得到第四网络带宽;并对所述第四网络带宽进行拆分以获得所述第一网络带宽。The processing unit 401 is further configured to combine the plurality of third network bandwidths to obtain a fourth network bandwidth if the sum of the third network bandwidths is greater than the service bandwidth; and calculate the fourth network bandwidth performing splitting to obtain the first network bandwidth.
如图5所示,在本申请实施例的又一种实现方式中,所述带宽配置装置还包括:As shown in FIG. 5, in another implementation manner of the embodiment of the present application, the device for configuring bandwidth further includes:
获取单元501,用于获取所述业务带宽。The obtaining unit 501 is configured to obtain the service bandwidth.
所述获取单元501,还用于获取第一网络中的第五网络带宽,所述第五网络带宽大于所述业务带宽。The obtaining unit 501 is further configured to obtain a fifth network bandwidth in the first network, where the fifth network bandwidth is greater than the service bandwidth.
所述处理单元401,还用于对所述第五网络带宽进行拆分以获得所述第一网络带宽。The processing unit 401 is further configured to split the fifth network bandwidth to obtain the first network bandwidth.
本申请提供的带宽配置装置,应用于业务传输系统中,所述业务传输系统包括第一网络和第二网络,所述第一网络与所述第二网络连接并进行业务传输;所述装置包括:处理单元401,用于若确定所述第一网络的网络协议为预设网络协议,则获取第一网络带宽;其中,所述第一网络带宽为在所述第一网络中为待传输业务分配的网络带宽;所述处理单元401,还用于根据所述第一网络带宽和第一预设参数的比值确定时隙数量;所述处理单元401,还用于根据所述时隙数量和第二预设参数的乘积确定第二网络带宽;其中,所述第二网络带宽为在所述第二网络中为所述待传输业务分配的网络带宽。本申请提供的带宽配置方法能够使光传送网根据Flex E的带宽大小调整光网络带宽,能够自动的在光传送网中进行配置带宽。The bandwidth configuration device provided by this application is applied in a service transmission system, the service transmission system includes a first network and a second network, and the first network is connected to the second network and performs service transmission; the device includes : a processing unit 401, configured to obtain a first network bandwidth if it is determined that the network protocol of the first network is a preset network protocol; wherein, the first network bandwidth is a service to be transmitted in the first network allocated network bandwidth; the processing unit 401 is further configured to determine the number of time slots according to the ratio of the first network bandwidth to a first preset parameter; the processing unit 401 is also configured to determine the number of time slots according to the number of time slots and The product of the second preset parameter determines a second network bandwidth; wherein, the second network bandwidth is the network bandwidth allocated for the service to be transmitted in the second network. The bandwidth configuration method provided in this application can enable the optical transport network to adjust the optical network bandwidth according to the bandwidth of the Flex E, and can automatically configure the bandwidth in the optical transport network.
图6示出了上述实施例中所涉及的带宽配置装置的又一种可能的结构示意图。该带宽配置装置包括:处理器602和通信接口603。处理器602用于对带宽配置装置的动作进行控制管理,例如,执行上述处理单元401执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信接口603用于支持带宽配置装置与其他网络实体的通信,例如,执行上述获取单元501执行的步骤。带宽配置装置还可以包括存储器601和总线604,存储器601用于存储带宽配置装置的程序代码和数据。Fig. 6 shows another possible structural diagram of the bandwidth configuration apparatus involved in the foregoing embodiments. The device for configuring bandwidth includes: a processor 602 and a communication interface 603 . The processor 602 is configured to control and manage the actions of the bandwidth configuration device, for example, execute the steps executed by the processing unit 401 above, and/or execute other processes of the technologies described herein. The communication interface 603 is used to support communication between the bandwidth configuration device and other network entities, for example, to perform the steps performed by the above-mentioned acquiring unit 501 . The bandwidth configuration device may further include a memory 601 and a bus 604, and the memory 601 is used to store program codes and data of the bandwidth configuration device.
其中,存储器601可以是基站中的存储器等,该存储器可以包括易失性存储器,例如随机存取存储器;该存储器也可以包括非易失性存储器,例如只读存储器,快闪存储器,硬盘或固态硬盘;该存储器还可以包括上述种类的存储器的组合。Wherein, the memory 601 may be a memory in the base station, etc., and the memory may include a volatile memory, such as a random access memory; the memory may also include a non-volatile memory, such as a read-only memory, flash memory, hard disk or solid state Hard disk; the storage may also include a combination of the above-mentioned types of storage.
上述处理器602可以是实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等。The above-mentioned processor 602 may realize or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of this application. The processor may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure. The processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
总线604可以是扩展工业标准结构(extended industry standardarchitecture,EISA)总线等。总线604可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The bus 604 may be an extended industry standard architecture (extended industry standard architecture, EISA) bus or the like. The bus 604 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Through the description of the above embodiments, those skilled in the art can clearly understand that for the convenience and brevity of the description, only the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned functions can be allocated according to needs It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. For the specific working process of the above-described system, device, and unit, reference may be made to the corresponding process in the foregoing method embodiments, and details are not repeated here.
本申请实施例提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例所述的带宽配置方法。An embodiment of the present application provides a computer program product including instructions, and when the computer program product is run on a computer, the computer is made to execute the bandwidth configuration method described in the method embodiment above.
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当网络设备执行该指令时,该网络设备执行上述方法实施例所示的方法流程中网络设备执行的各个步骤。The embodiment of the present application also provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium, and when the network device executes the instruction, the network device executes the steps performed by the network device in the method flow shown in the method embodiment above. various steps.
其中,计算机可读存储介质,例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦式可编程只读存储器(erasable programmable read only memory,EPROM)、寄存器、硬盘、光纤、便携式紧凑磁盘只读存储器(compact disc read-only memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合、或者本领域熟知的任何其它形式的计算机可读存储介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于特定用途集成电路(application specific integrated circuit,ASIC)中。在本申请实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。Wherein, the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, random access memory (RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (EPROM), registers, hard disk, optical fiber, portable compact disk read-only memory (compact disc read-only memory, CD-ROM ), an optical storage device, a magnetic storage device, or any suitable combination of the above, or any other form of computer-readable storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. Of course, the storage medium may also be a component of the processor. The processor and the storage medium may be located in an application specific integrated circuit (ASIC). In the embodiments of the present application, a computer-readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, device or device.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。The above is only a specific implementation of the application, but the protection scope of the application is not limited thereto, and any changes or replacements within the technical scope disclosed in the application should be covered within the protection scope of the application . Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910288722.4A CN110266511B (en) | 2019-04-11 | 2019-04-11 | Bandwidth configuration method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910288722.4A CN110266511B (en) | 2019-04-11 | 2019-04-11 | Bandwidth configuration method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110266511A true CN110266511A (en) | 2019-09-20 |
CN110266511B CN110266511B (en) | 2021-10-15 |
Family
ID=67913537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910288722.4A Active CN110266511B (en) | 2019-04-11 | 2019-04-11 | Bandwidth configuration method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110266511B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113473271A (en) * | 2021-06-23 | 2021-10-01 | 烽火通信科技股份有限公司 | Packet service forwarding method, device, equipment and readable storage medium |
CN113726679A (en) * | 2020-05-25 | 2021-11-30 | 华为技术有限公司 | Dynamically configurable data transmission method, device, equipment and storage medium |
CN115696609A (en) * | 2022-10-13 | 2023-02-03 | 佰路威科技(北京)有限公司 | Resource allocation method and related equipment |
WO2023246471A1 (en) * | 2022-06-22 | 2023-12-28 | 中兴通讯股份有限公司 | Service data transmission method, and device, electronic device and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010055314A1 (en) * | 2000-06-16 | 2001-12-27 | Mitsubishi Denki Kabushiki Kaisha | Dynamic bandwidth assignment system and dynamic bandwith assignment method capable of reducing cell transmission delay |
CN102143052A (en) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | Method, equipment and system for lossless bandwidth |
US8422481B2 (en) * | 2005-09-20 | 2013-04-16 | Maxtech Communication Networks Ltd. | Real time peer to peer network |
US20150092544A1 (en) * | 2013-09-27 | 2015-04-02 | Vodafone Ip Licensing Limited | Full spectrum sharing |
CN105451102A (en) * | 2014-08-22 | 2016-03-30 | 华为技术有限公司 | Method for processing signals, network device, and system |
CN106850465A (en) * | 2016-12-27 | 2017-06-13 | 深圳市海思半导体有限公司 | A kind of Flex E method for interchanging data and switching equipment |
US20170171163A1 (en) * | 2015-12-11 | 2017-06-15 | Ciena Corporation | Flexible ethernet encryption systems and methods |
CN108347317A (en) * | 2017-01-22 | 2018-07-31 | 华为技术有限公司 | A kind of transmission method of business, the network equipment and network system |
-
2019
- 2019-04-11 CN CN201910288722.4A patent/CN110266511B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010055314A1 (en) * | 2000-06-16 | 2001-12-27 | Mitsubishi Denki Kabushiki Kaisha | Dynamic bandwidth assignment system and dynamic bandwith assignment method capable of reducing cell transmission delay |
US20060062169A1 (en) * | 2000-06-16 | 2006-03-23 | Mitsubishi Denki Kabushiki Kaisha | Dynamic bandwidth assignment system and dynamic bandwidth assignment method capable of reducing cell transmission delay |
US8422481B2 (en) * | 2005-09-20 | 2013-04-16 | Maxtech Communication Networks Ltd. | Real time peer to peer network |
CN102143052A (en) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | Method, equipment and system for lossless bandwidth |
US20150092544A1 (en) * | 2013-09-27 | 2015-04-02 | Vodafone Ip Licensing Limited | Full spectrum sharing |
CN105451102A (en) * | 2014-08-22 | 2016-03-30 | 华为技术有限公司 | Method for processing signals, network device, and system |
US20170171163A1 (en) * | 2015-12-11 | 2017-06-15 | Ciena Corporation | Flexible ethernet encryption systems and methods |
CN106850465A (en) * | 2016-12-27 | 2017-06-13 | 深圳市海思半导体有限公司 | A kind of Flex E method for interchanging data and switching equipment |
CN108347317A (en) * | 2017-01-22 | 2018-07-31 | 华为技术有限公司 | A kind of transmission method of business, the network equipment and network system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113726679A (en) * | 2020-05-25 | 2021-11-30 | 华为技术有限公司 | Dynamically configurable data transmission method, device, equipment and storage medium |
CN113726679B (en) * | 2020-05-25 | 2023-06-20 | 华为技术有限公司 | Dynamically configurable data transmission method, device, equipment and storage medium |
CN113473271A (en) * | 2021-06-23 | 2021-10-01 | 烽火通信科技股份有限公司 | Packet service forwarding method, device, equipment and readable storage medium |
WO2023246471A1 (en) * | 2022-06-22 | 2023-12-28 | 中兴通讯股份有限公司 | Service data transmission method, and device, electronic device and storage medium |
CN115696609A (en) * | 2022-10-13 | 2023-02-03 | 佰路威科技(北京)有限公司 | Resource allocation method and related equipment |
CN115696609B (en) * | 2022-10-13 | 2024-01-26 | 佰路威科技(北京)有限公司 | Resource allocation method and related equipment |
Also Published As
Publication number | Publication date |
---|---|
CN110266511B (en) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8456984B2 (en) | Virtualized shared protection capacity | |
WO2017156987A1 (en) | Method and apparatus for establishing flexible ethernet (flexe) path | |
US6889007B1 (en) | Wavelength access server (WAS) architecture | |
CA2743548C (en) | System, apparatus and method for providing aggregated network connections | |
CN110266511B (en) | Bandwidth configuration method and device | |
US7760738B1 (en) | Admission control for services | |
US8560697B2 (en) | Method and apparatus for assigning and allocating network resources to layer 1 Virtual Private Networks | |
US20040052274A1 (en) | Method and apparatus for allocating bandwidth on a passive optical network | |
US20110305458A1 (en) | Method and device for service adaptation | |
WO2000046957A9 (en) | Boundary router for interconnecting communication networks across a long-haul optical network | |
JPH04225649A (en) | Packet exchange system | |
EP1072117A2 (en) | Methods and apparatuses for allocating time slots to circuit-switched channels | |
US20200313765A1 (en) | Optical network system, optical node device, and optical network control method | |
EP2019519A1 (en) | Method for addressing ethernet streams with a structured GPON GEM Port ID | |
US8385349B2 (en) | Medium access control device and method for optical packet-switched metro WDM slotted-ring networks | |
Zhang et al. | Framework for GMPLS and PCE Control of G. 709 Optical Transport Networks | |
US12177118B2 (en) | Data frame sending method and network device | |
CN111147962B (en) | Method and device for configuring broadband network | |
CN113973381A (en) | Resource management method and device for flexible Ethernet Flexe | |
US20020133698A1 (en) | Method and apparatus for a network element to support a protected communication link in a communication network | |
US20020131431A1 (en) | Method and apparatus for a network element to support a communication link in a communication network | |
CN109150747B (en) | Method and device for changing service bandwidth and computer readable storage medium | |
CN117729461A (en) | Single-frame multi-burst configuration method and device, electronic equipment and storage medium | |
US20020131368A1 (en) | Method and apparatus for processing a network manager command in a communication network | |
CN101488900A (en) | Implementing method and system for transmitting service in next generation network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |