[go: up one dir, main page]

CN110260182B - light emitting device - Google Patents

light emitting device Download PDF

Info

Publication number
CN110260182B
CN110260182B CN201910547650.0A CN201910547650A CN110260182B CN 110260182 B CN110260182 B CN 110260182B CN 201910547650 A CN201910547650 A CN 201910547650A CN 110260182 B CN110260182 B CN 110260182B
Authority
CN
China
Prior art keywords
light
light emitting
emitting device
electrode pad
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910547650.0A
Other languages
Chinese (zh)
Other versions
CN110260182A (en
Inventor
姚久琳
甘硕杰
林钧尉
廖本瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201910547650.0A priority Critical patent/CN110260182B/en
Publication of CN110260182A publication Critical patent/CN110260182A/en
Application granted granted Critical
Publication of CN110260182B publication Critical patent/CN110260182B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种发光装置,包含一载板,具有一第一表面及一相对于第一表面的第二表面、及一发光单元,设置在第一表面上,会发出光线朝向但不穿过第一表面。发光装置于第一表面的上方可量得一第一亮度,在第二表面的下方可量得一第二亮度,第一亮度与该第二亮度的比值为2~9。

Figure 201910547650

The invention discloses a light-emitting device, comprising a carrier plate with a first surface and a second surface opposite to the first surface, and a light-emitting unit arranged on the first surface, which emits light toward but does not pass through first surface. The light-emitting device can measure a first luminance above the first surface, and can measure a second luminance below the second surface. The ratio of the first luminance to the second luminance is 2-9.

Figure 201910547650

Description

发光装置light emitting device

本申请是中国发明专利申请(申请号:201510438508.4,申请日:2015年07月23日,发明名称:发光装置)的分案申请。This application is a divisional application of a Chinese invention patent application (application number: 201510438508.4, application date: July 23, 2015, invention name: light emitting device).

技术领域technical field

本发明涉及一种发光装置,尤其是涉及具有光学结构的发光装置。The invention relates to a light emitting device, in particular to a light emitting device with an optical structure.

背景技术Background technique

用于固态照明装置的发光二极管(Light-Emitting Diode;LED)具有耗能低、寿命长、体积小、反应速度快以及光学输出稳定等特性,因此发光二极管慢慢地取代传统的照明产品并被应用于一般的家用照明。Light-emitting diodes (Light-Emitting Diodes; LEDs) used in solid-state lighting devices have the characteristics of low energy consumption, long life, small size, fast response, and stable optical output. Therefore, light-emitting diodes are slowly replacing traditional lighting products and are being used. Applied to general household lighting.

近年来,发光二极管制作而成的灯丝虽逐渐应用于发光二极管灯泡之中。然而,发光二极管灯丝的成本、效率仍有待改善。再者,使发光二极管灯丝发出全方向性的光场,并处理散热问题,仍是发展的目标。In recent years, the filaments made of light-emitting diodes have been gradually used in light-emitting diode bulbs. However, the cost and efficiency of LED filaments still need to be improved. Furthermore, it is still a development goal to make the light emitting diode filament emit an omnidirectional light field and deal with the heat dissipation problem.

发明内容Contents of the invention

为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举实施例,并配合所附的附图,说明如下。In order to make the above and other objects, features and advantages of the present invention more comprehensible, the following specific embodiments are described below together with the accompanying drawings.

一种发光装置包含一载板,具有一第一表面及一相对于第一表面的第二表面、及一发光单元,设置在第一表面上,会发出光线朝向但不穿过第一表面。发光装置于第一表面的上方可量得一第一亮度,在第二表面的下方可量得一第二亮度,第一亮度与该第二亮度的比值为2~9。A light-emitting device includes a carrier plate with a first surface and a second surface opposite to the first surface, and a light-emitting unit arranged on the first surface that emits light toward but not through the first surface. The light-emitting device can measure a first brightness above the first surface, and can measure a second brightness below the second surface. The ratio of the first brightness to the second brightness is 2-9.

附图说明Description of drawings

图1A为本发明一实施例中一发光装置的立体示意图;FIG. 1A is a three-dimensional schematic diagram of a light emitting device in an embodiment of the present invention;

图1B为图1A中载板的俯视示意图;FIG. 1B is a schematic top view of the carrier plate in FIG. 1A;

图1C为图1A中载板的仰视示意图;Figure 1C is a schematic bottom view of the carrier plate in Figure 1A;

图1D为图1A且沿着图1BI-I线的剖面示意图;Figure 1D is a schematic cross-sectional view of Figure 1A and along the line BI-I of Figure 1;

图1E为图1A的剖面示意图;FIG. 1E is a schematic cross-sectional view of FIG. 1A;

图1F为图1E的放大图;Figure 1F is an enlarged view of Figure 1E;

图2A~图2D分别为由发光单元所发出的光线于光学结构中的不同行进路径的示意图;2A to 2D are schematic diagrams of different travel paths of light emitted by the light emitting unit in the optical structure;

图2E为本发明一实施例中发光装置的配光曲线图;FIG. 2E is a light distribution curve diagram of a light emitting device in an embodiment of the present invention;

图3A为本发明一实施例中发光单元的一剖面示意图;3A is a schematic cross-sectional view of a light emitting unit in an embodiment of the present invention;

图3B为本发明另一实施例中发光单元的一剖面示意图;3B is a schematic cross-sectional view of a light emitting unit in another embodiment of the present invention;

图3C为图3B的一上视图;Figure 3C is a top view of Figure 3B;

图3D为本发明另一实施例中发光单元的一剖面示意图;3D is a schematic cross-sectional view of a light emitting unit in another embodiment of the present invention;

图4为本发明一实施例中一灯泡的立体示意图;FIG. 4 is a three-dimensional schematic diagram of a light bulb in an embodiment of the present invention;

图5A为本发明一实施例中发光装置的制作流程图;FIG. 5A is a flow chart of manufacturing a light-emitting device in an embodiment of the present invention;

图5B~图5E为本发明一实施例中发光装置的制作流程立体示意图。5B-5E are three-dimensional schematic views of the manufacturing process of the light emitting device in an embodiment of the present invention.

符号说明Symbol Description

100 发光装置100 lighting fixtures

10 光学结构10 Optical structure

101 顶表面101 top surface

102 侧表面102 side surface

103 侧底表面103 side bottom surface

1031 第一部分1031 part one

1032 第二部分1032 part two

104 底表面104 bottom surface

11 载板11 carrier board

111 上表面111 upper surface

112 下表面112 lower surface

12、12A、12B、12D 发光单元12, 12A, 12B, 12D light emitting unit

120A 第一连接垫120A first connection pad

120B 第二连接垫120B Second connection pad

121 发光主体121 Luminous subject

1211 电极1211 electrodes

122 第一透明体122 The first transparent body

123 荧光粉层123 phosphor layer

124 第二透明体124 Second transparent body

125、125’ 第三透明体125, 125' third transparent body

1251 第一部分1251 Part I

1251S 侧表面1251S side surface

1252 第二部分1252 part two

1253 平面1253 plane

1254 斜面1254 Inclined

126 绝缘层126 insulating layer

127 延伸电极127 Extension electrodes

129 反射结构129 reflective structures

13 电路结构13 circuit structure

131 第一电极垫131 First electrode pad

132 第二电极垫132 Second electrode pad

133、1331、1331A、1332、1332B 导电线路133, 1331, 1331A, 1332, 1332B Conductive lines

134 第三电极垫134 Third electrode pad

135 第四电极垫135 fourth electrode pad

151 第一贯孔151 First through hole

152 第二贯孔152 Second through hole

21 支架21 stand

211 框架211 frame

30 灯泡30 bulbs

301 灯壳301 lamp housing

302 电路板302 circuit board

303 支撑柱303 support column

304 散热件304 radiator

305 电连接件305 electrical connector

307 电极件307 electrode parts

308、309 金属线308, 309 metal wire

具体实施方式Detailed ways

以下实施例将伴随着附图说明本发明的概念,在附图或说明中,相似或相同的部分是使用相同的标号,并且在附图中,元件的形状或厚度可扩大或缩小。需特别注意的是,图中未绘示或描述的元件,可以是熟悉此技术的人士所知的形式。The following embodiments will illustrate the concept of the present invention with accompanying drawings. In the drawings or descriptions, similar or identical parts use the same symbols, and in the drawings, the shape or thickness of elements can be enlarged or reduced. It should be noted that components not shown or described in the figure may be in the form known to those skilled in the art.

图1A显示本发明一实施例中一发光装置100的立体示意图。图1B仅显示图1A中载板11的俯视示意图。图1C仅显示图1A中载板11的仰视示意图。图1D显示图1A且沿着图1BI-I线的剖面示意图。图1E显示图1A沿YZ方向的剖面示意图。参照图1A~图1E,发光装置100包含一光学结构10、一载板11、及多个发光单元12。载板11具有一上表面111及一下表面112。一电路结构13形成于上表面111上且具有一第一电极垫131、一第二电极垫132及一导电线路133。发光单元12设置于上表面111的导电线路133上并通过导电线路133而彼此串联连接。在其他实施例,可通过其他种导电线路133的设计使得发光单元12彼此并联、串并连接、或以桥式结构连接。在此实施例中,载板11不会被发光单元12发出的光穿透(不透光),因此,即使发光单元12发出光线朝向上表面111,但并不穿过上表面111。载板11可为电路板。电路板的基板材料(core layer)包含金属、热塑性材料、热固性材料、或陶瓷材料。金属包含铝、铜、金、银等合金、叠层、或单层。热固性材料包含酚醛树脂(Phonetic)、环氧树脂(Epoxy)、双马来酰亚胺三嗪树脂(BismaleimideTriazine)或其组合。热塑性材料包含聚亚酰胺树脂(Polyimide resin)、聚四氟乙烯(Polytetrafluorethylene)等。陶瓷材料包含氧化铝、氮化铝、碳化硅铝等。FIG. 1A shows a perspective view of a light emitting device 100 in an embodiment of the present invention. FIG. 1B only shows a schematic top view of the carrier 11 in FIG. 1A . FIG. 1C only shows a schematic bottom view of the carrier 11 in FIG. 1A . FIG. 1D shows a schematic cross-sectional view of FIG. 1A along line BI-I of FIG. 1 . FIG. 1E shows a schematic cross-sectional view of FIG. 1A along the YZ direction. Referring to FIGS. 1A-1E , the light emitting device 100 includes an optical structure 10 , a carrier 11 , and a plurality of light emitting units 12 . The carrier board 11 has an upper surface 111 and a lower surface 112 . A circuit structure 13 is formed on the upper surface 111 and has a first electrode pad 131 , a second electrode pad 132 and a conductive circuit 133 . The light emitting units 12 are disposed on the conductive lines 133 on the upper surface 111 and connected in series through the conductive lines 133 . In other embodiments, the light emitting units 12 may be connected in parallel, in series or in parallel, or in a bridge structure through other designs of the conductive lines 133 . In this embodiment, the carrier board 11 is not penetrated (opaque) by the light emitted by the light emitting unit 12 , so even though the light emitting unit 12 emits light toward the upper surface 111 , it does not pass through the upper surface 111 . The carrier board 11 can be a circuit board. The core layer of the circuit board includes metal, thermoplastic material, thermosetting material, or ceramic material. Metals include alloys, stacks, or single layers of aluminum, copper, gold, silver, etc. The thermosetting material includes phenolic resin (Phonetic), epoxy resin (Epoxy), bismaleimide triazine resin (BismaleimideTriazine) or a combination thereof. The thermoplastic material includes polyimide resin, polytetrafluoroethylene and the like. Ceramic materials include alumina, aluminum nitride, silicon carbide, and the like.

如图1A、图1B及图1C所示,一反射层14形成于上表面111及电路结构13上,且仅露出欲与发光单元12电连接的导电线路1331、1332以及电极垫131、132。导电线路1331与导电线路1332彼此物理性分离。在此实施例中,导电线路1332A与电极垫131彼此物理性分离且导电线路1331B与电极垫132彼此物理性分离。每一发光单元12包含一第一连接垫120A及一第二连接垫120B分别与曝露出的导电线路1331、1332物理性及电连接。在本实施例中,曝露出的导电线路1331,1332为长方形且其长边与载板11的长边平行。在另一实施例中,曝露出的导电线路1331,1332的长边与载板11的短边平行,或是与长边夹一介于0~90°的角度。或者,曝露出的导电线路1331,1332可为圆形、椭圆形、或多边形。此外,反射层14的设置可帮助反射由发光单元12射向朝载板11的光以增加发光装置100整体的发光效率。As shown in FIG. 1A, FIG. 1B and FIG. 1C, a reflective layer 14 is formed on the upper surface 111 and the circuit structure 13, and only exposes the conductive lines 1331, 1332 and the electrode pads 131, 132 to be electrically connected to the light emitting unit 12. The conductive circuit 1331 and the conductive circuit 1332 are physically separated from each other. In this embodiment, the conductive circuit 1332A is physically separated from the electrode pad 131 and the conductive circuit 1331B is physically separated from the electrode pad 132 . Each light emitting unit 12 includes a first connection pad 120A and a second connection pad 120B respectively physically and electrically connected to the exposed conductive lines 1331 and 1332 . In this embodiment, the exposed conductive circuits 1331 , 1332 are rectangular and their long sides are parallel to the long sides of the carrier board 11 . In another embodiment, the long sides of the exposed conductive circuits 1331 and 1332 are parallel to the short sides of the carrier 11 , or form an angle between 0° and 90° with the long sides. Alternatively, the exposed conductive lines 1331, 1332 can be circular, elliptical, or polygonal. In addition, the configuration of the reflective layer 14 can help to reflect the light emitted from the light emitting unit 12 toward the carrier 11 to increase the overall luminous efficiency of the light emitting device 100 .

如图1C及图1D所示,发光单元12未设置于下表面112。电路结构13还包含一第三电极垫134与一第四电极垫135形成于载板11的下表面112。第三电极垫134与第四电极垫135分别相对应第一电极垫131与第二电极垫132的位置。一第一贯孔151贯穿载板11且具有一导电物质完全或部分形成于其中以电连接第一电极垫131及第三电极垫134。一第二贯孔152贯穿载板11且具有一导电物质完全或部分形成于其中以电连接第二电极垫132及第四电极垫135。在一实施利中,外部电源(power supply)分别连接第一电极垫131及第二电极垫132以使多个发光单元12发光。第三电极垫134及第四电极垫135可以不与外部电源直接物理性连接。当电极垫131、132与外部电源利用电焊(碰焊)方式形成电连接时,由于需要一金属夹夹置载板11,电极垫134、135的设置可帮助制作工艺过程中夹取发光装置100的稳固性以及提供一导电路径。在一实施例中,当利用焊线将电极垫131、132与外部电源形成电连接时,可不形成第三电极垫134及第四电极垫135。As shown in FIG. 1C and FIG. 1D , the light emitting unit 12 is not disposed on the lower surface 112 . The circuit structure 13 further includes a third electrode pad 134 and a fourth electrode pad 135 formed on the lower surface 112 of the carrier 11 . The third electrode pad 134 and the fourth electrode pad 135 correspond to the positions of the first electrode pad 131 and the second electrode pad 132 respectively. A first through hole 151 runs through the carrier plate 11 and has a conductive substance formed therein completely or partially to electrically connect the first electrode pad 131 and the third electrode pad 134 . A second through hole 152 runs through the carrier plate 11 and has a conductive substance formed therein completely or partially to electrically connect the second electrode pad 132 and the fourth electrode pad 135 . In one embodiment, an external power supply is respectively connected to the first electrode pad 131 and the second electrode pad 132 to make the plurality of light emitting units 12 emit light. The third electrode pad 134 and the fourth electrode pad 135 may not be directly physically connected to an external power source. When the electrode pads 131, 132 are electrically connected to the external power source by means of electric welding (butt welding), since a metal clip is required to clamp the carrier plate 11, the arrangement of the electrode pads 134, 135 can help clamp the light emitting device 100 during the manufacturing process. stability and provide a conductive path. In one embodiment, when the electrode pads 131 , 132 are electrically connected to an external power source by using bonding wires, the third electrode pad 134 and the fourth electrode pad 135 may not be formed.

如图1A及图1E所示,光学结构10包覆载板11的上表面111、下表面112及载板11长边两侧的侧壁113,但曝露出电极垫131、132、134、135。光学结构10具有一似长方形的剖面。图1F为图1E的放大图。光学结构10具有一弧形的顶表面101;两实质上为直线形且相互平行的侧表面102;两侧底表面103;及一实质上为平面的底表面104,连接两侧底表面103。顶表面101位于载板11的上表面111的上方,且底表面104位于载板11的下表面112的下方。侧表面102自顶表面101沿着Z方向往载板11的下表面112延伸。每一侧底表面103包含一第一部分1031,自侧表面102以一倾斜角度往底表面104延伸;以及一第二部分1302。图中左右两侧的第二部分1302分别连接至第一部分1031并往底表面104呈弧形状延伸。载板11的下表面112与光学结构10的底表面104相距一介于0.3mm~0.7mm的第一距离D1;载板11的上表面111与光学结构10的顶表面101相距一介于0.8mm~0.13mm的第二距离D2。第二距离D2大于第一距离D1。顶表面101的弧形具有一介于0.4mm~0.7mm的曲率半径,且具有一弧形角度θ1(弧形所对应的圆心角)介于40°~60°或是一弧度介于2π/9~π/3。侧底表面103的第二部分的弧形具有一介于0.2~0.4mm的曲率半径,且具有一弧形角度θ2(弧形所对应的圆心角)介于5°~20°或一弧度介于π/36~π/9。一扩散粉(例如:二氧化钛、氧化锆、氧化锌或氧化铝)可选择性地填入光学结构10内以帮助扩散、散射发光单元12所发出的光。扩散粉于光学结构10中的重量百分浓度(w/w)介于0.1~0.5%且具有一10nm~100nm或10~50μm的颗粒尺寸。在一实施例中,扩散粉于胶体中的重量百粉浓度可通过热重分析仪(thermogravimetric analyzer、TGA)量测。简要之,在加热过程中,胶体会由于温度逐渐升高且在达到一特定温度后而被移除(蒸发或热裂解),残留扩散粉,此时可得知重量的变化,因此可求得胶体与扩散粉各自的重量并推得扩散粉于胶体中的重量百分浓度。或者,可先量测胶体与扩散粉的总重量,再利用溶剂将胶体移除,最后量测扩散粉的重量,进而求得扩散粉于胶体中的重量百分浓度。在图1A中,虽可视得发光单元12。然,当扩散粉填入至光学结构10中且达到一定浓度时,会使得光学结构10呈现白色状而无法视得内部的发光单元12。As shown in FIG. 1A and FIG. 1E , the optical structure 10 covers the upper surface 111, the lower surface 112 and the sidewalls 113 on both sides of the long side of the carrier 11, but exposes the electrode pads 131, 132, 134, 135. . The optical structure 10 has a rectangular cross-section. Figure 1F is an enlarged view of Figure 1E. The optical structure 10 has a curved top surface 101 ; two substantially linear side surfaces 102 parallel to each other; two bottom surfaces 103 ; and a substantially planar bottom surface 104 connecting the two bottom surfaces 103 . The top surface 101 is located above the upper surface 111 of the carrier board 11 , and the bottom surface 104 is located below the lower surface 112 of the carrier board 11 . The side surface 102 extends from the top surface 101 to the bottom surface 112 of the carrier 11 along the Z direction. Each side bottom surface 103 includes a first portion 1031 extending from the side surface 102 to the bottom surface 104 at an inclined angle; and a second portion 1302 . The second portions 1302 on the left and right sides in the figure are respectively connected to the first portion 1031 and extend toward the bottom surface 104 in an arc shape. The lower surface 112 of the carrier plate 11 is separated from the bottom surface 104 of the optical structure 10 by a first distance D1 between 0.3 mm and 0.7 mm; A second distance D2 of 0.13mm. The second distance D2 is greater than the first distance D1. The arc of the top surface 101 has a radius of curvature ranging from 0.4 mm to 0.7 mm, and has an arc angle θ1 (central angle corresponding to the arc) ranging from 40° to 60° or an arc ranging from 2π/9 ~π/3. The arc of the second part of the side bottom surface 103 has a radius of curvature between 0.2-0.4 mm, and has an arc angle θ2 (central angle corresponding to the arc) between 5°-20° or an arc between π/36~π/9. A diffusing powder (such as titanium dioxide, zirconium oxide, zinc oxide or aluminum oxide) can be selectively filled into the optical structure 10 to help diffuse and scatter the light emitted by the light emitting unit 12 . The weight percent concentration (w/w) of the diffusing powder in the optical structure 10 is 0.1-0.5% and has a particle size of 10-100 nm or 10-50 μm. In one embodiment, the powder concentration by weight of the diffusing powder in the colloid can be measured by a thermogravimetric analyzer (TGA). Briefly, during the heating process, the colloid will be removed (evaporated or thermally cracked) due to the gradual increase in temperature and after reaching a certain temperature, and the diffusion powder will remain. At this time, the change in weight can be known, so it can be obtained The respective weights of the colloid and the diffusing powder are calculated to obtain the weight percent concentration of the diffusing powder in the colloid. Alternatively, the total weight of the colloid and the diffusing powder can be measured first, then the colloid can be removed with a solvent, and finally the weight of the diffusing powder can be measured to obtain the weight percent concentration of the diffusing powder in the colloid. In FIG. 1A , although the light emitting unit 12 can be seen. However, when the diffusion powder is filled into the optical structure 10 and reaches a certain concentration, the optical structure 10 will appear white and the light-emitting unit 12 inside cannot be seen.

光学结构10对于阳光或发光单元12所发出的光为透明。光学结构10包含硅胶(Silicone)、环氧树脂(Epoxy)、聚亚酰胺(PI)、苯并环丁烯(BCB)、过氟环丁烷(PFCB)、SU8、丙烯酸树脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚酰亚胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化铝(Al2O3)、SINR、或旋涂玻璃(SOG)。The optical structure 10 is transparent to sunlight or the light emitted by the light emitting unit 12 . The optical structure 10 includes silica gel (Silicone), epoxy resin (Epoxy), polyimide (PI), benzocyclobutene (BCB), perfluorocyclobutane (PFCB), SU8, acrylic resin (Acrylic Resin), Polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), fluorocarbon polymer (Fluorocarbon Polymer), alumina ( Al 2 O 3 ), SINR, or spin-on-glass (SOG).

图2A显示由发光单元12所发出的光线于光学结构10中行进路径的示意图。需注意的,附图中的路径仅为诸多可能路径其中之一,非唯一的路径,以下同。例如:自发光单元12的光线L射至弧形顶表面101,光线L会于顶表面101产生第一折射光线L11及第一反射光线L12。第一反射光线L12射至侧表面102,会于侧表面102产生第二折射光线L21及第二反射光L22。第二反射光线L22射至底表面104,会于底表面104产生第三折射光线L31及第三反射光线L32。或者,如图2B所示,例如:自发光单元12的光线M射至弧形顶表面101,光线M会于顶表面101产生第一折射光线M11及第一反射光线M12。第一反射光线M12射至侧底表面103的第一部分1031,会于第一部分1031产生第二折射光线M21及第二反射光M22。第二反射光线M22射至底表面104,会于底表面104产生第三折射光线M31及第三反射光线M32。图2C及图2D显示光线于光学结构10中的其他可能行进路径的示意图。通过本发明光学结构10的形状设计以增加光线从载板10的下表面112方向射出的机率以及光线从底表面104射出的机率。发光装置100于上表面111的上方(第一侧)可量得一第一亮度,在下表面112的下方(第二侧)可量得一第二亮度,第一亮度与第二亮度的比值介于2~9之间。第一亮度与第二亮度的定义可参考后续描述。需注意的,附图中的路径仅为诸多可能路径其中之一,非唯一的路径。此外,以上说明中,光线虽于表面上同时被折射及反射。然而,光线在表面上亦可能仅被折射或反射,视材料界面的折射率差异、入射角度、光线波长等而定。FIG. 2A shows a schematic diagram of the path of the light emitted by the light emitting unit 12 traveling in the optical structure 10 . It should be noted that the path in the attached figure is only one of many possible paths, and it is not the only path, the same below. For example, when the light L from the light emitting unit 12 hits the arc-shaped top surface 101 , the light L will generate a first refracted light L11 and a first reflected light L12 on the top surface 101 . The first reflected light L12 strikes the side surface 102 , and generates the second refracted light L21 and the second reflected light L22 on the side surface 102 . The second reflected ray L22 strikes the bottom surface 104 , and generates a third refracted ray L31 and a third reflected ray L32 on the bottom surface 104 . Or, as shown in FIG. 2B , for example, the light M from the light emitting unit 12 hits the arc-shaped top surface 101 , and the light M will generate a first refracted light M11 and a first reflected light M12 on the top surface 101 . The first reflected light M12 strikes the first portion 1031 of the side bottom surface 103 , and the second refracted light M21 and the second reflected light M22 are generated in the first portion 1031 . The second reflected ray M22 strikes the bottom surface 104 , and generates a third refracted ray M31 and a third reflected ray M32 on the bottom surface 104 . FIG. 2C and FIG. 2D show schematic diagrams of other possible travel paths of light in the optical structure 10 . The shape design of the optical structure 10 of the present invention increases the probability of light emitting from the lower surface 112 of the carrier 10 and the probability of light emitting from the bottom surface 104 . The light-emitting device 100 can measure a first luminance above the upper surface 111 (first side), and can measure a second luminance below the lower surface 112 (second side). The ratio of the first luminance to the second luminance is between between 2 and 9. The definition of the first brightness and the second brightness can refer to the subsequent description. It should be noted that the path in the figure is only one of many possible paths, not the only path. In addition, in the above description, the light is refracted and reflected on the surface at the same time. However, the light may also be merely refracted or reflected on the surface, depending on the difference in refractive index at the material interface, the angle of incidence, the wavelength of the light, etc.

图2E显示发光装置100于电流10mA操作下且呈一热稳态时,所得的一配光曲线图。详言之,当发光装置100发光时,可利用配光曲线仪量得一假想圆(如图1A中的P1圆)的发光亮度。进一步,将发光亮度与角度作图即可得一配光曲线图。在量测时,发光装置100的几何中心大致上位于P1圆的圆心。在本实施例中,扩散粉于光学结构10中的重量百分浓度为0.3%。如图所示,发光装置100的最大亮度约为4.53烛光cd,且从0度至180度的亮度大致上呈一朗伯分布(lambertian distribution)。具体而言,-90度的亮度最小且约为0.5烛光(cd),-90度至-80度亮度大致相同,-80度至90度亮度渐增。-90~0~90度的曲线大致上与90~180~-90度的曲线类似,且光强度于-90~0~90度的分布与光强度于90~180~-90度的分布相对于90~-90度的直线轴对称。此外,配光曲线图中0~90~180度的总亮度定义为第一亮度,且0~-90~-180度的总亮度定义为第二亮度,第一亮度与第二两度的比值约为4。由配光曲线图中可算得发光装置100的发光角度约为160度。FIG. 2E shows a light distribution curve obtained when the light emitting device 100 is operated at a current of 10 mA and is in a thermal steady state. In detail, when the light emitting device 100 emits light, the luminous brightness of an imaginary circle (such as circle P1 in FIG. 1A ) can be measured by using a light distribution curve meter. Further, a light distribution curve can be obtained by plotting the luminous brightness and the angle. During measurement, the geometric center of the light emitting device 100 is approximately located at the center of the circle P1. In this embodiment, the weight percent concentration of the diffusing powder in the optical structure 10 is 0.3%. As shown in the figure, the maximum luminance of the light emitting device 100 is about 4.53 cd, and the luminance from 0 degree to 180 degree roughly presents a lambertian distribution. Specifically, the brightness at -90 degrees is the smallest and is about 0.5 candlepower (cd), the brightness from -90 degrees to -80 degrees is roughly the same, and the brightness from -80 degrees to 90 degrees increases gradually. The curve of -90 to 0 to 90 degrees is roughly similar to the curve of 90 to 180 to -90 degrees, and the distribution of light intensity at -90 to 0 to 90 degrees is opposite to the distribution of light intensity at 90 to 180 to -90 degrees Axisymmetric to a straight line at 90 to -90 degrees. In addition, the total brightness of 0-90-180 degrees in the light distribution curve is defined as the first brightness, and the total brightness of 0-90--180 degrees is defined as the second brightness, the ratio of the first brightness to the second two degrees about 4. From the light distribution curve, it can be calculated that the light emitting angle of the light emitting device 100 is about 160 degrees.

发光角度,其定义为当亮度为最大亮度的50%时,此时所包含的角度范围即为发光角度。例如:先将图2E中于P1圆上所量测的配光曲线图(极座标)转化成直角座标图可得一亮度曲线图;其中,X轴为亮度,Y轴为角度(图未示)。接着,在约2.265烛光(最大亮度的50%)处平行于X轴画一条直线且与亮度曲线图交于两点;计算两点间的角度范围,即定义为发光角度。Lighting angle, which is defined as when the brightness is 50% of the maximum brightness, the angle range included at this time is the lighting angle. For example: first convert the light distribution curve (polar coordinates) measured on the P1 circle in Figure 2E into a rectangular coordinate graph to obtain a brightness curve; wherein, the X-axis is the brightness, and the Y-axis is the angle (Fig. not shown). Then, draw a straight line parallel to the X-axis at about 2.265 candlepower (50% of the maximum brightness) and intersect the brightness curve at two points; calculate the angle range between the two points, which is defined as the luminous angle.

图3A显示本发明一实施例中发光单元12A的一剖面示意图。发光单元12A包含一发光主体121、一第一透明体122、一荧光粉层123、一第二透明体124及一第三透明体125。发光主体121包含一基板、一第一型半导体层、一活性层、第二型半导体层(以上未标示)及两电极1211。当发光主体121为一异质结构时,第一型半导体层及第二型半导体层例如为包覆层(cladding layer)及/或限制层(confinement layer),可分别提供电子、空穴且具有一大于活性层的能隙,由此提高电子、空穴于活性层中结合以发光的机率。第一型半导体层、活性层、及第二型半导体层可包含Ⅲ-Ⅴ族半导体材料,例如AlxInyGa(1-x-y)N或AlxInyGa(1-x-y)P,其中0≦x,y≦1;(x+y)≦1。依据活性层的材料,发光主体121可发出一峰值(peakwavelength)或主波长(dominant wavelength)介于610nm及650nm之间的红光,峰值或主波长介于530nm及570nm之间的绿光,或是峰值或主波长介于450nm及490nm之间的蓝光。荧光粉结构123包含多个荧光粉颗粒。荧光粉颗粒具有约5um~100um的颗粒尺寸(直径)且可包含一种或两种以上种类的荧光粉材料。荧光粉材料包含但不限于黄绿色荧光粉及红色荧光粉。黄绿色荧光粉的成分例如铝氧化物(YAG或是TAG)、硅酸盐、钒酸盐、碱土金属硒化物、或金属氮化物。红色荧光粉的成分例如氟化物(K2TiF6:Mn4+、K2SiF6:Mn4+)、硅酸盐、钒酸盐、碱土金属硫化物、金属氮氧化物、或钨钼酸盐族混合物。荧光粉结构123可吸收发光主体121所发出的第一光并转换成与第一光不同频谱的第二光。第一光与第二光混和会产生一混合光,例如白光。在此实施例中,发光单元12于热稳态下产生的光具有一白光色温为2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色点值(CIE x,y)会落于七个麦克亚当椭圆(MacAdam ellipse)的范围,并具有一大于80或大于90的演色性(CRI)。在另一实施例,第一光与第二光混合可产生紫光、黄光或其他非白光的色光。FIG. 3A shows a schematic cross-sectional view of a light emitting unit 12A in an embodiment of the present invention. The light emitting unit 12A includes a light emitting body 121 , a first transparent body 122 , a phosphor layer 123 , a second transparent body 124 and a third transparent body 125 . The light-emitting body 121 includes a substrate, a first-type semiconductor layer, an active layer, a second-type semiconductor layer (not shown above) and two electrodes 1211 . When the light-emitting body 121 is a heterostructure, the first-type semiconductor layer and the second-type semiconductor layer are, for example, cladding layers and/or confinement layers, which can respectively provide electrons and holes and have One is larger than the energy gap of the active layer, thereby increasing the probability of combining electrons and holes in the active layer to emit light. The first-type semiconductor layer, the active layer, and the second-type semiconductor layer may comprise III-V group semiconductor materials, such as Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, wherein 0≦x,y≦1; (x+y)≦1. According to the material of the active layer, the light-emitting body 121 can emit a red light with a peak wavelength or a dominant wavelength between 610nm and 650nm, a green light with a peak or dominant wavelength between 530nm and 570nm, or It is blue light with peak or dominant wavelength between 450nm and 490nm. The phosphor structure 123 includes a plurality of phosphor particles. The phosphor particles have a particle size (diameter) of about 5 um˜100 um and may contain one or more than two types of phosphor materials. Phosphor materials include, but are not limited to, yellow-green phosphors and red phosphors. The composition of the yellow-green phosphor is, for example, aluminum oxide (YAG or TAG), silicate, vanadate, alkaline earth metal selenide, or metal nitride. Components of red phosphor such as fluoride (K 2 TiF 6 :Mn 4+ , K 2 SiF 6 :Mn 4+ ), silicate, vanadate, alkaline earth metal sulfide, metal oxynitride, or tungstomolybdic acid Salt mixture. The phosphor structure 123 can absorb the first light emitted by the light-emitting body 121 and convert it into a second light with a spectrum different from the first light. The mixing of the first light and the second light will generate a mixed light, such as white light. In this embodiment, the light generated by the light emitting unit 12 in a thermal steady state has a white color temperature of 2200K-6500K (for example: 2200K, 2400K, 2700K, 3000K, 5700K, 6500K), and its color point value (CIE x, y ) will fall within the range of seven MacAdam ellipses (MacAdam ellipse), and have a color rendering (CRI) greater than 80 or greater than 90. In another embodiment, the mixing of the first light and the second light can generate purple light, yellow light or other non-white light.

发光单元12还包含一绝缘层126形成于第一透明体122、一荧光粉层123及第二透明体124下方且未覆盖发光主体121的两电极1211;及两延伸电极127分别形成于两电极1211上并与两电极1211电连接。两延伸电极127分别做为前述的第一连接垫120A及一第二连接垫102B(如图1D所示)。绝缘层126为一包含基质及高反射率物质的混和物。基质可为或硅胶基质或环氧基质。高反射率物质可包含二氧化钛、二氧化硅或氧化铝。此外,绝缘层126可具有反射光或扩散光的作用。延伸电极127包含金属,例如:铜、钛、金、镍、银、其合金或其叠层。第一透明体122、第二透明体124及第三透明体125对于阳光或发光单元12所发出的光为透明。第一透明体122或第二透明体124可以包含硅胶(Silicone)、环氧树脂(Epoxy)、聚亚酰胺(PI)、苯并环丁烯(BCB)、过氟环丁烷(PFCB)、SU8、丙烯酸树脂(Acrylic Resin)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚醚酰亚胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、氧化铝(Al2O3)、SINR、或旋涂玻璃(SOG)。第三透明体125可以包含蓝宝石(Sapphire)、钻石(Diamond)、玻璃(Glass)、环氧树脂(Epoxy)、石英(quartz)、丙烯酸树脂(Acrylic Resin)、氧化硅(SiOX)、氧化铝(Al2O3)、氧化锌(ZnO)、或硅胶(Silicone)。The light-emitting unit 12 also includes an insulating layer 126 formed on the first transparent body 122, a phosphor layer 123 and two electrodes 1211 below the second transparent body 124 and not covering the light-emitting body 121; and two extension electrodes 127 are respectively formed on the two electrodes 1211 and is electrically connected to the two electrodes 1211. The two extension electrodes 127 are respectively used as the aforementioned first connection pad 120A and a second connection pad 102B (as shown in FIG. 1D ). The insulating layer 126 is a mixture including a matrix and a material with high reflectivity. The matrix can be either a silicone matrix or an epoxy matrix. High reflectivity materials may include titanium dioxide, silicon dioxide or aluminum oxide. In addition, the insulating layer 126 may have a function of reflecting light or diffusing light. The extension electrodes 127 include metals, such as copper, titanium, gold, nickel, silver, alloys thereof, or stacks thereof. The first transparent body 122 , the second transparent body 124 and the third transparent body 125 are transparent to sunlight or light emitted by the light emitting unit 12 . The first transparent body 122 or the second transparent body 124 may include silica gel (Silicone), epoxy resin (Epoxy), polyimide (PI), benzocyclobutene (BCB), perfluorocyclobutane (PFCB), SU8, acrylic resin (Acrylic Resin), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyetherimide (Polyetherimide), fluorocarbon polymerization Fluorocarbon Polymer, Aluminum Oxide (Al 2 O 3 ), SINR, or Spin On Glass (SOG). The third transparent body 125 may include sapphire (Sapphire), diamond (Diamond), glass (Glass), epoxy resin (Epoxy), quartz (quartz), acrylic resin (Acrylic Resin), silicon oxide (SiO x ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), or silica gel (Silicone).

如图3A所示,第三透明体125具有一上宽下窄的形状。详言之,第三透明体125具有一第一部分1251、及一第二部分1252。第二部分1252较靠近第二透明体124且其宽度小于第一部分1251的宽度。第一部分1251的厚度约为第三透明体125整体厚度的1%~20%或是1%~10%。在本实施例中,第一部分1251与第二部分1252的相接处为一弧形。第一部分1251具有一侧表面1251S,其略微朝上倾斜(面朝上),并较第二透明体124的侧表面1241远离发光主体121,可将光线导引到发光单元12的两侧。As shown in FIG. 3A , the third transparent body 125 has a shape that is wide at the top and narrow at the bottom. In detail, the third transparent body 125 has a first part 1251 and a second part 1252 . The second portion 1252 is closer to the second transparent body 124 and has a width smaller than that of the first portion 1251 . The thickness of the first part 1251 is about 1%-20% or 1%-10% of the overall thickness of the third transparent body 125 . In this embodiment, the junction of the first portion 1251 and the second portion 1252 is an arc. The first part 1251 has a side surface 1251S, which is slightly inclined upward (facing upward), and is farther away from the light-emitting body 121 than the side surface 1241 of the second transparent body 124 , and can guide light to both sides of the light-emitting unit 12 .

在一实施例中,发光单元12A为一朝五个面(上左右前后)发光的发光结构且具有一约140度的发光角度(beam angle)。选择性地,一扩散粉可添加于第一透明体122、或/且第二透明体124、或/且第三透明体125中。在另一实施例中,发光单元12A未包含第三透明体125。In one embodiment, the light emitting unit 12A is a light emitting structure that emits light toward five sides (upper, left, right, front, back) and has a beam angle of about 140 degrees. Optionally, a diffusing powder can be added to the first transparent body 122 , or/and the second transparent body 124 , or/and the third transparent body 125 . In another embodiment, the light emitting unit 12A does not include the third transparent body 125 .

图3B显示本发明另一实施例中发光单元12B的一剖面示意图。图3C为图3B的一上视图。图3B的发光单元类似于图3A的发光装置,相同的符号或是记号所对应的元件或装置,具有类似或是相同的元件或装置。如图3B所示,第三透明体125’具有一平截头(frustum)形状且具有一平面1253及斜面1254。斜面1254的设计可增加发光主体121的光萃取量且改变发光单元12的光场。平面1253与斜面1254可夹一介于120°~150°的角度Ф且斜面1254的深度H1为第三透明体125’的整体厚度H2的30%~70%或是40%~60%。如图3C所示,平面1253的面积(A1;三角形)可为第三透明体125’的总投影面积(A;斜线)的40%~95%或是40%~60%。FIG. 3B shows a schematic cross-sectional view of the light emitting unit 12B in another embodiment of the present invention. Fig. 3C is a top view of Fig. 3B. The light-emitting unit in FIG. 3B is similar to the light-emitting device in FIG. 3A , and components or devices corresponding to the same symbols or marks have similar or identical components or devices. As shown in FIG. 3B , the third transparent body 125' has a frustum shape and has a flat surface 1253 and an inclined surface 1254. The design of the slope 1254 can increase the light extraction amount of the light emitting body 121 and change the light field of the light emitting unit 12 . The plane 1253 and the inclined surface 1254 can form an angle Φ between 120°˜150° and the depth H1 of the inclined surface 1254 is 30%˜70% or 40%˜60% of the overall thickness H2 of the third transparent body 125′. As shown in FIG. 3C , the area (A1; triangle) of the plane 1253 may be 40%-95% or 40%-60% of the total projected area (A; oblique line) of the third transparent body 125'.

图3D显示本发明另一实施例中发光单元12D的一剖面示意图。图3D的发光单元类似于图3A的发光装置,相同的符号或是记号所对应的元件或装置,具有类似或是相同的元件或装置。发光单元12D还包含一反射结构129形成于第一透明体124及第二透明体125之间。反射结构129对入射到反射结构129的光线在波长范围为450nm~475nm之间时,具有大于85%的反射率;或在所入射的光线的波长介于400nm~600nm的范围间具有大于80%的反射率。未被反射结构129反射的光线可以进入第三透明体125,并由第三透明体125的上方或侧面离开发光单元12D或第三透明体125。若反射结构129可反射多数光线,例如大于95%的反射率,则发光单元12D中的第三透明体125可以略而不用。反射结构129可以是一单层结构或是多层结构。单层结构例如为一金属层,包含例如银或铝,或是一氧化物层,包含例如二氧化钛。多层结构可以是金属与金属氧化物的叠层或是分散式布拉格反射镜(DistributedBragg reflector、DBR)以达到反射的效果。金属与金属氧化物的叠层例如铝与氧化铝的叠层。分散式布拉格反射镜可为非半导体叠层或半导体叠层。非半导体叠层的材料可选自下列群组之一:氧化铝(Al2O3)、氧化硅(SiO2)、二氧化钛(TiO2)、五氧化二铌(Nb2O5)、氮化硅(SiNx)。半导体叠层的材料可选自下列群组之一:氮化镓(GaN)、氮化铝镓(AlGaN)、氮化铝铟镓(AlInGaN)、砷化铝(AlAs)、砷化铝镓(AlGaAs)、砷化镓(GaAs)。在本实施例中,不论是单层结构或者多层结构,都不会完全反射光线,因此至少有部分的光线会直接穿过反射结构129。FIG. 3D shows a schematic cross-sectional view of a light emitting unit 12D in another embodiment of the present invention. The light-emitting unit in FIG. 3D is similar to the light-emitting device in FIG. 3A , and components or devices corresponding to the same symbols or marks have similar or identical components or devices. The light emitting unit 12D further includes a reflective structure 129 formed between the first transparent body 124 and the second transparent body 125 . The reflective structure 129 has a reflectivity greater than 85% when the light incident on the reflective structure 129 is in the wavelength range of 450nm-475nm; reflectivity. Light that is not reflected by the reflective structure 129 can enter the third transparent body 125 and leave the light emitting unit 12D or the third transparent body 125 through the top or side of the third transparent body 125 . If the reflective structure 129 can reflect most of the light, for example, the reflectivity is greater than 95%, then the third transparent body 125 in the light emitting unit 12D can be omitted. The reflective structure 129 can be a single-layer structure or a multi-layer structure. The single-layer structure is, for example, a metal layer, including, for example, silver or aluminum, or an oxide layer, including, for example, titanium dioxide. The multilayer structure can be a stack of metal and metal oxide or a distributed Bragg reflector (Distributed Bragg reflector, DBR) to achieve the effect of reflection. Lamination of metal and metal oxide such as lamination of aluminum and aluminum oxide. DBRs can be non-semiconductor stacks or semiconductor stacks. The material of the non-semiconductor stack may be selected from one of the following groups: aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), nitride Silicon ( SiNx ). The material of the semiconductor stack may be selected from one of the following groups: gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum indium gallium nitride (AlInGaN), aluminum arsenide (AlAs), aluminum gallium arsenide ( AlGaAs), gallium arsenide (GaAs). In this embodiment, no matter whether it is a single-layer structure or a multi-layer structure, the light will not be completely reflected, so at least part of the light will directly pass through the reflective structure 129 .

在另一实施例中,图1A中的发光单元12可具有类似如图3A、图3B、或图3D中发光单元12A、12B、12D的结构,但此结构中未包含荧光粉层123。亦即发光单元12仅发出来自于发光主体121的原始光线,例如红光、绿光、或是蓝光。多个荧光粉颗粒(波长转换物质)可添加于光学结构10中,以吸收发光主体121所发出的第一光而转换成与第一光不同频谱的第二光,第一光与第二光混和会产生白光。因此,发光装置100于热稳态下可具有一白光色温为2200K~6500K(例如:2200K、2400K、2700K、3000K、5700K、6500K),其色点值(CIE x,y)会落于七个麦克亚当椭圆(MacAdam ellipse)的范围,并具有一大于80或大于90的演色性(CRI)。In another embodiment, the light-emitting unit 12 in FIG. 1A may have a structure similar to the light-emitting units 12A, 12B, and 12D in FIG. 3A , FIG. 3B , or FIG. 3D , but the phosphor layer 123 is not included in the structure. That is, the light emitting unit 12 only emits the original light from the light emitting body 121 , such as red light, green light, or blue light. A plurality of phosphor particles (wavelength conversion substances) can be added in the optical structure 10 to absorb the first light emitted by the light-emitting body 121 and convert it into a second light with a spectrum different from the first light. The first light and the second light Blending produces white light. Therefore, the light-emitting device 100 can have a white light color temperature of 2200K-6500K (for example: 2200K, 2400K, 2700K, 3000K, 5700K, 6500K) in a thermal steady state, and its color point value (CIE x, y) will fall in seven MacAdam ellipse (MacAdam ellipse) range, and have a color rendering (CRI) greater than 80 or greater than 90.

本实施例的发光单元以一倒装方式形成于载板上。在其他实施例中,可先将多个水平式或垂直式发光单元(图未示)利用银胶或导电透明胶固定于载板上;接着,使用打线方式将发光单元彼此形成电连接;最后,提供光学结构包覆发光单元以形成发光装置。The light emitting unit of this embodiment is formed on the carrier board in a flip-chip manner. In other embodiments, a plurality of horizontal or vertical light-emitting units (not shown) can be fixed on the carrier board with silver glue or conductive transparent glue; then, the light-emitting units are electrically connected to each other by wire bonding; Finally, an optical structure is provided to cover the light-emitting unit to form a light-emitting device.

图4显示本发明一实施例中一灯泡30的立体图。灯泡30包含一灯壳301、一电路板302、一支撑柱303、多个发光装置100、一散热件304、及一电连接件305。多个发光装置100固定并电连接至支撑柱303。详言之,一电极件307形成于支撑柱303上且与电路板302电连接。每一发光装置100的第三电极垫134通过一金属线308与电路板302连接。由于第一电极垫131与第三电极垫134电连接,因此第一电极垫131亦与电路板302电连接。每一发光装置100的第二电极垫132通过一金属线309与电极件307连接。在本实施例中,通过上述的电连接方式,使得发光装置100彼此并联连接。在其他实施例中,发光装置100彼此可串联连接或串并连接。FIG. 4 shows a perspective view of a light bulb 30 in an embodiment of the present invention. The light bulb 30 includes a lamp housing 301 , a circuit board 302 , a support column 303 , a plurality of light emitting devices 100 , a heat sink 304 , and an electrical connector 305 . A plurality of light emitting devices 100 are fixed and electrically connected to the support column 303 . In detail, an electrode member 307 is formed on the support column 303 and electrically connected to the circuit board 302 . The third electrode pad 134 of each light emitting device 100 is connected to the circuit board 302 through a metal wire 308 . Since the first electrode pad 131 is electrically connected to the third electrode pad 134 , the first electrode pad 131 is also electrically connected to the circuit board 302 . The second electrode pad 132 of each light emitting device 100 is connected to the electrode member 307 through a metal wire 309 . In this embodiment, the light emitting devices 100 are connected in parallel with each other through the above-mentioned electrical connection manner. In other embodiments, the light emitting devices 100 may be connected in series or in parallel.

图5A显示本发明发光装置的制作流程图。如图5A及图5B所示,步骤501:提供一支架21。支架21具有两框架211及多个载板11连接于两框架211间。载板11上具有电路结构13,电路结构13可以于支架21与载板11成形之前或之后形成。例如,若支架21与载板11在单一板材上利用冲压成形技术形成,电路结构13可以先预形成在此单一板材上、或于冲压成形步骤后再形成于载板11上。如图5A及图5C所示,步骤502:利用表面粘结技术(SMT)将发光单元12固定于载板11上,并通过电路结构13,发光单元12彼此电连接。如图5A及图5D所示,步骤503:利用一铸模方式,例如:注塑成型(injection molding)或移转成型(transfermolding)形成一光学结构10,使其包覆发光单元12及载板11并仅露出电极垫131、132。如图5A及图5E所示步骤504:进行一冲压(punch)或激光切割制作工艺以分离载板11与两框架211,由此可同时或一次性形成多个彼此独立的发光装置100。FIG. 5A shows a flow chart of the fabrication of the light-emitting device of the present invention. As shown in FIG. 5A and FIG. 5B , step 501 : providing a bracket 21 . The bracket 21 has two frames 211 and a plurality of carrier boards 11 connected between the two frames 211 . There is a circuit structure 13 on the carrier board 11 , and the circuit structure 13 can be formed before or after forming the bracket 21 and the carrier board 11 . For example, if the bracket 21 and the carrier 11 are formed on a single sheet by stamping technology, the circuit structure 13 can be preformed on the single sheet first, or formed on the carrier 11 after the stamping step. As shown in FIG. 5A and FIG. 5C , step 502 : fix the light-emitting units 12 on the carrier board 11 by surface bonding technology (SMT), and electrically connect the light-emitting units 12 to each other through the circuit structure 13 . As shown in FIG. 5A and FIG. 5D, step 503: use a molding method, such as: injection molding (injection molding) or transfer molding (transfer molding) to form an optical structure 10, so that it covers the light emitting unit 12 and the carrier plate 11 and Only the electrode pads 131, 132 are exposed. Step 504 as shown in FIG. 5A and FIG. 5E : perform a punching or laser cutting process to separate the carrier 11 and the two frames 211 , thereby forming multiple independent light emitting devices 100 at the same time or at one time.

需了解的是,本发明中上述的实施例在适当的情况下,是可互相组合或替换,而非仅限于所描述的特定实施例。本发明所列举的各实施例仅用以说明本发明,并非用以限制本发明的范围。任何人对本发明所作的任何显而易见的修饰或变更接不脱离本发明的精神与范围。It should be understood that the above-mentioned embodiments in the present invention can be combined or replaced with each other under appropriate circumstances, and are not limited to the specific embodiments described. The various embodiments listed in the present invention are only used to illustrate the present invention, and are not intended to limit the scope of the present invention. Any obvious modification or change made by anyone to the present invention will not depart from the spirit and scope of the present invention.

Claims (9)

1.一种发光装置,其特征在于,包含:1. A lighting device, characterized in that it comprises: 第一载板,包含金属材料、平坦的上表面、以及相对于该上表面的下表面,该上表面具有第一部分以及从该第一部分延伸的第二部分;A first carrier plate comprising a metal material, a flat upper surface, and a lower surface opposite to the upper surface, the upper surface having a first portion and a second portion extending from the first portion; 多个发光单元,设置在该第二部分上,不与该第一载板电连接,且在上视图中,完全重叠于该上表面;a plurality of light-emitting units, arranged on the second part, not electrically connected to the first carrier, and completely overlapping the upper surface in a top view; 第一电极垫,设置在该第一部分,与该多个发光单元电连接;a first electrode pad, disposed on the first part, electrically connected to the plurality of light emitting units; 导电线路,位于该第一载板上,电连接该多个发光单元中至少其一以及该第一电极垫;a conductive circuit, located on the first carrier, electrically connected to at least one of the plurality of light emitting units and the first electrode pad; 第一反射层,位于该导电线路上;以及a first reflective layer on the conductive line; and 光学结构,包含一波长转换物质,设置在该第二部分并暴露该第一部分,an optical structure comprising a wavelength converting substance disposed on the second portion and exposing the first portion, 其中,在该上视图中,该第一部分比该第二部分宽,wherein, in the top view, the first portion is wider than the second portion, 其中,该光学结构包含:Among them, the optical structure includes: 顶表面,位于该上表面的上方;a top surface located above the upper surface; 底表面,位于该下表面的下方;a bottom surface located below the lower surface; 侧表面,自该顶表面的两端往该下表面延伸;以及侧底表面,包含第一部分和第二部分,该侧底表面的第一部分自该侧表面以一倾斜角度向该底表面延伸,且该侧底表面的第二部分连接至该第一部分并往该底表面呈弧形状延伸。a side surface extending from both ends of the top surface toward the lower surface; and a side bottom surface comprising a first portion and a second portion, the first portion of the side bottom surface extending from the side surface toward the bottom surface at an oblique angle, And the second portion of the side bottom surface is connected to the first portion and extends toward the bottom surface in an arc shape. 2.如权利要求1所述的发光装置,其中该发光装置运作时,在该上表面的上方可量得第一亮度,在该下表面的下方可量得第二亮度,该第一亮度与该第二亮度的比值介于2~9。2. The light-emitting device according to claim 1, wherein when the light-emitting device is in operation, the first brightness can be measured above the upper surface, and the second brightness can be measured below the lower surface, and the first brightness and The ratio of the second brightness is between 2-9. 3.如权利要求1所述的发光装置,其中该第一载板还包含第三部分,该第三部分从该第二部分延伸且不被该光学结构覆盖。3. The light emitting device as claimed in claim 1, wherein the first carrier further comprises a third portion extending from the second portion and not covered by the optical structure. 4.如权利要求1所述的发光装置,其中,该第一电极垫不被该光学结构覆盖。4. The light emitting device as claimed in claim 1, wherein the first electrode pad is not covered by the optical structure. 5.如权利要求1所述的发光装置,还包含第二电极垫,该第二电极垫与该第一电极垫位于该第一载板的同一面。5. The light emitting device as claimed in claim 1, further comprising a second electrode pad, the second electrode pad and the first electrode pad are located on the same surface of the first carrier. 6.如权利要求1所述的发光装置,还包含第二反射层,该第二反射层与该多个发光单元分别位于该第一载板的相对侧。6. The light-emitting device according to claim 1, further comprising a second reflective layer, the second reflective layer and the plurality of light-emitting units are respectively located on opposite sides of the first carrier. 7.如权利要求1所述的发光装置,其中,每一个该多个发光单元具有发光主体,以及位于该发光主体上的反射结构。7. The light emitting device according to claim 1, wherein each of the plurality of light emitting units has a light emitting body and a reflective structure on the light emitting body. 8.如权利要求7所述的发光装置,还包含透明结构,该透明结构覆盖该反射结构。8. The light emitting device according to claim 7, further comprising a transparent structure covering the reflective structure. 9.如权利要求7所述的发光装置,其中,每一个该多个发光单元具有正负电极,该正负电极与该反射结构分别位于该发光主体的相对侧。9 . The light emitting device according to claim 7 , wherein each of the plurality of light emitting units has positive and negative electrodes, and the positive and negative electrodes and the reflective structure are respectively located on opposite sides of the light emitting body.
CN201910547650.0A 2015-07-23 2015-07-23 light emitting device Active CN110260182B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910547650.0A CN110260182B (en) 2015-07-23 2015-07-23 light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510438508.4A CN106369367A (en) 2015-07-23 2015-07-23 Light emitting device
CN201910547650.0A CN110260182B (en) 2015-07-23 2015-07-23 light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510438508.4A Division CN106369367A (en) 2015-07-23 2015-07-23 Light emitting device

Publications (2)

Publication Number Publication Date
CN110260182A CN110260182A (en) 2019-09-20
CN110260182B true CN110260182B (en) 2022-12-02

Family

ID=57880145

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201910547650.0A Active CN110260182B (en) 2015-07-23 2015-07-23 light emitting device
CN201910547784.2A Pending CN110260183A (en) 2015-07-23 2015-07-23 Light emitting device
CN201510438508.4A Pending CN106369367A (en) 2015-07-23 2015-07-23 Light emitting device

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201910547784.2A Pending CN110260183A (en) 2015-07-23 2015-07-23 Light emitting device
CN201510438508.4A Pending CN106369367A (en) 2015-07-23 2015-07-23 Light emitting device

Country Status (1)

Country Link
CN (3) CN110260182B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708014A (en) * 2019-03-13 2019-05-03 杨荣欢 LED light trichocyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265681A (en) * 2003-02-28 2004-09-24 Koichi Matsui Direct illumination device
CN101738657A (en) * 2008-11-20 2010-06-16 日立麦克赛尔株式会社 Optical sheet, illuminating device and liquid crystal display device
TW201317515A (en) * 2011-10-17 2013-05-01 Lextar Electronics Corp Light guide column, light emitting structure and illumination device using the same
CN104716245A (en) * 2013-12-13 2015-06-17 晶元光电股份有限公司 Light emitting device and manufacturing method thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201497B2 (en) * 2004-07-15 2007-04-10 Lumination, Llc Led lighting system with reflective board
US8449143B2 (en) * 2007-05-18 2013-05-28 Denki Kagaku Kogyo Kabushiki Kaisha Metal base circuit board
CN201344394Y (en) * 2009-01-13 2009-11-11 美昌科技(昆山)有限公司 A high-power white light LED module
CN101893168A (en) * 2009-05-22 2010-11-24 杨凯任 White light emitting diode packaging unit and lighting device and manufacturing method thereof
KR101064036B1 (en) * 2010-06-01 2011-09-08 엘지이노텍 주식회사 Light emitting device package and lighting system
CN202302790U (en) * 2010-06-17 2012-07-04 罗姆股份有限公司 Light-emitting diode (LED) lamp, lamp box, LED module and LED illumination device
CN201944638U (en) * 2010-11-22 2011-08-24 葛世潮 LED lamp bulb for a sense lamp capable of directly replacing an incandescent lamp
EP2525134A1 (en) * 2010-12-24 2012-11-21 Panasonic Corporation Bulb-shaped lamp and lighting device
CN102130235B (en) * 2010-12-31 2012-12-26 深圳中景科创光电科技有限公司 Method and device for packaging LED chip
CN102588752A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device
CN203309554U (en) * 2013-02-27 2013-11-27 浙江锐迪生光电有限公司 LED illuminating lamp emitting light in all directions
JP5942205B2 (en) * 2012-06-21 2016-06-29 パナソニックIpマネジメント株式会社 Lamp and lighting device
CN203297971U (en) * 2012-06-28 2013-11-20 林光湧 Novel LED lamp tube
CN103591492A (en) * 2012-08-13 2014-02-19 惠州元晖光电股份有限公司 Integrally formed light emitting diode light wire and use thereof
CN102927482A (en) * 2012-11-20 2013-02-13 田茂福 Integrated LED illuminating assembly
TWI626395B (en) * 2013-06-11 2018-06-11 晶元光電股份有限公司 Illuminating device
TWI651871B (en) * 2013-06-27 2019-02-21 晶元光電股份有限公司 Light-emitting component and manufacturing method
TW201504577A (en) * 2013-07-29 2015-02-01 Hon Hai Prec Ind Co Ltd Light emitting diode lamp tube
CN104456165A (en) * 2013-09-24 2015-03-25 王志根 Full-angle high-luminance light-emitting lamp filament bulb and manufacturing method thereof
CN203743907U (en) * 2013-12-30 2014-07-30 兰溪市电光源有限公司 360-degree LED lamp integrating filament and bulb
CN104791639A (en) * 2014-01-22 2015-07-22 江苏宏力光电科技有限公司 3D light-emitting white light LED lamp strip
TWM485346U (en) * 2014-03-13 2014-09-01 Ten Gifts Technology Co Ltd Optoelectronic semiconductor lamp strip structure
CN103840071B (en) * 2014-03-21 2016-08-17 苏州东山精密制造股份有限公司 A kind of LED lamp bar manufacture method and LED lamp bar
CN203927477U (en) * 2014-04-29 2014-11-05 江苏华程光电科技有限公司 LED lamp bar and LED bulb lamp
CN203967112U (en) * 2014-05-21 2014-11-26 东莞市志基电子有限公司 LED Filament Structure
CN204088313U (en) * 2014-07-30 2015-01-07 哈尔滨鎏霞光电技术有限公司 A kind of strip omnidirectional luminous LED lamp silk
CN204042516U (en) * 2014-08-04 2014-12-24 上海博恩世通光电股份有限公司 A kind of LED lamp with metallic reflection cylinder
CN204026264U (en) * 2014-08-15 2014-12-17 杭州临安恒星照明电器有限公司 High thermally conductive LED 360 ° of light-emitting filament bulbs
CN204441280U (en) * 2014-08-15 2015-07-01 刘镇 Crystal covering type LED lamp
CN204204909U (en) * 2014-11-12 2015-03-11 山东晶泰星光电科技有限公司 A kind of LED silk of high heat radiation and LED big gun
CN204441284U (en) * 2015-03-03 2015-07-01 象山星旗电器科技有限公司 The LED of the rounded arrangement of simple and easy LED chip
CN104791627B (en) * 2015-04-21 2018-10-12 贵州光浦森光电有限公司 A kind of construction method and LED filament lamp of LED filament lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265681A (en) * 2003-02-28 2004-09-24 Koichi Matsui Direct illumination device
CN101738657A (en) * 2008-11-20 2010-06-16 日立麦克赛尔株式会社 Optical sheet, illuminating device and liquid crystal display device
TW201317515A (en) * 2011-10-17 2013-05-01 Lextar Electronics Corp Light guide column, light emitting structure and illumination device using the same
CN104716245A (en) * 2013-12-13 2015-06-17 晶元光电股份有限公司 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
CN110260182A (en) 2019-09-20
CN110260183A (en) 2019-09-20
CN106369367A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN104241512B (en) light emitting device
US10879440B2 (en) Light emitting device including light emitting unit arranged in a tube
JP6286026B2 (en) Light emitting diode components
JP5509307B2 (en) Light emitting diode package
TWI648869B (en) Illuminating device
JP2008514030A (en) High power small area III-nitride LED
JP4116960B2 (en) Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device
TWI680257B (en) Light-emitting device
KR102425317B1 (en) Optical lens, light emitting module and light unit having thereof
CN104900781B (en) Light emitting device
TWI688128B (en) Light emitting diode chip scale packaging structure and direct type backlight module
CN110260182B (en) light emitting device
JP2011114342A (en) Light emitting element package
CN116979009A (en) LED luminous device
KR20120030871A (en) Light emitting device package and lighting unit using the same
TW201705549A (en) Light-emitting device
TWI666406B (en) Light-emitting device
CN105845804B (en) Light emitting diode device and light emitting device using same
CN112823427A (en) Semiconductor light-emitting element
TWI673453B (en) Light emitting device
TWI673454B (en) Light emitting device
CN107946439A (en) A kind of LED encapsulation structure
CN102136540A (en) White light-emitting diode packaging structure capable of increasing luminous efficiency and manufacturing method thereof
KR20140090747A (en) Light emitting diode package and method of producing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant