[go: up one dir, main page]

CN110255626B - 基于气相沉积制备表面活性洋葱状碳纳米球的方法 - Google Patents

基于气相沉积制备表面活性洋葱状碳纳米球的方法 Download PDF

Info

Publication number
CN110255626B
CN110255626B CN201910607599.8A CN201910607599A CN110255626B CN 110255626 B CN110255626 B CN 110255626B CN 201910607599 A CN201910607599 A CN 201910607599A CN 110255626 B CN110255626 B CN 110255626B
Authority
CN
China
Prior art keywords
onion
carbon
vapor deposition
carbon nanospheres
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910607599.8A
Other languages
English (en)
Other versions
CN110255626A (zh
Inventor
秦蕾
刘伟峰
崔燕
刘旭光
杨永珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910607599.8A priority Critical patent/CN110255626B/zh
Publication of CN110255626A publication Critical patent/CN110255626A/zh
Priority to US16/798,827 priority patent/US11326251B2/en
Application granted granted Critical
Publication of CN110255626B publication Critical patent/CN110255626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于气相沉积制备表面活性洋葱状碳纳米球的方法,是以液态有机小分子烷烃正十二烷为碳源,在二茂铁催化剂存在的惰性载气环境中,650~700℃高温下进行化学气相沉积反应,直接制取由洋葱状石墨化壳层包覆四氧化三铁纳米颗粒构成的高表面活性的洋葱状碳纳米球。本发明制备的洋葱状碳纳米球产品具有良好的表面活性和热稳定性,实用性广,可以应用于吸附材料、储能材料、催化材料、医用材料等领域。

Description

基于气相沉积制备表面活性洋葱状碳纳米球的方法
技术领域
本发明属于纳米碳材料制备技术领域,涉及一种碳纳米球的制备方法,特别是涉及一种制备洋葱状碳纳米球的方法。
背景技术
洋葱状碳纳米球由于其独特的中空笼状结构、良好的密闭性、多层石墨包裹、比表面积大、导电率高、热稳定性好等优点,使其在电学、光学、磁学和力学方面展现出优异的性能。
化学气相沉积法工艺简单,可控性强,可以实现洋葱状碳纳米球的大量合成。其制备工艺一般是在一定的温度和压力下,将低分子烃类裂解成碳源,碳源逐步沉积在预先制备的催化剂上,在催化剂表面生成洋葱状碳纳米球。目前,不同碳源和催化剂仍是化学气相沉积法制备洋葱状碳纳米球的主要研究方向[Materials, 2018, 11: 822–857]。
现有研究多采用气态、固态或半固态碳源制备洋葱状碳纳米球。Wang等[Diamond& Related Materials, 2006, 15: 147–150]利用乙炔为碳源,二茂铁作为催化剂,采用化学气相沉积法合成了内包铁的洋葱状碳纳米球;He等[Materials Chemistry & Physics,2006, 97(1): 109−115]以甲烷为碳源,Ni作催化剂,Al为催化剂载体,通过化学气相沉积法合成出了中空和内包金属颗粒两种洋葱状碳纳米球;Zhang等[Carbon, 2011, 49(4):1151−1158]在850℃下以Ni-Fe催化剂催化甲烷分解,通过化学气相沉积法合成了内包铁和镍的洋葱状碳纳米球或中空的洋葱状碳纳米球;CN 101143385A在1000℃条件下,以脱油沥青为原料,金属镍粉为催化剂,通过化学气相沉积法获得了洋葱状内包金属镍碳微粒。
但是,通过上述方法制备的洋葱状碳纳米球表面往往较为惰性,缺乏活性含氧官能基团,在后续应用时还需要进一步活化改性。因此,开发一种化学气相沉积直接制取高表面活性洋葱状碳纳米球的方法具有很高的实用价值。
发明内容
本发明的目的是提供一种基于气相沉积制备表面活性洋葱状碳纳米球的方法,以改善现有化学气相沉积法制备洋葱状碳纳米球表面活性不高的问题。
本发明所述的基于气相沉积制备表面活性洋葱状碳纳米球的方法是以液态有机小分子烷烃正十二烷为碳源,在二茂铁催化剂存在的惰性载气环境中,650~700℃高温下进行化学气相沉积反应,直接制取由洋葱状石墨化壳层包覆四氧化三铁纳米颗粒构成的高表面活性的洋葱状碳纳米球。
其中,所述催化剂二茂铁的用量为碳源正十二烷质量的0.050~0.055倍,其作用是作为核促进洋葱状石墨壳层的包覆。
本发明优选将所述碳源和催化剂加入水中制成水分散液,水的用量为碳源体积的2~3倍,其作用是使碳源与催化剂充分分散,并为反应提供氧原子。
本发明所述化学气相沉积反应的反应时间优选为15~20min。
进一步地,本发明所述化学气相沉积反应过程中的惰性载气流量为5±1mL/min。
优选地,本发明所述表面活性洋葱状碳纳米球的制备过程中,所述惰性载气的流量需要随温度的变化适时调节。具体地,本发明控制所述惰性载气的流量在升温阶段不大于3mL/min,升温至反应温度后,再调节惰性载气的流量至5±1mL/min进行化学气相沉积反应。
本发明制备的洋葱状碳纳米球为粒径均一的黑色粉体颗粒,平均粒径约30nm,其内部包有20nm左右的Fe3O4纳米金属核,外层为洋葱状的石墨化壳层结构,且热稳定性较好。
由于所制备的洋葱状碳纳米球表面具有丰富的羟基、羰基等活性含氧官能团,具有一定的表面活性。
本发明采用液态有机小分子正十二烷为碳源,二茂铁为催化剂,水为分散液,通过化学气相沉积法直接制取表面活性洋葱状碳纳米球,不仅制备方法简单,成本低廉,而且所制备产物的纯度高,具有清晰的洋葱状石墨化壳层,拥有良好的表面活性和热稳定性,实用性广,可以应用于吸附材料、储能材料、催化材料、医用材料等领域。
附图说明
图1是本发明制备表面活性洋葱状碳纳米球的场发射扫描电镜形貌图。
图2是本发明制备表面活性洋葱状碳纳米球的透射电镜形貌图。
图3是本发明制备表面活性洋葱状碳纳米球的X射线衍射强度图。
图4是本发明制备表面活性洋葱状碳纳米球的红外光谱图。
图5是本发明制备表面活性洋葱状碳纳米球的热失重曲线图。
图6是比较例1制备产物的场发射扫描电镜形貌图。
图7是比较例2制备产物的透射电镜形貌图。
具体实施方式
下述实施例仅为本发明的优选技术方案,并不用于对本发明进行任何限制。对于本领域技术人员而言,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1。
量取2.5mL(1.9g)正十二烷,称取0.1g二茂铁,一起置于5mL去离子水中,超声混合均匀,放入石英舟内。将石英舟放置在卧式电阻炉内,并在炉管内的尾部位置放置载玻片以收集产物。
以氩气为载气,调节载气流量至30mL/min以排尽炉管内空气并开始加热;以10℃/min的升温速率从室温升温至100℃时,将载气流量调小至3mL/min;以同样的升温速率继续升温至700℃,调节载气流量至5mL/min,反应20min,使汽化的正十二烷在高温反应区充分碳化反应,沉积在炉管内预先放置的载玻片上。
反应结束后,将载气流量调至10mL/min,自然冷却至室温后取出载玻片,刮取收集载玻片上的黑色沉积物,制备得到纯净的表面活性洋葱状碳纳米球。
图1给出了所制备表面活性洋葱状碳纳米球的场发射扫描电镜形貌图。可以看出,表面活性洋葱状碳纳米球呈现球形或类球形形状,形貌均一,粒径分布范围较窄,平均粒径约为30nm。
图2为表面活性洋葱状碳纳米球的透射电镜形貌图,其中a)为单个洋葱状碳纳米球的透射电镜图像,b)是a)的碳层局部放大图。由图可知,洋葱状碳纳米球为30nm左右的内包金属纳米碳球,内部金属核大小约为20nm,外包碳层厚度约为5nm,并可从b)中进一步观测到碳层上具有明显的十几个间距相等的洋葱状石墨化壳层,测量间距约为0.342nm,与石墨的0.336nm层间距接近,证明产物的石墨化程度较好。
图3为表面活性洋葱状碳纳米球的X射线衍射强度图。图中,在10°至30°范围内存在一个较宽的衍射峰,并在26.2°附近有一最强峰,对应于碳(002)晶面,表明石墨层的形成。在30.2°、35.3°、43.2°、53.5°、57.1°和62.9°处出现了较强的衍射峰,分别归属于Fe3O4的(220)、(311)、(400)、(422)、(511)、(440)晶面。另外,在45°和65°处存在Fe3C的特征峰,在35°至50°之间出现了Fe的特征峰,表明在高温条件下,碳与Fe3O4之间可能发生了碳热还原反应,碳可将Fe3O4还原为单质铁。同时,单质铁在高温下对碳的石墨化程度也起到了一定的促进作用。
图4为表面活性洋葱状碳纳米球的红外光谱图。3435,1631和1098cm-1处的吸收峰分别表明含氧官能团–OH,C=O和C-O的存在,表明采用正十二烷作为碳源制备的洋葱状碳纳米球表面具有一定量的活性含氧官能基团。
图5是在氮气气氛下测得的表面活性洋葱状碳纳米球热失重曲线图。图中显示,随着温度升高,150℃之前产品12%的失重主要来自于样品中水分的去除。随后,从150℃至600℃温度范围内几乎没有失重,表明洋葱状碳纳米球具有较好的热稳定性。随着温度的进一步升高,到900℃时,洋葱状碳纳米球的总失重量约为55%,是由于随着温度的持续上升,材料外层碳层进一步碳化,表面活性官能团损失,碳铁化合物生成,以及Fe的催化作用造成碳层破坏,因此表面活性洋葱状碳纳米球在800℃以上高温热处理后,质量迅速下降。
实施例2。
量取1.5mL(1.1g)正十二烷,称取0.1g二茂铁,一起置于5mL去离子水中,超声混合均匀,放入石英舟内。将石英舟放置在卧式电阻炉内,并在炉管内的尾部位置放置载玻片以收集产物。
按照实施例1条件进行碳化反应,制备得到粒径约为30nm的表面活性洋葱状碳纳米球。
实施例3。
量取2.5mL(1.9g)正十二烷,称取0.1g二茂铁,一起置于10mL去离子水中,超声混合均匀,放入石英舟内。将石英舟放置在卧式电阻炉内,并在炉管内的尾部位置放置载玻片以收集产物。
按照实施例1条件进行碳化反应,制备得到粒径约为30nm的表面活性洋葱状碳纳米球。
比较例1。
量取3.5mL(2.6g)正十二烷,称取0.1g二茂铁,一起置于5mL去离子水中,超声混合均匀,放入石英舟内。将石英舟放置在卧式电阻炉内,并在炉管内的尾部位置放置载玻片以收集产物,按照实施例1条件进行碳化反应。
图6给出了所制备产物的场发射扫描电镜形貌图。从图6可以看出,当碳源正十二烷用量过高时,产物碳球团聚严重,不能得到颗粒状球形产品。
比较例2。
量取2.5mL(1.9g)正十二烷,称取0.1g二茂铁,一起置于5mL去离子水中,超声混合均匀,放入石英舟内。将石英舟放置在卧式电阻炉内,并在炉管内的尾部位置放置载玻片以收集产物。
以氩气为载气,调节载气流量至30mL/min以排尽炉管内空气并开始加热;以10℃/min的升温速率从室温升温至100℃时,将载气流量调小至3mL/min;以同样的升温速率继续升温至600℃,调节载气流量至5mL/min,反应20min,使汽化的正十二烷在高温反应区充分碳化反应,沉积在炉管内预先放置的载玻片上。
反应结束后,将载气流量调至10mL/min,自然冷却至室温后取出载玻片,刮取收集载玻片上的黑色沉积物。
根据图7给出的所制备产物的透射电镜形貌图可以看出,碳化温度降低时,未能使碳源有效碳化并附着在催化剂Fe3O4金属核上,未得到洋葱状结构的碳纳米球产品。
比较例3。
其他条件全部与实施例1相同,只是升温至700℃后仅反应10min,收集所得产物。
由于反应时间过短,未能使碳源有效碳化并附着在催化剂Fe3O4金属核上,产品的透射电镜图与图7相似,仅获得Fe3O4金属颗粒,未得到具有洋葱状结构的碳纳米球产品。
比较例4。
其他条件全部与实施例1相同,只是升温至700℃后将反应时间延长至30min,收集所得产物。
由于反应时间延长和载气吹扫,在表面张力和扩散力作用下,催化剂粒子被托起,推动热碳层沿长度方向生长,同时热解碳持续沉积,最终得到了多壁碳纳米管。

Claims (3)

1.一种基于气相沉积制备表面活性洋葱状碳纳米球的方法,是以液态有机小分子烷烃正十二烷为碳源,二茂铁为催化剂,按照催化剂二茂铁的用量为碳源正十二烷质量的0.050~0.055倍,将所述碳源和催化剂加入水中制成水分散液,在惰性载气环境中,650~700℃高温下化学气相沉积反应15~20min,控制所述惰性载气流量在升温阶段不大于3mL/min,升温至反应温度后,调节惰性载气流量至5±1mL/min,直接制取由洋葱状石墨化壳层包覆四氧化三铁纳米颗粒构成的高表面活性的洋葱状碳纳米球。
2.根据权利要求1所述的方法,其特征是所述水的用量为碳源体积的2~3倍。
3.权利要求1或2所述方法制备得到的表面活性洋葱状碳纳米球,所述碳纳米球内部包有Fe3O4纳米金属核,外层为洋葱状石墨化壳层结构,平均粒径30nm。
CN201910607599.8A 2019-07-08 2019-07-08 基于气相沉积制备表面活性洋葱状碳纳米球的方法 Active CN110255626B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910607599.8A CN110255626B (zh) 2019-07-08 2019-07-08 基于气相沉积制备表面活性洋葱状碳纳米球的方法
US16/798,827 US11326251B2 (en) 2019-07-08 2020-02-24 Method for preparing surface-active onion-like carbon nanospheres based on vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910607599.8A CN110255626B (zh) 2019-07-08 2019-07-08 基于气相沉积制备表面活性洋葱状碳纳米球的方法

Publications (2)

Publication Number Publication Date
CN110255626A CN110255626A (zh) 2019-09-20
CN110255626B true CN110255626B (zh) 2020-03-03

Family

ID=67924817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910607599.8A Active CN110255626B (zh) 2019-07-08 2019-07-08 基于气相沉积制备表面活性洋葱状碳纳米球的方法

Country Status (2)

Country Link
US (1) US11326251B2 (zh)
CN (1) CN110255626B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112758915B (zh) * 2020-12-30 2022-11-22 温州大学 一种高石墨化且富含介孔的纳米碳洋葱的制备方法
CN113086969A (zh) * 2021-04-02 2021-07-09 南昌大学 一种高质量碳纳米珍珠链结构及其大规模制备方法
CN114471459B (zh) * 2021-12-28 2023-05-09 厦门理工学院 石墨烯负载核壳结构Fe3O4纳米粒子复合材料及其制备方法和应用
CN114381622A (zh) * 2021-12-31 2022-04-22 西安斯瑞先进铜合金科技有限公司 一种真空感应熔炼高强高弹耐磨CuNiSn合金材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266307C (zh) * 2004-08-25 2006-07-26 太原理工大学 化学气相沉积法制备洋葱状富勒烯的方法
CN1318294C (zh) * 2005-05-10 2007-05-30 太原理工大学 制备内包金属颗粒洋葱状富勒烯的催化热解法
CN100571933C (zh) 2007-10-24 2009-12-23 太原理工大学 一种用脱油沥青制备洋葱状内包金属镍碳微粒的方法
SA111320374B1 (ar) * 2010-04-14 2015-08-10 بيكر هوغيس انكوبوريتد طريقة تشكيل الماسة متعدد البلورات من الماس المستخرج بحجم النانو
US8648019B2 (en) * 2011-09-28 2014-02-11 Uchicago Argonne, Llc Materials as additives for advanced lubrication
RU2562278C2 (ru) * 2013-09-25 2015-09-10 МЦД Текнолоджис частная компания с ограниченной ответственностью Способ получения наноструктурированного углеродного материала на основе технического углерода
CN104505498A (zh) * 2014-12-12 2015-04-08 天津大学 一种三氧化二铁/碳纳米管锂离子电池负极材料的制备方法

Also Published As

Publication number Publication date
US20210010132A1 (en) 2021-01-14
CN110255626A (zh) 2019-09-20
US11326251B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110255626B (zh) 基于气相沉积制备表面活性洋葱状碳纳米球的方法
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Prasek et al. Methods for carbon nanotubes synthesis
Mostofizadeh et al. Synthesis, properties, and applications of low‐dimensional carbon‐related nanomaterials
Das et al. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts
Awasthi et al. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials
Delpeux et al. High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in situ formed cobalt nanoparticles
Ping et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
Sunny et al. Synthesis and properties of highly stable nickel/carbon core/shell nanostructures
Wang et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin
Liu et al. Structure-performance relationship of nanodiamonds@ nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene
KR20120051019A (ko) 2-층 촉매, 이의 제조 방법 및 나노튜브의 제조를 위한 용도
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
CN109665512A (zh) 一种多壁碳纳米管的制备方法
Lv et al. Formation of carbon nanofibers/nanotubes by chemical vapor deposition using Al2O3/KOH
CN110479310A (zh) 用于选择性合成碳纳米管的负载型硫化钴催化剂的制备及应用
CN100560823C (zh) 一种用固态碳源制备纳米碳纤维的方法
CN101856614B (zh) 以Ni-Fe合金为催化剂化学气相沉积法制备碳纳米洋葱的方法
Donato et al. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes
Bhagabati et al. Synthesis/preparation of carbon materials
Zhang et al. In-situ preparation of carbon nanotubes on CuO nanowire via chemical vapor deposition and their growth mechanism investigation
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
CN102745665A (zh) 一种制备螺旋结构碳纳米管的方法
Butenko et al. Carbon onions
Rajesh et al. Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant