CN110248650A - Method for enhancing cynapse generation and neural process generation - Google Patents
Method for enhancing cynapse generation and neural process generation Download PDFInfo
- Publication number
- CN110248650A CN110248650A CN201780078374.7A CN201780078374A CN110248650A CN 110248650 A CN110248650 A CN 110248650A CN 201780078374 A CN201780078374 A CN 201780078374A CN 110248650 A CN110248650 A CN 110248650A
- Authority
- CN
- China
- Prior art keywords
- dspbn
- pharmaceutically acceptable
- blast
- acceptable salt
- nac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 186
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 15
- 230000004751 neurological system process Effects 0.000 title claims abstract 4
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 claims abstract description 205
- 150000003839 salts Chemical class 0.000 claims abstract description 196
- 238000009825 accumulation Methods 0.000 claims abstract description 50
- 210000003477 cochlea Anatomy 0.000 claims abstract description 46
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 26
- 201000010099 disease Diseases 0.000 claims abstract description 21
- 230000001720 vestibular Effects 0.000 claims abstract description 16
- 208000015114 central nervous system disease Diseases 0.000 claims abstract description 6
- 230000001684 chronic effect Effects 0.000 claims description 72
- 208000016354 hearing loss disease Diseases 0.000 claims description 70
- 210000000067 inner hair cell Anatomy 0.000 claims description 64
- 206010011878 Deafness Diseases 0.000 claims description 47
- 230000010370 hearing loss Effects 0.000 claims description 47
- 231100000888 hearing loss Toxicity 0.000 claims description 47
- 230000000694 effects Effects 0.000 claims description 32
- 230000006378 damage Effects 0.000 claims description 26
- 238000004880 explosion Methods 0.000 claims description 25
- 230000007470 synaptic degeneration Effects 0.000 claims description 21
- 208000009205 Tinnitus Diseases 0.000 claims description 20
- 208000015181 infectious disease Diseases 0.000 claims description 20
- 231100000886 tinnitus Toxicity 0.000 claims description 20
- 239000003053 toxin Substances 0.000 claims description 20
- 231100000765 toxin Toxicity 0.000 claims description 20
- 206010036626 Presbyacusis Diseases 0.000 claims description 14
- 208000009800 presbycusis Diseases 0.000 claims description 14
- 230000008929 regeneration Effects 0.000 claims description 14
- 238000011069 regeneration method Methods 0.000 claims description 14
- 206010011903 Deafness traumatic Diseases 0.000 claims description 10
- 206010020559 Hyperacusis Diseases 0.000 claims description 10
- 208000002946 Noise-Induced Hearing Loss Diseases 0.000 claims description 10
- 210000002985 organ of corti Anatomy 0.000 claims description 10
- 230000032683 aging Effects 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- WZXBYDBYBIGAQN-UWVGGRQHSA-N (2s)-2-amino-5-[[(2r)-1-(carboxymethylamino)-3-(diethylcarbamoylsulfanyl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CCN(CC)C(=O)SC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O WZXBYDBYBIGAQN-UWVGGRQHSA-N 0.000 claims description 6
- JKRODHBGNBKZLE-YUMQZZPRSA-N (2s)-2-amino-5-[[(2r)-1-[(2-ethoxy-2-oxoethyl)amino]-1-oxo-3-sulfanylpropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CCOC(=O)CNC(=O)[C@H](CS)NC(=O)CC[C@H](N)C(O)=O JKRODHBGNBKZLE-YUMQZZPRSA-N 0.000 claims description 6
- DYEFUKCXAQOFHX-UHFFFAOYSA-N Ebselen Chemical compound [se]1C2=CC=CC=C2C(=O)N1C1=CC=CC=C1 DYEFUKCXAQOFHX-UHFFFAOYSA-N 0.000 claims description 6
- RDHQFKQIGNGIED-MRVPVSSYSA-N O-acetyl-L-carnitine Chemical compound CC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C RDHQFKQIGNGIED-MRVPVSSYSA-N 0.000 claims description 6
- 108700024319 S-ethyl glutathione Proteins 0.000 claims description 6
- 108700006011 carbamathione Proteins 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 210000003030 auditory receptor cell Anatomy 0.000 claims description 5
- 210000004307 hair cells vestibular Anatomy 0.000 claims description 5
- 210000005036 nerve Anatomy 0.000 claims description 5
- 230000000626 neurodegenerative effect Effects 0.000 claims description 4
- FFEARJCKVFRZRR-SCSAIBSYSA-N D-methionine Chemical compound CSCC[C@@H](N)C(O)=O FFEARJCKVFRZRR-SCSAIBSYSA-N 0.000 claims description 2
- 229950010033 ebselen Drugs 0.000 claims description 2
- 230000000699 topical effect Effects 0.000 claims description 2
- SFVLTCAESLKEHH-WKAQUBQDSA-N (2s)-6-amino-2-[[(2s)-2-[[(2r)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxy-2,6-dimethylphenyl)propanoyl]amino]-n-[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]hexanamide Chemical compound CC1=CC(O)=CC(C)=C1C[C@H](NC(=O)[C@H](N)CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 SFVLTCAESLKEHH-WKAQUBQDSA-N 0.000 claims 1
- 231100000614 poison Toxicity 0.000 claims 1
- 239000002574 poison Substances 0.000 claims 1
- 210000003273 vestibular nerve Anatomy 0.000 claims 1
- 230000004770 neurodegeneration Effects 0.000 abstract description 50
- 230000002776 aggregation Effects 0.000 abstract description 6
- 238000004220 aggregation Methods 0.000 abstract description 6
- 229960004308 acetylcysteine Drugs 0.000 description 201
- XLZOVRYBVCMCGL-BPNVQINPSA-L disodium;4-[(z)-[tert-butyl(oxido)azaniumylidene]methyl]benzene-1,3-disulfonate Chemical compound [Na+].[Na+].CC(C)(C)[N+](\[O-])=C\C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O XLZOVRYBVCMCGL-BPNVQINPSA-L 0.000 description 145
- 102000013498 tau Proteins Human genes 0.000 description 139
- 108010026424 tau Proteins Proteins 0.000 description 139
- 238000011282 treatment Methods 0.000 description 121
- 210000002569 neuron Anatomy 0.000 description 104
- 241001465754 Metazoa Species 0.000 description 100
- 241000700159 Rattus Species 0.000 description 93
- 210000001323 spiral ganglion Anatomy 0.000 description 74
- 210000002241 neurite Anatomy 0.000 description 70
- 239000003963 antioxidant agent Substances 0.000 description 59
- 230000001225 therapeutic effect Effects 0.000 description 57
- 230000001575 pathological effect Effects 0.000 description 52
- 230000035508 accumulation Effects 0.000 description 48
- 230000003078 antioxidant effect Effects 0.000 description 46
- 210000000225 synapse Anatomy 0.000 description 45
- 230000014511 neuron projection development Effects 0.000 description 42
- 210000003169 central nervous system Anatomy 0.000 description 40
- 208000014674 injury Diseases 0.000 description 39
- 230000008901 benefit Effects 0.000 description 37
- 230000004044 response Effects 0.000 description 37
- 210000004126 nerve fiber Anatomy 0.000 description 30
- 210000003926 auditory cortex Anatomy 0.000 description 29
- 210000004027 cell Anatomy 0.000 description 28
- 230000002829 reductive effect Effects 0.000 description 28
- 238000005422 blasting Methods 0.000 description 27
- 208000027418 Wounds and injury Diseases 0.000 description 26
- 230000000750 progressive effect Effects 0.000 description 26
- 238000010186 staining Methods 0.000 description 26
- 230000000392 somatic effect Effects 0.000 description 25
- 210000001519 tissue Anatomy 0.000 description 25
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 24
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 24
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 24
- 210000002768 hair cell Anatomy 0.000 description 24
- 208000012005 synaptopathy Diseases 0.000 description 24
- 238000012744 immunostaining Methods 0.000 description 23
- 230000036542 oxidative stress Effects 0.000 description 22
- 108010025020 Nerve Growth Factor Proteins 0.000 description 20
- 210000003552 inferior colliculi Anatomy 0.000 description 20
- 102000015336 Nerve Growth Factor Human genes 0.000 description 19
- 229940053128 nerve growth factor Drugs 0.000 description 19
- 230000001154 acute effect Effects 0.000 description 18
- 230000014509 gene expression Effects 0.000 description 18
- 230000001537 neural effect Effects 0.000 description 18
- 201000011240 Frontotemporal dementia Diseases 0.000 description 17
- 102100030651 Glutamate receptor 2 Human genes 0.000 description 17
- 101710087631 Glutamate receptor 2 Proteins 0.000 description 17
- 230000002093 peripheral effect Effects 0.000 description 17
- 238000005070 sampling Methods 0.000 description 17
- 210000004556 brain Anatomy 0.000 description 16
- 208000017004 dementia pugilistica Diseases 0.000 description 16
- 102100033647 Activity-regulated cytoskeleton-associated protein Human genes 0.000 description 15
- 101710177131 Activity-regulated cytoskeleton-associated protein Proteins 0.000 description 15
- 208000024827 Alzheimer disease Diseases 0.000 description 15
- 210000000133 brain stem Anatomy 0.000 description 15
- JYIYPKOJFKMEKS-UHFFFAOYSA-N n-(2,2-dimethyl-1-phenylpropylidene)hydroxylamine Chemical compound CC(C)(C)C(=NO)C1=CC=CC=C1 JYIYPKOJFKMEKS-UHFFFAOYSA-N 0.000 description 15
- 230000000946 synaptic effect Effects 0.000 description 15
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 14
- VLSMHEGGTFMBBZ-UHFFFAOYSA-N alpha-Kainic acid Natural products CC(=C)C1CNC(C(O)=O)C1CC(O)=O VLSMHEGGTFMBBZ-UHFFFAOYSA-N 0.000 description 14
- VLSMHEGGTFMBBZ-OOZYFLPDSA-N kainic acid Chemical compound CC(=C)[C@H]1CN[C@H](C(O)=O)[C@H]1CC(O)=O VLSMHEGGTFMBBZ-OOZYFLPDSA-N 0.000 description 14
- 229950006874 kainic acid Drugs 0.000 description 14
- 102100021411 C-terminal-binding protein 2 Human genes 0.000 description 13
- 101710178053 C-terminal-binding protein 2 Proteins 0.000 description 13
- 206010012289 Dementia Diseases 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 230000003492 excitotoxic effect Effects 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 201000001119 neuropathy Diseases 0.000 description 12
- 230000007823 neuropathy Effects 0.000 description 12
- 230000008733 trauma Effects 0.000 description 12
- 102100023206 Neuromodulin Human genes 0.000 description 11
- 101710144282 Neuromodulin Proteins 0.000 description 11
- 102000003566 TRPV1 Human genes 0.000 description 11
- 101150016206 Trpv1 gene Proteins 0.000 description 11
- 230000003376 axonal effect Effects 0.000 description 11
- 230000037396 body weight Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 230000006951 hyperphosphorylation Effects 0.000 description 11
- 210000005044 neurofilament Anatomy 0.000 description 11
- 208000033808 peripheral neuropathy Diseases 0.000 description 11
- 208000004051 Chronic Traumatic Encephalopathy Diseases 0.000 description 10
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 230000004064 dysfunction Effects 0.000 description 10
- 231100000318 excitotoxic Toxicity 0.000 description 10
- 238000006384 oligomerization reaction Methods 0.000 description 10
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 9
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 9
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 9
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 9
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 9
- 208000009093 Diffuse Neurofibrillary Tangles with Calcification Diseases 0.000 description 9
- 201000010374 Down Syndrome Diseases 0.000 description 9
- 208000001089 Multiple system atrophy Diseases 0.000 description 9
- 206010068871 Myotonic dystrophy Diseases 0.000 description 9
- 102000008763 Neurofilament Proteins Human genes 0.000 description 9
- 108010088373 Neurofilament Proteins Proteins 0.000 description 9
- 108090000742 Neurotrophin 3 Proteins 0.000 description 9
- 102100029268 Neurotrophin-3 Human genes 0.000 description 9
- 208000018737 Parkinson disease Diseases 0.000 description 9
- 208000007930 Type C Niemann-Pick Disease Diseases 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 238000002372 labelling Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 231100000189 neurotoxic Toxicity 0.000 description 9
- 230000002887 neurotoxic effect Effects 0.000 description 9
- 230000002085 persistent effect Effects 0.000 description 9
- 208000012639 Balance disease Diseases 0.000 description 8
- CFHBWCDGXBGNDJ-UHFFFAOYSA-N N-(5-phenylpentylidene)hydroxylamine Chemical compound ON=CCCCCc1ccccc1 CFHBWCDGXBGNDJ-UHFFFAOYSA-N 0.000 description 8
- 208000010577 Niemann-Pick disease type C Diseases 0.000 description 8
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 8
- 239000000090 biomarker Substances 0.000 description 8
- 210000003952 cochlear nucleus Anatomy 0.000 description 8
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 8
- 230000030214 innervation Effects 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 8
- 230000001991 pathophysiological effect Effects 0.000 description 8
- 230000003518 presynaptic effect Effects 0.000 description 8
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 8
- 238000011002 quantification Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 210000001082 somatic cell Anatomy 0.000 description 8
- 102000027484 GABAA receptors Human genes 0.000 description 7
- 108091008681 GABAA receptors Proteins 0.000 description 7
- 102100030669 Glutamate receptor 3 Human genes 0.000 description 7
- 101710087630 Glutamate receptor 3 Proteins 0.000 description 7
- 102000001708 Protein Isoforms Human genes 0.000 description 7
- 108010029485 Protein Isoforms Proteins 0.000 description 7
- 210000005056 cell body Anatomy 0.000 description 7
- 230000006727 cell loss Effects 0.000 description 7
- 238000003501 co-culture Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- -1 nitrone compound Chemical class 0.000 description 7
- 230000026731 phosphorylation Effects 0.000 description 7
- 238000006366 phosphorylation reaction Methods 0.000 description 7
- 230000001242 postsynaptic effect Effects 0.000 description 7
- 230000002739 subcortical effect Effects 0.000 description 7
- 230000001052 transient effect Effects 0.000 description 7
- 208000013883 Blast injury Diseases 0.000 description 6
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 description 6
- 102000029749 Microtubule Human genes 0.000 description 6
- 108091022875 Microtubule Proteins 0.000 description 6
- 102000029797 Prion Human genes 0.000 description 6
- 108091000054 Prion Proteins 0.000 description 6
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 6
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 6
- 102100029613 Transient receptor potential cation channel subfamily V member 1 Human genes 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 210000003027 ear inner Anatomy 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000002401 inhibitory effect Effects 0.000 description 6
- 210000004688 microtubule Anatomy 0.000 description 6
- 230000007832 reinnervation Effects 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 229950003937 tolonium Drugs 0.000 description 6
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 6
- 241000283707 Capra Species 0.000 description 5
- 102000018899 Glutamate Receptors Human genes 0.000 description 5
- 108010027915 Glutamate Receptors Proteins 0.000 description 5
- 208000027530 Meniere disease Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 210000000860 cochlear nerve Anatomy 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000001272 neurogenic effect Effects 0.000 description 5
- 239000000902 placebo Substances 0.000 description 5
- 229940068196 placebo Drugs 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 4
- 101150014889 Gad1 gene Proteins 0.000 description 4
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 4
- 206010056677 Nerve degeneration Diseases 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 229940122777 Tau aggregation inhibitor Drugs 0.000 description 4
- 108050004388 Transient receptor potential cation channel subfamily V member 1 Proteins 0.000 description 4
- 102000004243 Tubulin Human genes 0.000 description 4
- 108090000704 Tubulin Proteins 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 210000003984 auditory pathway Anatomy 0.000 description 4
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical class COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 4
- 230000001687 destabilization Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000001057 ionotropic effect Effects 0.000 description 4
- 230000007265 neurogenic response Effects 0.000 description 4
- 239000002858 neurotransmitter agent Substances 0.000 description 4
- 230000007170 pathology Effects 0.000 description 4
- 210000003538 post-synaptic density Anatomy 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000003938 response to stress Effects 0.000 description 4
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000003949 synaptic integrity Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 239000012103 Alexa Fluor 488 Substances 0.000 description 3
- 206010011891 Deafness neurosensory Diseases 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 206010029350 Neurotoxicity Diseases 0.000 description 3
- 206010034010 Parkinsonism Diseases 0.000 description 3
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 3
- 208000034799 Tauopathies Diseases 0.000 description 3
- 206010044221 Toxic encephalopathy Diseases 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 239000013504 Triton X-100 Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 210000003050 axon Anatomy 0.000 description 3
- 208000036815 beta tubulin Diseases 0.000 description 3
- 238000011284 combination treatment Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000003436 cytoskeletal effect Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000008482 dysregulation Effects 0.000 description 3
- 231100000063 excitotoxicity Toxicity 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 239000000834 fixative Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 210000004295 hippocampal neuron Anatomy 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 238000002991 immunohistochemical analysis Methods 0.000 description 3
- 238000011532 immunohistochemical staining Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002981 neuropathic effect Effects 0.000 description 3
- 231100000228 neurotoxicity Toxicity 0.000 description 3
- 230000007135 neurotoxicity Effects 0.000 description 3
- 208000000170 postencephalitic Parkinson disease Diseases 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000001850 reproductive effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 231100000879 sensorineural hearing loss Toxicity 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 230000005062 synaptic transmission Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009529 traumatic brain injury Effects 0.000 description 3
- 238000007492 two-way ANOVA Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 2
- MVXGRGHKKZELSA-UHFFFAOYSA-N 5-hydroxyimino-4-phenylpentan-1-ol Chemical compound OCCCC(C=NO)c1ccccc1 MVXGRGHKKZELSA-UHFFFAOYSA-N 0.000 description 2
- 239000012109 Alexa Fluor 568 Substances 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- RHDBABHIOFEKTO-UHFFFAOYSA-N CC(C)(C)C(=NO)C1C=CC=CC1=S(=O)=O Chemical compound CC(C)(C)C(=NO)C1C=CC=CC1=S(=O)=O RHDBABHIOFEKTO-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- 102100035784 Decorin Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 102000004086 Ligand-Gated Ion Channels Human genes 0.000 description 2
- 108090000543 Ligand-Gated Ion Channels Proteins 0.000 description 2
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 2
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 2
- 101710115937 Microtubule-associated protein tau Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 102000007982 Phosphoproteins Human genes 0.000 description 2
- 108010089430 Phosphoproteins Proteins 0.000 description 2
- 208000036757 Postencephalitic parkinsonism Diseases 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108010062740 TRPV Cation Channels Proteins 0.000 description 2
- 206010044688 Trisomy 21 Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 210000003766 afferent neuron Anatomy 0.000 description 2
- 230000037444 atrophy Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 235000017663 capsaicin Nutrition 0.000 description 2
- 229960002504 capsaicin Drugs 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- XLZOVRYBVCMCGL-UHFFFAOYSA-L disodium;4-[[tert-butyl(oxido)azaniumylidene]methyl]benzene-1,3-disulfonate Chemical compound [Na+].[Na+].CC(C)(C)[N+]([O-])=CC1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O XLZOVRYBVCMCGL-UHFFFAOYSA-L 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 239000006274 endogenous ligand Substances 0.000 description 2
- 230000002922 epistatic effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000000020 growth cone Anatomy 0.000 description 2
- 230000000971 hippocampal effect Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical class ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000003961 neuronal insult Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000036285 pathological change Effects 0.000 description 2
- 231100000915 pathological change Toxicity 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 108010092804 postsynaptic density proteins Proteins 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000003976 synaptic dysfunction Effects 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 description 1
- IVTMXOXVAHXCHI-YXLMWLKOSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid;(2s)-3-(3,4-dihydroxyphenyl)-2-hydrazinyl-2-methylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1.NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 IVTMXOXVAHXCHI-YXLMWLKOSA-N 0.000 description 1
- QXWYKJLNLSIPIN-YUMQZZPRSA-N (2s,3s)-2-azaniumyl-3-(3,4-dihydroxyphenyl)-3-hydroxypropanoate Chemical compound [O-]C(=O)[C@@H]([NH3+])[C@@H](O)C1=CC=C(O)C(O)=C1 QXWYKJLNLSIPIN-YUMQZZPRSA-N 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- FXNFHKRTJBSTCS-UHFFFAOYSA-N Baicalein Natural products C=1C(=O)C=2C(O)=C(O)C(O)=CC=2OC=1C1=CC=CC=C1 FXNFHKRTJBSTCS-UHFFFAOYSA-N 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 238000006418 Brown reaction Methods 0.000 description 1
- 241000700114 Chinchillidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 102000004405 Collectins Human genes 0.000 description 1
- 108090000909 Collectins Proteins 0.000 description 1
- 229930182818 D-methionine Natural products 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 206010012305 Demyelination Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 108700019745 Disks Large Homolog 4 Proteins 0.000 description 1
- 102000047174 Disks Large Homolog 4 Human genes 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 206010063602 Exposure to noise Diseases 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 208000003098 Ganglion Cysts Diseases 0.000 description 1
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 1
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000979333 Homo sapiens Neurofilament light polypeptide Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108091077621 MAPRE family Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 102000026889 Myosin VIIa Human genes 0.000 description 1
- 108010009047 Myosin VIIa Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 102100023057 Neurofilament light polypeptide Human genes 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010033109 Ototoxicity Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102000015499 Presenilins Human genes 0.000 description 1
- 108010050254 Presenilins Proteins 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 1
- 208000005400 Synovial Cyst Diseases 0.000 description 1
- 206010045210 Tympanic Membrane Perforation Diseases 0.000 description 1
- 241000669244 Unaspis euonymi Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 208000021825 aldosterone-producing adrenal cortex adenoma Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- UDFLTIRFTXWNJO-UHFFFAOYSA-N baicalein Chemical compound O1C2=CC(=O)C(O)=C(O)C2=C(O)C=C1C1=CC=CC=C1 UDFLTIRFTXWNJO-UHFFFAOYSA-N 0.000 description 1
- 229940015301 baicalein Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000010336 brain pathway Effects 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011257 definitive treatment Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960001104 droxidopa Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 150000002306 glutamic acid derivatives Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000011554 guinea pig model Methods 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- OXLZNBCNGJWPRV-UHFFFAOYSA-N hexoprenaline Chemical compound C=1C=C(O)C(O)=CC=1C(O)CNCCCCCCNCC(O)C1=CC=C(O)C(O)=C1 OXLZNBCNGJWPRV-UHFFFAOYSA-N 0.000 description 1
- 229960000708 hexoprenaline Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- UHSXRTHJCJGEKG-UHFFFAOYSA-N hydron;1-[(3,4,5-trimethoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol;chloride Chemical compound Cl.COC1=C(OC)C(OC)=CC(CC2C3=CC(O)=C(O)C=C3CCN2)=C1 UHSXRTHJCJGEKG-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000002085 irritant Chemical class 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 229940039009 isoproterenol Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000010234 longitudinal analysis Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000003562 morphometric effect Effects 0.000 description 1
- 238000013425 morphometry Methods 0.000 description 1
- IYSYLWYGCWTJSG-UHFFFAOYSA-N n-tert-butyl-1-phenylmethanimine oxide Chemical compound CC(C)(C)[N+]([O-])=CC1=CC=CC=C1 IYSYLWYGCWTJSG-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000008904 neural response Effects 0.000 description 1
- 230000004766 neurogenesis Effects 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 230000000508 neurotrophic effect Effects 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- VPOVFCBNUOUZGG-VAKDEWRISA-N oleocanthal Chemical compound C\C=C(\C=O)[C@@H](CC=O)CC(=O)OCCC1=CC=C(O)C=C1 VPOVFCBNUOUZGG-VAKDEWRISA-N 0.000 description 1
- 235000008531 oleocanthal Nutrition 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 231100000262 ototoxicity Toxicity 0.000 description 1
- 230000008789 oxidative DNA damage Effects 0.000 description 1
- 208000002593 pantothenate kinase-associated neurodegeneration Diseases 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007331 pathological accumulation Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007101 progressive neurodegeneration Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004845 protein aggregation Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000010255 response to auditory stimulus Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000002205 spiral ligament of cochlea Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 210000000645 stria vascularis Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 108010045815 superoxide dismutase 2 Proteins 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000003977 synaptic function Effects 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 210000003582 temporal bone Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000011816 wild-type C57Bl6 mouse Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/10—Peptides having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/15—Oximes (>C=N—O—); Hydrazines (>N—N<); Hydrazones (>N—N=) ; Imines (C—N=C)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/221—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having an amino group, e.g. acetylcholine, acetylcarnitine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/06—Tripeptides
- A61K38/063—Glutathione
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/07—Tetrapeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
- A61K38/085—Angiotensins
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求2016年10月31日提交的美国临时申请号62/415,101、2017年4月22日提交的美国临时申请号62/488,740、2017年5月24日提交的美国临时申请号62/510,596和2017年8月25日提交的美国临时申请号62/550,345的优先权,其全部内容通过引用并入本文。This application claims US Provisional Application No. 62/415,101, filed October 31, 2016, US Provisional Application No. 62/488,740, filed April 22, 2017, US Provisional Application No. 62/510,596, filed May 24, 2017 and priority to US Provisional Application No. 62/550,345, filed August 25, 2017, the entire contents of which are incorporated herein by reference.
背景background
慢性疾病(如慢性听力损失、耳鸣、听觉过敏、老年性耳聋或平衡障碍)通常与患者中与噪音和/或年龄相关的耳蜗突触病(synaptopathy)和前庭突触病相关,与毛细胞损失无关。例如,Kujawa et al.,J.Neurosci.,29:14077-14085(2009)和Lin et al.,JARO,12:605-616(2011)证明尽管在轻度噪音创伤的小鼠和豚鼠模型中具有正常的毛细胞补体,但噪音引起的内毛细胞神经突损失(例如,突触病)可以是广泛的。这种机制可能导致由噪音损伤或累积的年龄相关的听力损失(例如,老年性耳聋)引起的听力障碍。Chronic diseases (eg, chronic hearing loss, tinnitus, hyperacusis, presbycusis, or balance disorders) are often associated with noise and/or age-related cochlear synaptopathy and vestibular synaptopathy in patients, associated with hair cell loss It doesn't matter. For example, Kujawa et al., J. Neurosci., 29:14077-14085 (2009) and Lin et al., JARO, 12:605-616 (2011) demonstrated that despite mild noise trauma in mouse and guinea pig models There is normal hair cell complement, but noise-induced loss of inner hair cell neurites (eg, synaptopathies) can be extensive. This mechanism may lead to hearing impairment caused by noise impairment or cumulative age-related hearing loss (eg, presbycusis).
Sergeyenko et al.,J.Neurosci.,33:13686-13694(2013)证明耳蜗突触损失从青年到老年的进展,并且在老年性耳聋的小鼠模型中在阈值或毛细胞计数的与年龄相关的变化之前很久就可以在整个耳蜗中看到。此外,Makary et al.,JARO,12:711-717(2011)证明,在具有完全补充的毛细胞的老化人耳中,平均螺旋神经节细胞(SGC,即耳蜗神经元)损失在95岁时达到约30%,表明神经变性能够在毛细胞损失之前和/或独立于其而发生。此外,在人类的相关研究中,Viana et al.,Hear Res.,327:78–88(2015)提供了耳蜗突触病和外周神经轴突的变性独立于毛细胞损失而发生并且可能有助于老年性耳聋的证据。这些类型的弥漫性突触或SGC损失虽然可能不一定影响听力阈值,但会导致在嘈杂的环境中处理困难和听力或导致相关的适应不良后遗症,例如耳鸣或听觉过敏。耳蜗突触病及其功能性后果也描述于Schaette et al.,J.Neurosci.,31:13452-13457(2011)、Wan et al.,Hear Res.,329:1-10(2015)和Liberman et al.,PLoS One,11(9):e0162726(2016)中。Sergeyenko et al., J. Neurosci., 33: 13686-13694 (2013) Demonstrate progression of cochlear synaptic loss from youth to old age and age-related changes in threshold or hair cell count in a mouse model of presbycusis changes can be seen throughout the cochlea long before. In addition, Makary et al., JARO, 12:711-717 (2011) demonstrated that in aged human ears with fully replenished hair cells, the average loss of spiral ganglion cells (SGCs, i.e. cochlear neurons) at age 95 Up to about 30%, suggesting that neurodegeneration can occur before and/or independently of hair cell loss. Furthermore, in a related study in humans, Viana et al., Hear Res., 327:78–88 (2015) provided that cochlear synaptopathies and degeneration of peripheral nerve axons occur independently of hair cell loss and may contribute to Evidence for presbycusis. These types of diffuse synaptic or SGC loss, although may not necessarily affect hearing thresholds, can lead to difficulties with processing and hearing in noisy environments or lead to associated maladaptive sequelae such as tinnitus or hyperacusis. Cochlear synaptopathies and their functional consequences are also described in Schaette et al., J. Neurosci., 31:13452-13457 (2011), Wan et al., Hear Res., 329:1-10 (2015) and Liberman et al., PLoS One, 11(9):e0162726 (2016).
由于能够引起感觉神经性听力损失和耳鸣的简易爆炸装置(IED),耳朵爆炸伤在现代军事行动中是非常常见的。耳鸣和听力损失是关联性服务残疾退伍军人中最常见的不良医疗状况。爆炸暴露还能够引起中枢听觉系统的损伤,并且持续的氧化应激被认为在该病理生理反应中起基本作用。Ear blast injuries are very common in modern military operations due to improvised explosive devices (IEDs) that can cause sensorineural hearing loss and tinnitus. Tinnitus and hearing loss are the most common adverse medical conditions among veterans with disabilities in relational services. Blast exposure can also cause damage to the central auditory system, and sustained oxidative stress is thought to play a fundamental role in this pathophysiological response.
Tau蛋白病(Tauopathy)和耳蜗神经变性共享氧化应激,作为持续损伤的常见病理生理学相关者和潜在传播者。更具体地,一些研究表明,氧化应激起诱导Tau的过度磷酸化和聚集的直接催化剂的作用。超氧化物歧化酶2缺失的小鼠的工作进一步支持了这种相关性,其在慢性氧化应激条件下表现出Tau的组成型过度磷酸化作为早期出生后病理事件,其能够通过高剂量催化抗氧化剂治疗有效地减轻。与这种机制优势观点一致,使用抗氧化剂的靶向治疗氧化应激已经被证明在广泛的Tau蛋白病中有改善作用。Tauopathies and cochlear neurodegeneration share oxidative stress as a common pathophysiological correlator and potential transmitter of persistent damage. More specifically, several studies have shown that oxidative stress acts as a direct catalyst to induce hyperphosphorylation and aggregation of Tau. This correlation is further supported by work in superoxide dismutase 2-deficient mice, which, under conditions of chronic oxidative stress, exhibit constitutive hyperphosphorylation of Tau as an early postnatal pathological event that can be catalyzed by high doses Antioxidant treatment effectively relieves. Consistent with this mechanistic advantage, targeted therapy of oxidative stress using antioxidants has been shown to ameliorate a wide range of tauopathies.
此外,Selkoe,Science,198:789-791(2002)观察到阿尔茨海默病始于神经元变性之前的海马突触功能障碍,突触功能障碍是由淀粉样β蛋白的可扩散寡聚体组装引起的,并且至少有一个小鼠系表明,突触数量显著减少可导致损伤。Sheng et al.,Cold SpringHarb Perspect Biol,4:a005777(2012)讨论了阿尔茨海默病发病机理的两个主要主题。首先,低聚物Ab种类对突触功能和结构具有强烈的不利影响,特别是在突触后侧;第二,早老素功能下降损害突触传递并促进神经变性。此外,Goldstein et al.,Sci.Transl.Med.,4(134):doi:10.1126/scitranslmed.3003716(2012)报告了暴露于单次爆炸后2周野生型C57BL/6小鼠的慢性创伤性脑病(CTE)的证据,这与在美国足球运动员中观察到的CTE神经病理学相似,并且公开了爆炸引起的持续海马依赖性学习和记忆缺陷与轴突传导受损和缺乏活性依赖性突触传递的长期增强相关。这些观察突出了突触发生(synaptogenesis)和神经突发生(neuritogenesis)用于治疗阿尔茨海默病、CTE和其他中枢神经系统疾病的重要性。In addition, Selkoe, Science, 198:789-791 (2002) observed that Alzheimer's disease begins with hippocampal synaptic dysfunction before neuronal degeneration, and synaptic dysfunction is caused by diffusible oligomers of amyloid beta protein Assembly-induced, and at least one mouse line has shown, that a significant reduction in the number of synapses can lead to damage. Sheng et al., Cold SpringHarb Perspect Biol, 4:a005777 (2012) discuss two major themes in the pathogenesis of Alzheimer's disease. First, oligomeric Ab species have strong detrimental effects on synaptic function and structure, especially on the postsynaptic side; second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. In addition, Goldstein et al., Sci.Transl.Med., 4(134):doi:10.1126/scitranslmed.3003716 (2012) reported chronic traumatic injury in wild-type C57BL/6 mice 2 weeks after exposure to a single blast Evidence for encephalopathy (CTE), which is similar to CTE neuropathology observed in American football players, and discloses blast-induced persistent hippocampal-dependent learning and memory deficits with impaired axonal conduction and lack of activity-dependent synaptic transmission long-term enhancement correlation. These observations highlight the importance of synaptogenesis and neuritogenesis for the treatment of Alzheimer's disease, CTE and other diseases of the central nervous system.
因此,需要增强患有耳蜗突触病或前庭突触病或中枢神经系统疾病或病症(尤其是与慢性听力损失、耳鸣、过敏、老年性耳聋或平衡障碍相关的耳蜗突触病或前庭突触病)的患者中突触发生和神经突发生的方法。此外,神经变性和Tau蛋白聚集(例如,由爆炸暴露引起)突出了对减少神经变性和Tau蛋白积累或聚集的方法的另一需求。Therefore, there is a need to enhance cochlear or vestibular synaptopathies in patients with cochlear or vestibular synaptopathies or diseases or disorders of the central nervous system (especially those associated with chronic hearing loss, tinnitus, allergies, presbycusis, or balance disorders). Methods of synaptogenesis and neurite outgrowth in patients with disease). Furthermore, neurodegeneration and Tau protein aggregation (eg, caused by blast exposure) highlight another need for methods to reduce neurodegeneration and Tau protein accumulation or aggregation.
概述Overview
本发明人通过提供用于在患有耳蜗突触病或前庭突触症的患者中增强突触发生和神经突发生的方法和组合物,成功地满足了上述医学需要。因此,本文描述的本发明的至少一个方面涉及用于在患有耳蜗突触病或前庭突触症的对象中增强突触发生和神经突发生的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。本公开还提供了减少对象中的神经变性(neurodegeneration)或Tau蛋白积累的方法,包括向所述对象施用有效的2,4-DSPBN或其药学上可接受的盐。The present inventors have successfully met the aforementioned medical needs by providing methods and compositions for enhancing synaptogenesis and neuritegenesis in patients suffering from cochlear synaptopathies or vestibular synapses. Accordingly, at least one aspect of the invention described herein pertains to methods for enhancing synaptogenesis and neurite outgrowth in a subject suffering from cochlear synaptopathies or vestibular synaptopathies, including providing said subjects in need thereof An effective amount of 2,4-disulfonyl alpha-phenyl tert-butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof is administered. The present disclosure also provides a method of reducing neurodegeneration or Tau protein accumulation in a subject, comprising administering to the subject an effective 2,4-DSPBN or a pharmaceutically acceptable salt thereof.
在一些实施方案中,2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,该药物组合物包括药学上可接受的载体。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition comprising a pharmaceutically acceptable carrier.
在一些实施方案中,2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地(subcutaneously)、舌下地、真皮下地(subdermally)、鞘内地、通过吸入、或在耳内局部地施用于对象。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subdermally, intrathecally, by inhalation, or in the ear locally applied to the subject.
在一些实施方案中,所述方法还包含施用一种或多种选自N-乙酰半胱氨酸(NAC)、乙酰基-L-肉碱、谷胱甘肽单乙酯、依布硒啉、D-甲硫氨酸、carbamathione和Szeto-Schiller肽及其功能类似物的化合物。In some embodiments, the method further comprises administering one or more selected from the group consisting of N-acetylcysteine (NAC), acetyl-L-carnitine, glutathione monoethyl ester, ebselen Compounds of , D-methionine, carbamathione and Szeto-Schiller peptides and their functional analogs.
在一些实施方案中,所述方法还包含施用NAC。In some embodiments, the method further comprises administering NAC.
在一些实施方案中,所述对象患有慢性听觉损伤或慢性听力损失。在一些实施方案中,所述慢性听觉损伤或慢性听力损失是由衰老引起的。In some embodiments, the subject has chronic hearing impairment or chronic hearing loss. In some embodiments, the chronic hearing impairment or chronic hearing loss is caused by aging.
在一些实施方案中,所述慢性听觉损伤或慢性听力损失是由暴露于急性或慢性的爆炸或噪音引起的。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一个月的对象。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一年的对象。In some embodiments, the chronic hearing impairment or chronic hearing loss is caused by exposure to acute or chronic explosions or noise. In some embodiments, 2,4-DSPBN, or a pharmaceutically acceptable salt thereof, is administered to a subject at least one month after exposure to the explosion or noise. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one year after exposure to the explosion or noise.
在一些实施方案中,所述慢性听觉损伤或慢性听力损失是由感染引起的。在一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于感染后至少一个月的对象。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐施用于感染后至少一年的对象。In some embodiments, the chronic hearing impairment or chronic hearing loss is caused by an infection. In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one month after infection. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one year after infection.
在一些实施方案中,所述慢性听觉损伤或慢性听力损失是由暴露于毒素引起的。在一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一个月的对象。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一年的对象。In some embodiments, the chronic hearing impairment or chronic hearing loss is caused by exposure to a toxin. In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one month after exposure to the toxin. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one year after exposure to the toxin.
在一些实施方案中,所述对象患有耳鸣。In some embodiments, the subject suffers from tinnitus.
在一些实施方案中,所述对象患有听觉过敏。In some embodiments, the subject suffers from hyperacusis.
在一些实施方案中,所述对象患有老年性耳聋。In some embodiments, the subject has presbycusis.
在一些实施方案中,所述对象患有平衡障碍。在一些实施方案中,所述对象患有带有突触损失的梅尼埃病(Meniere’s disease)。In some embodiments, the subject has a balance disorder. In some embodiments, the subject has Meniere's disease with synaptic loss.
在一些实施方案中,2,4-DSPBN或其药学上可接受的盐的施用导致对象中的耳蜗神经突或前庭神经突的再生。在一些实施方案中,内毛细胞上的有活性的神经连接的数量增加。在一些实施方案中,柯蒂氏器(organ of Corti)中的音频(tonotopic)区域中的突触的数量增加。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof results in regeneration of cochlear neurites or vestibular neurites in the subject. In some embodiments, the number of active neural connections on inner hair cells is increased. In some embodiments, the number of synapses in tonotopic regions in the organ of Corti is increased.
在一些实施方案中,所述患者没有经历耳蜗毛细胞或前庭毛细胞的实质性损失。In some embodiments, the patient does not experience substantial loss of cochlear hair cells or vestibular hair cells.
本文描述的本发明的另一个方面涉及在患有中枢神经系统疾病或病症的对象中增强突触发生和神经突发生的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Another aspect of the invention described herein relates to a method of enhancing synaptogenesis and neuritegenesis in a subject having a disease or disorder of the central nervous system comprising administering to said subject in need thereof an effective amount of 2,4 - Disulfonyl α-phenyl tert-butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof.
在一些实施方案中,2,4-DSPBN或其药学上可接受的盐以药物组合物施用,该药物组合物包括药学上可接受的载体。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、真皮下地、鞘内地、通过吸入、或在耳内局部地施用于对象。在一些实施方案中,所述方法还包含向所述对象共同施用NAC。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered in a pharmaceutical composition that includes a pharmaceutically acceptable carrier. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject orally, intravenously, subcutaneously, sublingually, subdermally, intrathecally, by inhalation, or topically in the ear . In some embodiments, the method further comprises co-administering NAC to the subject.
在一些实施方案中,所述对象患有选自以下的中枢神经系统疾病或病症:阿尔茨海默病、帕金森氏病(Parkinson’s disease)、进行性核上性麻痹、额颞叶痴呆、匹克氏病(Pick’s disease)、嗜银颗粒痴呆、皮质基底节变性、进行性皮层下神经胶质过多症、肌萎缩性脊髓侧索硬化症、弥漫性神经纤维缠结伴钙化症、慢性创伤性脑病变、拳击员痴呆、纯缠结痴呆、唐氏综合征(Down’s syndrome)、格斯特曼-施特劳斯纳综合征(Gerstmann-Straussler-Scheinker disease)、哈勒沃登-施帕茨病(Hallervorden-Spatz disease)、克雅氏病(Creutzfeldt-Jakob disease)、多系统萎缩、C型尼曼-匹克病(Niemann-Pickdisease type C)、朊病毒蛋白大脑淀粉样血管病、亚急性硬化性全脑炎、肌强直性营养不良、伴有神经纤维缠结的非冠状神经病、以及脑炎后帕金森氏综合征。In some embodiments, the subject has a central nervous system disease or disorder selected from the group consisting of Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, frontotemporal dementia, Peak Pick's disease, argentophilic granule dementia, corticobasal degeneration, progressive subcortical hypergliosis, amyotrophic lateral sclerosis, diffuse neurofibrillary tangles with calcification, chronic traumatic encephalopathy Dementia, boxer dementia, pure tangling dementia, Down's syndrome, Gerstmann-Straussler-Scheinker disease, Hallewolden-Spaatz disease Hallervorden-Spatz disease, Creutzfeldt-Jakob disease, multiple system atrophy, Niemann-Pickdisease type C, prion protein cerebral amyloid angiopathy, subacute sclerosing Panencephalitis, myotonic dystrophy, noncoronary neuropathy with neurofibrillary tangles, and post-encephalitic parkinsonism.
从以下结合附图的详细描述中,这些和其他特征连同其组织和操作方式将变得显而易见。These and other features, together with their organization and operation, will become apparent from the following detailed description in conjunction with the accompanying drawings.
附图说明Description of drawings
图1显示HPN-07在体外引起小鼠螺旋神经节(SG)组织外植体中的神经源性反应。相对于在相同的器官型培养基中培养的未经治疗的对照(NC,正常对照),HPN-07引起显著的神经突向外生长。在HPN-07存在下,从每个SG外植体辐射出的神经突的数量和这些延伸中的每一个的相应长度都增加。Figure 1 shows that HPN-07 elicits neurogenic responses in mouse spiral ganglion (SG) tissue explants in vitro. HPN-07 caused significant neurite outgrowth relative to untreated controls (NC, normal controls) cultured in the same organotypic medium. The number of neurites radiating from each SG explant and the corresponding length of each of these extensions increased in the presence of HPN-07.
图2显示HPV-07增强由经典的耳蜗神经源性生长因子、脑衍生神经营养因子(BDNF)诱导的神经突发生。将小鼠螺旋神经节外植体在含有或不含BDNF(10ng/mL)或BDNF(10ng/mL)+HPN-07(0.1μM)的无血清培养基中培养48小时,然后固定并用β-微管蛋白进行免疫标记以使神经突可视化。Figure 2 shows that HPV-07 enhances neurite outgrowth induced by canonical cochlear neuro-derived growth factor, brain-derived neurotrophic factor (BDNF). Mouse spiral ganglion explants were cultured in serum-free medium with or without BDNF (10 ng/mL) or BDNF (10 ng/mL) + HPN-07 (0.1 μM) for 48 hours, then fixed and treated with β- Tubulin was immunolabeled to visualize neurites.
图3显示了PC12细胞系中每个细胞的平均神经突长度。HPN-07和递增剂量的NGF的组合治疗显示,HPN-07显著增强神经元PC12细胞系中NGF介导的神经突伸长(即平均神经突长度的增加)。Figure 3 shows the average neurite length per cell in the PC12 cell line. Combination treatment of HPN-07 and escalating doses of NGF showed that HPN-07 significantly enhanced NGF-mediated neurite elongation (ie, an increase in mean neurite length) in the neuronal PC12 cell line.
图4显示了表现出显著神经突向外生长的PC12细胞的百分比。HPN-07和递增剂量的NGF的组合治疗显示,HPN-07显著增强神经元PC12细胞中NGF诱导的神经突发生,这通过治疗后携带神经突的细胞的百分比的显著增加来证明。Figure 4 shows the percentage of PC12 cells exhibiting significant neurite outgrowth. Combination treatment with HPN-07 and escalating doses of NGF showed that HPN-07 significantly enhanced NGF-induced neurite outgrowth in neuronal PC12 cells, as evidenced by a significant increase in the percentage of neurite-bearing cells following treatment.
图5显示通过HPN-07逆转红藻氨酸(KA)引起的内毛细胞(IHC)缎带突触完整性的兴奋毒性损失。Figure 5 shows the reversal of kainic acid (KA)-induced excitotoxic loss of inner hair cell (IHC) ribbon synaptic integrity by HPN-07.
图6总结了兴奋性毒性暴露于KA后,来自未经治疗的、经BDNF治疗的或经HPN-07治疗的耳蜗外植体的IHC中缎带的数量和空间分布的针对性比较的定量评估。Figure 6 summarizes quantitative assessment of targeted comparisons of the number and spatial distribution of ribbons in IHC from untreated, BDNF-treated or HPN-07-treated cochlear explants following excitotoxic exposure to KA .
图7显示突触前的标记物(C-末端结合蛋白2,CtBP2)定量和突触后的标记物(GluR2/3)定量。在上图中,将大鼠以1.5分钟的间隔重复暴露于14psi的三次连续的矿场爆炸,然后在最终爆炸后一小时注射(i.p.)HPN-07/NAC,然后接下来的48小时每天注射两次。在下图中,将大鼠暴露于震动管内的单次8psi爆炸,然后在最终爆炸后一小时注射(i.p.)HPN-07/NAC,然后在接下来的48小时内每天注射两次。Figure 7 shows presynaptic marker (C-terminal binding protein 2, CtBP2) quantification and postsynaptic marker (GluR2/3) quantification. In the image above, rats were repeatedly exposed to three consecutive mine blasts at 14 psi at 1.5 minute intervals, then injected (i.p.) with HPN-07/NAC one hour after the final blast and then daily for the next 48 hours twice. In the lower panel, rats were exposed to a single 8 psi blast in a shock tube, followed by injections (i.p.) of HPN-07/NAC one hour after the final blast, and then twice daily for the next 48 hours.
图8显示抗氧化剂治疗防止响应于爆炸引起的创伤的耳蜗缎带突触损失。共聚焦成像显示,相对于空白的年龄匹配的对照(A-C),暴露后21天的爆炸暴露的动物(D-F)中OC的中回(middle turn)(16kHz区域)中沿着IHC基底外侧膜的CtBP2-和GluR2/3-免疫标记减少。爆炸暴露后用HPN-07和NAC的组合治疗的动物显示,在OC的这个区域中没有这种IHC突触的病灶的大量损失(G-1)。用抗CtBP2抗体(红色)标记突触前缎带,并用抗GluR2/3抗体(绿色)标记突触后密度(density)。最右侧图中的合并图像显示两个突触标记物的每种条件的重叠信号强度(黄色)。共聚焦图像是16kHz区域内8-10个IHC内的缎带的z堆叠的最大投影。对于A-I,I中比例尺=5μm。Figure 8 shows antioxidant treatment prevents cochlear ribbon synapse loss in response to blast-induced trauma. Confocal imaging shows that relative to blank CtBP2- and GluR2/3-immunolabeling along the IHC basolateral membrane in the middle turn (16kHz region) of the OC in age-matched controls (AC), blast-exposed animals (DF) 21 days post-exposure reduce. Animals treated with the combination of HPN-07 and NAC after blast exposure showed no substantial loss of this foci of IHC synapses in this region of the OC (G-1). Presynaptic ribbons were labeled with anti-CtBP2 antibody (red) and postsynaptic densities were labeled with anti-GluR2/3 antibody (green). The merged image in the far right panel shows the overlapping signal intensities (yellow) for each condition of the two synaptic markers. Confocal images are maximal projections of z-stacks of ribbons within 8-10 IHCs in the 16kHz region. Scale bar = 5 μm in I for AI.
图9显示HPN-07和NAC的急性治疗干预减少了爆炸暴露动物的OC的16-32kHz区域中IHC内的缎带突触损失。在爆炸暴露7天(7D,A和B)或21天(21D,C和D)后,在年龄匹配的空白对照和未治疗和抗氧化剂治疗的爆炸暴露动物的群组(cohort)中的OC的2、4、8、16、32、以及48kHz区域中的IHC中进行突触标记物计数。在未治疗的、爆炸暴露的动物中的4-48(7D)和16-48(21D)kHz区域中的IHC中观察到突触前和突触后标记物协同的、统计学上显著的损失。在OC的8和16kHz区域中鉴定了抗氧化剂对抗这些突触标记物的相反的爆炸引起的损失的显著治疗效果,并且在32(7D和21D)和48(7D)kHz区域中观察到抗氧化剂治疗具有统计学的显著性的趋势。在爆炸暴露后21天,在48kHz区域中未观察到这样的治疗效果。缎带突触损失的组间差异的统计学的显著性分别用星号表示:*、**或***分别表示p<0.05、0.01或0.001,而抗氧化剂治疗的统计学的显著性用##表示p<0.01。误差线表示平均值的标准误差(SEM)。括号中的数字表示在每个群组中评估的OC的总数。Figure 9 shows that acute therapeutic intervention of HPN-07 and NAC reduces Ribbon synaptic loss within the IHC in the 16-32 kHz region of the OC of blast-exposed animals. OC in a cohort of age-matched placebo and untreated and antioxidant-treated blast-exposed animals after 7 days (7D, A and B) or 21 days (21D, C and D) of blast exposure Synaptic marker counts were performed in IHC in the 2, 4, 8, 16, 32, and 48 kHz regions. A synergistic, statistically significant loss of presynaptic and postsynaptic markers was observed in IHC in the 4-48(7D) and 16-48(21D) kHz regions in untreated, blast-exposed animals . Significant therapeutic effects of antioxidants against the opposite blast-induced loss of these synaptic markers were identified in the 8 and 16 kHz regions of the OC, and were observed in the 32 (7D and 21D) and 48 (7D) kHz regions Treatment had a statistically significant trend. No such therapeutic effect was observed in the 48 kHz region 21 days after blast exposure. Statistical significance of the between-group difference in Ribbon synapse loss is indicated by asterisks: *, ** or *** indicate p<0.05, 0.01 or 0.001, respectively, while statistical significance for antioxidant treatment is indicated by ## indicates p<0.01. Error bars represent standard error of the mean (SEM). Numbers in parentheses indicate the total number of OCs assessed in each cohort.
图10显示组合抗氧化剂干预防止骨质SL中的爆炸引起的神经纤维损失。A-C中的图像是来自正常对照(A)、损伤后21天未治疗的爆炸暴露的大鼠(B)、以及在爆炸后21天用抗氧化剂治疗的爆炸暴露的大鼠(C)的中回的SL(A-C)的横截面视图中NF-200阳性染色的神经纤维的实施例。与正常对照(A)和用HPN-07和NAC治疗的爆炸暴露的动物(C)相比,在爆炸暴露后21天未治疗的爆炸暴露的动物(B)的耳蜗中的SL中观察到更少的NF-200阳性神经纤维。对来自每个实验群组的耳蜗的中回和底回(basal turn)的SL中的NF-200阳性神经纤维进行定量,并对神经突的密度进行估计和统计学上地分析(D)。与NC相比,爆炸暴露后21天,未治疗的爆炸暴露的动物的SL中NF-200阳性神经突的数量显著减少(p<0.05,*)。在爆炸暴露后21天,在HPN-07/NAC处理的爆炸暴露的动物中没有观察到SL中NF-200阳性神经突的这种减少(p<0.01,##,与未治疗的爆炸暴露的动物相比)。在任何组群中,在早期时间点没有观察到神经突密度的显著变化(所有p>0.05)。对于A-C,C中比例尺=10μm。括号中的数字表示在每个时间点每个群组中评估的动物总数。D中的误差线表示SEM。Figure 10 shows that combinatorial antioxidant intervention prevents blast-induced nerve fiber loss in bony SL. Images in A-C are mid-backs from normal controls (A), blast-exposed rats (B) untreated 21 days post-injury, and blast-exposed rats (C) treated with antioxidants 21 days post-blast Examples of NF-200-positively stained nerve fibers in cross-sectional views of SL (A-C). Compared to normal controls (A) and blast-exposed animals (C) treated with HPN-07 and NAC, more was observed in the SL in the cochlea of untreated blast-exposed animals (B) 21 days after blast exposure. Fewer NF-200 positive nerve fibers. NF-200 positive nerve fibers were quantified in the SL of the middle and basal turns of the cochlea from each experimental cohort, and the density of neurites was estimated and statistically analyzed (D). The number of NF-200-positive neurites in the SL of untreated blast-exposed animals was significantly reduced 21 days after blast exposure compared to NC (p<0.05, *). This reduction in NF-200-positive neurites in the SL was not observed in HPN-07/NAC-treated blast-exposed animals 21 days after blast exposure (p<0.01, ##, vs. untreated blast-exposed animals). compared to animals). No significant changes in neurite density were observed at early time points in any cohort (all p>0.05). Scale bar = 10 μm in C for A-C. Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Error bars in D represent SEM.
图11显示抗氧化剂治疗减少SG中爆炸引起的神经变性的证据。A-C中的图像是正常对照(A)、在爆炸后第21天未治疗的爆炸暴露的大鼠(B)、以及大鼠中在21天治疗的爆炸暴露的大鼠(C)的底回中SG中NF-200染色的实施例。SG中的大多数神经元对NF-200呈阳性染色(轻阳性),而一些神经元在每个群组中具有强烈的免疫反应性(强阳性,A-C中的箭头)。A-C中的箭头表示未被NF-200抗体免疫标记的神经元。定量SG中NF-200轻或强阳性神经元的数量,并且基于与神经元总数的比较来计算每个样品中它们的相对百分比(D和E)。然后统计分析每个时间点的群组之间的这些百分位数的差异。与NC相比,在爆炸暴露后第21天,在未治疗的爆炸暴露的动物的SG中观察到NF-200轻阳性神经元的百分比降低(p<0.001,***)。在该时间点观察到对NF-200轻阳性细胞损失的阳性的、统计学显著的治疗效果(21D-B与21D-B/T,p<0.001,###,D)。与NC相比,在爆炸暴露后第7天和第21天,在未治疗的爆炸暴露的动物的SG中观察到NF-200强阳性神经元的百分比增加(所有p<0.01,**)。在爆炸暴露后第21天观察到对NF-200强阳性细胞增加的阳性的、统计学显著的治疗效果(21D-B与21D-B/T,p<0.05,#,E)。括号中的数字表示在每个时间点每个群组中评估的动物总数。误差线表示D和E中的SEM。对于A-C,C中比例尺=20μm。Figure 11 shows evidence that antioxidant treatment reduces blast-induced neurodegeneration in SG. Images in A-C are normal controls (A), blast-exposed rats (B) untreated at day 21 post blast, and in the basal gyrus of blast-exposed rats treated at day 21 (C) in rats Example of NF-200 staining in SG. Most neurons in the SG stained positively for NF-200 (light positivity), while some neurons were strongly immunoreactive in each cohort (strong positivity, arrows in A-C). Arrows in A-C indicate neurons that were not immunolabeled with NF-200 antibody. The number of NF-200 light or strong positive neurons in SGs was quantified and their relative percentages in each sample were calculated based on comparison with the total number of neurons (D and E). Differences in these percentiles between groups at each time point were then statistically analyzed. A decrease in the percentage of NF-200 light positive neurons was observed in the SG of untreated blast-exposed animals at day 21 post blast exposure compared to NC (p<0.001, ***). A positive, statistically significant treatment effect on NF-200 light positive cell loss was observed at this time point (21D-B vs 21D-B/T, p<0.001, ###, D). An increased percentage of NF-200 strongly positive neurons was observed in the SG of untreated blast-exposed animals on days 7 and 21 post blast exposure compared to NC (all p<0.01, **). A positive, statistically significant treatment effect on the increase in NF-200 strongly positive cells was observed on day 21 post blast exposure (21D-B vs 21D-B/T, p<0.05, #, E). Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Error bars represent SEM in D and E. Scale bar = 20 μm in C for A-C.
图12显示了HPN-07和NAC的治疗性干预显著降低了响应于爆炸的SG内NF-68免疫标记的病理学增加。A-C中的图像是来自NC大鼠(A)、受伤后第7天未处理的爆炸暴露的大鼠(B)、以及在爆炸暴露后第7天用抗氧化剂治疗的动物(C)的SG的底回中NF-68免疫染色的实施例。注意,虽然一些小的神经元在所有条件下都是NF-68阳性(A-C中的箭头),但是在受伤后7天,爆炸暴露的动物中多个大的NF-68阳性神经元是独特明显的(B中的箭头)。在每个采样间隔对每个群组中NF-68阳性神经元的总数进行计数,并对NF-68阳性神经元的百分比进行计算和统计学分析(D)。在爆炸暴露后7天和21天,在未治疗的爆炸暴露的动物的SG中观察到NF-68阳性神经元的数量显著增加(所有p<0.001,***)。在爆炸暴露后的7天和21天时间点都发现了显著的抗氧化剂治疗效果(所有p<0.05,#)。对于A-C,C中比例尺=20μm。D中的误差线表示SEM。括号中的数字表示在每个时间点每个群组中评估的动物总数。Figure 12 shows that therapeutic intervention of HPN-07 and NAC significantly reduced the pathological increase in NF-68 immunolabeling within SGs in response to blasting. Images in A-C are of SGs from NC rats (A), untreated blast-exposed rats (B) on day 7 post-injury, and animals treated with antioxidants on day 7 post-blast exposure (C) Example of NF-68 immunostaining in the bottom fold. Note that while some small neurons were NF-68 positive in all conditions (arrows in A-C), multiple large NF-68 positive neurons were uniquely evident in blast-exposed animals 7 days after injury (arrow in B). The total number of NF-68 positive neurons in each cohort was counted at each sampling interval, and the percentage of NF-68 positive neurons was calculated and statistically analyzed (D). Significant increases in the number of NF-68 positive neurons were observed in the SGs of untreated blast-exposed animals 7 and 21 days after blast exposure (all p<0.001, ***). Significant antioxidant treatment effects were found at both the 7-day and 21-day time points after blast exposure (all p<0.05, #). Scale bar = 20 μm in C for A-C. Error bars in D represent SEM. Numbers in parentheses indicate the total number of animals assessed in each group at each time point.
图13显示抗氧化剂治疗减少SG中爆炸引起的神经变性的证据。在空白对照和爆炸暴露后21天未治疗和HPN-07/NAC治疗的动物中,测量和统计分析螺旋神经节神经元的最大直径。在所有三个回中,与空白对照相比,未治疗的爆炸暴露的动物的耳蜗中观察到显著减少的体细胞直径(所有p<0.001,***)。在HPN-07/NAC治疗的爆炸暴露的动物中,所有三个回中的平均体细胞直径在统计学上与空白对照无法区分(所有p>0.05)。括号中的数字表示每个群组中评估的动物总数。Figure 13 shows evidence that antioxidant treatment reduces blast-induced neurodegeneration in SG. Maximum diameter of spiral ganglion neurons was measured and statistically analyzed in untreated and HPN-07/NAC-treated animals 21 days after blast exposure. In all three episodes, significantly reduced somatic diameters were observed in the cochlea of untreated blast-exposed animals compared to the placebo (all p<0.001, ***). In HPN-07/NAC-treated blast-exposed animals, mean somatic cell diameters in all three gyri were statistically indistinguishable from blank controls (all p>0.05). Numbers in parentheses indicate the total number of animals evaluated in each group.
图14显示抗氧化剂治疗减少了SG中爆炸引起的过度磷酸化的Tau的积累。A-C中的图像是来自正常对照动物(A)、爆炸后7天未治疗的爆炸暴露的大鼠(B)、以及在受伤后7天用抗氧化剂治疗的大鼠(C)的SG的中回中AT8免疫染色的实施例。计算AT8阳性SGN(B和C中的箭头)的数量,并计算AT8阳性神经元的百分比并用于每个时间点的实验群组之间的统计学比较(D)。在爆炸暴露后第7天,未治疗的和治疗的大鼠中的SGN中观察到AT8积累增加(p<0.01或0.001,**或***)。爆炸暴露后在这个时间点观察到显著的HPN-07/NAC治疗效果(p<0.05,#)。对于A-C,C中比例尺=20μm。括号中的数字表示在每个时间点每个群组中评估的动物总数。D中的误差线表示SEM。Figure 14 shows that antioxidant treatment reduces explosion-induced accumulation of hyperphosphorylated Tau in SGs. Images in A-C are mid-cycle SGs from normal control animals (A), blast-exposed rats (B) untreated 7 days post-blast, and antioxidant-treated rats (C) 7 days post-injury Example of AT8 immunostaining. The number of AT8-positive SGNs (arrows in B and C) was counted, and the percentage of AT8-positive neurons was calculated and used for statistical comparisons between experimental cohorts at each time point (D). Increased AT8 accumulation was observed in SGNs in untreated and treated rats on day 7 after blast exposure (p<0.01 or 0.001, ** or ***). A significant HPN-07/NAC treatment effect was observed at this time point after blast exposure (p<0.05, #). Scale bar = 20 μm in C for A-C. Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Error bars in D represent SEM.
图15显示抗氧化剂处理减少了SG中爆炸引起的病理性Tau寡聚体的积累。A-C中的图像是正常对照大鼠(A)、爆炸后7天未治疗的爆炸暴露的大鼠(B)、以及在受伤后7天用抗氧化剂治疗的大鼠(C)的SG的中回中低聚物Tau(T22)免疫染色的实施例。在未治疗的爆炸暴露的动物(B中的箭头)和抗氧化剂治疗的爆炸暴露的动物(C中的箭头)中观察到T22阳性神经元。定量SG中T22阳性神经元的数量,并对每个时间点的每个群组中T22阳性神经元的百分比进行计算和统计学分析(D)。在所检查的所有时间点,未治疗的爆炸暴露的动物的SG中观察到更多数量的T22阳性神经元(p<0.05或0.001,*或***)。在爆炸暴露后7天和21天时间点观察到显著的治疗效果(p<0.05或0.01,#或##),但在爆炸后的急性、24小时时间点没有观察到显著的治疗效果(p>0.05)。对于A-C,C中比例尺=20μm。括号中的数字表示在每个时间点每个群组中评估的动物总数。D中的误差线表示SEM。Figure 15 shows that antioxidant treatment reduces blast-induced accumulation of pathological Tau oligomers in SGs. The images in A-C are the middle back of the SG of normal control rats (A), blast-exposed rats (B) untreated 7 days post-blast, and antioxidant-treated rats (C) 7 days post-injury Example of immunostaining of meso-oligomeric Tau (T22). T22-positive neurons were observed in untreated blast-exposed animals (arrows in B) and antioxidant-treated blast-exposed animals (arrows in C). The number of T22-positive neurons in the SG was quantified, and the percentage of T22-positive neurons in each cohort at each time point was calculated and statistically analyzed (D). Greater numbers of T22-positive neurons were observed in the SG of untreated blast-exposed animals at all time points examined (p<0.05 or 0.001, * or ***). Significant treatment effects were observed at the 7-day and 21-day time points after blast exposure (p<0.05 or 0.01, # or ##), but not at the acute, 24-hour time points after blast exposure (p<0.05 or 0.01, # or ##) >0.05). Scale bar = 20 μm in C for A-C. Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Error bars in D represent SEM.
图16显示了爆炸暴露导致SGN中低聚物Tau和NF-68片段的同时体细胞的积累。图像是爆炸暴露后24小时(A-D)或7天(E-H)未治疗的动物中的中回中SG中T22和NF-68双标记的实施例。在响应于爆炸的SG中独特地观察到体细胞的NF-68和核和细胞质的T22的SGN免疫阳性(绿色,A、B、D、E、F和H中的箭头)。在SG中也观察到一些没有NF-68标记的T22阳性神经元(红色,A、E、D和H中的箭头)。细胞核被DAPI染色(蓝色)。对于A-H,H中比例尺=5μm。Figure 16 shows that blast exposure results in simultaneous somatic accumulation of oligomeric Tau and NF-68 fragments in SGN. Images are examples of double labeling of T22 and NF-68 in the SG of the mid-gyrus in untreated animals 24 hours (A-D) or 7 days (E-H) after blast exposure. SGN immunopositivity for somatic NF-68 and nuclear and cytoplasmic T22 was uniquely observed in SGs in response to blasts (green, arrows in A, B, D, E, F and H). Some T22-positive neurons without NF-68 labeling were also observed in the SG (red, arrows in A, E, D and H). Nuclei were stained with DAPI (blue). Scale bar = 5 μm in H for A-H.
图17显示抗氧化剂治疗减少了听觉皮层(AC)中爆炸引起的Tau的体细胞的积累。A-C中的图像是正常对照大鼠(A)、爆炸后7天未治疗的爆炸暴露的大鼠(B)、以及在受伤后7天用抗氧化剂治疗的大鼠(C)的深层中Tau-1免疫染色的实施例。在正常对照(A中的箭头)、未治疗的爆炸暴露的动物(B中的箭头)和抗氧化剂治疗的爆炸暴露的动物(C中的箭头)中观察到Tau-1阳性神经元。定量AC中Tau-1阳性神经元的数量,并对每个时间点的每个群组中Tau-1阳性神经元的百分比进行计算和统计学分析(D)。在爆炸暴露的动物中在损伤后的所有时间点,在AC中观察到具有Tau-1阳性体细胞的神经元的数量增加(p<0.05、0.001或0.001,*、**或***)。抗氧化剂治疗在7天和21天的采样间隔减少了爆炸暴露的大鼠中这种异常免疫染色模式,但是阳性治疗效果的统计学显著性仅在21天组群中得出结论(p<0.001,###)。括号中的数字表示在每个时间点每个群组中评估的动物总数。对于A-C,C中比例尺=20μm。误差线表示SEM。Figure 17 shows that antioxidant treatment reduces blast-induced somatic accumulation of Tau in the auditory cortex (AC). Images in A-C are Tau- in the deep layers of normal control rats (A), blast-exposed rats (B) untreated 7 days post-blast, and antioxidant-treated rats (C) 7 days post-injury 1 Example of immunostaining. Tau-1 positive neurons were observed in normal controls (arrows in A), untreated blast-exposed animals (arrows in B) and antioxidant-treated blast-exposed animals (arrows in C). The number of Tau-1 positive neurons in the AC was quantified, and the percentage of Tau-1 positive neurons in each cohort at each time point was calculated and statistically analyzed (D). An increase in the number of neurons with Tau-1 positive soma was observed in the AC at all time points post-injury in blast-exposed animals (p<0.05, 0.001 or 0.001, *, ** or ***) . Antioxidant treatment reduced this abnormal immunostaining pattern in blast-exposed rats at sampling intervals of 7 and 21 days, but statistical significance of the positive treatment effect was only concluded in the 21-day cohort (p<0.001 , ###). Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Scale bar = 20 μm in C for A-C. Error bars represent SEM.
图18显示HPN-07/NAC治疗减少了SG中的爆炸引起的氧化应激。图像是来自空白的(A)、爆炸暴露后24小时未治疗的爆炸暴露的大鼠(B)、以及爆炸暴露后24小时用HPN-07/NAC治疗的大鼠(C)的耳蜗的底回中SG中的8-OHdG免疫染色的实施例。定量SG中8-OHdG阳性神经元的数量,并对每个群组中的结果百分位数进行计算和统计学分析(D)。在未治疗的爆炸暴露的动物的SG中观察到8-OHdG阳性神经元的数量增加(p<0.001,***)。HPN-07/NAC治疗显著降低了这种爆炸引起的应激反应(p<0.01,***)。括号中的数字表示每个群组中评估的动物总数。对于A-C,C中的比例尺=25μm。误差线表示SEM。Figure 18 shows that HPN-07/NAC treatment reduces blast-induced oxidative stress in SGs. Images are the basal gyrus of the cochlea from blank (A), blast-exposed rats that were not treated 24 hours after blast exposure (B), and rats treated with HPN-07/NAC 24 hours after blast exposure (C) Example of 8-OHdG immunostaining in SG. The number of 8-OHdG-positive neurons in the SG was quantified, and percentiles of results in each cohort were calculated and statistically analyzed (D). An increased number of 8-OHdG positive neurons was observed in the SG of untreated blast-exposed animals (p<0.001, ***). HPN-07/NAC treatment significantly reduced this blast-induced stress response (p<0.01, ***). Numbers in parentheses indicate the total number of animals evaluated in each group. Scale bar in C = 25 μm for A-C. Error bars represent SEM.
图19显示抗氧化剂治疗使IHC神经支配区内免受爆炸引起的神经突损失。A-F中的图像是来自空白大鼠(A,D)、爆炸暴露后21天未治疗的爆炸暴露的动物(B,E)、以及爆炸暴露后21天用HPN-07/NAC治疗的动物(C,F)的耳蜗的中回的IHC区域中的NF-200阳性染色神经突(粉红色,A-C中的箭头)的实施例。A-C中的矩形表示从中采集D-F图像的位置。与正常对照(D中的箭头)或用HPN-07和NAC治疗的爆炸暴露的动物(F中的箭头)相比,在未治疗的爆炸暴露的动物的耳蜗中沿着IHC神经支配区观察到更少的NF-200阳性神经突(E中的箭头)。A-C中的箭头和括号分别表示IHC和OHC(绿色)。细胞核被DAPI染色(蓝色)。在每个取样间隔对每个群组对耳蜗的中回和底回中与每个IHC相邻的NF-200阳性神经突的数量进行计数并进行统计学分析(G)。与正常对照(NC)相比,在爆炸后7天和21天(7D-B和21D-B),未治疗的爆炸暴露的动物的每个IHC中NF-200阳性神经突的数量显著减少(**或***,p<0.01或0.001)。与未治疗的爆炸暴露的动物相比,爆炸暴露后7天和21天用HPN-07和NAC急性治疗的爆炸暴露的动物中观察到IHC神经支配区中免受NF-200阳性神经突损失的显著程度(#或###,p<0.05或0.001)。误差线表示平均值的标准误差(SEM)。括号中的数字表示在每个时间点每个群组中评估的动物总数。A-C中C的、D-F中F的比例尺=5μm。Figure 19 shows that antioxidant treatment protects IHC innervation regions from blast-induced neurite loss. Images in A-F are from blank rats (A, D), blast-exposed animals that were not treated 21 days post blast exposure (B, E), and animals treated with HPN-07/NAC 21 days post blast exposure (C , F) Example of NF-200-positively stained neurites (pink, arrows in A-C) in the IHC region of the middle gyrus of the cochlea. The rectangles in A-C indicate the locations from which D-F images were acquired. Observed along the IHC innervation area in the cochlea of untreated blast-exposed animals compared to normal controls (arrows in D) or blast-exposed animals treated with HPN-07 and NAC (arrows in F) Fewer NF-200 positive neurites (arrows in E). Arrows and brackets in A-C indicate IHC and OHC (green), respectively. Nuclei were stained with DAPI (blue). The number of NF-200 positive neurites adjacent to each IHC in the middle and basal gyri of the cochlea for each cohort was counted at each sampling interval and statistically analyzed (G). The number of NF-200-positive neurites per IHC was significantly reduced in untreated blast-exposed animals at 7 and 21 days post blast (7D-B and 21D-B) compared to normal controls (NC) ( ** or ***, p<0.01 or 0.001). Protection against loss of NF-200-positive neurites in IHC innervated areas was observed in blast-exposed animals treated acutely with HPN-07 and NAC 7 and 21 days after blast exposure compared to untreated blast-exposed animals Significance (# or ###, p<0.05 or 0.001). Error bars represent standard error of the mean (SEM). Numbers in parentheses indicate the total number of animals assessed in each group at each time point. Scale bar for C in A-C, F in D-F = 5 μm.
图20显示HPN-07/NAC治疗减少了爆炸引起的听力损失。在爆炸暴露后的三个时间点比较经治疗的和未经治疗的动物的平均ABR阈值在2-16kHz之间偏移(shift)。在每个时间点,经HPN-07/NAC治疗的爆炸暴露的动物(B/T)的平均ABR阈值偏移显著小于未经治疗的爆炸暴露的对照(B)的平均ABR阈值偏移。括号中的数字表示每组的耳朵的数量。**,***表示经治疗的和未经治疗的爆炸暴露的动物之间的p<0.01和0.001。与爆炸后24小时(24H)观察的相比,爆炸后7天(7D)或21天(21D)HPN-07/NAC介导的ABR阈值偏移降低,###表示p<0.001。误差线表示SEM。Figure 20 shows that HPN-07/NAC treatment reduces blast-induced hearing loss. The mean ABR thresholds were shifted between 2-16 kHz comparing treated and untreated animals at three time points after blast exposure. At each time point, the mean ABR threshold shift in blast-exposed animals treated with HPN-07/NAC (B/T) was significantly smaller than that in untreated blast-exposed controls (B). The numbers in parentheses indicate the number of ears in each group. **, *** indicate p<0.01 and 0.001 between treated and untreated blast-exposed animals. ABR threshold shift mediated by HPN-07/NAC was reduced at 7 days (7D) or 21 days (21D) after blasting compared to that observed at 24 hours after blasting (24H), ### indicates p<0.001. Error bars represent SEM.
图21显示了HPN-07和NAC减弱噪音引起的听力损失。(A)噪音1天后的ABR阈值偏移;(B)噪音15天后的ABR阈值偏移。HPN-07/NAC治疗减弱了由噪音引起的听力损失。*和***分别代表p<0.05和0.001,在任何给定频率下样品显著性以双因素方差分析,然后是Bonferroni后检验。Figure 21 shows HPN-07 and NAC attenuate noise-induced hearing loss. (A) ABR threshold shift after 1 day of noise; (B) ABR threshold shift after 15 days of noise. HPN-07/NAC treatment attenuated noise-induced hearing loss. * and *** represent p<0.05 and 0.001, respectively, for sample significance at any given frequency by two-way ANOVA followed by Bonferroni post-test.
图22显示噪音暴露后的毛细胞损失最小并且仅出现在耳蜗的基底区域中。Figure 22 shows that hair cell loss following noise exposure is minimal and occurs only in the basal region of the cochlea.
图23显示HPN-07和NAC逆转体内IHC缎带突触的噪音诱导的兴奋性毒性损失。在Sprague Dawley大鼠中,一次性噪音(110dB,8-16kHz,2小时)在较高频率下导致30%-40%的突触损失。HPN-07/NAC治疗可以逆转损伤。对单独噪音组和噪音+HPN-07/NAC组进行比较。**和***分别代表p<0.01和0.001。受伤后二十四小时缎带突触损失是永久性的,因此恢复必须是再生的。Figure 23 shows that HPN-07 and NAC reverse noise-induced loss of excitotoxicity at IHC ribbon synapses in vivo. In Sprague Dawley rats, one-shot noise (110 dB, 8-16 kHz, 2 hours) resulted in 30-40% synaptic loss at higher frequencies. HPN-07/NAC treatment reversed the damage. The noise alone group and the noise + HPN-07/NAC group were compared. ** and *** represent p<0.01 and 0.001, respectively. Ribbon synaptic loss is permanent twenty-four hours after injury, so recovery must be regenerative.
图24显示HPN-07增强螺旋神经节神经元外植体中BDNF诱导的神经突发生。螺旋神经节神经元具有在损伤后再生神经纤维的固有的、但有限的能力。内源性神经营养因子、脑源性神经营养因子(BDNF)能够促进恢复。除BDNF外,HPN-07大大增加了神经纤维的数量和范围。***表示与NC相比p<0.001。##表示与BDNF(10ng/ml)相比p<0.01。Figure 24 shows that HPN-07 enhances BDNF-induced neurite outgrowth in spiral ganglion neuron explants. Spiral ganglion neurons have an inherent, but limited ability to regenerate nerve fibers after injury. Endogenous neurotrophic factor, brain-derived neurotrophic factor (BDNF), can promote recovery. In addition to BDNF, HPN-07 greatly increased the number and extent of nerve fibers. *** indicates p<0.001 compared to NC. ## indicates p<0.01 compared to BDNF (10 ng/ml).
图25显示,在HPN-07加强螺旋神经节神经元外植体中BDNF诱导的神经突发生的实验中,与正常对照(NC)相比,通过任何治疗都没有显著改变神经突长度。Figure 25 shows that in experiments in which HPN-07 potentiated BDNF-induced neurite outgrowth in spiral ganglion neuron explants, neurite length was not significantly altered by any treatment compared to normal controls (NC).
图26显示HPN-07增强NT-3诱导的神经突发生。与BDNF相似,HPN-07也增强了NT-3诱导的神经突发生。***表示与NC相比p<0.001。与NT-3(10ng/ml)相比,#和##分别代表p<0.1和p<0.01。Figure 26 shows that HPN-07 enhances NT-3 induced neurite outgrowth. Similar to BDNF, HPN-07 also enhanced NT-3-induced neurite outgrowth. *** indicates p<0.001 compared to NC. # and ## represent p<0.1 and p<0.01, respectively, compared to NT-3 (10 ng/ml).
图27显示,在HPN-07增强NT-3诱导的神经突发生的实验中,与正常对照(NC)相比,通过任何治疗都没有显著改变神经突长度。Figure 27 shows that in experiments in which HPN-07 enhanced NT-3-induced neurite outgrowth, neurite length was not significantly altered by any treatment compared to normal controls (NC).
图28显示,在建立的听力损失的初步研究中NHPN-1010治疗(HPN-07加NAC)恢复听力功能。通过野外爆炸伤害建立了永久性阈值偏移。在受伤后4周开始治疗,用HPN-07加NAC以300mg/kg每天两次给药,持续14天。与治疗前相比,受伤后14周(治疗后8周)显示ABR阈值改善。Figure 28 shows that NHPN-1010 treatment (HPN-07 plus NAC) restores hearing function in a pilot study of established hearing loss. A permanent threshold shift is established through wild explosion damage. Treatment was initiated 4 weeks post-injury with HPN-07 plus NAC administered at 300 mg/kg twice daily for 14 days. 14 weeks post-injury (8 weeks post-treatment) showed improvement in ABR thresholds compared to pre-treatment.
图29显示NHPN-1010治疗(HPN-07加NAC)在建立的慢性听力损失模型中恢复IHC缎带突触数量。在损伤后4周开始NHPN-1010治疗,并且每天给药,持续14天。在受伤后8周缎带突触计数显著恢复。Figure 29 shows that NHPN-1010 treatment (HPN-07 plus NAC) restores IHC ribbon synapse number in an established chronic hearing loss model. NHPN-1010 treatment was initiated 4 weeks after injury and administered daily for 14 days. Ribbon synapse counts recovered significantly at 8 weeks post-injury.
图30显示NHPN-1010治疗(HPN-07加NAC)导致在建立的慢性听力损失模型中ABR波I振幅的恢复。安慰剂组中在80和70dB SPL时响应于4kHz和8kHz刺激的振幅因爆炸暴露而降低,并随着时间的推移继续减少。在NHPN-1010治疗后8周,以80dB SPL响应于8kHz刺激的幅度的减小完全恢复到处理前的水平。Figure 30 shows that NHPN-1010 treatment (HPN-07 plus NAC) resulted in restoration of ABR wave I amplitude in an established chronic hearing loss model. Amplitudes in response to 4 kHz and 8 kHz stimuli at 80 and 70 dB SPL were decreased by blast exposure in the placebo group and continued to decrease over time. Eight weeks after NHPN-1010 treatment, the reduction in amplitude in response to 8 kHz stimulation at 80 dB SPL fully recovered to pre-treatment levels.
图31显示,缎带突触在16、32、48kHz的爆炸后减少,并且用NHPN-1010治疗(HPN-07加NAC)后保持/恢复。Figure 31 shows that Ribbon synapses are reduced after blasting at 16, 32, 48 kHz and maintained/recovered after treatment with NHPN-1010 (HPN-07 plus NAC).
图32显示,NHPN-1010治疗(HPN-07加NAC)能够改善初级听觉传入神经元的爆炸影响-减少逆行神经变性。Figure 32 shows that NHPN-1010 treatment (HPN-07 plus NAC) is able to improve blast effects in primary auditory afferent neurons - reducing retrograde neurodegeneration.
图33显示,HPN-07和NAC逆转体内噪音诱导的突触损失。在该实验中,HPN-07/NAC治疗的五次剂量似乎比两次剂量更有效地逆转噪音诱导的突触损失。在单独噪音组和噪音+HPN-07/NAC组(5次剂量)之间进行比较。**表示p<0.01。Figure 33 shows that HPN-07 and NAC reverse noise-induced synaptic loss in vivo. In this experiment, five doses of HPN-07/NAC treatment appeared to reverse noise-induced synaptic loss more effectively than two doses. Comparisons were made between the noise alone group and the noise + HPN-07/NAC group (5 doses). ** indicates p<0.01.
图34显示,HPN-07/NAC HPN-07/NAC体内恢复噪音诱导的ABR幅度异常。与未治疗组相比,治疗组的ABR波I振幅和波V/I振幅比在噪音暴露后15天与噪声前相比没有变化。两组的波V振幅没有变化。**p<0.01,重复测量双因素方差分析在频率上有显著的主效应。Figure 34 shows that HPN-07/NAC HPN-07/NAC restores noise-induced ABR amplitude abnormalities in vivo. Compared with the untreated group, the ABR wave I amplitude and wave V/I amplitude ratio in the treated group did not change 15 days after noise exposure compared to before noise. There was no change in wave V amplitude between the two groups. **p<0.01, repeated measures two-way ANOVA with significant main effects in frequency.
图35显示了中枢听觉系统中活性调节的细胞骨架相关蛋白(ARC)免疫染色。ARC,也称为Arg3.1,是一种可塑性蛋白质。中枢听觉系统中的ARC减少与耳鸣有关。爆炸暴露使AC、IC和DCN中的ARC下降。与没有治疗的爆炸组相比,HPN-07/NAC治疗使AC、IC和DCN中的ARC表达正常化。*、***表示与NC相比p<0.05或0.001,###表示与未治疗的爆炸组相比p<0.001。Figure 35 shows activity-regulated cytoskeleton-associated protein (ARC) immunostaining in the central auditory system. ARC, also known as Arg3.1, is a plasticity protein. Decreased ARC in the central auditory system is associated with tinnitus. Blast exposure decreased ARC in AC, IC and DCN. HPN-07/NAC treatment normalized ARC expression in AC, IC, and DCN compared to the blast group without treatment. *, *** indicate p<0.05 or 0.001 compared to NC, ### indicates p<0.001 compared to untreated blast group.
图36显示了中枢听觉系统中的生长相关蛋白43(GAP-43)免疫染色和蛋白质印迹。GAP-43是位于轴突生长锥中的膜相关磷蛋白。它是轴突生长、突触发生和突触重塑的标记物。爆炸暴露上调了AC、IC和DCN中的GAP-43。与未治疗的爆炸组相比,HPN-07/NAC治疗使AC、IC和DCN中的GAP-43表达正常化。Figure 36 shows growth-associated protein 43 (GAP-43) immunostaining and western blotting in the central auditory system. GAP-43 is a membrane-associated phosphoprotein located in axonal growth cones. It is a marker of axonal growth, synaptogenesis and synaptic remodeling. Blast exposure upregulated GAP-43 in AC, IC and DCN. HPN-07/NAC treatment normalized GAP-43 expression in AC, IC and DCN compared to untreated blast group.
图37显示了背侧耳蜗核(DCN)中的GABAA受体α1(GABAARα1)免疫染色。GABAA受体是离子型受体和配体门控离子通道。其内源性配体是γ-氨基丁酸(GABA),它是中枢神经系统中的主要抑制性神经递质。爆炸暴露上调了DCA中GABAARα1的表达。与未治疗的爆炸组相比,HPN-07/NAC治疗使DCN中GABAARα1的表达正常化。Figure 37 shows GABAA receptor alpha1 (GABAARal) immunostaining in the dorsal cochlear nucleus (DCN). GABAA receptors are ionotropic receptors and ligand-gated ion channels. Its endogenous ligand is gamma-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system. Blast exposure upregulated GABAARα1 expression in DCA. HPN-07/NAC treatment normalized the expression of GABAARα1 in DCN compared to the untreated blast group.
图38显示了DCN中的GABAARα1(红色)和GAD67(绿色)共标记。GAD67是抑制性神经元的生物标记物,表明GABAARα1阳性细胞是抑制性神经元。Figure 38 shows GABAARα1 (red) and GAD67 (green) co-labeling in DCN. GAD67 is a biomarker of inhibitory neurons, indicating that GABAARα1-positive cells are inhibitory neurons.
图39显示了DCN中谷氨酸受体2(GluR2)免疫染色。GluR2是AMPA的离子型受体,AMPA是中枢神经系统中的兴奋性神经递质。谷氨酸受体的过度刺激通过兴奋性毒性引起神经变性和神经元损伤。爆炸暴露上调了DCN中GluR2的表达。与未治疗的爆炸组相比,HPN-07/NAC治疗使DCN中GluR2的表达正常化。Figure 39 shows glutamate receptor 2 (GluR2) immunostaining in DCN. GluR2 is an ionotropic receptor for AMPA, an excitatory neurotransmitter in the central nervous system. Overstimulation of glutamate receptors causes neurodegeneration and neuronal damage through excitotoxicity. Blast exposure upregulated GluR2 expression in DCNs. HPN-07/NAC treatment normalized the expression of GluR2 in DCN compared to the untreated blast group.
图40显示螺旋神经节(SG)中的瞬时受体电位阳离子通道亚家族V成员1(TRPV1)免疫染色。TRPV1,也称为辣椒素受体和香草素受体1,由高温、酸性条件、辣椒素和刺激性化合物激活。SG中TRPV1的上调与耳鸣有关。爆炸暴露上调了SG中的TRPV1。与未治疗的爆炸组相比,HPN-07/NAC治疗使SG中的TRPV1正常化。Figure 40 shows transient receptor potential cation channel subfamily V member 1 (TRPV1) immunostaining in the spiral ganglion (SG). TRPV1, also known as capsaicin receptor and vanilloid receptor 1, is activated by high temperature, acidic conditions, capsaicin, and irritant compounds. Upregulation of TRPV1 in SG is associated with tinnitus. Blast exposure upregulated TRPV1 in the SG. HPN-07/NAC treatment normalized TRPV1 in SGs compared to the untreated blast group.
详细描述Detailed Description
本文描述的发明提供了用于促进或增强突触发生和神经突发生的方法,包含给患有耳蜗突触病或前庭突触病的对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN,或HPN-07)或其药学上可接受的盐。任选地,2,4-DSPBN与NAC共同施用。The invention described herein provides a method for promoting or enhancing synaptogenesis and neuritegenesis comprising administering to a subject suffering from cochlear synaptopathies or vestibular synaptopathies an effective amount of 2,4-disulfonyl alpha- Phenyl tert-butylnitrone (2,4-DSPBN, or HPN-07) or a pharmaceutically acceptable salt thereof. Optionally, 2,4-DSPBN is co-administered with NAC.
缩写词abbreviation
AVCN,前腹侧耳蜗核;AC,听觉皮层;bTBI,爆炸引起的创伤性脑损伤。CtBP2,C末端结合蛋白2;DCN,背侧耳蜗核;GluR2/3,谷氨酸受体2/3;HPN-07,2,4-二磺酰基α-苯基叔丁基硝酮;IC,下丘;IHC,内毛细胞;mTBI,轻度爆炸引起的创伤性脑损伤;NAC,N-乙酰半胱氨酸;NF,神经微丝;OC,柯蒂氏器;OHC,外毛细胞;8-OHdG,8-羟基-2'-脱氧鸟苷;psi,磅/平方英寸;PVCN,后腹侧耳蜗核;SNHL,感音神经性听力损失;SG,螺旋神经节;SGN,螺旋神经节神经元;SL,螺旋叶片。AVCN, anterior ventral cochlear nucleus; AC, auditory cortex; bTBI, blast-induced traumatic brain injury. CtBP2, C-terminal binding protein 2; DCN, dorsal cochlear nucleus; GluR2/3, glutamate receptor 2/3; HPN-07, 2,4-disulfonyl α-phenyl-tert-butylnitrone; IC , inferior colliculus; IHC, inner hair cell; mTBI, traumatic brain injury from mild blast; NAC, N-acetylcysteine; NF, neurofilament; OC, organ of Corti; OHC, outer hair cell ; 8-OHdG, 8-hydroxy-2'-deoxyguanosine; psi, pounds per square inch; PVCN, posterior ventral cochlear nucleus; SNHL, sensorineural hearing loss; SG, spiral ganglion; SGN, spiral nerve Ganglion neuron; SL, helical blade.
2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)2,4-Disulfonyl α-phenyl tert-butylnitrone (2,4-DSPBN)
2,4-二磺酰基α-苯基叔丁基硝酮也称为2,4-二磺酰基PBN、2,4-DSPBN、NXY-059或HPN-07。它具有以下结构:2,4-Disulfonyl α-phenyl tert-butylnitrone is also known as 2,4-disulfonyl PBN, 2,4-DSPBN, NXY-059 or HPN-07. It has the following structure:
该化合物的酸形式具有以下结构:The acid form of this compound has the following structure:
酸形式可以是固体或在低pH溶液中被发现。化合物的离子化盐形式存在于较高的pH值下,可以用下列结构之一表示:The acid form can be solid or found in low pH solutions. The ionized salt form of the compound exists at higher pH and can be represented by one of the following structures:
在盐形式中,X是药学上可接受的阳离子。最常见的是,这种阳离子是一价物质,如钠、钾或铵,但其也可以是单独的多价或阳离子与药学上可接受的一价阴离子的组合,例如钙与氯化物离子、溴化物离子、碘化物离子、羟基、硝酸根、磺酸根、醋酸根、酒石酸根、草酸根、琥珀酸根、双羟萘酸根等阴离子;具有这种阴离子的镁;具有这种阴离子的锌等。在这些材料中,最优选游离酸和简单的钠、钾或铵盐,钙和镁盐也是优选的,但稍微不那么优选。美国专利号5,488,145详细描述了2,4-DSPBN,其通过引用并入本文。2,4-DSPBN的盐也可以类似于如本文所述的使用2,4-DSPBN的方式用于促进或增强突触发生和神经突发生。In salt form, X is a pharmaceutically acceptable cation. Most commonly, this cation is a monovalent species, such as sodium, potassium, or ammonium, but it can also be polyvalent alone or in combination with a pharmaceutically acceptable monovalent anion, such as calcium and chloride ions, Anions such as bromide, iodide, hydroxyl, nitrate, sulfonate, acetate, tartrate, oxalate, succinate, pamoate, etc.; magnesium with this anion; zinc with this anion, etc. Of these materials, the free acid and simple sodium, potassium or ammonium salts are most preferred, calcium and magnesium salts are also preferred, but somewhat less preferred. 2,4-DSPBN is described in detail in US Patent No. 5,488,145, which is incorporated herein by reference. Salts of 2,4-DSPBN can also be used to promote or enhance synaptogenesis and neurite outgrowth in a manner similar to the use of 2,4-DSPBN as described herein.
为了促进或增强突触发生和神经突发生,2,4-DSPBN能够以以下剂量施用,例如,约1mg/kg至约500mg/kg体重之间、或约5mg/kg至约400mg/kg体重之间、或约10mg/kg至约300mg/kg体重之间、或约10mg/kg体重、或约20mg/kg体重、或约50mg/kg体重、或约100mg/kg体重、或约150mg/kg体重、或约200mg/kg体重、或约250mg/kg体重、或约300mg/kg体重。To promote or enhance synaptogenesis and neuritegenesis, 2,4-DSPBN can be administered at doses of, for example, between about 1 mg/kg to about 500 mg/kg body weight, or about 5 mg/kg to about 400 mg/kg body weight Between, or between about 10 mg/kg and about 300 mg/kg body weight, or about 10 mg/kg body weight, or about 20 mg/kg body weight, or about 50 mg/kg body weight, or about 100 mg/kg body weight, or about 150 mg/kg Body weight, or about 200 mg/kg body weight, or about 250 mg/kg body weight, or about 300 mg/kg body weight.
为了促进或增强人对象中的突触发生和神经突发生,2,4-DSPBN能够以以下日剂量施用,例如约100mg至约20,000mg之间、或约500mg至约10,000mg之间、或约1,000mg至约5,000mg之间、或约100mg、或约200mg、或约500mg、或约1,000mg、或约2,000mg、或约3,000mg、或约5,000mg、或约8,000mg、或约10,000mg。To promote or enhance synaptogenesis and neuritegenesis in a human subject, 2,4-DSPBN can be administered in a daily dose, for example, between about 100 mg and about 20,000 mg, or between about 500 mg and about 10,000 mg, or Between about 1,000 mg and about 5,000 mg, or about 100 mg, or about 200 mg, or about 500 mg, or about 1,000 mg, or about 2,000 mg, or about 3,000 mg, or about 5,000 mg, or about 8,000 mg, or about 10,000 mg.
对象可以以每日一剂、或每日两剂、或每日三剂、或每日四剂、或每日五剂施用。The subject may be administered one dose per day, or two doses per day, or three doses per day, or four doses per day, or five doses per day.
2,4-DSPBN能够与NAC组合以促进或增强突触发生和神经突发生。在一些实施方案中,2,4-DSPBN和NAC作为混合物而共同被施用。在一些实施方案中,2,4-DSPBN和NAC作为不同的剂型而依序或同时被施用。2,4-DSPBN can be combined with NAC to promote or enhance synaptogenesis and neurite outgrowth. In some embodiments, 2,4-DSPBN and NAC are co-administered as a mixture. In some embodiments, 2,4-DSPBN and NAC are administered sequentially or simultaneously as different dosage forms.
在一些实施方案中,口服施用2,4-DSPBN和任选的NAC。其他递送方法包括但不限于静脉内地、皮下地、舌下地、真皮下地、鞘内地或耳内局部地。此外,活性组合物可以作为纳米颗粒或树枝状聚合物制剂被施用。纳米颗粒可以是多功能的并且由聚合物和顺磁性氧化铁颗粒组成,以允许施加外部磁力以帮助将药物递送到期望的目标,例如内耳或背侧耳蜗核。另外,组合物可以用本领域技术人员已知的添加剂配制,以增强口服吸收和改变生物利用度动力学。In some embodiments, 2,4-DSPBN and optionally NAC are administered orally. Other delivery methods include, but are not limited to, intravenous, subcutaneous, sublingual, subdermal, intrathecal, or topical in the ear. In addition, the active composition can be administered as a nanoparticle or dendrimer formulation. Nanoparticles can be multifunctional and composed of polymers and paramagnetic iron oxide particles to allow the application of external magnetic forces to aid in drug delivery to desired targets, such as the inner ear or dorsal cochlear nucleus. Additionally, the compositions can be formulated with additives known to those skilled in the art to enhance oral absorption and alter bioavailability kinetics.
替代2,4-DSPBN或者除了2,4-DSPBN之外,其他硝酮化合物也能够用于促进或增强突触发生和神经突发生。在一些实施方案中,所述硝酮化合物选自苯基丁基硝酮(PBN)及其衍生物。在一些实施方案中,所述硝酮化合物是PBN。在一些实施方案中,所述硝酮化合物是4-羟基-α-苯基丁基硝酮(4-OHPBN)。在一些实施方案中,所述硝酮化合物是2-磺酰基-α-苯基叔丁基硝酮(S-PBN)。Instead of or in addition to 2,4-DSPBN, other nitrone compounds can also be used to promote or enhance synaptogenesis and neurite outgrowth. In some embodiments, the nitrone compound is selected from phenylbutylnitrone (PBN) and derivatives thereof. In some embodiments, the nitrone compound is PBN. In some embodiments, the nitrone compound is 4-hydroxy-α-phenylbutylnitrone (4-OHPBN). In some embodiments, the nitrone compound is 2-sulfonyl-α-phenyl-tert-butylnitrone (S-PBN).
因此,本申请明确涵盖在本文公开的所有实施方案中替代了2,4-DSPBN或除了2,4-DSPBN之外的任何上述硝酮化合物的用途。因此,公开了这样的方法,其中苯基丁基硝酮(PBN)、4-羟基-α-苯基丁基硝酮(4-OHPBN)和2-磺酰基-α-苯基叔丁基硝酮(S-PBN)中的一种或多种被用于替代2,4-DSPBN或除了2,4-DSPBN之外使用。Accordingly, the present application expressly covers the use of any of the above-mentioned nitrone compounds in place of 2,4-DSPBN or in addition to 2,4-DSPBN in all embodiments disclosed herein. Accordingly, methods are disclosed wherein phenylbutylnitrone (PBN), 4-hydroxy-α-phenylbutylnitrone (4-OHPBN) and 2-sulfonyl-α-phenyl tert-butylnitrone One or more of the ketones (S-PBN) were used in place of or in addition to 2,4-DSPBN.
增强突触发生和/或神经突发生的方法Methods of enhancing synaptogenesis and/or neurite outgrowth
本文描述的发明提供了促进或增强突触发生和神经突发生的方法,包含向患有耳蜗突触病或前庭突触病的对象施用有效量的2,4-DSPBN或其药学上可接受的盐。任选地,2,4-DSPBN与NAC共同施用。还提供了在患有耳蜗突触病或前庭突触病的对象中促进或增强突触发生或神经突发生的方法,包含向有此需要的对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮或其药学上可接受的盐。The invention described herein provides a method of promoting or enhancing synaptogenesis and neuritegenesis comprising administering to a subject suffering from cochlear synaptopathies or vestibular synaptopathies an effective amount of 2,4-DSPBN or a pharmaceutically acceptable amount thereof of salt. Optionally, 2,4-DSPBN is co-administered with NAC. Also provided is a method of promoting or enhancing synaptogenesis or neuropathy in a subject with cochlear synaptopathies or vestibular synaptopathies, comprising administering to a subject in need thereof an effective amount of 2,4-disulfonyl α-phenyl tert-butylnitrone or a pharmaceutically acceptable salt thereof.
突触病是指与突触功能障碍或损失有关的脑、脊髓或外周神经系统疾病。慢性听力损失、耳鸣、听觉过敏、老年性耳聋或平衡障碍通常与噪音和年龄相关的耳蜗突触病或前庭突触病有关,与毛细胞损失无关。耳蜗突触病描述于Kujawa et al.,J.Neurosci.,29:14077-14085(2009);Lin et al.,JARO,12:605-616(2011);Sergeyenko et al.,J.Neurosci.,33:13686-13694(2013);Makary et al.,JARO,12:711-717(2011);Viana etal.,Hear Res.,327:78–88(2015);Schaette et al.,J.Neurosci.,31:13452-13457(2011);Wan et al.,Hear Res.,329:1-10(2015);和Liberman et al.,PLoS One,11(9):e0162726(2016)中,所有这些都通过引用整体并入本文。Synaptopathies refer to disorders of the brain, spinal cord, or peripheral nervous system associated with dysfunction or loss of synapses. Chronic hearing loss, tinnitus, hyperacusis, presbycusis, or balance disorders are often associated with noise- and age-related cochlear or vestibular synaptopathies, not hair cell loss. Cochlear synaptopathies are described in Kujawa et al., J. Neurosci., 29:14077-14085 (2009); Lin et al., JARO, 12:605-616 (2011); Sergeyenko et al., J. Neurosci. , 33:13686-13694 (2013); Makary et al., JARO, 12:711-717 (2011); Viana et al., Hear Res., 327:78–88 (2015); Schaette et al., J. In Neurosci., 31:13452-13457 (2011); Wan et al., Hear Res., 329:1-10 (2015); and Liberman et al., PLoS One, 11(9):e0162726 (2016), All of these are incorporated herein by reference in their entirety.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有慢性听觉损伤或慢性听力损失的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对慢性听觉损伤或慢性听力损失的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有听觉损伤或听力损失至少一个月、至少三个月、至少六个月、至少一年、或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with chronic hearing impairment or chronic hearing loss, wherein 2,4-DSPBN or The pharmaceutically acceptable salts and optional NAC thereof enhance the regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit for chronic hearing impairment or chronic hearing loss to the subject. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients with hearing impairment or hearing loss for at least one month, at least three months, at least six months, at least one month years, or at least two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有由衰老引起的慢性听觉损伤或慢性听力损失的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对由衰老引起的慢性听觉损伤或慢性听力损失的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于至少65岁、或至少70岁、或至少75岁、或至少80岁的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from chronic hearing impairment or chronic hearing loss caused by aging, wherein 2,4, 4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC, enhances regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit to a subject against chronic hearing impairment or chronic hearing loss caused by aging. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a subject at least 65 years old, or at least 70 years old, or at least 75 years old, or at least 80 years old.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有由暴露于爆炸或噪音引起的慢性听觉损伤或慢性听力损失的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对由暴露于爆炸或噪音引起的慢性听觉损伤或慢性听力损失的治疗益处的水平。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from chronic hearing impairment or chronic hearing loss caused by exposure to explosions or noise , wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC enhances regeneration of cochlear neurites sufficient to deliver to a subject a treatment for chronic hearing impairment or chronic hearing loss caused by exposure to blasts or noise level of benefit.
在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于暴露于爆炸或噪音后至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。在一些实施方案中,2,4-DSPBN或其药学上可接受的盐和任选的NAC不在暴露于爆炸或噪音后两周内、一周内、四天内、两天内、一天内、12小时内或4小时内施用于对象。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered for at least one month, at least three months, at least six months, at least one year after exposure to explosion or noise or objects of at least two years. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is not within two weeks, within one week, within four days, within two days, within one day, within 12 hours of exposure to the explosion or noise or administered to subjects within 4 hours.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有由感染引起的慢性听觉损伤或慢性听力损失的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对由感染引起的慢性听觉损伤或慢性听力损失的治疗益处的水平。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from chronic hearing impairment or chronic hearing loss caused by infection, wherein 2, 4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC, enhances regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit to a subject for chronic hearing impairment or chronic hearing loss caused by infection.
在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于感染后至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered at least one month, at least three months, at least six months, at least one year, or at least two years after infection Object.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有由暴露于毒素引起的慢性听觉损伤或慢性听力损失的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对由暴露于毒素引起的慢性听觉损伤或慢性听力损失的治疗益处的水平。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from chronic hearing impairment or chronic hearing loss caused by exposure to the toxin, wherein 2,4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC, enhances regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit to a subject against chronic hearing impairment or chronic hearing loss caused by exposure to the toxin.
在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于暴露于毒素后至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered at least one month, at least three months, at least six months, at least one year, or at least one month after exposure to the toxin object for two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有耳鸣的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对耳鸣的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有耳鸣至少一个月、至少三个月、至少六个月、至少六个月、至少一年或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from tinnitus, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance the regeneration of cochlear neurites to a level sufficient to deliver therapeutic benefits for tinnitus to the subject. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients suffering from tinnitus for at least one month, at least three months, at least six months, at least six months, at least six months Objects of one year or at least two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有听觉过敏的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对听觉过敏的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有听觉过敏至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with hyperacusis, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered The salt and optional NAC enhance the regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit for hyperacusis to the subject. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients with hyperacusis for at least one month, at least three months, at least six months, at least one year, or at least object for two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有老年性耳聋的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对老年性耳聋的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有老年性耳聋至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with presbycusis, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with presbycusis The received salt and optional NAC enhance the regeneration of cochlear neurites to a level sufficient to deliver a therapeutic benefit for presbycusis to the subject. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients with presbycusis for at least one month, at least three months, at least six months, at least one year, or Subjects of at least two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有平衡障碍的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对平衡障碍的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有平衡障碍至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with a balance disorder, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance the regeneration of cochlear neurites to a level sufficient to deliver therapeutic benefits for balance disorders to the subject. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients with a balance disorder for at least one month, at least three months, at least six months, at least one year, or at least object for two years.
在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有带有突触损失的梅尼埃病的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC将耳蜗神经突的再生增强到足以向对象递送针对带有突触损失的梅尼埃病的治疗益处的水平。在一些实施方案中,将2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有带有突触损失的梅尼埃病至少一个月、至少三个月、至少六个月、至少一年或至少两年的对象。In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient suffering from Meniere's disease with synaptic loss, wherein 2,4 - DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC enhances regeneration of cochlear neurites to a level sufficient to deliver therapeutic benefit to the subject for Meniere's disease with synaptic loss. In some embodiments, 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to patients with Meniere's disease with synaptic loss for at least one month, at least three months, at least six months Months, at least one year, or at least two years.
在一些实施方案中,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使耳蜗神经突或前庭神经突的再生率提高至少10%、至少20%、至少50%、至少100%、至少200%、至少500%或至少1000%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC increases the rate of regeneration of cochlear neurites or vestibular neurites by at least 10%, at least 20%, at least 50%, At least 100%, at least 200%, at least 500% or at least 1000%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使内毛细胞上的有活性的神经连接的数量增加至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。测量内毛细胞上的增加的有活性的神经连接的数量的方法描述于Kujawa et al.,J.Neurosci.,29:14077-14085(2009)and Liberman et al.,PLoS One,11(9):e0162726(2016)中。In some embodiments, the administration of 2,4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC, results in the presence of a The number of active neural connections is increased by at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%. Methods for measuring the number of increased active neural connections on inner hair cells are described in Kujawa et al., J. Neurosci., 29:14077-14085 (2009) and Liberman et al., PLoS One, 11(9) :e0162726 (2016).
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使柯蒂氏器中的音频区域中的突触(例如缎带突触)的数量增加至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。测量柯蒂氏器中音频区域中突触的数量的方法描述于Kujawa et al.,J.Neurosci.,29:14077-14085(2009)and Liberman et al.,PLoS One,11(9):e0162726(2016)中。In some embodiments, administration of 2,4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC, results in an increase in the level of The number of synapses (eg, ribbon synapses) in the audio region is increased by at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%. Methods for measuring the number of synapses in audio regions in the organ of Corti are described in Kujawa et al., J. Neurosci., 29:14077-14085 (2009) and Liberman et al., PLoS One, 11(9):e0162726 (2016).
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使IHC缎带突触计数增加至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN, or a pharmaceutically acceptable salt thereof, and optionally NAC causes IHC ribbon synapses to count after one or two or four weeks of treatment, or after more than four weeks of treatment An increase of at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使AC、IC和/或DCN中ARC的表达增加至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC after one or two or four weeks of treatment, or after more than four weeks of treatment, causes AC, IC and/or The expression of ARC in the DCN is increased by at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使AC、IC和/或DCN中GAP-43的表达增加至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC after one or two or four weeks of treatment, or after more than four weeks of treatment, causes AC, IC and/or The expression of GAP-43 in DCN is increased by at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使DCN中GABAA Rα1的表达减少至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC results in the expression of GABAA Rα1 in DCN after one or two or four weeks of treatment, or after more than four weeks of treatment A reduction of at least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使DCN中GluR2的表达减少至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC reduces the expression of GluR2 in DCN after one or two or four weeks of treatment, or after more than four weeks of treatment At least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
在一些实施方案中,在治疗一周或两周或四周后,或在治疗超过四周后,2,4-DSPBN或其药学上可接受的盐和任选的NAC的施用使SG中TRPV1的表达减少至少1%、至少2%、至少5%、至少10%、至少20%、至少50%或至少100%。In some embodiments, administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC reduces the expression of TRPV1 in the SG after one or two or four weeks of treatment, or after more than four weeks of treatment At least 1%, at least 2%, at least 5%, at least 10%, at least 20%, at least 50%, or at least 100%.
减少听觉系统中神经变性和/或Tau蛋白积累的方法Methods of reducing neurodegeneration and/or accumulation of tau protein in the auditory system
耳蜗神经变性通常伴随着由于衰老、耳毒性或暴露于强烈噪音或爆炸超压而引起的毛细胞损失。暴露于爆炸超压的非转基因大鼠表现出海马体中微管相关蛋白Tau的神经毒性变体的显著体细胞积累。在另一方面,本公开涉及减少响应于爆炸暴露的听觉系统中的神经变性和病理性Tau积聚,并评估抗氧化剂对使该病理过程短路的潜在治疗功效。爆炸损伤引起未经治疗的动物耳蜗中的缎带突触损失和逆行神经变性。在从外周和中央听觉系统的神经元中,观察到神经微丝轻链和病理性Tau寡聚体的伴随的核周体(perikaryal)的积累从螺旋神经节跨越到听觉皮层。Cochlear nerve degeneration is often accompanied by loss of hair cells due to aging, ototoxicity, or exposure to loud noise or explosion overpressure. Nontransgenic rats exposed to explosive overpressure exhibited significant somatic accumulation of neurotoxic variants of the microtubule-associated protein Tau in the hippocampus. In another aspect, the present disclosure relates to reducing neurodegeneration and pathological Tau accumulation in the auditory system in response to blast exposure, and evaluating the potential therapeutic efficacy of antioxidants to short-circuit this pathological process. Blast injury causes Ribbon synaptic loss and retrograde neurodegeneration in the cochlea of untreated animals. In neurons from the peripheral and central auditory systems, concomitant perikaryal accumulation of neurofilament light chains and pathological Tau oligomers was observed spanning from the spiral ganglia to the auditory cortex.
由于其一致的积累模式和充分记录的神经毒性,病理性Tau寡聚体的积累可以积极地促成爆炸引起的耳蜗神经变性。使用2,4-二磺酰基α-苯基叔丁基硝酮(HPN-07)和N-乙酰半胱氨酸(NAC)的组合方案的治疗性干预显著降低了病理性Tau积聚和耳蜗和听觉皮层中正在进行的神经变性的迹象。本公开内容提供了在爆炸暴露后不久施用的HPN-07和NAC的组合能够作为用于保护具有爆炸引起的创伤性脑损伤的军事人员或平民的听觉功能的潜在治疗策略。Due to its consistent accumulation pattern and well-documented neurotoxicity, the accumulation of pathological Tau oligomers can actively contribute to blast-induced cochlear nerve degeneration. Therapeutic intervention using a combination regimen of 2,4-disulfonyl α-phenyl-tert-butylnitrone (HPN-07) and N-acetylcysteine (NAC) significantly reduced pathological tau accumulation and cochlear and Signs of ongoing neurodegeneration in the auditory cortex. The present disclosure provides that the combination of HPN-07 and NAC administered shortly after blast exposure can serve as a potential therapeutic strategy for protecting auditory function in military personnel or civilians with blast-induced traumatic brain injury.
因此,本文描述的本公开提供了用于减少或减缓听觉系统中的神经变性和/或Tau蛋白积累的方法,包含向对象施用有效量的2,4-DSPBN或其药学上可接受的盐。任选地,2,4-DSPBN与NAC共同被施用。在另一个实施方案中,2,4-DSPBN与Tau聚集抑制剂共同被施用。在本公开中,术语“Tau”是指Tau的天然单体形式,或Tau的其他构象异构体,例如Tau的低聚物或聚集体。术语“Tau”也被用于统称所有类型和形式的Tau。Tau蛋白具有稳定微管的功能,微管在神经细胞中很丰富,并且在少突胶质细胞和星形胶质细胞中的存在程度要小得多。当Tau蛋白质变得有缺陷并且不能充分稳定微管时,神经系统的病理能够发展例如阿尔茨海默病。Accordingly, the present disclosure described herein provides a method for reducing or slowing neurodegeneration and/or Tau protein accumulation in the auditory system comprising administering to a subject an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof. Optionally, 2,4-DSPBN is co-administered with NAC. In another embodiment, 2,4-DSPBN is co-administered with a Tau aggregation inhibitor. In the present disclosure, the term "Tau" refers to the native monomeric form of Tau, or other conformational isomers of Tau, such as oligomers or aggregates of Tau. The term "Tau" is also used collectively to refer to all types and forms of Tau. Tau proteins function to stabilize microtubules, which are abundant in nerve cells and to a much lesser extent in oligodendrocytes and astrocytes. Pathologies of the nervous system can develop, such as Alzheimer's disease, when Tau proteins become defective and fail to stabilize microtubules sufficiently.
在一个实施方案中,2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,该药物组合物还包含药学上可接受的载体。在另一个实施方案中,2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、真皮下地、鞘内地、通过吸入、或在耳内局部地施用于对象。In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition further comprising a pharmaceutically acceptable carrier. In another embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subdermally, intrathecally, by inhalation, or topically in the ear object.
在一些实施方案中,所述方法还包含施用一种或多种选自N-乙酰半胱氨酸、乙酰基-L-肉碱、谷胱甘肽单乙酯、依布硒啉、D-甲硫氨酸、carbamathione和Szeto-Schiller肽及其功能类似物的化合物。在其他实施方案中,所述方法还包含施用N-乙酰半胱氨酸。In some embodiments, the method further comprises administering one or more selected from the group consisting of N-acetylcysteine, acetyl-L-carnitine, glutathione monoethyl ester, ebselen, D- Compounds of methionine, carbamathione and Szeto-Schiller peptides and their functional analogs. In other embodiments, the method further comprises administering N-acetylcysteine.
在一个实施方案中,神经变性是由衰老、或暴露于急性或慢性的爆炸或噪音引起的。在另一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一个月的对象。在一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一年的对象。In one embodiment, neurodegeneration is caused by aging, or exposure to acute or chronic blasts or noise. In another embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one month after exposure to the explosion or noise. In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject for at least one year after exposure to an explosion or noise.
在一个实施方案中,神经变性是由感染引起的。在一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于感染后至少一个月的对象。在另一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于感染后至少一年的对象。In one embodiment, the neurodegeneration is caused by infection. In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one month after infection. In another embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one year after infection.
在一个实施方案中,神经变性是由暴露于毒素引起的。在另一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一个月的对象。在一个实施方案中,2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一年的对象。In one embodiment, neurodegeneration is caused by exposure to a toxin. In another embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one month after exposure to the toxin. In one embodiment, 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a subject at least one year after exposure to the toxin.
在一个实施方案中,其中2,4-DSPBN或其药学上可接受的盐的施用减少了对象中Tau蛋白的积累。在一个实施方案中,Tau蛋白质在听觉系统中积累。在一些实施方案中,该方法还包含施用Tau聚集抑制剂。Tau聚集抑制剂可以是共价或非共价抑制剂。Tau聚集抑制剂的非限制性实施例包括姜黄素(curcumin)、分子钳(例如CLR01)、四磺酸酞菁(phthalocyanine tetrasulfonate)、oleocanthal、肉桂醛(cinnamaldehyde)、黄芩素、异丙肾上腺素、多巴胺、多巴酚丁胺、左旋多巴、左旋多巴/卡比多巴、trimetoquinol、哮平灵(hexoprenaline)、甲基多巴(methyldopa)和屈昔多巴(droxidopa)。In one embodiment, wherein administration of 2,4-DSPBN or a pharmaceutically acceptable salt thereof reduces the accumulation of Tau protein in the subject. In one embodiment, Tau protein accumulates in the auditory system. In some embodiments, the method further comprises administering a Tau aggregation inhibitor. Tau aggregation inhibitors can be covalent or non-covalent inhibitors. Non-limiting examples of tau aggregation inhibitors include curcumin, molecular tweezers (eg CLR01), phthalocyanine tetrasulfonate, oleocanthal, cinnamaldehyde, baicalein, isoproterenol, Dopamine, dobutamine, levodopa, levodopa/carbidopa, trimetoquinol, hexoprenaline, methyldopa, and droxidopa.
治疗中枢神经系统疾病的方法Methods of treating diseases of the central nervous system
本文所述的发明还提供了在有需要的对象的中枢神经系统中促进或增强突触发生和神经突发生的方法,包含向所述对象施用有效量的2,4-DSPBN或其药学上可接受的盐,其中所述对象患有选自以下的中枢神经系统疾病或病症:阿尔茨海默病、帕金森氏病、进行性核上性麻痹、额颞叶痴呆、匹克氏病、嗜银颗粒痴呆、皮质基底节变性、进行性皮层下神经胶质过多症、肌萎缩性脊髓侧索硬化症、弥漫性神经纤维缠结伴钙化症、慢性创伤性脑病变、拳击员痴呆、纯缠结痴呆、唐氏综合征、格斯特曼-施特劳斯纳综合征、哈勒沃登-施帕茨病、克雅氏病、多系统萎缩、C型尼曼-匹克病、朊病毒蛋白大脑淀粉样血管病、亚急性硬化性全脑炎、肌强直性营养不良、伴有神经纤维缠结的非冠状神经病、以及脑炎后帕金森氏综合征。任选地,2,4-DSPBN与有效量的NAC共同施用。2,4-DSPBN和NAC能够同时地或依序地共同施用。2,4-DSPBN和NAC能够在一种组合物中或在单独的组合物中共同施用。The invention described herein also provides a method of promoting or enhancing synaptogenesis and neurite outgrowth in the central nervous system of a subject in need thereof, comprising administering to the subject an effective amount of 2,4-DSPBN or a pharmaceutically acceptable amount thereof. An acceptable salt, wherein the subject suffers from a central nervous system disease or disorder selected from the group consisting of Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, frontotemporal dementia, Pick's disease, Silver particle dementia, corticobasal degeneration, progressive subcortical hypergliosis, amyotrophic lateral sclerosis, diffuse neurofibrillary tangles with calcifications, chronic traumatic encephalopathy, boxer dementia, pure tangles Dementia, Down syndrome, Gerstmann-Strausner syndrome, Hallewolden-Spatz disease, Creutzfeldt-Jakob disease, multiple system atrophy, Niemann-Pick disease type C, prions Protein cerebral amyloid angiopathy, subacute sclerosing panencephalitis, myotonic dystrophy, noncoronary neuropathy with neurofibrillary tangles, and post-encephalitic parkinsonism. Optionally, 2,4-DSPBN is co-administered with an effective amount of NAC. 2,4-DSPBN and NAC can be co-administered simultaneously or sequentially. 2,4-DSPBN and NAC can be co-administered in one composition or in separate compositions.
本发明的另一方面涉及治疗阿尔茨海默病的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有阿尔茨海默病的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对阿尔茨海默病的治疗益处的水平。Another aspect of the invention relates to methods of treating Alzheimer's disease. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with Alzheimer's disease, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with Alzheimer's disease The acceptable salts above and optionally NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological Tau protein in the central nervous system sufficient to deliver a treatment for Alzheimer's disease to the patient level of benefit.
本发明的另一方面涉及治疗帕金森氏病的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有帕金森氏病的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对帕金森氏病的治疗益处的水平。在一些实施方案中,该方法减少了患者的中枢神经系统中Tau蛋白的积累。Another aspect of the present invention relates to methods of treating Parkinson's disease. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with Parkinson's disease, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with Parkinson's disease Acceptable salts and optionally NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological Tau protein in the central nervous system sufficient to deliver therapeutic benefits for Parkinson's disease to the patient Level. In some embodiments, the method reduces the accumulation of Tau protein in the central nervous system of the patient.
本发明的另一方面涉及治疗进行性核上性麻痹(PSP)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有PSP的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对PSP的治疗益处的水平。Another aspect of the invention relates to a method of treating progressive supranuclear palsy (PSP). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with PSP, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for PSP to the patient.
本发明的另一方面涉及治疗额颞叶痴呆(FTD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有FTD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对FTD的治疗益处的水平。Another aspect of the invention relates to methods of treating frontotemporal dementia (FTD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with FTD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit for FTD to the patient.
本发明的另一方面涉及治疗匹克氏病的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有匹克氏病的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对匹克氏病的治疗益处的水平。Another aspect of the invention relates to a method of treating Pick's disease. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with Pick's disease, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered The received salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for Pick's disease to the patient.
本发明的另一方面涉及治疗嗜银颗粒痴呆(AGD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有AGD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对AGD的治疗益处的水平。Another aspect of the present invention relates to a method of treating arginophilic granular dementia (AGD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with AGD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for AGD to the patient.
本发明的另一方面涉及治疗皮质基底节变性(CBD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有CBD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对CBD的治疗益处的水平。Another aspect of the invention relates to methods of treating corticobasal degeneration (CBD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with CBD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit to CBD to the patient.
本发明的另一方面涉及治疗进行性皮层下神经胶质过多症(PSG)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有PSG的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对PSG的治疗益处的水平。Another aspect of the invention relates to methods of treating progressive subcortical hypergliosis (PSG). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with PSG, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit to PSG to the patient.
本发明的另一方面涉及治疗肌萎缩性脊髓侧索硬化症(ALS)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有ALS的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对ALS的治疗益处的水平。Another aspect of the invention relates to methods of treating amyotrophic lateral sclerosis (ALS). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with ALS, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for ALS to the patient.
本发明的另一方面涉及治疗弥漫性神经纤维缠结伴钙化症(DNTC)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有DNTC的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对DNTC的治疗益处的水平。Another aspect of the invention relates to a method of treating diffuse neurofibrillary tangles with calcification (DNTC). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with DNTC, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit to DNTC to the patient.
本发明的另一方面涉及治疗慢性创伤性脑病变的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有慢性创伤性脑病变的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对慢性创伤性脑病变的治疗益处的水平。Another aspect of the invention relates to methods of treating chronic traumatic encephalopathy. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with chronic traumatic encephalopathy, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with chronic traumatic encephalopathy The acceptable salts above and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological Tau protein in the central nervous system sufficient to deliver treatment to patients with chronic traumatic encephalopathy level of benefit.
本发明的另一方面涉及治疗拳击员痴呆(DP)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有DP的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送对抗DP的治疗益处的水平。Another aspect of the present invention relates to a method of treating boxer dementia (DP). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with DP, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit against DP to the patient.
本发明的另一方面涉及治疗纯缠结痴呆(TOD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有TOD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对TOD的治疗益处的水平。Another aspect of the present invention relates to a method of treating pure tangling dementia (TOD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with TOD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for TOD to the patient.
本发明的另一方面涉及治疗唐氏综合征的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有唐氏综合征的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对唐氏综合征的治疗益处的水平。Another aspect of the invention relates to a method of treating Down's syndrome. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with Down syndrome, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with Down syndrome Acceptable salts and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system sufficient to deliver therapeutic benefits for Down syndrome to patients Level.
本发明的另一方面涉及治疗格斯特曼-施特劳斯纳综合征(GSS)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有GSS的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送对抗GSS的治疗益处的水平。Another aspect of the invention relates to methods of treating Gerstmann-Straussner Syndrome (GSS). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with GSS, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit against GSS to the patient.
本发明的另一方面涉及治疗哈勒沃登-施帕茨病(HSD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有HSD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对HSD的治疗益处的水平。Another aspect of the present invention relates to a method of treating Hallewolden-Spatz disease (HSD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with HSD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for HSD to the patient.
本发明的另一方面涉及治疗克雅氏病(CJD)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有CJD的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对CJD的治疗益处的水平。Another aspect of the invention relates to methods of treating Creutzfeldt-Jakob disease (CJD). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with CJD, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit for CJD to the patient.
本发明的另一方面涉及治疗多系统萎缩(MSA)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有MSA的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对MSA的治疗益处的水平。Another aspect of the invention relates to methods of treating multiple system atrophy (MSA). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with MSA, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for MSA to the patient.
本发明的另一方面涉及治疗C型尼曼-匹克病(NPC)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有NPC的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对NPC的治疗益处的水平。Another aspect of the invention relates to a method of treating Niemann-Pick disease type C (NPC). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with NPC, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit against NPC to the patient.
本发明的另一方面涉及治疗朊病毒蛋白大脑淀粉样血管病(PrP-CAA)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有PrP-CAA的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对PrP-CAA的治疗益处的水平。Another aspect of the invention relates to a method of treating prion protein cerebral amyloid angiopathy (PrP-CAA). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with PrP-CAA, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered The received salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological Tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit to PrP-CAA to the patient.
本发明的另一方面涉及治疗亚急性硬化性全脑炎(SSPE)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有SSPE的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对SSPE的治疗益处的水平。Another aspect of the invention relates to a method of treating subacute sclerosing panencephalitis (SSPE). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with SSPE, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neuritegenesis and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver a therapeutic benefit for SSPE to the patient.
本发明的另一方面涉及治疗肌强直性营养不良的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有肌强直性营养不良的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对肌强直性营养不良的治疗益处的水平。Another aspect of the invention relates to a method of treating myotonic dystrophy. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with myotonic dystrophy, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to a human patient with myotonic dystrophy The acceptable salts above and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological Tau protein in the central nervous system sufficient to deliver to the patient a treatment for myotonic dystrophy level of benefit.
本发明的另一方面涉及治疗伴有神经纤维缠结的非冠状神经病的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有伴有神经纤维缠结的非冠状神经病的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对伴有神经纤维缠结的非冠状神经病的治疗益处的水平。Another aspect of the invention relates to a method of treating non-coronary neuropathy with neurofibrillary tangles. In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient having non-coronary neuropathy with neurofibrillary tangles, wherein 2,4 - DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC enhances neuritegenesis and/or synaptogenesis, and/or reduces the amount of pathological Tau protein in the central nervous system sufficient to deliver to the patient Levels of therapeutic benefit in neurofibrillary tangles in noncoronary neuropathy.
本发明的另一方面涉及治疗脑炎后帕金森氏综合征(PEP)的方法。在一些实施方案中,将有效量的2,4-DSPBN或其药学上可接受的盐和任选的NAC施用于患有PEP的人类患者,其中2,4-DSPBN或其药学上可接受的盐和任选的NAC增强神经突发生和/或突触发生、和/或将中枢神经系统中病理性Tau蛋白的量减少到足以向患者递送针对PEP的治疗益处的水平。Another aspect of the invention relates to methods of treating post-encephalitic Parkinson's syndrome (PEP). In some embodiments, an effective amount of 2,4-DSPBN or a pharmaceutically acceptable salt thereof and optionally NAC is administered to a human patient with PEP, wherein 2,4-DSPBN or a pharmaceutically acceptable salt thereof The salt and optional NAC enhance neurite outgrowth and/or synaptogenesis, and/or reduce the amount of pathological tau protein in the central nervous system to a level sufficient to deliver therapeutic benefit to the patient against PEP.
在一些实施方案中,该方法减少患有选自以下的中枢神经系统疾病或病症的患者的中枢神经系统中Tau蛋白的积累:阿尔茨海默病、帕金森氏病、进行性核上性麻痹、额颞叶痴呆、匹克氏病、嗜银颗粒痴呆、皮质基底节变性、进行性皮层下神经胶质过多症、肌萎缩性脊髓侧索硬化症、弥漫性神经纤维缠结伴钙化症、慢性创伤性脑病变、拳击员痴呆、纯缠结痴呆、唐氏综合征、格斯特曼-施特劳斯纳综合征、哈勒沃登-施帕茨病、克雅氏病、多系统萎缩、C型尼曼-匹克病、朊病毒蛋白大脑淀粉样血管病、亚急性硬化性全脑炎、肌强直性营养不良、伴有神经纤维缠结的非冠状神经病、以及脑炎后帕金森氏综合征。In some embodiments, the method reduces accumulation of Tau protein in the central nervous system of a patient with a central nervous system disease or disorder selected from Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy , frontotemporal dementia, Pick's disease, argentophilic granule dementia, corticobasal degeneration, progressive subcortical hypergliosis, amyotrophic lateral sclerosis, diffuse neurofibrillary tangles with calcification, chronic Traumatic encephalopathy, boxer dementia, pure tangling dementia, Down syndrome, Gerstmann-Straussner syndrome, Hallewolden-Spatz disease, Creutzfeldt-Jakob disease, multiple system atrophy , Niemann-Pick disease type C, prion protein cerebral amyloid angiopathy, subacute sclerosing panencephalitis, myotonic dystrophy, noncoronary neuropathy with neurofibrillary tangles, and post-encephalitic Parkinson's disease syndrome.
在一些实施方案中,该方法减缓、停止或逆转患有选自以下的中枢神经系统疾病或病症的患者的中枢神经系统中的神经变性:阿尔茨海默病、帕金森氏病、进行性核上性麻痹、额颞叶痴呆、匹克氏病、嗜银颗粒痴呆、皮质基底节变性、进行性皮层下神经胶质过多症、肌萎缩性脊髓侧索硬化症、弥漫性神经纤维缠结伴钙化症、慢性创伤性脑病变、拳击员痴呆、纯缠结痴呆、唐氏综合征、格斯特曼-施特劳斯纳综合征、哈勒沃登-施帕茨病、克雅氏病、多系统萎缩、C型尼曼-匹克病、朊病毒蛋白大脑淀粉样血管病、亚急性硬化性全脑炎、肌强直性营养不良、伴有神经纤维缠结的非冠状神经病、以及脑炎后帕金森氏综合征。In some embodiments, the method slows, stops or reverses neurodegeneration in the central nervous system of a patient with a central nervous system disease or disorder selected from Alzheimer's disease, Parkinson's disease, progressive nuclear disease Superior paralysis, frontotemporal dementia, Pick's disease, argentophilic granule dementia, corticobasal degeneration, progressive subcortical hypergliosis, amyotrophic lateral sclerosis, diffuse neurofibrillary tangles with calcifications disease, chronic traumatic encephalopathy, boxer dementia, pure tangling dementia, Down syndrome, Gerstmann-Straussner syndrome, Hallewolden-Spaatz disease, Creutzfeldt-Jakob disease, Multiple system atrophy, Niemann-Pick disease type C, prion protein cerebral amyloid angiopathy, subacute sclerosing panencephalitis, myotonic dystrophy, noncoronary neuropathy with neurofibrillary tangles, and post-encephalitis Parkinson's syndrome.
其他实施方案Other implementations
实施方案1。一种在患有耳蜗突触病或前庭突触病的对象中增强突触发生和神经突发生的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Embodiment 1. A method of enhancing synaptogenesis and neuritegenesis in a subject suffering from cochlear synaptopathies or vestibular synaptopathies, comprising administering to said subject in need thereof an effective amount of 2,4-disulfonyl alpha - Phenyl tert-butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof.
实施方案2。根据实施方案1所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,所述药物组合物还包含药学上可接受的载体。Embodiment 2. The method according to embodiment 1, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.
实施方案3。根据实施方案1所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、皮下地、鞘内地、通过吸入、或在耳内局部地施用于所述对象。Embodiment 3. The method of embodiment 1, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subcutaneously, intrathecally, by inhalation, or in the ear locally administered to the subject.
实施方案4。根据实施方案1所述的方法,其中所述方法进一步包含施用一种或多种选自N-乙酰半胱氨酸、乙酰基-L-肉碱、谷胱甘肽单乙酯、依布硒啉、D-甲硫氨酸、carbamathione和Szeto-Schiller肽及其功能类似物的化合物。Embodiment 4. The method of embodiment 1, wherein the method further comprises administering one or more selected from the group consisting of N-acetylcysteine, acetyl-L-carnitine, glutathione monoethyl ester, ebselen Compounds of morpholino, D-methionine, carbamathione and Szeto-Schiller peptides and their functional analogs.
实施方案5。根据实施方案1所述的方法,其中所述方法进一步包含施用N-乙酰半胱氨酸。Embodiment 5. The method of embodiment 1, wherein the method further comprises administering N-acetylcysteine.
实施方案6。根据实施方案1所述的方法,其中所述对象患有慢性听觉损伤或慢性听力损失。Embodiment 6. The method of embodiment 1, wherein the subject has chronic hearing impairment or chronic hearing loss.
实施方案7。根据实施方案6所述的方法,其中所述慢性听觉损伤或慢性听力损失是由衰老引起的。Embodiment 7. The method of embodiment 6, wherein the chronic hearing impairment or chronic hearing loss is caused by aging.
实施方案8。根据实施方案6所述的方法,其中所述慢性听觉损伤或慢性听力损失是由暴露于急性或慢性的爆炸或噪音引起的。Embodiment 8. The method of embodiment 6, wherein the chronic hearing impairment or chronic hearing loss is caused by exposure to acute or chronic explosions or noise.
实施方案9。根据实施方案8所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一个月的所述对象。Embodiment 9. The method of embodiment 8, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the explosion or noise.
实施方案10。根据实施方案8所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一年的所述对象。Embodiment 10. The method of embodiment 8, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the explosion or noise.
实施方案11。根据实施方案6所述的方法,其中所述慢性听觉损伤或慢性听力损失是由感染引起的。Embodiment 11. The method of embodiment 6, wherein the chronic hearing impairment or chronic hearing loss is caused by an infection.
实施方案12。根据实施方案11所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一个月的所述对象。Embodiment 12. The method of embodiment 11, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after infection.
实施方案13。根据实施方案11所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一年的所述对象。Embodiment 13. The method of embodiment 11, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after infection.
实施方案14。根据实施方案6所述的方法,其中所述慢性听觉损伤或慢性听力损失是由暴露于毒素引起的。Embodiment 14. The method of embodiment 6, wherein the chronic hearing impairment or chronic hearing loss is caused by exposure to a toxin.
实施方案15。根据实施方案14所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一个月的所述对象。Embodiment 15. The method of embodiment 14, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the toxin.
实施方案16。根据实施方案14所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一年的所述对象。Embodiment 16. The method of embodiment 14, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the toxin.
实施方案17。根据实施方案1所述的方法,其中所述对象还患有耳鸣。Embodiment 17. The method of embodiment 1, wherein the subject also suffers from tinnitus.
实施方案18。根据实施方案1所述的方法,其中所述对象还患有听觉过敏。Embodiment 18. The method of embodiment 1, wherein the subject also suffers from hyperacusis.
实施方案19。根据实施方案1所述的方法,其中所述对象还患有老年性耳聋。Embodiment 19. The method of embodiment 1, wherein the subject also suffers from presbycusis.
实施方案20。根据实施方案1所述的方法,其中所述对象还患有平衡障碍或带有突触损失的梅尼埃病。Embodiment 20. The method of embodiment 1, wherein the subject also suffers from a balance disorder or Meniere's disease with synaptic loss.
实施方案21。根据实施方案1所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐的施用增强所述对象中耳蜗神经突或前庭神经突的再生。Embodiment 21. The method of embodiment 1, wherein administration of the 2,4-DSPBN or a pharmaceutically acceptable salt thereof enhances regeneration of cochlear or vestibular neurites in the subject.
实施方案22。根据实施方案1所述的方法,其中所述对象中内毛细胞上有活性的神经连接的数目增加。Embodiment 22. The method of embodiment 1, wherein the number of active neural connections on inner hair cells is increased in the subject.
实施方案23。根据实施方案1所述的方法,其中所述对象中柯蒂氏器中音频区域中的突触的数量增加。Embodiment 23. The method of embodiment 1, wherein the number of synapses in the audio region in the organ of Corti is increased in the subject.
实施方案24。根据实施方案1所述的方法,其中所述对象没有经历耳蜗毛细胞或前庭毛细胞的实质性损失。Embodiment 24. The method of embodiment 1, wherein the subject does not experience substantial loss of cochlear hair cells or vestibular hair cells.
实施方案25。根据实施方案1所述的方法,其中所述对象已经经历了耳蜗毛细胞或前庭毛细胞的实质性损失。Embodiment 25. The method of embodiment 1, wherein the subject has experienced substantial loss of cochlear hair cells or vestibular hair cells.
实施方案26。一种在患有耳蜗突触病或前庭突触病的对象中增强突触发生或神经突发生的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Embodiment 26. A method of enhancing synaptogenesis or neuritegenesis in a subject suffering from cochlear synaptopathies or vestibular synaptopathies, comprising administering to said subject in need thereof an effective amount of 2,4-disulfonyl alpha - Phenyl tert-butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof.
实施方案27。一种用于减少对象中神经变性的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Embodiment 27. A method for reducing neurodegeneration in a subject, comprising administering to said subject in need thereof an effective amount of 2,4-disulfonyl alpha-phenyl tert-butylnitrone (2,4-DSPBN) or its Pharmaceutically acceptable salts.
实施方案28。根据实施方案27所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,所述药物组合物还包含药学上可接受的载体。Embodiment 28. The method according to embodiment 27, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.
实施方案29。根据实施方案27所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、皮下地、鞘内地、通过吸入、或在耳内局部地施用于所述对象。Embodiment 29. The method of embodiment 27, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subcutaneously, intrathecally, by inhalation, or in the ear locally administered to the subject.
实施方案30。根据实施方案27所述的方法,其中所述方法进一步包含施用一种或多种选自N-乙酰半胱氨酸、乙酰基-L-肉碱、谷胱甘肽单乙酯、依布硒啉、D-甲硫氨酸、carbamathione和Szeto-Schiller肽及其功能类似物的化合物。Embodiment 30. The method of embodiment 27, wherein the method further comprises administering one or more selected from the group consisting of N-acetylcysteine, acetyl-L-carnitine, glutathione monoethyl ester, ebselen Compounds of morpholino, D-methionine, carbamathione and Szeto-Schiller peptides and their functional analogs.
实施方案31。根据实施方案27所述的方法,其中所述方法进一步包含施用N-乙酰半胱氨酸。Embodiment 31. The method of embodiment 27, wherein the method further comprises administering N-acetylcysteine.
实施方案32。根据实施方案27所述的方法,其中所述神经变性是由衰老引起的。Embodiment 32. The method of embodiment 27, wherein the neurodegeneration is caused by aging.
实施方案33。根据实施方案27所述的方法,其中所述神经变性是由暴露于急性或慢性的爆炸或噪音引起的。Embodiment 33. The method of embodiment 27, wherein the neurodegeneration is caused by exposure to an explosion or noise, acute or chronic.
实施方案34。根据实施方案33所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一个月的所述对象。Embodiment 34. The method of embodiment 33, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the explosion or noise.
实施方案35。根据实施方案33所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一年的所述对象。Embodiment 35. The method of embodiment 33, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the explosion or noise.
实施方案36。根据实施方案27所述的方法,其中所述神经变性是由感染引起的。Embodiment 36. The method of embodiment 27, wherein the neurodegeneration is caused by an infection.
实施方案37。根据实施方案36所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一个月的所述对象。Embodiment 37. The method of embodiment 36, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after infection.
实施方案38。根据实施方案36所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一年的所述对象。Embodiment 38. The method of embodiment 36, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after infection.
实施方案39。根据实施方案27所述的方法,其中所述神经变性是由暴露于毒素引起的。Embodiment 39. The method of embodiment 27, wherein the neurodegeneration is caused by exposure to a toxin.
实施方案40。根据实施方案39所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一个月的所述对象。Embodiment 40. The method of embodiment 39, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the toxin.
实施方案41。根据实施方案39所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一年的所述对象。Embodiment 41. The method of embodiment 39, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the toxin.
实施方案42。根据实施方案27所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐的施用减少了对象中Tau蛋白的积累。Embodiment 42. The method of embodiment 27, wherein the administration of the 2,4-DSPBN or a pharmaceutically acceptable salt thereof reduces the accumulation of tau protein in the subject.
实施方案43。根据实施方案42所述的方法,其中所述Tau蛋白在听觉系统中积累。Embodiment 43. The method of embodiment 42, wherein the Tau protein accumulates in the auditory system.
实施方案44。根据实施方案27所述的方法,进一步包含施用Tau聚集体抑制剂。Embodiment 44. The method of embodiment 27, further comprising administering a tau aggregate inhibitor.
实施方案45。一种用于减少对象中Tau蛋白的积累的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Embodiment 45. A method for reducing the accumulation of Tau protein in a subject comprising administering to said subject in need thereof an effective amount of 2,4-disulfonyl alpha-phenyl tert-butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof.
实施方案46。根据实施方案45所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,所述药物组合物还包含药学上可接受的载体。Embodiment 46. The method according to embodiment 45, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.
实施方案47。根据实施方案45所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、皮下地、鞘内地、通过吸入、或在耳内局部地施用于所述对象。Embodiment 47. The method of embodiment 45, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subcutaneously, intrathecally, by inhalation, or in the ear locally administered to the subject.
实施方案48。根据实施方案45所述的方法,其中所述方法进一步包含施用一种或多种选自N-乙酰半胱氨酸、乙酰基-L-肉碱、谷胱甘肽单乙酯、依布硒啉、D-甲硫氨酸、carbamathione和Szeto-Schiller肽及其功能类似物的化合物。Embodiment 48. The method of embodiment 45, wherein the method further comprises administering one or more selected from the group consisting of N-acetylcysteine, acetyl-L-carnitine, glutathione monoethyl ester, ebselen Compounds of morpholino, D-methionine, carbamathione and Szeto-Schiller peptides and their functional analogs.
实施方案49。根据实施方案45所述的方法,其中所述方法进一步包含施用N-乙酰半胱氨酸。Embodiment 49. The method of embodiment 45, wherein the method further comprises administering N-acetylcysteine.
实施方案50。根据实施方案45所述的方法,其中所述Tau蛋白的积累是由衰老引起的。Embodiment 50. The method of embodiment 45, wherein the accumulation of Tau protein is caused by aging.
实施方案51。根据实施方案45所述的方法,其中所述Tau蛋白的积累是由暴露于急性或慢性的爆炸或噪音引起的。Embodiment 51. The method of embodiment 45, wherein the accumulation of tau protein is caused by exposure to acute or chronic blast or noise.
实施方案52。根据实施方案51所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一个月的所述对象。Embodiment 52. The method of embodiment 51, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the explosion or noise.
实施方案53。根据实施方案51所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于爆炸或噪音后至少一年的所述对象。Embodiment 53. The method of embodiment 51, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the explosion or noise.
实施方案54。根据实施方案45所述的方法,其中所述Tau蛋白的积累是由感染引起的。Embodiment 54. The method of embodiment 45, wherein the accumulation of Tau protein is caused by infection.
实施方案55。根据实施方案54所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一个月的所述对象。Embodiment 55. The method of embodiment 54, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after infection.
实施方案56。根据实施方案54所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于感染后至少一年的所述对象。Embodiment 56. The method of embodiment 54, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after infection.
实施方案57。根据实施方案45所述的方法,其中所述Tau蛋白的积累是由暴露于毒素引起的。Embodiment 57. The method of embodiment 45, wherein the accumulation of Tau protein is caused by exposure to a toxin.
实施方案58。根据实施方案57所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一个月的所述对象。Embodiment 58. The method of embodiment 57, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one month after exposure to the toxin.
实施方案59。根据实施方案57所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐施用于暴露于毒素后至少一年的所述对象。Embodiment 59. The method of embodiment 57, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered to the subject at least one year after exposure to the toxin.
实施方案60。根据实施方案45所述的方法,进一步包含施用Tau聚集体抑制剂。Embodiment 60. The method of embodiment 45, further comprising administering a tau aggregate inhibitor.
实施方案61。一种在患有中枢神经系统疾病或病症的对象中增强突触发生和神经突发生的方法,包含向有此需要的所述对象施用有效量的2,4-二磺酰基α-苯基叔丁基硝酮(2,4-DSPBN)或其药学上可接受的盐。Embodiment 61. A method of enhancing synaptogenesis and neuritegenesis in a subject suffering from a disease or disorder of the central nervous system, comprising administering to said subject in need thereof an effective amount of 2,4-disulfonyl alpha-phenyl tert-Butylnitrone (2,4-DSPBN) or a pharmaceutically acceptable salt thereof.
实施方案62。根据实施方案61所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐作为药物组合物施用,所述药物组合物还包含药学上可接受的载体。Embodiment 62. The method of embodiment 61, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered as a pharmaceutical composition further comprising a pharmaceutically acceptable carrier.
实施方案63。根据实施方案61所述的方法,其中所述2,4-DSPBN或其药学上可接受的盐被口服地、静脉内地、皮下地、舌下地、皮下地、鞘内地、通过吸入、或在耳内局部地施用于所述对象。Embodiment 63. The method of embodiment 61, wherein the 2,4-DSPBN or a pharmaceutically acceptable salt thereof is administered orally, intravenously, subcutaneously, sublingually, subcutaneously, intrathecally, by inhalation, or in the ear locally administered to the subject.
实施方案64。根据实施方案61所述的方法,其中所述方法进一步包含给所述对象施用N-乙酰半胱氨酸。Embodiment 64. The method of embodiment 61, wherein the method further comprises administering to the subject N-acetylcysteine.
实施方案65。根据实施方案61所述的方法,其中所述对象患有阿尔茨海默病。Embodiment 65. The method of embodiment 61, wherein the subject has Alzheimer's disease.
实施方案66。根据实施方案61所述的方法,其中所述对象患有帕金森氏病。Embodiment 66. The method of embodiment 61, wherein the subject has Parkinson's disease.
实施方案67。根据实施方案61所述的方法,其中所述对象患有进行性核上性麻痹。Embodiment 67. The method of embodiment 61, wherein the subject has progressive supranuclear palsy.
实施方案68。根据实施方案61所述的方法,其中所述对象患有额颞叶痴呆。Embodiment 68. The method of embodiment 61, wherein the subject has frontotemporal dementia.
实施方案69。根据实施方案61所述的方法,其中所述对象患有匹克氏病。Embodiment 69. The method of embodiment 61, wherein the subject has Pick's disease.
实施方案70。根据实施方案61所述的方法,其中所述对象患有嗜银颗粒痴呆。Embodiment 70. The method according to embodiment 61, wherein the subject has argentophilic dementia.
实施方案71。根据实施方案61所述的方法,其中所述对象患有皮质基底节变性。Embodiment 71. The method of embodiment 61, wherein the subject has corticobasal degeneration.
实施方案72。根据实施方案61所述的方法,其中所述对象患有进行性皮层下神经胶质过多症。Embodiment 72. The method of embodiment 61, wherein the subject has progressive subcortical hypergliosis.
实施方案73。根据实施方案61所述的方法,其中所述对象患有肌萎缩性脊髓侧索硬化症。Embodiment 73. The method of embodiment 61, wherein the subject has amyotrophic lateral sclerosis.
实施方案74。根据实施方案61所述的方法,其中所述对象患有弥漫性神经纤维缠结伴钙化症。Embodiment 74. The method of embodiment 61, wherein the subject has diffuse neurofibrillary tangles with calcification.
实施方案75。根据实施方案61所述的方法,其中所述对象患有拳击员痴呆。Embodiment 75. The method of embodiment 61, wherein the subject has boxer dementia.
实施方案76。根据实施方案61所述的方法,其中所述对象患有纯缠结痴呆。Embodiment 76. The method of embodiment 61, wherein the subject has pure tangling dementia.
实施方案77。根据实施方案61所述的方法,其中所述对象患有唐氏综合征。Embodiment 77. The method of embodiment 61, wherein the subject has Down syndrome.
实施方案78。根据实施方案61所述的方法,其中所述对象患有格斯特曼-施特劳斯纳综合征。Embodiment 78. The method of embodiment 61, wherein the subject has Gerstmann-Strausner syndrome.
实施方案79。根据实施方案61所述的方法,其中所述对象患有哈勒沃登-施帕茨病。Embodiment 79. The method according to embodiment 61, wherein the subject has Hallerwarden-Spatz disease.
实施方案80。根据实施方案61所述的方法,其中所述对象患有克雅氏病。Embodiment 80. The method of embodiment 61, wherein the subject has Creutzfeldt-Jakob disease.
实施方案81。根据实施方案61所述的方法,其中所述对象患有多系统萎缩。Embodiment 81. The method of embodiment 61, wherein the subject has multiple system atrophy.
实施方案82。根据实施方案61所述的方法,其中所述对象患有C型尼曼-匹克病。Embodiment 82. The method of embodiment 61, wherein the subject has Niemann-Pick type C disease.
实施方案83。根据实施方案61所述的方法,其中所述对象患有朊病毒蛋白大脑淀粉样血管病。Embodiment 83. The method of embodiment 61, wherein the subject has prion protein cerebral amyloid angiopathy.
实施方案84。根据实施方案61所述的方法,其中所述对象患有亚急性硬化性全脑炎。Embodiment 84. The method of embodiment 61, wherein the subject has subacute sclerosing panencephalitis.
实施方案85。根据实施方案61所述的方法,其中所述对象患有肌强直性营养不良。Embodiment 85. The method of embodiment 61, wherein the subject has myotonic dystrophy.
实施方案86。根据实施方案61所述的方法,其中所述对象患有伴有神经纤维缠结的非冠状神经病。Embodiment 86. The method of embodiment 61, wherein the subject has non-coronary neuropathy with neurofibrillary tangles.
实施方案87。根据实施方案61所述的方法,其中所述对象患有脑炎后帕金森氏综合征。Embodiment 87. The method of embodiment 61, wherein the subject has post-encephalitic Parkinson's syndrome.
实施方案88。根据实施方案61所述的方法,其中所述对象患有慢性创伤性脑病变。Embodiment 88. The method of embodiment 61, wherein the subject has chronic traumatic encephalopathy.
具体实施例specific embodiment
以下实施例仅用于说明目的,不应解释为对要求保护的发明的限制。本领域技术人员可以使用各种替代的技术和程序,这些技术和程序同样可以成功地完成预期的发明。The following examples are for illustrative purposes only and should not be construed as limitations on the claimed invention. Those of ordinary skill in the art may use various alternative techniques and procedures that will likewise successfully accomplish the contemplated invention.
实施例1Example 1
在一项活体动物研究中,发现用2,4-二磺酰基α-苯基叔丁基硝酮(HPN-07)治疗的经噪音损伤的南美栗鼠相对于未经治疗的对照显示出明显更大的内毛细胞神经突群体,并且在治疗期后很长时间,这些动物独特地表现出渐进的功能恢复的程度,表明由HPN-07引起的毛细胞的持续再神经支配。这导致HPN-07具有促神经源性特性的可能,特别是在耳蜗螺旋神经节神经元(SGN)中。已经在三种体外神经源性模型(耳蜗螺旋神经节外植体、PC12细胞、以及附着有毛细胞的SGN外植体[SGN-HC]的共培养物)中测试了HPN-07。来自这些分析的实验数据表明:(1)HPN-07在没有毛细胞的螺旋神经节外植体中促进神经突发生;(2)HPN-07增强PC12细胞系中神经生长因子(NGF)诱导的神经突发生;以及(3)在由红藻氨酸(KA)引起的兴奋性毒性(excitoxic)创伤后,HPN-07在SGN-HC共培养物中逆转兴奋性毒性缎带突触损失,并且沿着IHC的底部增加神经突密度。活体的经爆炸暴露的大鼠的HPN-07/NAC治疗,促使爆炸后内毛细胞上有活性的神经连接的数量显著增加,并且在某些音频区域,导致突触数量超过通常在空白的、未受损的耳朵中观察到的突触数量。In a live animal study, noise-injured chinchillas treated with 2,4-disulfonyl α-phenyl-tert-butylnitrone (HPN-07) were found to exhibit significantly more A large population of inner hair cell neurites, and long after the treatment period, these animals uniquely exhibited a progressive degree of functional recovery, suggesting sustained reinnervation of hair cells by HPN-07. This leads to the possibility that HPN-07 has pro-neurogenic properties, especially in cochlear spiral ganglion neurons (SGN). HPN-07 has been tested in three in vitro neurogenic models (cochlear spiral ganglion explants, PC12 cells, and co-cultures of SGN explants with attached hair cells [SGN-HC]). Experimental data from these analyses demonstrate that: (1) HPN-07 promotes neurite outgrowth in spiral ganglion explants without hair cells; (2) HPN-07 enhances nerve growth factor (NGF) induction in PC12 cell line and (3) HPN-07 reversed excitoxic ribbon synaptic loss in SGN-HC co-cultures following excitoxic trauma by kainic acid (KA) , and increased neurite density along the base of the IHC. HPN-07/NAC treatment of live blast-exposed rats induced a significant increase in the number of active neural connections on inner hair cells after blasting and, in some audio regions, resulted in more synapses than normally found in blank, The number of synapses observed in the undamaged ear.
如图1所示,HPN-07在体外引起小鼠螺旋神经节组织外植体中的神经源性反应。相对于在相同的器官型培养基中培养的未经治疗的对照(NC,正常对照),HPN-07引起显著的神经突向外生长。在HPN-07的存在下,从每个SGN外植体辐射出的神经突的数量和这些延伸中的每一个的相应长度都增加。与需要浓度为10mM的PBN引起PC12细胞的神经突发生相反,浓度为100μM的HPN-07足以在小鼠螺旋神经节神经元的器官型培养物中引起神经源性反应。As shown in Figure 1, HPN-07 induced neurogenic responses in mouse spiral ganglion tissue explants in vitro. HPN-07 caused significant neurite outgrowth relative to untreated controls (NC, normal controls) cultured in the same organotypic medium. The number of neurites radiating from each SGN explant and the corresponding length of each of these extensions increased in the presence of HPN-07. In contrast to the need for PBN at a concentration of 10 mM to induce neurite outgrowth in PC12 cells, HPN-07 at a concentration of 100 μM was sufficient to induce neurogenic responses in organotypic cultures of mouse spiral ganglion neurons.
如图2所示,HPN-07增强由经典的耳蜗神经源性生长因子、脑源性神经营养因子(BDNF)引起的神经突发生。将小鼠螺旋神经节神经元外植体在含有或不含BDNF(10ng/mL)或BDNF(10ng/mL)+HPN-07(0.1μM)的无血清培养基中培养48小时,然后固定并用β-微管蛋白抗体免疫标记以使神经突可视化。As shown in Figure 2, HPN-07 enhanced neurite outgrowth induced by the classical cochlear neuro-derived growth factor, brain-derived neurotrophic factor (BDNF). Mouse spiral ganglion neuron explants were cultured in serum-free medium with or without BDNF (10 ng/mL) or BDNF (10 ng/mL) + HPN-07 (0.1 μM) for 48 hours, then fixed and treated with β-Tubulin antibody immunolabeling to visualize neurites.
如图3所示,HPN-07还增强了PC12细胞系中NGF引起的神经突伸长。神经生长因子(NGF)处理在PC12细胞中以剂量依赖性方式引起神经突伸长,PC12细胞是神经突发生研究的标准神经元模型。在该背景下,该NGF引起的神经源性反应在10ng/mL以上的浓度下显然是可饱和的。然而,虽然在该系统中以低浓度单独使用HPN-07治疗并没有增加神经突长度,但使用1μM HPN-07和递增剂量的NGF(1、5或10ng/mL)的组合治疗显示,HPN-07增强(在1和5ng/mL NGF时)NGF、甚至可能与NGF协同作用(在10ng/mL NGF时)以促进神经突发生。在浓度为10ng/mL NGF和1μM HPN-07时,平均神经突长度显著超过在可饱和NGF剂量递增系列中达到的最大长度(细胞处理6天)。As shown in Figure 3, HPN-07 also enhanced NGF-induced neurite elongation in PC12 cell line. Nerve growth factor (NGF) treatment induced neurite elongation in a dose-dependent manner in PC12 cells, a standard neuronal model for neurite outgrowth studies. In this context, the neurogenic response elicited by this NGF is apparently saturable at concentrations above 10 ng/mL. However, while treatment with HPN-07 alone at low concentrations in this system did not increase neurite length, combination treatment with 1 μM HPN-07 and escalating doses of NGF (1, 5, or 10 ng/mL) showed that HPN- 07 enhanced (at 1 and 5 ng/mL NGF) NGF, and possibly even synergized with NGF (at 10 ng/mL NGF) to promote neurite out. At concentrations of 10 ng/mL NGF and 1 μM HPN-07, mean neurite length significantly exceeded the maximum length achieved in the saturable NGF dose-escalating series (6 days of cell treatment).
图4描绘了具有显著神经突向外生长的PC12细胞的百分比。这里观察到的模式类似于对治疗引起的平均神经突长度的增加所观察到的模式。这些评估一起支持以下这种解释:HPN-07与NGF协同作用以促进新生的神经突向外生长、以及神经突的稳定性或组装动力学的变化从而支持平均神经突长度的增加,这两者都是IHC的神经再支配的理想特征。由于生长因子在哺乳动物耳蜗中组成性表达并且在听觉创伤后经常被上调,因此该治疗属性可能对恢复听觉功能具有显著的临床影响。Figure 4 depicts the percentage of PC12 cells with significant neurite outgrowth. The pattern observed here is similar to that observed for the treatment-induced increase in mean neurite length. Together, these assessments support the explanation that HPN-07 cooperates with NGF to promote nascent neurite outgrowth, and changes in neurite stability or assembly dynamics to support an increase in mean neurite length, both of which Both are desirable features of IHC reinnervation. Since growth factors are constitutively expressed in the mammalian cochlea and are frequently up-regulated after auditory trauma, this therapeutic property may have a significant clinical impact on restoring auditory function.
此外,如图5所示,HPN-07逆转了红藻氨酸(KA)引起的IHC缎带突触完整性的兴奋性毒性损失。以前的发现被应用于兴奋毒性创伤的小鼠SGN-IHC共培养模型。在听觉感觉上皮细胞(柯蒂氏器)和相关螺旋神经节神经元(NC)的未受损共培养的IHC中,大多数突触前C-末端结合蛋白2(CtBP2)-免疫反应性斑点(小红点)位于“典型的”细胞结构的位置,沿着细胞的基底表面,在IHC核(大红色球体)的下方或周围。在暴露于兴奋毒性谷氨酸类似物红藻氨酸(KA)后,发生了从这种典型的CtBP2基础免疫反应性模式到更顶端的分布模式的显著转变。这种异常趋势与突触后密度标记物PSD-95的共免疫标记的总损失相关,表明经CtBP2标记的斑点的顶端移位可能是由KA引起的缎带突触完整性的损失和将有活性的突触固定在基底面的PSD的解离引起的。用显示会引起SG外植体中神经突发生的浓度(10μM)的HPN-07进行兴奋毒性后处理逆转了这种病理转变,并以类似于经典神经营养生长因子BDNF所达到的方式用与CtBP2共标记的基础PSD重新填充IHC。HPN-07在该共培养模型中在兴奋性毒性创伤后恢复IHC中缎带突触的结构完整性的能力,与在此背景下用于促进突触发生(即,神经再支配)的HPN-07一致。Furthermore, as shown in Figure 5, HPN-07 reversed kainic acid (KA)-induced excitotoxic loss of IHC ribbon synaptic integrity. Previous findings were applied to a mouse SGN-IHC co-culture model of excitotoxic trauma. Most presynaptic C-terminal binding protein 2 (CtBP2)-immunoreactive puncta in IHC of uninjured co-cultures of auditory sensory epithelium (organ of Corti) and associated spiral ganglion neurons (NCs) (small red dots) are located at the location of "typical" cellular structures, along the basal surface of the cell, below or around the IHC nuclei (large red spheres). After exposure to the excitotoxic glutamate analog kainic acid (KA), a marked shift from this typical CtBP2 basal immunoreactivity pattern to a more apical distribution pattern occurred. This abnormal trend correlates with the total loss of co-immunolabeling of the postsynaptic density marker PSD-95, suggesting that apical displacement of CtBP2-labeled puncta may be caused by KA-induced loss of Ribbon synaptic integrity and will have Active synapses are anchored to the basal plane by dissociation of the PSD. Excitotoxic post-treatment with HPN-07 at a concentration (10 μM) shown to cause neurite outgrowth in SG explants reversed this pathological transition and in a manner similar to that achieved with the classical neurotrophic growth factor BDNF. CtBP2 co-labeled basal PSD repopulation IHC. The ability of HPN-07 to restore the structural integrity of ribbon synapses in IHC following excitotoxic trauma in this co-culture model, in contrast to HPN- used to promote synaptogenesis (ie, reinnervation) in this context- 07 Consistent.
图6总结了兴奋性毒性暴露于KA后来自未经治疗的、经BDNF治疗的或经HPN-07治疗的外植体的IHC中锻带的数量和空间分布的针对性比较的定量评估。在KA暴露后,未经治疗的培养物表现出突触前密度从“典型的”(核下)到“顶端的”(核上)分布的转变。BDNF和HPN-07都逆转了这种病理改变,强调了它们在这种情况下重新支配IHC的效用。然而,HPN-07治疗导致更多数量的总缎带,更接近于未受损组织中观察到的。每个数据点代表大约十个独立测量的组合。Figure 6 summarizes quantitative assessments of targeted comparisons of the number and spatial distribution of forge bands in IHC from untreated, BDNF-treated or HPN-07-treated explants following excitotoxic exposure to KA. Following KA exposure, untreated cultures exhibited a shift in presynaptic density from "typical" (subnuclear) to "apical" (supernuclear) distribution. Both BDNF and HPN-07 reversed this pathological change, underscoring their utility in reinvigorating IHC in this setting. However, HPN-07 treatment resulted in a greater number of total ribbons, closer to that observed in undamaged tissue. Each data point represents a combination of approximately ten independent measurements.
如图7所示,活体的经爆炸暴露的大鼠中的HPN-07/NAC治疗促使爆炸后内毛细胞上有活性的神经连接的数量显著增加,并且在一些音频区域中,趋向于超过通常在空白的、未损伤的耳朵中观察到的突触数量。在上图中,将大鼠以1.5分钟的间隔重复暴露于14psi的三次连续的矿场爆炸。然后在最终爆炸后一小时用HPN-07/NAC注射(i.p.)动物,然后接下来的48小时每天注射两次。三周后对动物实施安乐死,将其耳蜗组织固定、收获、微切片、并用靶向内毛细胞内的缎带突触(CtBP2)和在与其相关神经突的突触界面处的突触后密度(GluR2/3)的抗体进行共免疫标记。两种标记物的存在表明有活性的突触连接。在柯蒂氏器的16kHz音频区域观察到对突触密度的显著治疗效果,在该位置具有超数的突触数量(相对于空白对照)的趋势。在下图中,将大鼠暴露于震动管内的单次8psi爆炸。然后在最终爆炸后一小时用HPN-07/NAC注射(i.p.)动物,然后在接下来的48小时内每天注射两次。8周后对动物实施安乐死,并将其耳蜗组织固定、收获、微切片、并如上所述用靶向CtBP2和GluR2/3的抗体进行共免疫标记。在这些大鼠的柯蒂氏器的32kHz音频区域观察到显著的治疗效果,在8和16kHz区域具有超数的突触数量(相对于空白对照)的趋势。As shown in Figure 7, HPN-07/NAC treatment in live blast-exposed rats induced a significant increase in the number of active neural connections on inner hair cells after blasting and, in some audio regions, tended to exceed the usual Number of synapses observed in blank, uninjured ears. In the image above, rats were repeatedly exposed to three consecutive mine blasts at 14 psi at 1.5 min intervals. Animals were then injected (i.p.) with HPN-07/NAC one hour after the final blast and then twice daily for the next 48 hours. Animals were euthanized three weeks later, and cochlear tissue was fixed, harvested, microsectioned, and treated with targeted ribbon synapses (CtBP2) within inner hair cells and postsynaptic density at the synaptic interface of its associated neurites (GluR2/3) antibodies were co-immunolabeled. The presence of both markers indicates active synaptic connections. A significant therapeutic effect on synapse density was observed in the 16 kHz audio region of the organ of Corti, where there was a trend for a supernumerary number of synapses (relative to blank controls). In the image below, rats were exposed to a single 8 psi blast inside a shock tube. Animals were then injected (i.p.) with HPN-07/NAC one hour after the final blast and then twice daily for the next 48 hours. Animals were euthanized after 8 weeks and cochlear tissue was fixed, harvested, microsectioned, and co-immunolabeled with antibodies targeting CtBP2 and GluR2/3 as described above. A significant treatment effect was observed in the 32 kHz audio region of the organ of Corti in these rats, with a trend for supernumerary synapse numbers (relative to blank controls) in the 8 and 16 kHz regions.
实施例2Example 2
动物、爆炸暴露和药物施用Animals, Explosion Exposure, and Drug Administration
除了用于缎带突触评估的耳蜗组织样品外,如前所述地采集本研究中使用的组织样品(Ewert et al.,Hear.Res.,285,29–39(2012))。在我们之前的报告中详细描述了爆炸暴露、抗氧化剂的施用和听觉脑干反应的测量(Ewert et al.,Hear.Res.,285,29–39(2012))。俄克拉荷马医学研究基金会(OMRF)机构动物护理以及使用委员会和美国海军海军研究办公室审查并批准了有关动物使用和处理的所有程序。In addition to cochlear tissue samples for ribbon synapse assessment, tissue samples used in this study were collected as previously described (Ewert et al., Hear. Res., 285, 29–39 (2012)). Blast exposure, administration of antioxidants, and measurements of auditory brainstem responses were described in detail in our previous report (Ewert et al., Hear. Res., 285, 29–39 (2012)). All procedures regarding the use and handling of animals were reviewed and approved by the Oklahoma Medical Research Foundation (OMRF) Institutional Animal Care and Use Committee and the U.S. Office of Naval Research.
在该研究中使用体重在360和400g之间的雄性Long-Evans着色大鼠(HarlanLaboratories,Indianapolis,Indiana)。将动物圈养在OMRF的动物设施中。将每只大鼠暴露于以1.5分钟的间隔重复的14磅/平方英寸(psi)的三次连续的爆炸。爆炸方案引起显著的听力损失和鼓膜破裂的低发生率(Ewert et al.,Hear.Res.,285,29–39(2012))。具有破裂的鼓膜的耳朵被排除在研究之外。听觉脑干反应(ABR)阈值和耳声发射的失真产物(DPOAE)水平在爆炸暴露之前以及在暴露后24小时(24H)、7天(7D)和21天(21D)的采样间隔获得,并在我们以前的出版物中报告。Du et al.,PLoS One,e80138(2013);Ewert et al.,Hear.Res.,285,29–39(2012).Male Long-Evans colored rats (Harlan Laboratories, Indianapolis, Indiana) weighing between 360 and 400 g were used in this study. Animals were housed in OMRF's animal facility. Each rat was exposed to three consecutive blasts of 14 pounds per square inch (psi) repeated at 1.5 minute intervals. The blast regimen caused significant hearing loss and a low incidence of tympanic membrane rupture (Ewert et al., Hear. Res., 285, 29–39 (2012)). Ears with ruptured tympanic membranes were excluded from the study. Auditory brainstem response (ABR) thresholds and distortion product of otoacoustic emissions (DPOAE) levels were obtained before blast exposure and at sampling intervals of 24 hours (24H), 7 days (7D) and 21 days (21D) after exposure, and reported in our previous publication. Du et al., PLoS One, e80138 (2013); Ewert et al., Hear. Res., 285, 29–39 (2012).
20%的NAC溶液购自Hospira,Inc.(Lake Forest,IL),并且HPN-07由APACPharmaceuticals,LLC(Columbia,MD)合成并提供。经爆炸暴露的抗氧化剂治疗组(B/T)的动物腹腔注射(i.p.)溶于生理盐水溶液(5mL/kg)的300mg/kg NAC加300mg/kg HPN-07的组合。在爆炸暴露后1小时开始施用药物,然后在接下来的两天中继续每天两次。根据与治疗组相同的方案,将未处理的、爆炸暴露的组(B)中的动物腹腔内注射等体积的生理盐水。另外11只未暴露于爆炸或未接受药物治疗的大鼠用作正常对照(NC)。20% NAC solution was purchased from Hospira, Inc. (Lake Forest, IL), and HPN-07 was synthesized and supplied by APAC Pharmaceuticals, LLC (Columbia, MD). Animals in the blast-exposed antioxidant treatment group (B/T) were injected intraperitoneally (i.p.) with a combination of 300 mg/kg NAC plus 300 mg/kg HPN-07 in saline solution (5 mL/kg). Drug administration began 1 hour after blast exposure and continued twice a day for the next two days. Animals in the untreated, blast-exposed group (B) were injected intraperitoneally with an equal volume of normal saline according to the same protocol as the treatment group. An additional 11 rats that were not exposed to the blast or received no drug treatment were used as normal controls (NC).
用于缎带突触评估的耳蜗组织的采集Collection of Cochlear Tissue for Ribbon Synapse Assessment
在爆炸暴露后一周或三周,在用氯胺酮和甲苯噻嗪进行的深度麻醉下将动物断头。迅速将耳蜗从颞骨切开并置于冷PBS中。打开圆窗和卵圆窗,移除顶回(apical turn)的骨头。将PBS中的4%甲醛溶液灌注到耳蜗中用于组织固定。将耳蜗在4℃下在相同的固定剂中再放置10分钟。固定后,在PBS中进一步解剖耳蜗,然后在含有1%Triton X-100和5%正常马血清的PBS中封闭1小时,然后用兔抗GluR2/3抗体(Millipore Bioscience,catalog#AB1506,1:100)和小鼠抗C末端集合蛋白抗体(CtBP2,BD Transduction Laboratories,catalog#612044,1:200)的组合在37℃下保持20小时进行免疫标记。用PBS冲洗组织,并与Alexa Fluor488鸡抗兔(1:1000,Life Technologies,Co.,Grand Island,NY)在37℃温育1小时。用PBS冲洗组织,并与Alexa Fluor488山羊抗鸡抗体(1:1000,Life Technologies,Co.,Grand Island,NY)和Alexa Fluor568山羊抗小鼠抗体(1:1000,Life Technologies,Co.,Grand Island,NY)在37℃温育1小时(Furman et al.,2013)。将组织用DAPI(4',6-二脒基-2-苯基吲哚)在室温下复染10分钟以标记细胞核,然后用抗褪色培养基固定在载玻片上。One or three weeks after blast exposure, animals were decapitated under deep anesthesia with ketamine and xylazine. The cochlea was rapidly dissected from the temporal bone and placed in cold PBS. The round and oval windows were opened and the bones of the apical turn were removed. A 4% formaldehyde solution in PBS was perfused into the cochlea for tissue fixation. The cochlea was placed in the same fixative for an additional 10 min at 4 °C. After fixation, the cochlea was further dissected in PBS, then blocked for 1 hr in PBS containing 1% Triton X-100 and 5% normal horse serum, followed by rabbit anti-GluR2/3 antibody (Millipore Bioscience, catalog #AB1506, 1: 100) and a combination of mouse anti-C-terminal collectin antibody (CtBP2, BD Transduction Laboratories, catalog #612044, 1:200) for immunolabeling at 37°C for 20 hours. Tissues were rinsed with PBS and incubated with Alexa Fluor488 chicken anti-rabbit (1:1000, Life Technologies, Co., Grand Island, NY) for 1 hour at 37°C. Tissues were washed with PBS and mixed with Alexa Fluor488 goat anti-chicken antibody (1:1000, Life Technologies, Co., Grand Island, NY) and Alexa Fluor568 goat anti-mouse antibody (1:1000, Life Technologies, Co., Grand Island) , NY) at 37°C for 1 hour (Furman et al., 2013). Tissues were counterstained with DAPI (4',6-diamidino-2-phenylindole) for 10 minutes at room temperature to label nuclei and then mounted on slides with antifade medium.
用落射荧光显微镜拍摄整个耳蜗。测量耳蜗长度并使用定制插件ImageJ软件(http://www.masseyeandear.org/research/ent/eaton-peabody/epl-histologyresources/)计算频率。选择耳蜗的六个频率位置2、4、8、16、32、48kHz作为共焦z-堆叠进行图像采集。使用Zeiss LSM-710共聚焦显微镜(Carl Zeiss Microimaging,LLC,NY),以z平面中具有0.5μm步长的1024×1024像素帧获取图像。从柯蒂氏官的内淋巴表面看,每个堆叠包含六到九个IHC,具有整套带缎带突触.突触点。通过使用Amira 3D软件(FEI,Burlington,MA)处理3-D形态测量。所有定量分析均使用原始图像堆叠进行。通过分割来识别突触前缎带(红色通道)和突触后密度(绿色通道),在z维度上定量和跟踪以避免每个堆叠中的叠加模糊或过高估计,并且根据先前公布的方法除以微观领域中的IHC的总数(Kujawa and Liberman,J.Neurosci.,29,14077–14085(2009))。The entire cochlea was photographed with an epi-fluorescence microscope. Cochlear lengths were measured and frequencies were calculated using a custom plug-in ImageJ software (http://www.masseyeandear.org/research/ent/eaton-peabody/epl-histologyresources/). Six frequency positions of the cochlea, 2, 4, 8, 16, 32, 48 kHz, were selected as confocal z-stacks for image acquisition. Images were acquired using a Zeiss LSM-710 confocal microscope (Carl Zeiss Microimaging, LLC, NY) with 1024×1024 pixel frames in the z-plane with 0.5 μm steps. Viewed from the endolymphatic surface of the Organ of Corti, each stack contains six to nine IHCs with a full set of ribbon synapses. Synapses. 3-D morphometric measurements were processed by using Amira 3D software (FEI, Burlington, MA). All quantitative analyses were performed using raw image stacking. Presynaptic ribbons (red channel) and postsynaptic densities (green channel) were identified by segmentation, quantified and tracked in the z dimension to avoid stack ambiguity or overestimation in each stack, and according to previously published methods Divide by the total number of IHCs in the microscopic field (Kujawa and Liberman, J. Neurosci., 29, 14077-14085 (2009)).
耳蜗和脑组织的采集和切片Collection and Sectioning of Cochlear and Brain Tissue
将每个实验组(6-8只大鼠/时间点)中用于耳蜗和脑切片的动物安乐死,并在爆炸后24小时、7天或21天用盐水心内灌注,然后用0.1M磷酸盐缓冲盐水(PBS,pH 7.2)中的4%多聚甲醛灌注。取出耳蜗、脑和脑干后,固定在相同的固定剂中(耳蜗过夜和脑组织一周),在PBS中洗涤,并在4℃下储存于PBS中。用PBS洗涤经固定的耳蜗,然后在10%EDTA中脱钙两周,每周更换溶液两次。将耳蜗脱水,包埋在石蜡中,并在厚度为6μm的paramodiolar平面中切片,并将每第10个切片安装在载玻片上(每个耳蜗总共10个载玻片)。然后处理安装的切片用于免疫组织化学分析。Animals for cochlear and brain slices in each experimental group (6-8 rats/time point) were euthanized and intracardially perfused with saline 24 hours, 7 days, or 21 days after blasting, followed by 0.1 M phosphoric acid 4% paraformaldehyde in salt-buffered saline (PBS, pH 7.2) was perfused. After removal of the cochlea, brain and brain stem, they were fixed in the same fixative (overnight for cochlea and one week for brain tissue), washed in PBS, and stored in PBS at 4°C. The fixed cochlea was washed with PBS and then decalcified in 10% EDTA for two weeks with two weekly changes of solution. The cochlea was dehydrated, embedded in paraffin, and sectioned in a paramodiolar plane with a thickness of 6 μm, and every 10th section was mounted on a glass slide (a total of 10 slides per cochlea). Mounted sections were then processed for immunohistochemical analysis.
将来自每只动物的脑和脑干在4℃下在PBS中的30%蔗糖中冷冻保护,直到组织沉降到容器的底部,然后将它们包埋在Tissue-Tek(Sakura Finetek USA Inc.Torrance,CA)中,并在冠状平面中以18-20μm用Thermo Cryotome(Thermo Fisher Scientific,Inc.Waltham,MA)连续切片。将来自每个脑和脑干的每十个中的一个切片安装到明胶预涂覆的载玻片上(每个脑干总共10个载玻片并且每个脑有20个载玻片)。每个载玻片上两个相邻部分之间的距离约为200μm。然后处理切片用于免疫组织化学分析。Brains and brain stems from each animal were cryoprotected in 30% sucrose in PBS at 4°C until the tissue settled to the bottom of the vessel, then they were embedded in Tissue-Tek (Sakura Finetek USA Inc. Torrance, CA) and serially sectioned at 18-20 μm in the coronal plane with a Thermo Cryotome (Thermo Fisher Scientific, Inc. Waltham, MA). One in ten slices from each brain and brainstem were mounted on gelatin precoated slides (10 total slides per brainstem and 20 slides per brain). The distance between two adjacent sections on each slide was approximately 200 μm. Sections were then processed for immunohistochemical analysis.
耳蜗中螺旋神经节神经元和神经突的定量Quantification of spiral ganglion neurons and neurites in the cochlea
两种生物标记物,神经微丝(NF)轻(68kDa,NF-68)和重(200kDa,NF-200)亚基,用于检查爆炸暴露的大鼠中的耳蜗神经变性。将耳蜗切片在二甲苯中脱石蜡并在连续浓度的乙醇和蒸馏水中再水合。然后将这些切片用PBS洗涤,在PBS中的1%牛血清白蛋白(级分V)和1%正常马血清或1%正常山羊血清中封闭,并在PBS中的0.2%Triton X-100(PBS/T)中透化。然后将经封闭和透化的切片与小鼠抗神经微丝68(1:200,clone NR4,Sigma,St.Louis,MO,catalog#N5139)或鸡抗神经微丝200(1:1000,EMD Millipore,Billerica,MA,catalog#AB5539)在室温下孵育过夜。用PBS/T洗涤后,将生物素化的山羊抗鸡IgG或马抗小鼠IgG(1:200,Vector Laboratories,Inc.Burlingame,CA)在室温下施加于载玻片1小时,并用Vectastain ABC和DAB试剂盒(Vector Laboratories,Inc.Burlingame,CA)用于免疫标记可视化。免疫阳性细胞在靶表位的位点显示出棕色反应产物。甲基绿用于核复染色。通过省略一抗进行阴性对照。甲苯胺蓝用于在正常对照和爆炸暴露的大鼠的SG中染色神经元,以检查平均神经元大小和损伤引起的消耗。Two biomarkers, neurofilament (NF) light (68 kDa, NF-68) and heavy (200 kDa, NF-200) subunits, were used to examine cochlear nerve degeneration in blast-exposed rats. Cochlear sections were deparaffinized in xylene and rehydrated in successive concentrations of ethanol and distilled water. The sections were then washed with PBS, blocked in 1% bovine serum albumin (fraction V) and 1% normal horse serum or 1% normal goat serum in PBS, and blocked in 0.2% Triton X-100 (fraction V) in PBS. Permeabilized in PBS/T). Blocked and permeabilized sections were then mixed with mouse anti-neurofilament 68 (1:200, clone NR4, Sigma, St. Louis, MO, catalog #N5139) or chicken anti-neurofilament 200 (1:1000, EMD Millipore, Billerica, MA, catalog #AB5539) was incubated overnight at room temperature. After washing with PBS/T, biotinylated goat anti-chicken IgG or horse anti-mouse IgG (1:200, Vector Laboratories, Inc. Burlingame, CA) was applied to the slides for 1 hr at room temperature and treated with Vectastain ABC and DAB kit (Vector Laboratories, Inc. Burlingame, CA) for immunolabeling visualization. Immunopositive cells show brown reaction products at the site of the target epitope. Methyl green was used for nuclear counterstaining. Negative controls were performed by omitting the primary antibody. Toluidine blue was used to stain neurons in the SG of normal controls and blast-exposed rats to examine mean neuronal size and injury-induced depletion.
脑和耳蜗中的Tau免疫组织化学染色Tau immunohistochemical staining in brain and cochlea
如上所述的相同的免疫组织化学染色方案用于Tau染色。将组织切片与小鼠抗Tau-1抗体(其识别在丝氨酸位点195、198、199和202处缺乏磷酸化的Tau蛋白的所有已知电泳种类(1:200,clone PC1C6,EMD Millipore,Billerica,MA,catalog#MAB3420))、小鼠抗-Tau 46(其识别Tau的所有六种天然同种型(1:100,Sigma,St.Louis,MO,catalog#T9450))、小鼠抗磷酸化Tau抗体(1:250,clone AT8,Thermo Scientific,Waltham,MA,catalog#MN1020)、或兔抗低聚Tau抗体一起温育过夜(T22serum,1:300,a kind gift fromDr.Rakez Kayed at the University of Texas Medical Branch,Galveston,TX,Hawkinset al.2013)。The same immunohistochemical staining protocol as described above was used for Tau staining. Tissue sections were incubated with mouse anti-Tau-1 antibody (which recognizes all known electrophoretic species of Tau protein lacking phosphorylation at serine positions 195, 198, 199 and 202 (1:200, clone PC1C6, EMD Millipore, Billerica). , MA, catalog #MAB3420)), mouse anti-Tau 46 (which recognizes all six native isoforms of Tau (1:100, Sigma, St. Louis, MO, catalog #T9450)), mouse anti-phospholipid Tau antibody (1:250, clone AT8, Thermo Scientific, Waltham, MA, catalog #MN1020), or rabbit anti-oligo-Tau antibody (T22serum, 1:300, a kind gift from Dr. Rakez Kayed at the University of Texas Medical Branch, Galveston, TX, Hawkinset al. 2013).
爆炸暴露后耳蜗中的低聚物Tau/NF-68和肌球蛋白VIIa/NF-200双标记分析Dual-labeling analysis of oligomeric Tau/NF-68 and Myosin VIIa/NF-200 in the cochlea after blast exposure
将耳蜗切片与T22抗体(1:200)和抗神经微丝68(1:200)或NF-200(1:1000)和兔抗肌球蛋白VIIa(1:1000.Proteus Biosciences Inc.,Ramona,CA,catalog#25-6790)在室温下温育。用PBS洗涤后,将切片与合适的Alexa Fluor 488、568或647二抗(1:1000,LifeTechnologies,Co.,Grand Island,NY)在室温下孵育2小时,然后进行DAPI标记并安装在抗褪色培养基中。用Zeiss LSM-710共聚焦显微镜采集图像。Cochlear sections were incubated with T22 antibody (1:200) and anti-Neurofilament 68 (1:200) or NF-200 (1:1000) and rabbit anti-Myosin VIIa (1:1000. Proteus Biosciences Inc., Ramona, CA, catalog #25-6790) was incubated at room temperature. After washing with PBS, sections were incubated with appropriate Alexa Fluor 488, 568, or 647 secondary antibodies (1:1000, LifeTechnologies, Co., Grand Island, NY) for 2 hours at room temperature, followed by DAPI labeling and mounting in antifade. in the culture medium. Images were acquired with a Zeiss LSM-710 confocal microscope.
爆炸暴露后耳蜗中的氧化应激生物标记物分析Analysis of oxidative stress biomarkers in the cochlea after blast exposure
将8-羟基-2'-脱氧鸟苷(8-OHdG)水平(DNA氧化产物)作为生物标记物进行检测,用于评估爆炸暴露的动物中的耳蜗神经元中氧化应激诱导的损伤的变化。将上述相同的免疫组织化学染色方案用于8-OHdG免疫染色。将组织切片与兔抗-8-OHdG抗体一起温育过夜(1:100,Bioss antibodies,Woburn,MA,catalog#bs-1278R)。8-Hydroxy-2'-deoxyguanosine (8-OHdG) levels, a product of DNA oxidation, were measured as a biomarker to assess changes in oxidative stress-induced damage in cochlear neurons in blast-exposed animals . The same immunohistochemical staining protocol described above was used for 8-OHdG immunostaining. Tissue sections were incubated overnight with rabbit anti-8-OHdG antibody (1:100, Bioss antibodies, Woburn, MA, catalog #bs-1278R).
生物标记物免疫染色的定量Quantification of biomarker immunostaining
用BX51 Olympus显微镜(SG和脑)或Zeiss Axiovert 200m倒置荧光显微镜(螺旋叶片(SL)中的神经纤维)和在柯蒂氏器(OC)中采集图像。在耳蜗中,从每个载玻片上的所有切片的底回和中回采集图像(SG、SL中的神经纤维和内HC(IHC)区域)。使用ImageJ软件(National Institutes of Health)定量NF-68-、NF-200-或8-OHdG-阳性神经元的数量。计算SG中NF-68阳性、NF-200阳性(弱染色或强染色)和8-OHdG阳性神经元的百分比(阳性染色/神经元总数×100%)并进行统计学分析。还使用ImageJ软件估计SL中NF-200-、Tau46-、AT8-或T22-阳性神经纤维的密度(神经纤维数/mm2)(Jensen et al.,PLoS One 10.doi:10.1371/journal.pone.0125160(2015))。为了检测爆炸暴露后21天的SGN损失,测量NC和爆炸暴露的大鼠的中回和底回处的SG的大小,并且计算SGN的相对密度(甲苯胺蓝染色神经元的数量/mm2)并且在统计学上分析。为了检测爆炸暴露后21天的SGN大小,测量NC和爆炸暴露的大鼠的耳蜗中甲苯胺蓝染色的SGN的最大直径(Bichler,1984)。从耳蜗切片的顶回、底回和中回采集图像,并计算SGN的平均最大直径(μm)并进行统计学分析。在分析中仅包括甲苯胺蓝阳性神经元。Images were acquired with a BX51 Olympus microscope (SG and brain) or a Zeiss Axiovert 200m inverted fluorescence microscope (nerve fibers in helical lobes (SL)) and in the organ of Corti (OC). In the cochlea, images were acquired from the basal and middle gyri of all sections on each slide (nerve fibers in the SG, SL and the inner HC (IHC) area). The number of NF-68-, NF-200- or 8-OHdG-positive neurons was quantified using ImageJ software (National Institutes of Health). The percentages of NF-68 positive, NF-200 positive (weak or strong staining) and 8-OHdG positive neurons in SGs (positive staining/total number of neurons x 100%) were calculated and analyzed statistically. The density of NF-200-, Tau46-, AT8- or T22-positive nerve fibers in SL (number of nerve fibers/mm2) was also estimated using ImageJ software (Jensen et al., PLoS One 10.doi:10.1371/journal.pone. 0125160 (2015)). To detect SGN loss 21 days after blast exposure, the size of SGs at the middle and basal gyri of NC and blast-exposed rats was measured, and the relative density of SGNs (number of toluidine blue-stained neurons/mm2) was calculated and Analyzed statistically. To examine SGN size 21 days after blast exposure, the maximum diameter of toluidine blue-stained SGNs was measured in the cochlea of NC and blast-exposed rats (Bichler, 1984). Images were collected from the top, bottom, and middle gyri of cochlear slices, and the mean maximum diameter (μm) of SGNs was calculated and statistically analyzed. Only toluidine blue positive neurons were included in the analysis.
在背侧耳蜗核(DCN)中,从内侧第三(内侧)、中间三分之一(中间)和外侧第三(外侧)部分采集图像。在下丘(IC)中,从IC的中央核(CIC)采集图像。在AC中,从所有层(两个图像覆盖一个部分上的所有层)采集图像。使用改进的二维定量方法来计数这些细胞核或区域中的阳性免疫染色细胞(Du et al.,PLoS One,e80138(2013))。使用ImageJ软件定量每个图像内的阳性细胞总数,并计算每组Tau阳性细胞的密度(阳性细胞数/mm2)并进行统计学分析。仅计数深棕色染色的细胞。细胞和神经突计数由技术人员进行,该技术人员不知道每个载玻片上的样本的身份。In the dorsal cochlear nucleus (DCN), images were acquired from the medial third (medial), medial third (medial) and lateral third (lateral) parts. In the inferior colliculus (IC), images were acquired from the central nucleus (CIC) of the IC. In AC, images were acquired from all layers (two images covering all layers on one section). Positive immunostained cells in these nuclei or regions were counted using a modified two-dimensional quantitative method (Du et al., PLoS One, e80138 (2013)). The total number of positive cells within each image was quantified using ImageJ software, and the density of Tau-positive cells in each group (number of positive cells/mm2) was calculated and statistically analyzed. Only dark brown stained cells were counted. Cell and neurite counts were performed by a technician who was unaware of the identity of the samples on each slide.
统计分析Statistical Analysis
使用单因素或双因素方差分析(SPSS 14.0)和事后检验(Tukey HSD)来确定在每个采样间隔在三个组(NC、B和B/T)之间是否存在统计学上显著的差异。在这些分析中,p值小于0.05被认为是统计学上显著的。One-way or two-way ANOVA (SPSS 14.0) and post hoc tests (Tukey HSD) were used to determine whether there were statistically significant differences between the three groups (NC, B and B/T) at each sampling interval. In these analyses, p-values less than 0.05 were considered statistically significant.
爆炸暴露后耳蜗的神经变性Neurodegeneration of the cochlea after blast exposure
耳蜗神经变性通常在支配HC的脆弱轴突神经突内开始,并且通常逐渐表现为SL中神经纤维的损失,最终导致SGN的损失(Jensen et al.,PLoS One 10.doi:10.1371/journal.pone.0125160(2015))。结果,通过检测在空白大鼠和爆炸暴露的大鼠中的IHC神经支配区中的缎带突触和NF-200阳性(I型)神经突的相对密度,以评估OC中的爆发引起的神经损伤。使用针对主要缎带标记物(C末端集合蛋白2,CtBP2)和用于突触后谷氨酸受体斑块的标记物(GluR2/3)的抗体的双重免疫标记分析揭示了,在受伤后7天和21天,在突触前和突触后结构中协同的爆炸引起的减少跨越OC的底回到中回(图8,A-F)。相比之下,顶回中的低频率音频位置似乎不受爆炸引起的突触损失的影响。对这些突触前和突触后标记物的独立定量提供了明确的证据,证明了在经爆炸暴露的大鼠中,从底回至中回的严重程度评定音频-特异性突触病(图9)。在空白大鼠中,在从OC的底回到中回的整个共聚焦切片中观察到每个IHC中约有11-24个双标记的突触病灶。这些数字在未经处理的爆炸暴露的大鼠中急剧下降,使得在暴露后7天在底回(即48kHz音频区域)内的IHC中观察到突触后元件的正常数量少于50%。在该评估间隔,在未治疗的大鼠中,缎带突触密度在8-32kHz的音频范围内也显著降低(在8、16和32kHz区域,CtBP2puncta/IHC分别减少38.1、35.8和37.3%,GluR2/3puncta/IHC分别减少34.7、28.8和34.7%)。在暴露后21天,在未治疗的动物中,在16-48kHz的音频范围内,显著减少的锻带突触密度仍然明显(图9)。然而,在这个终末时间点,缎带突触密度似乎在这些动物的更顶端的8kHz音频位置恢复(图9),这可能表明随着时间的推移,自发神经再支配的区域化程度。Cochlear nerve degeneration typically begins within the fragile axonal neurites that innervate the HC, and typically progressively manifests as a loss of nerve fibers in the SL, ultimately leading to loss of the SGN (Jensen et al., PLoS One 10.doi:10.1371/journal.pone .0125160 (2015)). As a result, burst-induced neurogenesis in the OC was assessed by examining the relative density of ribbon synapses and NF-200-positive (type I) neurites in the IHC innervation area in both null and blast-exposed rats. damage. Dual immunolabeling analysis using antibodies against major ribbon markers (C-terminal aggregate protein 2, CtBP2) and markers for postsynaptic glutamate receptor plaques (GluR2/3) revealed that after injury At 7 and 21 days, synergistic blast-induced reductions in presynaptic and postsynaptic structures spanned the basal to middle gyrus of the OC (Figure 8, A-F). In contrast, low-frequency audio locations in the top gyrus do not appear to be affected by blast-induced synaptic loss. Independent quantification of these presynaptic and postsynaptic markers provided clear evidence that the severity of audio-specific synaptopathies was assessed from the basal to middle gyrus in blast-exposed rats (Fig. 9). In naïve rats, approximately 11-24 double-labeled synaptic foci per IHC were observed in the entire confocal section from the basal to middle gyrus of the OC. These numbers dropped sharply in untreated blast-exposed rats such that less than 50% of the normal number of postsynaptic elements was observed in IHC within the basal gyrus (ie, the 48 kHz audio region) 7 days after exposure. Ribbon synaptic density was also significantly reduced in the 8-32 kHz audio range in untreated rats at this assessment interval (38.1, 35.8 and 37.3% reduction in CtBP2puncta/IHC in the 8, 16 and 32 kHz regions, respectively, GluR2/3puncta/IHC decreased by 34.7, 28.8 and 34.7%, respectively). At 21 days post-exposure, in untreated animals, significantly reduced synaptic densities were still evident in the audio frequency range of 16-48 kHz (Figure 9). However, at this terminal time point, ribbon synapse density appeared to recover at a more apical 8 kHz audio position in these animals (Fig. 9), which may indicate the extent of localization of spontaneous reinnervation over time.
为了追踪这种爆炸引起的神经病变反应是否随时间转移到外周轴突回缩,在爆炸后24小时、7天和21天的连续时间点沿着IHC神经支配区检查相对神经突密度的纵向变化。在空白大鼠中,在从OC的底回到中回的连续切片中观察到每个IHC大约8个不同的NF-200阳性神经突(图19A和19D)。爆炸暴露的大鼠之间的纵向分析显示,在破坏性损伤后的连续时间点沿着IHC神经支配区的NF-200阳性神经突的数量明确下降(图19B和19E)。这些神经突的正式定量证实了沿着该界面的免疫标记的明显的时间依赖性损失,在爆炸后7天时显著的消耗首先明显(图19G)。在21天的终末采样间隔,在未处理的爆炸暴露的动物的OC的底回到中回的IHC附近观察到平均神经突损失约60%。这种程度的神经突损失比在该时间点沿相同区域测量的平均爆炸引起的缎带突触损失预期的要适当的大一些,并且可以反映与从来自切向截面的神经突密度的定量相关的分辨率的固有降低。尽管如此,在仅有1-2%的IHC损失被记录的情况下,这些结果表明在响应于爆炸伤害的中高频范围内外周听觉系统的神经传递明显下降(图9和图19)。To track whether this blast-induced neuropathic response shifts over time to peripheral axonal retraction, longitudinal changes in relative neurite density were examined along IHC innervation areas at consecutive time points 24 hours, 7 days, and 21 days after blasting . In naive rats, approximately 8 distinct NF-200 positive neurites per IHC were observed in serial sections from the basal to middle gyrus of the OC (Figures 19A and 19D). Longitudinal analysis between blast-exposed rats showed a clear decrease in the number of NF-200-positive neurites along the IHC innervation zone at successive time points following destructive injury (Figures 19B and 19E). Formal quantification of these neurites confirmed a clear time-dependent loss of immunolabeling along this interface, with significant depletion first evident at 7 days post-blasting (Figure 19G). At the terminal sampling interval of 21 days, an average neurite loss of about 60% was observed near IHC in the basal gyrus of the OC of untreated blast-exposed animals. This degree of neurite loss is somewhat larger than would be expected from the average blast-induced synaptic loss at this time point measured along the same area, and may reflect a quantitative correlation with neurite density from tangential sections inherent reduction in resolution. Nonetheless, with only 1-2% of IHC losses recorded, these results indicate a marked decrease in neurotransmission in the peripheral auditory system in the mid- to high-frequency range in response to blast injury (Figures 9 and 19).
研究了骨质SL中NF-200阳性神经纤维的相对密度,作为进一步评估未经治疗的爆炸暴露的大鼠的耳蜗中进行性逆行神经变性的手段。如图10所示,从SG横向向外侧神经支配HC的NF-200阳性神经纤维束被紧密地包裹在空白对照大鼠的骨质SL中(图10A)。虽然这些神经纤维的密度在爆炸后24小时和7天时的明显差异不明显,但在爆炸暴露后21天,大鼠中首次发现NF-200染色强度和神经纤维密度明显降低(图10B)。SL神经纤维密度随时间的正式定量支持这些初始的观察,揭示了在爆炸后7天和21天间隔之间发生的显著的消耗(图10D)。这些结果表明,在7天采样间隔首次观察到的除了沿IHC突触连接的神经突的初始损失之外的进行性逆行神经变性(图19G)。The relative density of NF-200-positive nerve fibers in bony SLs was investigated as a means to further evaluate progressive retrograde neurodegeneration in the cochlea of untreated blast-exposed rats. As shown in Figure 10, NF-200-positive nerve fiber bundles innervating the HC laterally from the SG were tightly packed in the bony SL of the control rats (Figure 10A). Although the apparent difference in the density of these nerve fibers was not evident at 24 hours and 7 days after blasting, a significant decrease in NF-200 staining intensity and nerve fiber density was first found in rats at 21 days after blast exposure (Figure 10B). Formal quantification of SL nerve fiber density over time supported these initial observations, revealing significant depletion that occurred between the 7- and 21-day intervals after blasting (Fig. 10D). These results indicate progressive retrograde neurodegeneration in addition to the initial loss of neurites along IHC synaptic connections, first observed at the 7-day sampling interval (FIG. 19G).
这种暂时的神经性趋势也在包含SG的神经元中显示出来,使得在爆炸暴露后21天,在该耳蜗神经中枢的中回和底回中NF-200染色的首次明显损失是明显的(图11B)。在正常对照动物中,大多数神经元胞体对NF-200标记具有免疫阳性,每个横截面中的一些细胞体表现出强免疫组织化学强度(图11A)。以前已经证明这些强烈标记的NF-200阳性神经元代表II型神经元,因此,在空白对照中具有轻核周体染色的神经元被假定为I型神经元。为了阐明在爆炸暴露的动物的SG中观察到的变性神经元的类型,独立地计算并且统计分析了弱染色和强染色的NF-200阳性体细胞的百分比。在爆炸后21天,与正常对照动物相比,弱NF-200免疫阳性神经元的百分比显著降低,而对于NF-200染色具有强免疫阳性的神经元早在爆炸暴露后7天显著升高并且在21天恢复期的剩余时间内保持升高(图11D和11E)。在爆炸暴露的动物的SG中,NF-200的核周体积累的增加可能代表与创伤引起的脱髓鞘和正在进行的神经变性相关的I型神经元中的细胞骨架的不稳定。This temporal neurogenic trend was also shown in SG-containing neurons, such that the first apparent loss of NF-200 staining in the middle and basal gyrus of this cochlear nerve center was evident 21 days after blast exposure ( Figure 11B). In normal control animals, the majority of neuronal cell bodies were immunopositive for NF-200 labelling, with some cell bodies in each cross section showing strong immunohistochemical intensity (Figure 11A). These strongly labeled NF-200-positive neurons have previously been shown to represent type II neurons, therefore, neurons with light perinuclear body staining in the blank control were assumed to be type I neurons. To elucidate the type of degenerated neurons observed in the SG of blast-exposed animals, the percentages of weakly and strongly stained NF-200-positive somatic cells were independently calculated and statistically analyzed. At 21 days post blast, the percentage of weakly NF-200 immunopositive neurons was significantly reduced compared to normal control animals, whereas neurons with strong immunopositivity for NF-200 staining were significantly elevated as early as 7 days post blast exposure and It remained elevated for the remainder of the 21-day recovery period (Figures 11D and 11E). The increased perinuclear accumulation of NF-200 in the SGs of blast-exposed animals may represent cytoskeletal instability in type I neurons associated with trauma-induced demyelination and ongoing neurodegeneration.
来自这些空间与时间的评估的结果一起表明,在最初的爆炸引起的创伤之后,进行性耳蜗神经变性以逆行方式发生,最终导致SG中I型神经元中神经微丝完整性的明显损失。不受理论束缚,耳蜗神经元的进行性不稳定可以通过响应于爆炸的SG中NF-68免疫染色的时间依赖性增加来补充。Results from these spatial and temporal assessments together suggest that, following the initial blast-induced trauma, progressive cochlear neurodegeneration occurs in a retrograde fashion, culminating in a marked loss of neurofilament integrity in type I neurons in the SG. Without being bound by theory, the progressive destabilization of cochlear neurons could be complemented by a time-dependent increase in NF-68 immunostaining in SGs in response to blasting.
如图12所示,来自空白大鼠的SG的NF-68免疫标记导致弥漫性染色模式,其中深色染色的神经元相对稀少(即小于0.5%,图12A和12D)。然而,在爆炸暴露的大鼠中,在爆炸后24小时强烈地观察到异常的NF-68免疫反应性模式,并且随着时间逐渐变得更加显著(图12B和12D),使得在bTBI后21天,具有强烈NF-68免疫染色的SGN的数量激增至在空白对照中观察到的7倍以上。这些结果与通过NF-200免疫标记(图11)显示的神经退行性反应模式一致。尽管其可测量的体细胞积累,但在爆炸暴露后的任何时间点,在来自空白对照或爆炸暴露的大鼠的SL内的SG神经纤维中未检测到异常的NF-68免疫反应性。As shown in Figure 12, NF-68 immunolabeling of SGs from null rats resulted in a diffuse staining pattern with relatively few darkly stained neurons (ie, less than 0.5%, Figures 12A and 12D). However, in blast-exposed rats, an aberrant NF-68 immunoreactivity pattern was strongly observed 24 hours after blast and became progressively more pronounced over time (Figures 12B and 12D), such that 21 hours after bTBI day, the number of SGNs with strong NF-68 immunostaining surged to more than 7-fold that observed in the blank control. These results are consistent with the pattern of neurodegenerative responses shown by NF-200 immunolabeling (Figure 11). Despite its measurable somatic accumulation, no aberrant NF-68 immunoreactivity was detected in SG nerve fibers within SLs from either control or blast-exposed rats at any time point after blast exposure.
支持这种明显的神经退行性反应的是,与空白对照相比,在创伤后21天,在所有三个回中,未经治疗的、爆炸暴露的动物的耳蜗中SG神经元的平均细胞体直径也显著降低(所有p<0.001,图13)。然而,SGN密度分析表明神经元萎缩尚未转化为神经元的显著损失,因为在该末端时间点甲苯胺蓝阳性SGN的总数没有显著降低(所有p>0.05)。Supporting this apparent neurodegenerative response is the mean cell body of SG neurons in the cochlea of untreated, blast-exposed animals at day 21 post-traumatic in all three gyri compared with control Diameter was also significantly reduced (all p<0.001, Figure 13). However, SGN density analysis indicated that neuronal atrophy had not yet translated into a significant loss of neurons, as the total number of toluidine blue-positive SGNs was not significantly reduced at this terminal time point (all p>0.05).
抗氧化剂减少爆炸暴露后耳蜗中的神经变性Antioxidants reduce neurodegeneration in the cochlea after blast exposure
为了具体检测该治疗方案对爆炸暴露的耳蜗神经元的结构完整性的时间效应,申请人评估了随后用HPN-07和NAC处理的爆炸暴露的动物的群组中的上述缎带突触和神经微丝免疫染色模式。与未经处理的爆炸暴露的动物相比,在创伤后7天,经抗氧化剂处理的大鼠在OC的8和16kHz区域中没有表现出统计学上显著的缎带突触损失(图9,A和B)。这些治疗效果暂时延长至爆炸后21天,因为在抗氧化剂治疗的动物中的16kHz区域内,缎带突触密度与空白对照无法区分(图8G-I和图9C和D)。在此终末时间点,在32kHz区域中也观察到明显的正抗氧化剂处理效果,尽管功效的程度不符合我们的统计显著性标准(即p>0.05,图9,C和D)。HPN-07和NAC治疗还减少了中回和底回中IHC神经支配区域内响应于神经病理性爆炸水平的总神经突损失(图19C和19F)。此外,在未经治疗的大鼠中观察到的突触神经炎过程的逐渐损失实际上在抗氧化剂处理的动物中不存在,使得在终末的21天时间点,相对于空白对照,经处理的爆炸暴露的动物中每个IHC的神经突数量没有显著差异(图19G)。To specifically examine the temporal effect of this treatment regimen on the structural integrity of blast-exposed cochlear neurons, Applicants evaluated the above-mentioned ribbon synapses and nerves in a cohort of blast-exposed animals subsequently treated with HPN-07 and NAC Microfilament immunostaining pattern. Compared with untreated blast-exposed animals, antioxidant-treated rats exhibited no statistically significant loss of Ribbon synapses in the 8 and 16 kHz regions of the OC at 7 days post-traumatic (Figure 9, A and B). These treatment effects were temporarily extended to 21 days post-blast, as ribbon synapse density was indistinguishable from blank controls in the 16 kHz region in antioxidant-treated animals (Figure 8G-I and Figure 9C and D). A clear positive antioxidant treatment effect was also observed in the 32 kHz region at this terminal time point, although the magnitude of efficacy did not meet our criteria for statistical significance (ie p>0.05, Figure 9, C and D). HPN-07 and NAC treatment also reduced total neurite loss in IHC innervation areas in the middle and basal gyrus in response to neuropathic blast levels (Figures 19C and 19F). Furthermore, the progressive loss of synaptic neuritis processes observed in untreated rats was virtually absent in antioxidant-treated animals, such that at the terminal 21 day time point, treated relative to placebo There were no significant differences in the number of neurites per IHC in blast-exposed animals (Figure 19G).
这种治疗效果的分支也以逆行方式表现,因为抗氧化干预有效地抵消了由急性爆炸损伤引起的骨质SL中神经纤维的繁殖损失(图10C)。在这些经治疗的动物中,在爆炸后21天的终末采样间隔,SL神经纤维的密度与空白对照无法区分(图10D)。SG中的治疗功效也很明显,其中在施用HPN-07和NAC的爆炸暴露的大鼠的整个实验时间过程中,检测到弱染色的NF-200阳性I型神经元的完全补充(图11)。在爆炸后的每个采样间隔中,显著的治疗引起的SG中NF-68阳性神经元数量的减少补充了该观察结果(图12C和12D)。此外,与未处理的爆炸暴露的大鼠中观察到的效果相反,在爆炸后21天的终末采样间隔,用HPN-07和NAC处理的动物的所有三个回中SG神经元的平均大小与空白对照无法区分(所有p>0.05,图13)。因此,组合抗氧化剂干预似乎有效地使外周听觉系统中的爆炸引起的神经变性短路。This branch of therapeutic effect also manifested in a retrograde manner, as antioxidant intervention effectively counteracted the reproductive loss of nerve fibers in bony SLs caused by acute blast injury (Fig. 10C). In these treated animals, the density of SL nerve fibers was indistinguishable from the blank control at the terminal sampling interval of 21 days post blast (Fig. 10D). Therapeutic efficacy was also evident in the SG, where complete recruitment of weakly stained NF-200-positive type I neurons was detected throughout the experimental time course in blast-exposed rats administered HPN-07 and NAC (Figure 11). . This observation was complemented by a significant treatment-induced reduction in the number of NF-68 positive neurons in the SG at each sampling interval after blasting (Figures 12C and 12D). Furthermore, in contrast to the effect observed in untreated blast-exposed rats, the average size of SG neurons in all three gyri of animals treated with HPN-07 and NAC at a terminal sampling interval of 21 days post blast Indistinguishable from the blank control (all p>0.05, Figure 13). Thus, combined antioxidant intervention appears to effectively short-circuit blast-induced neurodegeneration in the peripheral auditory system.
爆炸暴露引起螺旋神经节神经元中Tau的过度磷酸化和寡聚化Blast exposure induces hyperphosphorylation and oligomerization of Tau in spiral ganglion neurons
响应于这些爆炸条件引起了海马的Tau的普遍过度磷酸化和寡聚化,这两种爆炸条件已被证明能够引发跨细胞功能障碍的朊病毒样传播波,而与明显的持续损伤无关。因此,所发生的在耳蜗神经元中的神经毒性Tau的积累被检测为伴随爆炸的重合后遗症。Generalized hyperphosphorylation and oligomerization of Tau in the hippocampus was induced in response to these blast conditions, both of which have been shown to trigger prion-like propagating waves of transcellular dysfunction independent of apparent persistent damage. Therefore, the accumulation of neurotoxic Tau in cochlear neurons that occurred was detected as a coincident sequelae of the explosion.
耳蜗评估开始于内源性Tau抗体Tau-1,其识别在丝氨酸位点195、198、199和202处缺乏磷酸化的Tau的生理异构体,并且其可用于进行生理学与病理学区别。然而,Tau-1抗体与正常的耳蜗神经元或神经纤维没有表现出任何可检测的免疫反应性。在生理条件下,Tau能够作为选择性剪接产生的六种不同异构体之一存在(Buée et al.,Brain Res.Rev.,33,95–130(2000))。此外,这些异构体经过特定背景的翻译后修饰(包括差异磷酸化),其调节与微管的功能性相互作用。因此,申请人使用替代的生理学相关抗体Tau-46,其识别Tau的所有六种天然异构体。使用该抗体,在SL中的神经纤维和正常OC内HC下的神经纤维中观察到强Tau-46阳性染色。在Pillar、Deiter和Hensen细胞的细胞质中也观察到中度Tau-46免疫标记,并且在IHC和外HC(OHC)中观察到相对弱的染色。这种耳蜗分布模式类似于该器官中生理性Tau和其他微管相关蛋白(如α-和β-微管蛋白)的以前的报告中描述的模式(Després et al.1994;Oshima et al.1992;Du et al.,2003;Slepecky and Ulfendahl 1992)。在SG中,在神经元的胞体中观察到弥漫的、阳性的Tau-46染色。然而,大约10%的SGN在空白大鼠中表现出强阳性染色(表1)。螺旋韧带和血管纹也表现出弥漫性Tau-46染色(数据未显示)。这些结果表明,与先前的报道相反,Tau蛋白的定位和分布似乎在耳蜗中非常广泛(Després et al.1994;Oshima et al.1992;Slepecky and Ulfendahl1992),并且耳蜗神经元和感觉上皮细胞中Tau的正常磷酸化状态可能与海马神经元中观察到的不同(Du etal.,2016)。Cochlear assessment begins with the endogenous Tau antibody Tau-1, which recognizes the physiological isoform of Tau lacking phosphorylation at serine positions 195, 198, 199, and 202, and which can be used to differentiate physiology from pathology. However, the Tau-1 antibody did not show any detectable immunoreactivity with normal cochlear neurons or nerve fibers. Under physiological conditions, Tau can exist as one of six different isoforms produced by alternative splicing (Buée et al., Brain Res. Rev., 33, 95-130 (2000)). Furthermore, these isoforms undergo context-specific post-translational modifications (including differential phosphorylation) that modulate functional interactions with microtubules. Accordingly, Applicants used an alternative physiologically relevant antibody, Tau-46, which recognizes all six natural isoforms of Tau. Using this antibody, strong Tau-46 positive staining was observed in nerve fibers in SL and under HC in normal OC. Moderate Tau-46 immunolabeling was also observed in the cytoplasm of Pillar, Deiter and Hensen cells, and relatively weak staining was observed in IHC and outer HC (OHC). This cochlear distribution pattern is similar to that described in previous reports of physiological Tau and other microtubule-associated proteins such as α- and β-tubulin in this organ (Després et al. 1994; Oshima et al. 1992 ; Du et al., 2003; Slepecky and Ulfendahl 1992). In SGs, diffuse, positive Tau-46 staining was observed in the soma of neurons. However, approximately 10% of SGNs exhibited strong positive staining in null rats (Table 1). The spiral ligament and stria vascularis also exhibited diffuse Tau-46 staining (data not shown). These results indicate that, contrary to previous reports, the localization and distribution of Tau protein appears to be very widespread in the cochlea (Després et al. 1994; Oshima et al. 1992; Slepecky and Ulfendahl 1992), and that Tau is abundant in cochlear neurons and sensory epithelia The normal phosphorylation state of s may differ from that observed in hippocampal neurons (Du et al., 2016).
表1.爆炸暴露和抗氧化剂处理后听觉系统中的正常Tau染色Table 1. Normal Tau staining in the auditory system after blast exposure and antioxidant treatment
注意:数字代表平均值±SEM;“NS”表示无阳性染色;“*、**、***”分别表示与NC相比p<0.05、0.01、0.001;“治疗效果”是指爆炸暴露的(B)和爆炸暴露的经治疗的(B/T)之间的比较。Note: Numbers represent mean ± SEM; "NS" indicates no positive staining; "*, **, ***" indicate p<0.05, 0.01, 0.001 compared to NC, respectively; "treatment effect" refers to blast exposure Comparison between (B) and blast-exposed treated (B/T).
正常Tau蛋白的体细胞积累是许多急性和慢性神经退行性疾病响应轴突微管不稳定的标志(Kowall and Kosik,1987;Wolfe,2012)。然而,未经治疗的爆炸暴露的大鼠的SGN中体细胞Tau-46免疫反应性模式的定性和定量评估显示,在爆炸暴露后的任何时间点,与空白对照组中观察到的相比,总Tau水平没有可检测的差异(所有p>0.05)。还在终末的21天的时间点测量了SL中的Tau-46免疫反应性并进行了统计学分析,该分析的结果显示Tau-46强烈免疫阳性的神经纤维数量中度升高(1846±182.83/mm2,相比之下空白对照中为1462±158.66/mm2(p<0.05))。在经HPN-07/NAC治疗的爆炸暴露的大鼠中,与未经治疗的爆炸暴露的大鼠相比,Tau-46阳性神经纤维密度(1313.98±128.23/mm2)显著降低(p<0.01)并且在统计学上无法与空白对照区分(p>0.05)。Somatic accumulation of normal tau protein is a hallmark of axonal microtubule instability in response to many acute and chronic neurodegenerative diseases (Kowall and Kosik, 1987; Wolfe, 2012). However, qualitative and quantitative assessment of the pattern of somatic Tau-46 immunoreactivity in the SGN of untreated blast-exposed rats showed that at any time point after blast exposure, compared with that observed in the blank control group, There were no detectable differences in total Tau levels (all p>0.05). Tau-46 immunoreactivity in SL was also measured at the terminal 21 day time point and statistically analyzed, the results of which showed a moderate increase in the number of Tau-46 strongly immunopositive nerve fibers (1846 ± 182.83/mm2, compared to 1462±158.66/mm2 in the blank control (p<0.05)). In blast-exposed rats treated with HPN-07/NAC, the density of Tau-46 positive nerve fibers (1313.98±128.23/mm2) was significantly reduced (p<0.01) compared to untreated blast-exposed rats And statistically indistinguishable from the blank control (p>0.05).
在病理状态下,包括氧化应激在内的毒性损伤能够导致特定的激酶和磷酸酶的活性的不平衡,这导致Tau在关键微管调节位点的过度磷酸化,导致神经元胞体中未结合的、过度磷酸化的Tau水平增加(Noble et al.,2013;Taniguchi et al.,2001)。为了辨别SGN是否对爆炸暴露的大鼠中的这种不稳定的应激反应模式敏感,申请人用抗体AT8(其特异性地识别过度磷酸化的Tau)免疫标记来自这些动物和空白对照的耳蜗组织。如图14所示,空白大鼠的SG对用AT8抗体进行免疫标记基本上没有反应(图14A和14D)。然而,爆炸暴露引起SGN中体细胞AT8免疫标记的急性和慢性增加,在爆炸后采样间隔的第7天观察到峰值免疫反应性(图14B和14D,表2)。然而,在爆炸后第21天,SGN中这些神经毒性变体的水平似乎下降,表明爆炸对这种微管相关蛋白的有害作用可能是一种短暂现象。还在爆炸暴露后7天测量了SL中AT8阳性神经纤维的密度,并进行统计学分析,在该时间点SGN在未经治疗的大鼠中表现出统计学上显著的AT8积累。然而,与空白对照组(169.17±20.98)相比,在此时间点,不管有没有进行治疗,爆炸暴露的大鼠SL中AT8阳性神经纤维的相对密度没有显著增加(未经治疗和经治疗的大鼠分别为227.53±22.20和253.93±24.90/mm2)(所有p>0.05)。In pathological conditions, toxic insults, including oxidative stress, can lead to an imbalance in the activity of specific kinases and phosphatases, which leads to hyperphosphorylation of Tau at key microtubule regulatory sites, resulting in unbound neuronal soma increased levels of hyperphosphorylated Tau (Noble et al., 2013; Taniguchi et al., 2001). To discern whether SGNs are sensitive to this unstable stress response pattern in blast-exposed rats, Applicants immunolabeled cochleae from these animals and controls with the antibody AT8, which specifically recognizes hyperphosphorylated Tau organize. As shown in Figure 14, SGs of null rats were substantially unresponsive to immunolabeling with AT8 antibody (Figures 14A and 14D). However, blast exposure caused acute and chronic increases in somatic AT8 immunolabeling in SGNs, with peak immunoreactivity observed at day 7 of the post-blast sampling interval (Figures 14B and 14D, Table 2). However, levels of these neurotoxic variants appeared to decrease in the SGN on day 21 after blasting, suggesting that the detrimental effect of blasting on this microtubule-associated protein may be a transient phenomenon. The density of AT8-positive nerve fibers in the SL was also measured 7 days after blast exposure and statistically analyzed, at which point SGN exhibited statistically significant AT8 accumulation in untreated rats. However, the relative density of AT8-positive nerve fibers in the SL of blast-exposed rats was not significantly increased at this time point with or without treatment compared to the blank control group (169.17 ± 20.98) (untreated and treated 227.53±22.20 and 253.93±24.90/mm2 in rats, respectively) (all p>0.05).
表2.爆炸暴露和抗氧化剂处理后听觉系统中的AT8染色Table 2. AT8 staining in auditory system after blast exposure and antioxidant treatment
Tau的过度磷酸化通常是Tau寡聚化的疾病发生学前体,因为最初使其微管结合能力不稳定的磷酸化事件导致结构构象表现出自缔合倾向(Iqbal et al.,2013)。这种改变的亲和模式能够导致进一步的Tau功能障碍,因为Tau的生理异构体被募集到具有过度磷酸化的异构体的死端型病理复合物中,从而增强其神经变性的特性(Takashima 2013)。为了研究我们的爆炸暴露模型是否也在SGN中引起Tau的寡聚化作用,申请人在爆炸后的纵向时间点用抗体T22(该抗体特异性地识别病理性Tau寡聚体)免疫标记SG切片(Lasagna-Reeveset al.,2012)。与用AT8抗体观察到的相似(图14A),绝大多数的空白SGN(>99%,图15D)与T22抗体没有免疫反应性(图15A)。相反,在分析的所有时间点,在爆炸暴露的大鼠的SGN中观察到新的和普遍的体细胞T22免疫反应性(图15B和15D,表3)。随着时间的推移,这种T22免疫标记模式的普遍性变得更加普遍,与用AT8抗体观察到的趋势形成对比,AT8抗体的免疫反应性在爆炸后7天达到峰值水平后下降(图14D)。还SGN中最大T22积累的时间点(即爆炸后21天)测量了SL中T22阳性神经纤维的密度,并在进行统计学分析。与空白对照组(136.67±15.38/mm2)相比,在这个时间点,在未经治疗的爆炸暴露的大鼠的SL中也观察到T22阳性神经纤维的显著的统计学上显著增加(516.99±58.17/mm2)(p<0.001)。在爆炸暴露的大鼠中这种异常的T22 SGN免疫标记模式的持续,表明该听觉神经中枢的持续的或进行型病理学。Hyperphosphorylation of Tau is often a disease-causing precursor to Tau oligomerization, as the phosphorylation events that initially destabilize its microtubule-binding capacity lead to structural conformations that exhibit a propensity for self-association (Iqbal et al., 2013). This altered affinity pattern can lead to further Tau dysfunction as physiological isoforms of Tau are recruited to dead-end pathological complexes with hyperphosphorylated isoforms that enhance their neurodegenerative properties ( Takashima 2013). To investigate whether our blast exposure model also induces oligomerization of Tau in SGN, Applicants immunolabeled SG sections with antibody T22, which specifically recognizes pathological Tau oligomers, at longitudinal time points after blasting (Lasagna-Reeveset al., 2012). Similar to that observed with the AT8 antibody (Figure 14A), the vast majority of blank SGNs (>99%, Figure 15D) were not immunoreactive with the T22 antibody (Figure 15A). In contrast, novel and prevalent somatic T22 immunoreactivity was observed in the SGN of blast-exposed rats at all time points analyzed (Figures 15B and 15D, Table 3). The prevalence of this T22 immunolabeling pattern became more prevalent over time, in contrast to the trend observed with the AT8 antibody, which decreased after reaching peak levels 7 days post-blast (Figure 14D ). The density of T22-positive nerve fibers in the SL was also measured at the time point of maximal T22 accumulation in the SGN (ie, 21 days after blasting), and statistical analysis was performed. A statistically significant increase in T22-positive nerve fibers was also observed in the SL of untreated blast-exposed rats at this time point (516.99±15.38/mm2) compared to the blank control group (136.67±15.38/mm2). 58.17/mm2) (p<0.001). Persistence of this abnormal T22 SGN immunolabeling pattern in blast-exposed rats indicates a persistent or progressive pathology of this auditory nerve center.
表3.爆炸暴露和抗氧化剂治疗后听觉系统中的T22染色Table 3. T22 staining in auditory system after blast exposure and antioxidant treatment
在爆炸暴露的大鼠中观察到的T22图谱令人想起上文针对该群组描述的NF-68纵向免疫标记模式。这促使我们确定这些互补趋势是否在相同的变性SGN中表现为同时的病理生理反应。为此,将来自爆炸暴露的大鼠的SG组织切片与针对NF-68和低聚物Tau的抗体共温育,然后评估这两种病理表位的潜在共定位。该免疫荧光分析的一个实施例如图16所示。基于这些分析,很明显的是,尽管在急性和慢性采样间隔时T22免疫标记通常比NF-68更普遍,但在每个时间点,多个T22阳性神经元与NF-68抗体共同标记(图16)。这些双标记神经元的大小和形状与I型SGN一致。这些结果表明,Tau功能的进行型神经毒性的去稳定作用和神经微丝的去稳定作用是在爆炸暴露的大鼠中变性SGN中的相关事件。The T22 profile observed in blast-exposed rats is reminiscent of the NF-68 longitudinal immunolabeling pattern described above for this cohort. This prompted us to determine whether these complementary trends manifest as simultaneous pathophysiological responses in the same degenerating SGN. To this end, SG tissue sections from blast-exposed rats were co-incubated with antibodies against NF-68 and oligomeric Tau, and then the potential co-localization of these two pathological epitopes was assessed. An example of this immunofluorescence analysis is shown in FIG. 16 . Based on these analyses, it was evident that, although T22 immunolabeling was generally more prevalent than NF-68 at the acute and chronic sampling intervals, multiple T22-positive neurons were co-labeled with NF-68 antibodies at each time point (Fig. 16). The size and shape of these double-labeled neurons were consistent with type I SGNs. These results suggest that destabilization of progressive neurotoxicity of tau function and destabilization of neurofilaments are relevant events in degenerated SGN in blast-exposed rats.
抗氧化剂治疗减少了螺旋神经节神经元中爆炸引起的神经毒性Tau变体的积累Antioxidant treatment reduces blast-induced accumulation of neurotoxic Tau variants in spiral ganglion neurons
为了确定通过差异神经微丝染色揭示的HPN-07和NAC干预对耳蜗神经变性的表观治疗效果是否能够扩展到SG中的Tau功能障碍,申请人在每个采样间隔用AT8和T22抗体免疫标记来自抗氧化剂治疗的爆炸暴露的大鼠的相关组织切片,用于与空白对照和未治疗的爆炸暴露的群组进行比较。如图14(图C和D)所示,使用HPN-07和NAC的组合方案的急性损伤后干预减少了在所检测的所有时间点的过度磷酸化的Tau的表现。特别值得注意的是,当AT8水平在未经治疗的爆炸群组中达到峰值时,在7天采样间隔的经过治疗的大鼠中观察到AT8-免疫阳性神经元数量的显著减少(图14D和表2)。然而,在这个时间点,抗氧化剂处理并没有将AT8阳性神经元的数量减少到在空白对照中观察到的水平,这可能强调了爆炸对SG中异常Tau磷酸化的可饱和的或氧化应激非依赖性的作用。To determine whether the apparent therapeutic effect of HPN-07 and NAC intervention on cochlear neurodegeneration revealed by differential neurofilament staining could extend to Tau dysfunction in the SG, Applicants immunolabeled with AT8 and T22 antibodies at each sampling interval Relevant tissue sections from antioxidant-treated blast-exposed rats for comparison with control and untreated blast-exposed cohorts. As shown in Figure 14 (Panels C and D), post-acute injury intervention using the combined regimen of HPN-07 and NAC reduced the expression of hyperphosphorylated Tau at all time points examined. Of particular note, when AT8 levels peaked in the untreated blast cohort, a significant reduction in the number of AT8-immunopositive neurons was observed in treated rats with a 7-day sampling interval (Figure 14D and Table 2). However, at this time point, antioxidant treatment did not reduce the number of AT8-positive neurons to the levels observed in the blank controls, which may underline the saturable or oxidative stress of blasting aberrant Tau phosphorylation in SGs independent effect.
与低聚物Tau抗体的互补分析揭示了在爆炸暴露的动物的SG中神经元中HPN-07/NAC干预的更显著的作用。在这些条件下,在整个研究的整个时间过程中,抗氧化剂干预显著地且有效地阻断了在未经治疗的爆炸暴露的大鼠的细胞体中观察到的T22免疫标记的病理性增加(图15,图C和D,表3)。在SL中也观察到这种积极的治疗效果,其中T22阳性神经纤维密度(193.53±21.37/mm2)显著小于未经治疗的爆炸暴露的大鼠(516.99±58.17/mm2,p<0.001),并且在终末采样间隔,与空白对照(p>0.05)在统计学上无法区分。结合SGN中NF-200染色保存的积极治疗效果(图11)和病理性NF-68积累的减弱(图12),这些结果表明,这种组合抗氧化方案在爆炸暴露的动物中的之前暗示的治疗效果可以扩展到包括在外周听觉系统中抑制神经变性和进行性Tau失调。Complementary analysis with oligomeric Tau antibody revealed a more pronounced effect of HPN-07/NAC intervention in neurons in the SG of blast-exposed animals. Under these conditions, antioxidant intervention significantly and effectively blocked the pathological increase in T22 immunolabeling observed in the cell bodies of untreated blast-exposed rats over the entire time course of the study ( Figure 15, Panels C and D, Table 3). This positive treatment effect was also observed in SL, where T22-positive nerve fiber density (193.53 ± 21.37/mm2) was significantly less than in untreated blast-exposed rats (516.99 ± 58.17/mm2, p<0.001), and Statistically indistinguishable from the blank control (p>0.05) at the terminal sampling interval. Combined with the positive therapeutic effect of preservation of NF-200 staining in SGNs (Figure 11) and the attenuation of pathological NF-68 accumulation (Figure 12), these results suggest that this combined antioxidant regimen in blast-exposed animals has previously implicated Therapeutic effects can be extended to include inhibition of neurodegeneration and progressive Tau dysregulation in the peripheral auditory system.
抗氧化剂减少爆炸暴露的大鼠的听觉皮层中的神经元之间的体细胞Tau积累Antioxidants reduce somatic Tau accumulation between neurons in the auditory cortex of blast-exposed rats
虽然组合HPN-07/NAC治疗明显改善了外周听觉系统中持续存在的、bTBI相关的Tau功能障碍的迹象,但该实验试图确定重复爆炸暴露是否也引起中枢听觉系统中被治疗性抗氧化剂干预所抵消的Tau的病理变化。为此,评估来自前腹侧耳蜗核(AVCN)、后腹侧耳蜗核(PVCN)、DCN、IC和AC的组织切片的响应于爆炸的Tau失调的免疫细胞学证据。与耳蜗组织相反,在空白对照大鼠中,中枢听觉通路内的神经元与常规生理性Tau-1抗体是弥漫的免疫反应性的(图17A)。该观察与申请人之前关于海马的神经元中Tau免疫分析的研究一致(Du et al.,2016)。在空白对照中,Tau-1阳性神经元分布在DCN的所有层以及VCN和IC的所有区域(表1),具有非常低的强烈体细胞免疫反应性频率。与我们先前对海马神经元的评估相反,爆炸暴露不会引起AVCN或DCN中体细胞Tau-1染色的显著变化,并且仅在未经治疗的爆炸暴露的动物的PVCN中,在爆炸后7天的采样间隔时检测到体细胞Tau-1免疫反应性的短暂增加(p<0.05,表1)。While combined HPN-07/NAC treatment significantly improved persistent signs of bTBI-related tau dysfunction in the peripheral auditory system, this experiment sought to determine whether repeated blast exposure also elicited the effects of therapeutic antioxidant intervention in the central auditory system. Offset pathological changes in Tau. To this end, tissue sections from anterior ventral cochlear nucleus (AVCN), posterior ventral cochlear nucleus (PVCN), DCN, IC and AC were evaluated for immunocytological evidence of Tau dysregulation in response to blasting. In contrast to cochlear tissue, neurons within the central auditory pathway were diffusely immunoreactive with conventional physiological Tau-1 antibodies in naïve rats (FIG. 17A). This observation is consistent with Applicants' previous studies on Tau immunoprofiling in neurons of the hippocampus (Du et al., 2016). In the blank control, Tau-1 positive neurons were distributed in all layers of the DCN and in all regions of the VCN and IC (Table 1), with a very low frequency of strong somatic immunoreactivity. Contrary to our previous assessment of hippocampal neurons, blast exposure did not cause significant changes in somatic Tau-1 staining in the AVCN or DCN, and only in the PVCN of untreated blast-exposed animals, 7 days after blasting A transient increase in somatic Tau-1 immunoreactivity was detected at the sampling interval of 100% (p<0.05, Table 1).
在空白对照的AC中,Tau-1阳性神经元主要位于深神经元层中。然而,在爆炸暴露后,在中间层也观察到Tau-1阳性神经元。如图17中图解总结的,在爆炸暴露后的所有时间点,在AC中的神经元中观察到显著更多的Tau-1阳性体细胞。这种爆炸引起的效应似乎是双相的,因为在爆炸后24小时和7天之间的初始平稳期后,AC中深色体细胞Tau-1染色的神经元的数量在爆炸后21天进一步升高,也许反映了正常Tau功能的急性和进行性失调。In blank control ACs, Tau-1 positive neurons were mainly located in the deep neuronal layer. However, after blast exposure, Tau-1 positive neurons were also observed in the middle layer. As graphically summarized in Figure 17, significantly more Tau-1 positive somatic cells were observed in neurons in the AC at all time points after blast exposure. This blast-induced effect appears to be biphasic, as the number of dark somatic Tau-1-stained neurons in the AC further increased 21 days after blast following an initial plateau between 24 hours and 7 days after blast Elevated, perhaps reflecting acute and progressive dysregulation of normal tau function.
用AT8抗体检测中央听觉组织切片显示,在AVCN、PVCN或IC中没有爆炸引起的过度磷酸化的显著诱导(表2)。在爆炸后第7天在DCN的神经元中观察到体细胞AT8免疫标记的轻微瞬时增加(p<0.05,增加2.8倍),在24小时或21天时间点没有明显的可检测的变化(表2)。在初级AC中,相对于在DCN中检测到的,在爆炸后7天观察到更显著(p<0.01,增加4.76倍)但仍然短暂的AT8免疫反应性增加。然而,这种病理染色模式似乎在21天的采样间隔得到解决。Examination of central auditory tissue sections with AT8 antibody showed no significant induction of blast-induced hyperphosphorylation in AVCN, PVCN or IC (Table 2). A slight transient increase in somatic AT8 immunolabeling was observed in neurons of the DCN on day 7 post blast (p<0.05, 2.8-fold increase), with no apparent detectable change at the 24-hour or 21-day time points (Table 1). 2). In primary AC, a more significant (p<0.01, 4.76-fold increase) but still transient increase in AT8 immunoreactivity was observed 7 days post blast relative to that detected in DCN. However, this pathological staining pattern appeared to resolve at the 21-day sampling interval.
T22免疫标记表现出与爆炸暴露的动物的中枢听觉途径中用AT8抗体观察到的相似的免疫标记模式。在空白动物的AVCN、PVCN、DCN或IC中未检测到T22反应性神经元(表3)。此外,在研究的实验时间过程中,我们的bTBI模型未能在脑的这些中枢听觉区域中引起体细胞T22免疫反应性的显著增加(表3)。相比之下,AC中T22阳性神经元的患病率在爆炸后7天显著升高(p<0.001,增加100倍)。然而,这种异常免疫标记模式在研究的终末(21天)时间点显著降低(表3)。这些结果一起揭示,bTBI诱导AC的神经元中生理性Tau的持续的(即使不是进行性的)体细胞积累,其与在该中枢听觉中心中过度磷酸化的和低聚物的Tau的瞬时但延迟的(爆炸后7天)积累相结合。T22 immunolabeling exhibited a similar immunolabeling pattern to that observed with the AT8 antibody in the central auditory pathway of blast-exposed animals. No T22-responsive neurons were detected in the AVCN, PVCN, DCN, or IC of null animals (Table 3). Furthermore, our bTBI model failed to induce a significant increase in somatic T22 immunoreactivity in these central auditory regions of the brain over the experimental time course studied (Table 3). In contrast, the prevalence of T22-positive neurons in the AC was significantly elevated 7 days after blasting (p<0.001, a 100-fold increase). However, this abnormal immune labeling pattern was significantly reduced at the terminal (day 21) time point of the study (Table 3). Taken together, these results reveal that bTBI induces persistent, if not progressive, somatic accumulation of physiological Tau in neurons of AC, which is incompatible with transient but transient but not progressive accumulation of hyperphosphorylated and oligomeric Tau in this central auditory center. Delayed (7 days after detonation) accumulation combined.
当大鼠在爆炸后施用组合抗氧化剂(HPN-07/NAC)治疗方案时,在爆炸后的7天和21天时间点,初级AC的神经元中体细胞生理性Tau积累(即体细胞Tau-1反应性)的发生显著减少(图17,表1)。阳性治疗效果在终末21天时间点最为突出,其中体细胞Tau-1阳性神经元的相对患病率比未经治疗的爆炸暴露的大鼠中观察到的大约低两倍,表明明确的治疗特异性作用(p<0.001)。然而,与观察到的对体细胞Tau-1积累的影响相反,这种治疗效果没有扩展到在DCN和/或AC中观察到的异常AT8或T22免疫反应性模式,因为抗氧化剂处理似乎对爆炸暴露的动物的这些中央听觉核中观察到的Tau过度磷酸化和寡聚化的延迟但短暂的增加没有明显的影响(表2和3)。因此,爆炸暴露的大鼠的外周和中枢听觉通路神经元中神经毒性Tau积累的病理性和治疗反应模式明显不同,可能反映了它们的相对解剖位置和对爆炸引起的繁殖氧化应激和神经变性的背景易感性。When rats were administered a combination antioxidant (HPN-07/NAC) treatment regimen after blasting, somatic physiological Tau accumulation (i.e., somatic Tau) in neurons of primary AC was observed at the 7 and 21 days post blasting time points. -1 reactivity) was significantly reduced (Figure 17, Table 1). Positive treatment effects were most pronounced at the terminal 21-day time point, where the relative prevalence of somatic Tau-1-positive neurons was approximately two-fold lower than that observed in untreated blast-exposed rats, indicating definitive treatment Specific effect (p<0.001). However, in contrast to the observed effects on somatic Tau-1 accumulation, this therapeutic effect did not extend to the abnormal AT8 or T22 immunoreactivity patterns observed in DCNs and/or ACs, as antioxidant treatment appeared to have a significant effect on blasting The delayed but transient increases in Tau hyperphosphorylation and oligomerization observed in these central auditory nuclei of exposed animals had no apparent effect (Tables 2 and 3). Thus, the pathological and therapeutic response patterns of neurotoxic Tau accumulation in peripheral and central auditory pathway neurons of blast-exposed rats are markedly different, possibly reflecting their relative anatomical location and response to blast-induced reproductive oxidative stress and neurodegeneration background susceptibility.
抗氧化剂降低爆炸暴露的大鼠的螺旋神经节中神经元之间的氧化应激Antioxidants reduce oxidative stress between neurons in the spiral ganglia of blast-exposed rats
为了确认爆炸引起的氧化应激事实上确实有助于与耳蜗神经变性相关的病理生理反应,申请人在爆炸后24小时用8-OHdG免疫标记SGN组织,8-OHdG是氧化性DNA损伤的生物标记生物(Valavanidis et al.,2009)。在未经治疗的爆炸暴露的大鼠的SGN的核中观察到强烈的8-OHdG阳性染色,表明这些神经元中的氧化应激的破坏性水平(图18B)。如图18D中图解总结的,与空白对照相比,在这些动物的SG中观察到显著地更多数量的8-OHdG阳性神经元(p<0.001)。在用组合抗氧化剂方案治疗的动物中,具有强烈8-OHdG免疫反应性的SGN的患病率显著降低(p<0.001)。这些结果为氧化应激作为SG中爆炸引起的神经变性的有贡献的(如果不是主要的)因素、以及抗氧化剂治疗对减少应激反应的积极治疗效果提供了直接证据。To confirm that blast-induced oxidative stress does, in fact, contribute to the pathophysiological responses associated with cochlear neurodegeneration, Applicants immunolabeled SGN tissue 24 hours after blasting with 8-OHdG, an organism responsible for oxidative DNA damage marker organisms (Valavanidis et al., 2009). Intense 8-OHdG positive staining was observed in the nuclei of SGNs of untreated blast-exposed rats, indicating a damaging level of oxidative stress in these neurons (Figure 18B). As graphically summarized in Figure 18D, significantly higher numbers of 8-OHdG positive neurons were observed in the SGs of these animals compared to the control (p<0.001). The prevalence of SGN with strong 8-OHdG immunoreactivity was significantly reduced in animals treated with the combined antioxidant regimen (p<0.001). These results provide direct evidence for oxidative stress as a contributing, if not a major, factor in blast-induced neurodegeneration in SG, and the positive therapeutic effect of antioxidant treatment on reducing stress responses.
抗氧化剂减少爆炸暴露的大鼠中听觉功能的损失Antioxidants reduce loss of auditory function in blast-exposed rats
本研究的ABR结果已在我们之前的报告(Ewert et al.,2012)中详细描述,并总结在图20中。总的来说,在爆炸暴露后的所有时间点,在未经治疗的爆炸暴露的动物中观察到显著的ABR阈值变化。与未经治疗的爆炸暴露组相比,HPN-07/NAC治疗组的ABR阈值移位在爆炸后24小时降低约10dB,在爆炸后7天和21天降低21dB(所有p<0.001)。在爆炸暴露后7天和21天,在所有测试频率(2-16KHz)下测量到抗氧化剂治疗组中ABR阈值变化的显著恢复(p<0.01或0.001)。与观察到的对进行性SG神经变性的治疗功效一致,这些ABR结果反映了HPN-07和NAC明确的正面属性,用于中断导致爆炸暴露的大鼠中听觉功能的逐渐损失的持续的病理生理反应。The ABR results of this study have been described in detail in our previous report (Ewert et al., 2012) and are summarized in Figure 20. Overall, significant changes in ABR thresholds were observed in untreated blast-exposed animals at all time points following blast exposure. Compared to the untreated blast-exposed group, the ABR threshold shift in the HPN-07/NAC-treated group was reduced by approximately 10 dB at 24 hours post blast and 21 dB at 7 and 21 days post blast (all p<0.001). Significant recovery (p<0.01 or 0.001) of changes in ABR thresholds in the antioxidant-treated group was measured at all frequencies tested (2-16KHz) at 7 and 21 days after blast exposure. Consistent with the observed therapeutic efficacy against progressive SG neurodegeneration, these ABR results reflect the well-defined positive properties of HPN-07 and NAC for interrupting the ongoing pathophysiology that results in a progressive loss of auditory function in blast-exposed rats reaction.
进一步分析further analysis
虽然我们的爆炸模型已经显示引起显著的和永久的ABR阈值变化,表明感觉神经功能减弱,但在受伤后21天未经治疗的爆炸暴露的大鼠的中回和底回中仅观察到1%至2%的IHC损失,这表明这些动物的神经变性程度不明显(Ewert et al.2012;Du et al.,2013and data not shown)。While our blast model has been shown to induce significant and permanent changes in ABR thresholds, indicating diminished sensory nerve function, only 1% was observed in the middle and basal gyri of untreated blast-exposed rats 21 days post-injury to 2% IHC loss, suggesting that the degree of neurodegeneration was not apparent in these animals (Ewert et al. 2012; Du et al., 2013 and data not shown).
实际上,从损伤后7天开始,我们观察到在未经治疗的爆炸暴露的大鼠中沿OC的中回和底回的IHC神经支配区的神经突数量显著下降,并且在本研究的终末21天时间点,在这些区域中测量到超过一半的原始神经突群体的明显损失(图19)。这些结果与在创伤后终末21天时间点沿着该区域的宽度的IHC之间的显著的爆炸引起的缎带突触损失相关(图8和9),表明向大脑的外周听觉信号显著减少。在这些动物中,骨质SL中的外周轴突的数量直到爆炸后21天才显著降低(图10)。这些结果与响应于我们的爆炸暴露范例的损失的IHC突触逐渐但渐进的轴突回缩相一致,其类似于在暴露于急性听觉创伤的小鼠中所记录的(Jensen et al.2015)。在此期间,病理性NF-68染色在SGN体细胞中保持显著升高(图12),表明持续的功能障碍。另一方面,直至爆炸后7天,才观察到SGN体细胞的正常NF-200免疫标记模式的显著失衡,具有I型免疫反应性模式的神经元数量的明显下降在损伤后第21天首先明显(图11)。这些结果似乎表明,病理性NF-68积累是一种比SGN中NF-200免疫反应性的损失更敏感或更上位的用于正在进行的爆炸引起的神经病变的病理学的标记物。Indeed, starting 7 days after injury, we observed a significant decrease in the number of neurites in the IHC innervation areas along the middle and basal gyrus of the OC in untreated blast-exposed rats, and at the end of the study Significant loss of more than half of the original neurite population was measured in these regions at the last 21 day time point (Figure 19). These results correlate with significant blast-induced loss of ribbon synapses between IHCs along the width of the region at the terminal 21 day posttraumatic time point (Figures 8 and 9), indicating a marked reduction in peripheral auditory signaling to the brain . In these animals, the number of peripheral axons in the bony SL was not significantly reduced until 21 post-blast (Figure 10). These results are consistent with a gradual but progressive axonal retraction of IHC synapses in response to loss of our blast exposure paradigm, similar to that recorded in mice exposed to acute auditory trauma (Jensen et al. 2015) . During this period, pathological NF-68 staining remained significantly elevated in SGN somatic cells (Figure 12), indicating persistent dysfunction. On the other hand, a marked imbalance in the normal NF-200 immunolabeling pattern of SGN somatic cells was not observed until 7 days after blasting, with a marked decrease in the number of neurons with a type I immunoreactivity pattern first evident on day 21 post-injury (Figure 11). These results appear to suggest that pathological NF-68 accumulation is a more sensitive or epistatic marker for the pathology of ongoing blast-induced neuropathy than loss of NF-200 immunoreactivity in SGN.
在SGN中观察到的响应于我们的爆炸受伤模型的进行性病理生理反应模式,是与轻度爆炸引起的TBI(mTBI)和其他临床相关的神经病变相关的神经变性的特征(Goldsteinet al.,2012;Sajja et al.,2015;Walker and Tesco,2013)。我们的爆炸超压(14psi)模型的强度可能在SG内爆炸引起的神经变性的时间和程度中起关键作用。在小鼠的一项相关研究中,Cho及其同事证明,虽然在暴露于94(13.63psi)或123(17.84psi)kPa爆炸的动物中没有观察到SG神经元损失,但是181kPa(26.25psi)的爆炸早在创伤后7天就引起显著的SGN损失(Cho et al.,2013)。在本研究中,甲苯胺蓝和NF-200染色的结果表明在终末实验时间点(21天)SG中没有显著的神经元损失。尽管如此,我们在整个我们的研究过程中观察到的SGN中NF-68和神经毒性Tau变体的持续的病理学的积累与一定程度的爆炸引起的神经病变一致,其最终可能导致这种外周神经元群体的显著下降。与此理论基础一致,我们观察到在爆炸后21天未经治疗的爆炸暴露的大鼠耳蜗中SGN的平均体细胞直径在统计学上显著降低,表明这些动物中进行中的神经元萎缩(图13)(Raff et al.,2002)。此外,本文采用的mTBI模型更可能模拟军事人员遇到的模型,从而为退伍军人中常见的进行性时空神经变性提供潜在的见解(McKee and Robinson,2014;Yankaskas,2013)。The pattern of progressive pathophysiological responses observed in the SGN in response to our blast injury model is characteristic of neurodegeneration associated with mild blast-induced TBI (mTBI) and other clinically relevant neuropathies (Goldstein et al., 2012; Sajja et al., 2015; Walker and Tesco, 2013). The strength of our blast overpressure (14 psi) model may play a key role in the timing and extent of blast-induced neurodegeneration within the SG. In a related study in mice, Cho and colleagues demonstrated that while no loss of SG neurons was observed in animals exposed to 94 (13.63 psi) or 123 (17.84 psi) kPa blasts, 181 kPa (26.25 psi) The detonation of sigmoid induced significant SGN loss as early as 7 days after trauma (Cho et al., 2013). In the present study, the results of toluidine blue and NF-200 staining indicated that there was no significant neuronal loss in the SG at the terminal experimental time point (21 days). Nonetheless, the persistent pathological accumulation of NF-68 and neurotoxic Tau variants in SGNs that we observed throughout our study is consistent with a degree of blast-induced neuropathy that may ultimately contribute to this peripheral Significant decline in neuronal population. Consistent with this rationale, we observed a statistically significant reduction in the mean somatic diameter of SGNs in the cochlea of untreated blast-exposed rats 21 days after blast, indicating ongoing neuronal atrophy in these animals (Fig. 13) (Raff et al., 2002). In addition, the mTBI model employed in this paper is more likely to mimic those encountered by military personnel, thereby providing potential insights into the progressive spatiotemporal neurodegeneration commonly seen in veterans (McKee and Robinson, 2014; Yankaskas, 2013).
已知由爆炸超压暴露引起的mTBI会诱导延长的氧化应激(Abdul-Muneer et al.,2013;Kochanek et al.,2013;Readnower et al.,2010)。因此,我们检测了创伤后干预对爆炸引起的OC中的病理生理反应的治疗效果,其中抗氧化剂配方由经典抗氧化剂N-乙酰半胱氨酸和自由基自旋捕获剂(HPN-07)组成。我们发现这种治疗策略有效地防止由我们的爆炸伤模型的病理生理反应产生的氧化应激的直接表现(图18),并且防止IHC神经支配区中NF-200阳性神经突的急性和慢性损失以及爆炸暴露的大鼠中SL中的神经纤维损失(图19和图10)。这种治疗功效也转化为OC的16kHz区域中有效的缎带突触保存,以及32kHz区域中的阳性治疗效果的指示(图8和9)。此外,HPN-07/NAC干预还显著减少了SGN的体细胞中病理学的NF-68积累和NF-200免疫染色的神经性的失衡,并减轻了这些神经元群体中爆炸引起的平均体细胞直径的减少(图11-13)。尚不清楚这些积极的治疗效果是否是HPN-07和NAC对减少神经元和神经突内氧化应激的直接作用、通过持续的HC活力的间接保护作用、或两者的组合。然而,如上所述,在我们的研究的整个时间过程中仅观察到1-2%的IHC损失(Ewertet al.2012;Du et al.,2013)。鉴于未经治疗的爆炸暴露的大鼠中IHC神经突的相对早期损失,在抗氧化剂治疗的动物中观察到的治疗效果主张直接保护SGN神经突。实际上,相对于保留缎带突触完整性,沿着OC的宽度观察到维持平均外周轴突密度的更稳健的治疗效果可能表明抗氧化剂干预减缓或阻止进一步的轴突回缩,该治疗结果可以增强固有的或治疗性的神经支配再策略(Tong et al.,2013;Wan et al.,2014)。mTBI induced by explosive overpressure exposure is known to induce prolonged oxidative stress (Abdul-Muneer et al., 2013; Kochanek et al., 2013; Readnower et al., 2010). We therefore examined the therapeutic effect of a post-traumatic intervention on the pathophysiological response in blast-induced OC with an antioxidant formulation consisting of the classical antioxidant N-acetylcysteine and a free radical spin trap (HPN-07) . We found that this therapeutic strategy was effective in preventing direct manifestations of oxidative stress arising from the pathophysiological response of our blast injury model (Figure 18), and in preventing acute and chronic loss of NF-200-positive neurites in IHC innervation areas and nerve fiber loss in the SL in blast-exposed rats (Figure 19 and Figure 10). This therapeutic efficacy also translated into efficient ribbon synaptic preservation in the 16 kHz region of the OC, and an indication of a positive treatment effect in the 32 kHz region (Figures 8 and 9). In addition, HPN-07/NAC intervention also significantly reduced pathological NF-68 accumulation in somatic cells of SGN and neuronal imbalance of NF-200 immunostaining, and attenuated blast-induced average somatic cells in these neuronal populations A reduction in diameter (Figures 11-13). It is unclear whether these positive therapeutic effects are a direct effect of HPN-07 and NAC on reducing oxidative stress within neurons and neurites, an indirect protective effect through sustained HC viability, or a combination of both. However, as noted above, only 1-2% IHC loss was observed over the entire time course of our study (Ewert et al. 2012; Du et al., 2013). Given the relatively early loss of IHC neurites in untreated blast-exposed rats, the therapeutic effect observed in antioxidant-treated animals advocates direct protection of SGN neurites. Indeed, the more robust treatment effect observed along the width of the OC to maintain average peripheral axonal density relative to preservation of ribbon synaptic integrity may suggest that antioxidant intervention slows or prevents further axonal retraction, a treatment outcome that Intrinsic or therapeutic reinnervation strategies can be enhanced (Tong et al., 2013; Wan et al., 2014).
微管相关蛋白Tau的异常磷酸化和聚集都被氧化应激诱导和加强(Melov et al.,2007;Mondragón-Rodríguez et al.,2013)。此外,在许多情况下,Tau功能的急性克制能够导致以跨细胞方式传播的慢性细胞骨架的不稳定,因为来自退化神经元的病理性Tau低聚物将功能性Tau招募为神经毒性低聚物(Clavagura et al.,2013;Guo et al.,2011)。基于这些观察以及我们以前对爆炸暴露的大鼠的CNS中Tau的研究(Du et al.,2016),我们检测了外周和中枢听觉通路是否示出了有可能导致感音神经性听力损失的tau病(tauopathic)的反应的证据。Aberrant phosphorylation and aggregation of the microtubule-associated protein Tau are both induced and enhanced by oxidative stress (Melov et al., 2007; Mondragón-Rodríguez et al., 2013). Furthermore, in many cases acute restraint of Tau function can lead to chronic cytoskeletal destabilization that propagates in a transcellular manner, as pathological Tau oligomers from degenerating neurons recruit functional Tau as neurotoxic oligomers (Clavagura et al., 2013; Guo et al., 2011). Based on these observations and our previous study of tau in the CNS of blast-exposed rats (Du et al., 2016), we examined whether peripheral and central auditory pathways show tau potentially contributing to sensorineural hearing loss Evidence of a tauopathic response.
使用我们的bTBI模型,我们发现爆炸暴露在未经治疗的大鼠的SG神经元的胞体中引起急性Tau过度磷酸化,其在创伤后7天达到峰值(表2和图14)。这种病理反应通过在我们的研究的整个实验时间过程中保持升高的低聚物Tau包涵体的积累来反映(表3和图15)。这些结果一起表明,爆炸引起的Tau功能障碍是OC中神经微丝不稳定和神经变性的重合分子后遗症,表明SG神经元之间对细胞骨架完整性的广泛和持续的负面影响。Using our bTBI model, we found that blast exposure caused acute Tau hyperphosphorylation in the soma of SG neurons of untreated rats, which peaked at 7 days post trauma (Table 2 and Figure 14). This pathological response was reflected by the accumulation of oligomeric Tau inclusion bodies that remained elevated throughout the experimental time course of our study (Table 3 and Figure 15). Taken together, these results suggest that blast-induced Tau dysfunction is a coincident molecular sequelae of neurofilament instability and neurodegeneration in OC, suggesting a widespread and persistent negative impact on cytoskeletal integrity among SG neurons.
基于我们的爆炸模型中NF-68和Tau染色的病理反应模式彼此密切相关的事实以及神经微丝和Tau功能障碍在神经退行性疾病(例如慢性创伤性脑病变、肌萎缩性侧索硬化症和阿尔茨海默病)中经常相互关联的事实,我们检测了这两种病理标记物是否共同存在于爆炸后退化的SGN的体细胞内(Dekosky et a.,2013;Lin and Schlaepfer,2006;Nguyenet al.,2001;Schmidt et al.,1990;Vickers et al.,1994)。我们发现NF-68积累和Tau寡聚化实际上是SGN中可共定位的后遗症,但是基于它们的相对患病率,Tau寡聚化可能是神经微丝在这种病理背景下的不稳定的上位的前体(图16)。Based on the fact that the pathological response patterns of NF-68 and Tau staining in our blast model are closely related to each other and that neurofilament and Tau dysfunction are important in neurodegenerative diseases such as chronic traumatic encephalopathy, amyotrophic lateral sclerosis, and Alzheimer's disease), we examined whether these two pathological markers co-exist in the somatic cells of degenerated SGNs after blasting (Dekosky et a., 2013; Lin and Schlaepfer, 2006; Nguyenet al., 2001; Schmidt et al., 1990; Vickers et al., 1994). We found that NF-68 accumulation and Tau oligomerization are in fact colocalizable sequelae in SGNs, but based on their relative prevalence, Tau oligomerization may be the destabilizing factor of neurofilaments in this pathological setting Epistatic precursor (Figure 16).
尽管氧化应激是CNS中Tau蛋白过度磷酸化和寡聚化的诱导和持续的一个控制因素,但对于将这些病理反应联系起来的明确的生理机制知之甚少(Alavi Naini andSoussi-Yanicostas,2015)。尽管如此,我们的研究结果表明,HPN-07和NAC早期干预对SG神经元及其周围神经纤维中Tau的这些神经毒性表现有明显的治疗效果(图14和15),这与爆炸引起的氧化应激也可能在外周听觉系统中驱动这种tau病反应的理论基本一致。特别值得注意的是,我们的组合抗氧化剂制剂显著降低急性爆炸暴露后SG中的急性和慢性低聚物Tau积累(图15)。由于Tau低聚物被广泛认为是许多Tau蛋白病(包括阿尔茨海默病)的主要传染性神经毒性剂(Lasagna-Reeves et al.,2010and 2012;Usenovic et al.,2015;Violet et al.,2015),因此早期HPN-07和NAC干预抑制其在SGN中形成的能力可能会给予对耳蜗中进行性神经变性显著的长期保护。Although oxidative stress is a controlling factor in the induction and persistence of Tau hyperphosphorylation and oligomerization in the CNS, little is known about the clear physiological mechanisms linking these pathological responses (Alavi Naini and Soussi-Yanicostas, 2015) . Nonetheless, our findings suggest that early intervention with HPN-07 and NAC has a clear therapeutic effect on these neurotoxic manifestations of Tau in SG neurons and their peripheral nerve fibers (Figures 14 and 15), which is consistent with blast-induced oxidation The theory that stress may also drive this tau response in the peripheral auditory system is largely consistent. Of particular note, our combined antioxidant formulation significantly reduced both acute and chronic oligomeric Tau accumulation in SGs following acute blast exposure (Figure 15). Since Tau oligomers are widely considered to be the major infectious neurotoxic agents in many tau diseases, including Alzheimer's disease (Lasagna-Reeves et al., 2010 and 2012; Usenovic et al., 2015; Violet et al. , 2015), thus the ability of early HPN-07 and NAC intervention to inhibit its formation in the SGN may confer significant long-term protection against progressive neurodegeneration in the cochlea.
与Tau一样,NF-68易受氧化应激引起的过度磷酸化和寡聚化的影响,并且有证据表明功能失调的NF-68的聚集体能够作为促进Tau寡聚化的非生理伴侣(Ishihara et al.,2001)。以前的体外研究表明,经典的抗氧化剂(如NAC)和HPN-07相关的自由基自旋捕获剂(如α-苯基N-叔丁基硝酮(PBN))能够保护天然的Tau和NF-68免受氧化应激引起的聚集(Kimet al.,2003and 2004;Olivieri et al.,2001)。在我们的神经病理性爆炸研究中,HPN-07和NAC对SGN中NF-68和神经毒性Tau变体的体细胞积累的一致的改善效应表明,使用这种治疗制剂的创伤后干预也有可能在体内使这些相互关联的分子应激反应模式短路。Like Tau, NF-68 is susceptible to oxidative stress-induced hyperphosphorylation and oligomerization, and there is evidence that aggregates of dysfunctional NF-68 can act as non-physiological chaperones that promote Tau oligomerization (Ishihara et al., 2001). Previous in vitro studies have shown that classical antioxidants such as NAC and HPN-07-related radical spin traps such as α-phenyl N-tert-butylnitrone (PBN) are able to protect native Tau and NF -68 is protected from oxidative stress-induced aggregation (Kimet al., 2003 and 2004; Olivieri et al., 2001). In our neuropathic blast study, the consistent ameliorating effects of HPN-07 and NAC on somatic accumulation of NF-68 and neurotoxic Tau variants in SGN suggest that post-traumatic intervention using this therapeutic agent is also possible in vivo Short-circuit these interconnected patterns of molecular stress responses.
尽管爆炸暴露导致外周和中枢听觉系统中的病理性Tau免疫染色,但我们发现SG和AC中的神经元比CN和IC中的神经元更容易受到这种适应不良反应的影响(Valiyaveettil et al.,2012)。然而,抗氧化剂干预在减轻异常Tau修饰方面在外周听觉器官中比在中枢听觉系统中更有效,其中治疗效果仅限于生理性Tau的体细胞积累,而不是过度磷酸化的或低聚物的Tau积累(表1-3和图17)。这种差异可能反映了HPN-07和NAC穿过血脑屏障与血液耳蜗屏障的相对外显率的差异或病理生理反应在这些组织中起源的方式的差异。结果表明,相同的组合抗氧化剂方案足以中断海马神经元中的这些tau蛋白病的反应,这表明,至少在大脑的这个皮质下区域,药物达到足够的浓度以减轻爆炸引起的Tau功能障碍(Du et al.,2016)。因此,可能需要延长治疗或更高剂量的这些抗氧化剂以更有效地对抗中枢听觉系统中的病理性Tau积累。Although blast exposure resulted in pathological Tau immunostaining in the peripheral and central auditory systems, we found that neurons in the SG and AC were more susceptible to this maladaptive response than those in the CN and IC (Valiyaveettil et al. , 2012). However, antioxidant intervention was more effective in attenuating abnormal Tau modifications in the peripheral auditory organs than in the central auditory system, where the therapeutic effect was limited to the somatic accumulation of physiological Tau rather than hyperphosphorylated or oligomeric Tau accumulation (Tables 1-3 and Figure 17). This difference may reflect differences in the relative penetrance of HPN-07 and NAC across the blood-brain barrier versus the blood-cochlear barrier or differences in the way pathophysiological responses originate in these tissues. The results showed that the same combination antioxidant regimen was sufficient to interrupt these tauopathy responses in hippocampal neurons, suggesting that, at least in this subcortical region of the brain, the drug reaches sufficient concentrations to mitigate blast-induced tau dysfunction (Du et al., 2016). Therefore, prolonged treatment or higher doses of these antioxidants may be required to more effectively combat pathological Tau accumulation in the central auditory system.
总之,我们的结果表明,爆炸暴露引起的mTBI在外周听觉系统中引起进行性逆行神经变性,并且HPN-07和NAC的早期干预提供了针对这一结果的重要保护。此外,这些抗氧化剂在SGN中防止广泛的Tau功能障碍和病理性聚集的能力进一步强调了它们对于限制内耳中的繁殖神经毒性的长期改善益处。Taken together, our results demonstrate that blast exposure-induced mTBI induces progressive retrograde neurodegeneration in the peripheral auditory system, and that early intervention with HPN-07 and NAC provides important protection against this outcome. Furthermore, the ability of these antioxidants to prevent widespread Tau dysfunction and pathological aggregation in the SGN further underlines their long-term ameliorating benefits for limiting reproductive neurotoxicity in the inner ear.
实施例3Example 3
发现用2,4-二磺酰基α-苯基叔丁基硝酮(HPN-07)治疗的噪音受损的动物相对于未经治疗的对照表现出显著更高的IHC神经突群体,并且HPN-07治疗独特地引起这些动物的进行性功能恢复,这表明正在进行的神经再支配。因此,我们研究了HPN-07是否有效引起神经突发生和突触发生。found that noise-impaired animals treated with 2,4-disulfonyl α-phenyl-tert-butylnitrone (HPN-07) exhibited significantly higher IHC neurite populations relative to untreated controls, and that HPN -07 treatment uniquely caused progressive functional recovery in these animals, suggesting ongoing reinnervation. Therefore, we investigated whether HPN-07 efficiently induced neurite outgrowth and synaptogenesis.
在三种体外神经源性模型(PC12细胞、以及耳蜗螺旋神经节外植体、以及附着有毛细胞(HC)的SGN外植体的共培养物)中测试了HPN-07。来自这些分析的实验数据证明:(1)HPN-07增强PC12细胞系中NGF诱导的神经突发生;(2)HPN-07在无毛细胞的螺旋神经节外植体中促进神经突发生;(3)HPN-07在红藻氨酸(KA)引起的激动性创伤后在SGN-HC共培养物中逆转兴奋性毒性缎带突触损失并且沿着IHC的基底增加神经突密度。HPN-07 was tested in three in vitro neurogenic models (PC12 cells, and co-cultures of cochlear spiral ganglion explants, and SGN explants with attached hair cells (HC). Experimental data from these analyses demonstrate that: (1) HPN-07 enhances NGF-induced neurite outgrowth in PC12 cell line; (2) HPN-07 promotes neurite outgrowth in hairless spiral ganglion explants (3) HPN-07 reversed excitotoxic ribbon synaptic loss and increased neurite density along the base of IHC in SGN-HC co-cultures following kainic acid (KA)-induced agonistic trauma.
HPN-07扩展到进一步表征和优化体外HPN-07的促神经源性特性,并将这些发现转化为活体动物实验的治疗结果,旨在测试HPN-07治疗用于在体内再生IHC-SGN突触的功效,使用一种声学过度暴露范例,其已被证明引起耳蜗的IHC最小的阈值偏移但引起永久性传入神经阻滞。实验结果表明:(1)HPN-07增强了SGN外植体中BDNF引起的和NT-3引起的神经突发生;(2)HPN-07(与NAC一起配制,HPN-07/NAC)防止大鼠中噪音引起的听力损失;(3)HPN-07/NAC逆转大鼠中噪音引起的IHC缎带突触的兴奋性毒性损失;以及(4)HPN-07/NAC恢复了大鼠中的噪音引起的ABR振幅。The expansion of HPN-07 to further characterize and optimize the pro-neurogenic properties of HPN-07 in vitro, and to translate these findings into therapeutic results from in vivo animal experiments, aims to test HPN-07 treatment for regenerating IHC-SGN synapses in vivo efficacy, using an acoustic overexposure paradigm that has been shown to cause a minimal threshold shift in the IHC of the cochlea but cause permanent afferent blockade. The experimental results showed that: (1) HPN-07 enhanced BDNF-induced and NT-3-induced neurite outgrowth in SGN explants; (2) HPN-07 (formulated with NAC, HPN-07/NAC) prevented Noise-induced hearing loss in rats; (3) HPN-07/NAC reverses noise-induced excitotoxic loss of IHC ribbon synapses in rats; and (4) HPN-07/NAC restores noise-induced hearing loss in rats ABR amplitude due to noise.
我们已经证实了HPN-07在体外以剂量依赖性方式增强BDNF引起的和NT-3引起的螺旋神经节组织外植体中I型轴突的神经突发生。BDNF和NT-3是内耳中固有的神经营养因子,对于耳蜗螺旋神经节(SGN)的发育和存活至关重要。如图24-27所示,相对于在相同器官型培养基中培养的未经治疗的对照(NC,正常对照,图24A和图26A)),外源的BDNF和NT-3在10μM引起显著的神经突向外生长(图24B和图26B)。除BDNF或NT-3外,HPN-07还进一步增加了神经纤维的数量和范围(图24C-D和图26C-D)。与NC相比,任何治疗都没有改变神经突长度(图25和图27)。We have demonstrated that HPN-07 enhances BDNF-induced and NT-3-induced neurite outgrowth of type I axons in spiral ganglion tissue explants in a dose-dependent manner in vitro. BDNF and NT-3 are intrinsic neurotrophic factors in the inner ear and are essential for the development and survival of the cochlear spiral ganglion (SGN). As shown in Figures 24-27, exogenous BDNF and NT-3 at 10 [mu]M elicited significantly of neurite outgrowth (Figure 24B and Figure 26B). In addition to BDNF or NT-3, HPN-07 further increased the number and extent of nerve fibers (Figures 24C-D and 26C-D). Compared to NC, neurite length was not altered by any of the treatments (Figures 25 and 27).
如下设计体内突触发生实验。将体重250-300g(Charles River)的SpragueDawley大鼠分成三组:NC(无噪音),单独的噪音(用盐水处理),以及噪音+HPN-07/NAC(用300mg/kg的HPN-07/NAC治疗)。将大鼠在110dB下暴露于倍频带噪音(8-16kHz)2小时。在噪音暴露后24小时开始治疗,其中在3天内施用5个剂量的治疗。治疗后两周,采集并分析耳蜗样品(毛细胞和突触计数)。在噪音之前通过ABR测试听力,并在噪音后1天和15天重新测试。In vivo synaptogenesis experiments were designed as follows. SpragueDawley rats weighing 250-300 g (Charles River) were divided into three groups: NC (no noise), noise alone (treatment with saline), and noise + HPN-07/NAC (with 300 mg/kg of HPN-07/ NAC treatment). Rats were exposed to octave band noise (8-16 kHz) at 110 dB for 2 hours. Treatment was initiated 24 hours after noise exposure, with 5 doses of treatment administered over 3 days. Two weeks after treatment, cochlear samples (hair cell and synapse counts) were collected and analyzed. Hearing was tested by ABR before the noise and retested 1 and 15 days after the noise.
在未经治疗的和经治疗的之间,在噪音后1天测量的通过临时阈值偏移(TTS)检测到的短期听力损失是相似的(图21A),这意味着噪音在两组中引起类似的损伤。继续HPN-07/NAC治疗可以防止在噪音暴露15天后测量的噪音引起的永久性听力损失(图21B)。TTS是暴露于噪音后的即时听力损失,其随着时间的推移会恢复。并非所有TTS都会消失,并且剩余的最终听力损失称为永久性听力损失。噪音暴露后毛细胞损失最小,仅出现在耳蜗的基底区域(图22)。研究的三组之间没有显著差异。Short-term hearing loss detected by temporal threshold shift (TTS) measured 1 day after noise was similar between untreated and treated (Fig. 21A), implying that noise caused noise in both groups similar damage. Continued HPN-07/NAC treatment prevented permanent noise-induced hearing loss measured after 15 days of noise exposure (Figure 21B). TTS is immediate hearing loss after exposure to noise that recovers over time. Not all TTS goes away, and the final hearing loss that remains is called permanent hearing loss. Hair cell loss was minimal after noise exposure, occurring only in the basal region of the cochlea (Figure 22). There were no significant differences between the three groups studied.
在Sprague Dawley大鼠中,一次性噪音(8-16kHz,2小时,110dB)导致30%-40%的突触以高频率损失。受伤后24小时开始的HPN-07/NAC治疗逆转损伤。突触是“连接器”,其将感觉毛细胞解码的声音信息传递到大脑(参见图23中的红色和绿色点)。已经暗示突触的损失导致难以理解嘈杂环境中的语音、与年龄相关的听力损失、耳鸣等。In Sprague Dawley rats, one-shot noise (8-16 kHz, 2 hours, 110 dB) resulted in 30-40% loss of synapses at high frequencies. HPN-07/NAC treatment started 24 hours after injury reversed the injury. Synapses are "connectors" that transmit sound information decoded by sensory hair cells to the brain (see red and green dots in Figure 23). Loss of synapses has been implicated in difficulty understanding speech in noisy environments, age-related hearing loss, tinnitus, and the like.
如图34所示,与非治疗组中的噪声前基线相比,在80dB SPL暴露后2周的听觉脑干反应(ABR)波I振幅和V/I振幅比显著降低。相比之下,HPN-07/NAC治疗组的ABR波I振幅和V/I振幅比没有变化。ABR波V振幅在治疗组或未治疗组中均未发生变化。ABR测试客观地测量响应于声音的听觉神经反应,其提供关于内耳(耳蜗)和听觉的脑通路的信息。其常被用于诊所和研究。ABR波I被认为是在听神经的外周或远端部分产生的。ABR波V被认为是在脑干的外侧丘系和下丘脑中产生的。波I振幅在未治疗组中减小,表明由于突触的损失导致内耳的听觉输入减少,因此波V振幅和V/I振幅比增加以补偿脑干,表明中枢神经系统的神经活性增加,有人提出其会引起耳鸣。使用HPN-07/NAC治疗,波I振幅恢复与突触损失的恢复一致(见图34),因此波V未改变。我们的结果表明,HPN-7/NAC能够恢复由噪音引起的听力障碍,并且ABR波振幅能够被用于监测突触损失和药物治疗效果。As shown in Figure 34, the auditory brainstem response (ABR) wave I amplitude and V/I amplitude ratio were significantly reduced at 2 weeks after 80 dB SPL exposure compared to the pre-noise baseline in the non-treatment group. In contrast, ABR wave I amplitude and V/I amplitude ratio did not change in the HPN-07/NAC-treated group. ABR wave V amplitudes did not change in either the treated or untreated groups. The ABR test objectively measures auditory neural responses in response to sound, which provides information about the inner ear (cochlea) and the brain pathways of hearing. It is often used in clinics and research. ABR wave I is thought to arise in the peripheral or distal portion of the auditory nerve. ABR wave V is thought to be generated in the lateral lemniscus and hypothalamus of the brainstem. Wave I amplitude was reduced in the untreated group, indicating that auditory input to the inner ear was reduced due to loss of synapses, so wave V amplitude and V/I amplitude ratio increased to compensate for the brainstem, indicating increased neural activity in the central nervous system, it was It is suggested that it can cause tinnitus. With HPN-07/NAC treatment, the recovery of wave I amplitude was consistent with the recovery of synaptic loss (see Figure 34), so wave V was unchanged. Our results demonstrate that HPN-7/NAC can restore noise-induced hearing impairment and that ABR wave amplitudes can be used to monitor synaptic loss and drug treatment effects.
总之,我们的结果表明,HPN-07代表了一种安全的药理手段,可以使内耳中损失的缎带突触再生,为治疗耳蜗突触病及其相关的流行临床表现(例如难以理解嘈杂环境中的语音、老年性耳聋、听觉过敏和耳鸣)提供了一种有前景的非侵入性替代方法。Taken together, our results demonstrate that HPN-07 represents a safe pharmacological means to regenerate lost ribbon synapses in the inner ear, a promising candidate for the treatment of cochlear synaptic disease and its associated prevalent clinical manifestations such as difficulty understanding noisy environments speech, presbycusis, hyperacusis, and tinnitus) offer a promising non-invasive alternative.
实施例4-建立的/慢性听力损失Example 4 - Established/chronic hearing loss
如图28所示,设计了建立的听力损失的初步研究。通过野外爆炸伤害建立了永久性阈值偏移。在受伤后4周开始治疗,HPN-07加NAC以300mg/kg每天两次给药,持续14天。图28进一步显示了受伤后14周(治疗后8周)与治疗前相比的ABR阈值改善。As shown in Figure 28, a pilot study of established hearing loss was designed. A permanent threshold shift is established through wild explosion damage. Treatment started 4 weeks post-injury with HPN-07 plus NAC administered at 300 mg/kg twice daily for 14 days. Figure 28 further shows ABR threshold improvement at 14 weeks post injury (8 weeks post treatment) compared to pre-treatment.
如图29所示,NHPN-1010治疗(HPN-07加NAC)在已建立的慢性听力损失模型中恢复了IHC缎带突触数量。在受伤后4周开始NHPN-1010治疗,并且每天给药持续14天。在受伤后8周,缎带突触计数显著恢复。As shown in Figure 29, NHPN-1010 treatment (HPN-07 plus NAC) restored IHC ribbon synapse number in an established chronic hearing loss model. NHPN-1010 treatment was initiated 4 weeks after injury and administered daily for 14 days. Ribbon synapse counts recovered significantly 8 weeks after injury.
如图30所示,NHPN-1010治疗导致在建立的慢性听力损失模型中ABR波I振幅的恢复。安慰剂组中在80和70dB SPL时响应4kHz和8kHz刺激的幅度因爆炸暴露而减少,并随着时间的推移继续减少。在NHPN-1010治疗后8周,在80kHz SPL时响应于8kHz刺激的幅度的减少完全恢复到处理前水平。As shown in Figure 30, NHPN-1010 treatment resulted in restoration of ABR wave I amplitude in an established model of chronic hearing loss. The magnitude of responses to 4 kHz and 8 kHz stimuli at 80 and 70 dB SPL in the placebo group decreased with blast exposure and continued to decrease over time. The reduction in amplitude in response to 8 kHz stimulation at 80 kHz SPL fully recovered to pre-treatment levels 8 weeks after NHPN-1010 treatment.
此外,如图31所示,在16、32、48kHz的爆炸后,缎带突触减少,并且用NHPN-1010治疗(HPN-07加NAC)保持/恢复。此外,如图32所总结的,NHPN-1010治疗(HPN-07加NAC)能够改善爆炸对初级听觉传入神经元的影响-减少逆行神经变性。Furthermore, as shown in Figure 31, Ribbon synapses were reduced after blasts at 16, 32, 48 kHz and were maintained/recovered with NHPN-1010 treatment (HPN-07 plus NAC). Furthermore, as summarized in Figure 32, NHPN-1010 treatment (HPN-07 plus NAC) was able to improve blast effects on primary auditory afferent neurons - reducing retrograde neurodegeneration.
实施例5-耳鸣生物标记物Example 5 - Tinnitus Biomarkers
爆炸(B)组接受一次冲击管爆炸(10psi)。爆炸/治疗(B/T)组进一步接受总共5次剂量的HPN-07/NAC。在爆炸暴露后8-9周采集组织。将每个实验组(6-8只大鼠/时间点)中的动物安乐死并先用盐水,然后用含有4%多聚甲醛的0.1M磷酸盐缓冲盐水(PBS,pH7.2)心内灌注。移除耳蜗、脑和脑干后,在相同的固定剂中固定(耳蜗过夜,脑组织一周)。用PBS洗涤经固定的耳蜗,然后在10%EDTA中脱钙两周,每周更换溶液两次。将耳蜗脱水,包埋在石蜡中,并在厚度为6μm的paramodiolar平面中切片,并将每第10个切片安装在载玻片上(每个耳蜗总共10个载玻片)。然后处理安装的切片用于免疫组织化学分析。将来自每只动物的脑和脑干在4℃下在PBS中的30%蔗糖中冷冻保护,直到组织沉降到容器的底部,此时将它们包埋在Tissue-Tek(Sakura Finetek USA Inc.Torrance,CA)中,并在冠状平面中以18-20μm用Thermo Cryotome(Thermo Fisher Scientific,Inc.Waltham,MA)连续切片。将来自每个脑和脑干的每十个中的一个切片安装到明胶预涂覆的载玻片上(每个脑干总共10个载玻片并且每个脑有20个载玻片)。然后用PBS洗涤这些切片,在PBS中的1%牛血清白蛋白(级分V)和1%正常马血清或1%正常山羊血清中封闭,并在PBS中的0.2%Triton X-100(PBS/T)中透化。然后将经封闭和透化的切片与一抗在室温下温育过夜。用PBS/T洗涤后,将生物素化的二抗(1:200,Vector Laboratories,Inc.Burlingame,CA)在室温下施用于载玻片1小时,并用Vectastain ABC和DAB试剂盒(Vector Laboratories,Inc.Burlingame,CA)用于免疫标记可视化。用BX51 Olympus显微镜采集图像用于生物标记物定量。对于荧光免疫标记,将切片与合适的Alexa二抗(1:1000,Life Technologies,Co.,Grand Island,NY)在室温下温育2小时,然后进行DAPI标记并安装在抗褪色培养基中。用Zeiss LSM-710共聚焦显微镜采集图像。The blast (B) group received one shock tube blast (10 psi). The blast/therapy (B/T) group further received a total of 5 doses of HPN-07/NAC. Tissues were harvested 8-9 weeks after blast exposure. Animals in each experimental group (6-8 rats/time point) were euthanized and perfused intracardially first with saline and then with 0.1 M phosphate buffered saline (PBS, pH 7.2) containing 4% paraformaldehyde . After removal of the cochlea, brain and brain stem, they were fixed in the same fixative (overnight for cochlea, one week for brain). The fixed cochlea was washed with PBS and then decalcified in 10% EDTA for two weeks with two weekly changes of solution. The cochlea was dehydrated, embedded in paraffin, and sectioned in a paramodiolar plane with a thickness of 6 μm, and every 10th section was mounted on a glass slide (a total of 10 slides per cochlea). Mounted sections were then processed for immunohistochemical analysis. Brains and brain stems from each animal were cryoprotected in 30% sucrose in PBS at 4°C until the tissues settled to the bottom of the vessel, at which point they were embedded in Tissue-Tek (Sakura Finetek USA Inc. Torrance). , CA) and serially sectioned at 18-20 μm in the coronal plane with a Thermo Cryotome (Thermo Fisher Scientific, Inc. Waltham, MA). One in ten slices from each brain and brainstem were mounted on gelatin precoated slides (10 total slides per brainstem and 20 slides per brain). The sections were then washed with PBS, blocked in 1% bovine serum albumin (fraction V) and 1% normal horse serum or 1% normal goat serum in PBS, and blocked in 0.2% Triton X-100 (PBS) in PBS /T) medium permeabilization. Blocked and permeabilized sections were then incubated with primary antibody overnight at room temperature. After washing with PBS/T, biotinylated secondary antibodies (1:200, Vector Laboratories, Inc. Burlingame, CA) were applied to the slides for 1 hour at room temperature, and the slides were washed with Vectastain ABC and DAB kits (Vector Laboratories, CA). Inc. Burlingame, CA) for immunolabeling visualization. Images were acquired with a BX51 Olympus microscope for biomarker quantification. For fluorescent immunolabeling, slice the sections with the appropriate Alexa Secondary antibodies (1:1000, Life Technologies, Co., Grand Island, NY) were incubated at room temperature for 2 hours before DAPI labeling and mounting in anti-fade medium. Images were acquired with a Zeiss LSM-710 confocal microscope.
活性调节的细胞骨架相关蛋白(ARC),也称为Arg3.1,是一种可塑性蛋白。中枢听觉系统中的ARC减少与耳鸣有关。图35显示了中枢听觉系统中的ARC免疫染色。爆炸暴露使AC、IC和DCN中的ARC下降。与没有治疗的爆炸组相比,HPN-07/NAC治疗使AC、IC和DCN中的ARC表达正常化。Activity-regulated cytoskeleton-associated protein (ARC), also known as Arg3.1, is a plasticity protein. Decreased ARC in the central auditory system is associated with tinnitus. Figure 35 shows ARC immunostaining in the central auditory system. Blast exposure decreased ARC in AC, IC and DCN. HPN-07/NAC treatment normalized ARC expression in AC, IC, and DCN compared to the blast group without treatment.
生长相关蛋白43(GAP-43)是位于轴突生长锥中的膜相关磷蛋白。它是轴突生长、突触发生和突触重塑的标记物。图36显示中枢听觉系统中的GAP-43免疫染色和蛋白质印迹。爆炸暴露上调了AC、IC和DCN中的GAP-43。与没有治疗的爆炸组相比,HPN-07/NAC治疗使AC、IC和DCN中的GAP-43表达正常化。Growth-associated protein 43 (GAP-43) is a membrane-associated phosphoprotein located in axonal growth cones. It is a marker of axonal growth, synaptogenesis and synaptic remodeling. Figure 36 shows GAP-43 immunostaining and western blotting in the central auditory system. Blast exposure upregulated GAP-43 in AC, IC and DCN. HPN-07/NAC treatment normalized GAP-43 expression in AC, IC, and DCN compared to the blast group without treatment.
GABAA受体是离子型受体和配体门控离子通道。其内源性配体是γ-氨基丁酸(GABA),它是中枢神经系统中的主要抑制性神经递质。图37显示DCN中的GABAA受体α1(GABAARα1)免疫染色。图38显示DCN中的GABAARα1(红色)和GAD67(绿色)共标记。GAD67是抑制性神经元的生物标记物,表明GABAARα1阳性细胞是抑制性神经元。GABAA receptors are ionotropic receptors and ligand-gated ion channels. Its endogenous ligand is gamma-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system. Figure 37 shows GABAA receptor alpha 1 (GABAAR alpha 1 ) immunostaining in DCN. Figure 38 shows GABAARα1 (red) and GAD67 (green) co-labeling in DCN. GAD67 is a biomarker of inhibitory neurons, indicating that GABAARα1-positive cells are inhibitory neurons.
谷氨酸受体2(GluR2)是AMPA的离子型受体,其是中枢神经系统中的兴奋性神经递质。谷氨酸受体的过度刺激通过兴奋性毒性引起神经变性和神经元损伤。图39显示了DCN中的GluR2免疫染色。Glutamate receptor 2 (GluR2) is an ionotropic receptor for AMPA, which is an excitatory neurotransmitter in the central nervous system. Overstimulation of glutamate receptors causes neurodegeneration and neuronal damage through excitotoxicity. Figure 39 shows GluR2 immunostaining in DCN.
爆炸暴露上调DCN中GABAA和谷氨酸受体的表达,表明DCN中抑制和激发的重组。与没有治疗的爆炸组相比,HPN-07/NAC治疗使DCN中GABAA和谷氨酸受体的表达正常化,恢复DCN中抑制和激发之间的平衡。Blast exposure upregulates the expression of GABAA and glutamate receptors in DCN, suggesting reorganization of inhibition and excitation in DCN. Compared with the blast group without treatment, HPN-07/NAC treatment normalized the expression of GABAA and glutamate receptors in DCN, restoring the balance between inhibition and excitation in DCN.
瞬时受体电位阳离子通道亚家族V成员1(TRPV1),也称为辣椒素受体和香草素受体1,由高温、酸性条件、辣椒素和刺激性化合物激活。SG中TRPV1的上调与耳鸣有关。图40显示SG中的TRPV1免疫染色。爆炸暴露上调了SG中的TRPV1。与没有治疗的爆炸组相比,HPN-07/NAC治疗使SG中的TRPV1正常化。Transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as capsaicin receptor and vanilloid receptor 1, is activated by high temperature, acidic conditions, capsaicin, and stimulatory compounds. Upregulation of TRPV1 in SG is associated with tinnitus. Figure 40 shows TRPV1 immunostaining in SGs. Blast exposure upregulated TRPV1 in the SG. HPN-07/NAC treatment normalized TRPV1 in SGs compared to the blast group without treatment.
如本文所用,单数术语“一”、“一个”、“一种”和“该”包括复数指示物,除非上下文另有明确规定。因此,例如,除非上下文另有明确规定,否则提及一种化合物可以包括多种化合物。As used herein, the singular terms "a," "an," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, unless the context clearly dictates otherwise, reference to a compound may include multiple compounds.
如本文所用,术语“基本上”、“实质上”和“约”被用于描述和解释小的变化。当与事件或情况一起使用时,这些术语可以指事件或情况恰好发生的实例以及事件或情况接近发生的实例。例如,这些术语可以指小于或等于±10%,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。As used herein, the terms "substantially," "substantially," and "about" are used to describe and explain small variations. When used in conjunction with an event or circumstance, these terms can refer to both instances in which the event or circumstance occurs exactly as well as instances in which the event or circumstance is close to occurring. For example, these terms may refer to less than or equal to ±10%, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%.
另外,数量、比率和其他数值有时以范围格式呈现。应当理解,这种范围格式是为了方便和简洁而使用的,并且应该被灵活地理解为包括明确指定为范围的上下限的数值,但是也包括包含在该范围内的所有单独数值或子范围,如明确指定每个数值和子范围一样。例如,在约1至约200的范围内的比率应该理解为包括明确列举的约1和约200的上下限,但也包括单独的比率,例如约2、约3和约4,以及子范围例如约10至约50、约20至约100,等等。Additionally, amounts, ratios, and other numerical values are sometimes presented in a range format. It is to be understood that this range format is used for convenience and brevity, and should be flexibly construed to include the numerical values expressly designated as the upper and lower limits of the range, but also to include all individual values or subranges subsumed within that range, As if each value and subrange were specified explicitly. For example, ratios in the range of about 1 to about 200 should be understood to include the expressly recited upper and lower limits of about 1 and about 200, but also include individual ratios, such as about 2, about 3, and about 4, and subranges, such as about 10 to about 50, about 20 to about 100, and so on.
在前面的描述中,对于本领域技术人员来说显而易见的是,在不脱离本发明的范围和精神的情况下,可以对本文公开的发明进行各种替换和修改。本文说明性地描述的本发明可以在没有本文中没有具体公开的任何要素、限制的情况下实施。已经使用的术语和表达被用作描述的术语而非限制,并且无意在使用这些术语和表达时排除所示和所描述的特征的任何等效物或其部分,但应认识到,在本发明的范围内可以进行各种修改。因此,应该理解,尽管已经通过具体实施方案和可选特征说明了本发明,但是本领域技术人员可以采用本文公开的概念的修改和/或变化,这些修改和变化被认为是在本发明的范围内。From the foregoing description, it will be apparent to those skilled in the art that various substitutions and modifications of the invention disclosed herein can be made without departing from the scope and spirit of the invention. The invention illustratively described herein may be practiced without any element, limitation, not specifically disclosed herein. The terms and expressions that have been used are to be used as terms of description rather than limitation, and their use is not intended to exclude any equivalents or parts of the features shown and described, but it is recognized that in the present invention Various modifications can be made within the range. Therefore, it should be understood that while the present invention has been described in terms of specific embodiments and optional features, modifications and/or variations of the concepts disclosed herein may be employed by those skilled in the art, which modifications and variations are considered to be within the scope of the present invention Inside.
等效物Equivalent
应当理解,虽然已经结合上述实施方案描述了本公开,但是前述描述和实施例旨在说明而不是限制本公开的范围。对于本公开所属领域的技术人员来说,在本公开范围内的其他方面、优点和修改是显而易见的。It should be understood that while the present disclosure has been described in conjunction with the above-described embodiments, the foregoing description and examples are intended to illustrate, and not to limit, the scope of the present disclosure. Other aspects, advantages, and modifications within the scope of the present disclosure will be apparent to those skilled in the art to which the present disclosure pertains.
除非另外定义,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解的含义相同的含义。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
本文说明性描述的实施方案可以适当地在缺少本文未具体公开的任何要素、限制的情况下实施。因此,例如,术语“包含”、“包括”“含有”等应当被广泛地阅读而不受限制。另外,这里使用的术语和表达已被用作描述而非限制的术语,并且无意使用这些术语和表达来排除所示和所描述的特征的任何等效物或其部分,但应认识到,在本公开的范围内可以进行各种修改。The embodiments illustratively described herein may suitably be practiced in the absence of any element, limitation, not specifically disclosed herein. Thus, for example, the terms "comprising", "including", "containing" and the like should be read broadly without limitation. Additionally, the terms and expressions used herein have been used as terms of description rather than limitation and are not intended to be used to exclude any equivalents or parts of features shown and described, but Various modifications can be made within the scope of the present disclosure.
因此,应该理解的是,尽管已经通过具体实施方案和可选特征具体公开了本公开,但是本领域技术人员可以采用本文公开的实施方案的修改、改进和变化,并且这些修改、改进和变化被认为是在本公开的范围内。本文提供的材料、方法和实施例是具体实施方案的代表,是示例性的,并不旨在作为对本公开范围的限制。Therefore, it should be understood that although the present disclosure has been specifically disclosed by specific embodiments and optional features, modifications, improvements and variations of the embodiments disclosed herein may be employed by those skilled in the art and that such modifications, improvements and variations are It is considered to be within the scope of this disclosure. The materials, methods, and examples provided herein are representative of specific embodiments, are exemplary, and are not intended to limit the scope of the present disclosure.
本文已广泛地和一般地描述了本公开的范围。落入一般的公开内容中的每个较窄物种和亚属群组也构成本公开的一部分。这包括从该属中去除任何对象的附带条件或否定限制的一般性描述,无论是否在本文中具体叙述了被去除的材料。The scope of the disclosure has been described broadly and generically herein. Each of the narrower species and subgenus groups falling within the general disclosure also forms part of this disclosure. This includes a general description with a proviso or negative limitation removing any object from the genus, whether or not the removed material is specifically recited herein.
另外,在根据马库什群组描述本公开的特征或方面的情况下,本领域技术人员将认识到,本公开的实施方案因此也可以根据马库什群组的任何单个成员或成员子群来描述。Additionally, where features or aspects of the present disclosure are described in terms of Markush groups, those skilled in the art will recognize that embodiments of the present disclosure may thus also be in terms of any single member or subgroup of members of the Markush group to describe.
本文提及的所有出版物、专利申请、专利和其他参考文献通过引用明确地以其整体并入,其程度如同每个单独地通过引用并入。如果发生冲突,以本说明书(包括定义)为准。All publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety to the same extent as if each were individually incorporated by reference. In case of conflict, the present specification, including definitions, will control.
Claims (30)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662415101P | 2016-10-31 | 2016-10-31 | |
US62/415,101 | 2016-10-31 | ||
US201762488740P | 2017-04-22 | 2017-04-22 | |
US62/488,740 | 2017-04-22 | ||
US201762510596P | 2017-05-24 | 2017-05-24 | |
US62/510,596 | 2017-05-24 | ||
US201762550345P | 2017-08-25 | 2017-08-25 | |
US62/550,345 | 2017-08-25 | ||
PCT/US2017/058834 WO2018081614A1 (en) | 2016-10-31 | 2017-10-27 | Methods for enhancing synaptogenesis and neuritogenesis |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110248650A true CN110248650A (en) | 2019-09-17 |
Family
ID=62020809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780078374.7A Pending CN110248650A (en) | 2016-10-31 | 2017-10-27 | Method for enhancing cynapse generation and neural process generation |
Country Status (5)
Country | Link |
---|---|
US (2) | US10576125B2 (en) |
EP (1) | EP3532042A4 (en) |
JP (1) | JP2019537582A (en) |
CN (1) | CN110248650A (en) |
WO (1) | WO2018081614A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12076330B2 (en) | 2018-04-27 | 2024-09-03 | The Regents Of The University Of California | Inhibition of lipofuscin aggregation by molecular tweezers |
US12076332B2 (en) | 2018-04-27 | 2024-09-03 | The Regents Of The University Of California | Treatment of lysosomal storage disorders |
JP2021523126A (en) * | 2018-05-03 | 2021-09-02 | ハフ イアー インスティテュート | How to reduce accumulated pathological Tau protein |
CA3111793A1 (en) * | 2018-09-12 | 2020-03-19 | Hough Ear Institute | Methods for treating hearing loss incident to cochlear implant surgery |
JP2022528355A (en) * | 2019-03-26 | 2022-06-10 | トニックス ファーマ ホールディングス リミテッド | Salt form of S- (N, N-diethylcarbamoyl) glutathione |
US20220226437A1 (en) * | 2019-05-29 | 2022-07-21 | Massachusetts Eye And Ear Infirmary | Fibroblast growth factor 2 (FGF2) for Treatment of Human Sensorineural Hearing Loss |
CN112939823A (en) * | 2019-12-10 | 2021-06-11 | 中国石油天然气股份有限公司 | Preparation method of shale inhibitor and application of inhibitor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090306225A1 (en) * | 2008-04-21 | 2009-12-10 | Otonomy, Inc. | Auris formulations for treating otic diseases and conditions |
WO2014014828A1 (en) * | 2012-07-16 | 2014-01-23 | Cornell University | Nicotinamide riboside to treat hearing loss |
WO2014195322A1 (en) * | 2013-06-04 | 2014-12-11 | Acturum Life Science AB | Triazole compounds and their use as gamma secretase modulators |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5488145A (en) * | 1993-12-23 | 1996-01-30 | Oklahoma Medical Research Foundation | 2,4-disulfonyl phenyl butyl nitrone, its salts, and their use as pharmaceutical free radical traps |
US6064064A (en) * | 1996-03-01 | 2000-05-16 | Fire Sentry Corporation | Fire detector |
US6448283B1 (en) | 1998-09-25 | 2002-09-10 | Cephalon, Inc. | Methods for preventing/treating damage to sensory hair cells and cochlear neurons |
LT2411028T (en) * | 2009-03-27 | 2019-08-26 | Moleac Pte Ltd. | THERAPY TO PROMOTE CELL GROWTH |
WO2011028503A1 (en) * | 2009-08-24 | 2011-03-10 | Hough Ear Institute | Methods for treating acute acoustic trauma |
JP6099574B2 (en) * | 2011-02-04 | 2017-03-22 | ハフ イヤ インスティテュート | How to treat traumatic brain injury |
US20150209367A1 (en) * | 2012-09-07 | 2015-07-30 | Massachusetts Eye & Ear Infirmary | Treating Hearing Loss |
US20180256756A1 (en) * | 2015-09-18 | 2018-09-13 | Oklahoma Medical Research Foundation | Method of transporting an agent across blood-brain, blood-cochlear or blood-cerebrospinal fluid barrier |
-
2017
- 2017-10-27 EP EP17866191.4A patent/EP3532042A4/en active Pending
- 2017-10-27 CN CN201780078374.7A patent/CN110248650A/en active Pending
- 2017-10-27 WO PCT/US2017/058834 patent/WO2018081614A1/en unknown
- 2017-10-27 JP JP2019522710A patent/JP2019537582A/en active Pending
- 2017-10-27 US US15/796,522 patent/US10576125B2/en active Active
-
2020
- 2020-01-30 US US16/777,750 patent/US20200164021A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090306225A1 (en) * | 2008-04-21 | 2009-12-10 | Otonomy, Inc. | Auris formulations for treating otic diseases and conditions |
WO2014014828A1 (en) * | 2012-07-16 | 2014-01-23 | Cornell University | Nicotinamide riboside to treat hearing loss |
WO2014195322A1 (en) * | 2013-06-04 | 2014-12-11 | Acturum Life Science AB | Triazole compounds and their use as gamma secretase modulators |
Non-Patent Citations (3)
Title |
---|
XIAOPING DU ET AL.: "Ameliorative Effects of Antioxidants on the Hippocampal Accumulation of Pathologic Tau in a Rat Model of Blast-Induced Traumatic Brain Injury", 《OXIDATIVE MEDICINE AND CELLULAR LONGEVITY》 * |
佚名: "Otologic begins Phase I trial of NHPN-1010 to treat hearing disorders", 《HTTPSWWW.CLINICALTRIALSARENA.COMNEWSNEWSOTOLOGIC-BEGINS-PHASE-I-TRIAL-OF-HNPN-1010-TO-TREAT-HEARING-DISORDERS-4447170》 * |
佚名: "SOUND MEDICINE", 《NATURE MEDICINE》 * |
Also Published As
Publication number | Publication date |
---|---|
US20180117115A1 (en) | 2018-05-03 |
WO2018081614A1 (en) | 2018-05-03 |
EP3532042A4 (en) | 2020-06-24 |
US10576125B2 (en) | 2020-03-03 |
JP2019537582A (en) | 2019-12-26 |
EP3532042A1 (en) | 2019-09-04 |
US20200164021A1 (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10576125B2 (en) | Methods for enhancing synaptogenesis and neuritogenesis | |
Sivak | The aging eye: common degenerative mechanisms between the Alzheimer's brain and retinal disease | |
Muhammad et al. | Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model | |
US20210236450A1 (en) | Methods and Compositions for Preventing and Treating Auditory Dysfunctions | |
Kuehn et al. | Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. | |
US20220387438A1 (en) | Calcineurin inhibitors of the setron family for the treatment of hearing loss | |
US20180318383A1 (en) | Peptide having neuronal loss prevention and regeneration effects, and composition containing same | |
JP6099574B2 (en) | How to treat traumatic brain injury | |
KR20180081807A (en) | Methods of treating Alzheimer's disease and related disorders | |
US20230078820A1 (en) | Fenfluramine for treatment of demyelinating diseases and conditions | |
Akaiwa et al. | Topical ripasudil suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma | |
US20210038589A1 (en) | Uses, compositions and methods | |
Stallings et al. | Long-term normalization of calcineurin activity in model mice rescues Pin1 and attenuates Alzheimer’s phenotypes without blocking peripheral T cell IL-2 response | |
JP2021523126A (en) | How to reduce accumulated pathological Tau protein | |
CN113855803B (en) | Use of PRMT5 inhibitors for the preparation of hearing protection medicaments | |
WO2020064979A1 (en) | Combination of acetylcholinesterase inhibitor and 5-ht4 receptor agonist as neuroprotective agent in the treatment of neurodegenerative diseases | |
Jo et al. | Activation of lysosomal function ameliorates amyloid-β-induced tight junction disruption in the retinal pigment epithelium | |
Pavlova et al. | Changes in the levels of neurospecific proteins and indices of apoptosis in the rat cornea at chronic ethanol consumption: protective effects of thiamine administration | |
US20210113552A1 (en) | Methods for enhancing cellular clearance of pathological molecules via activation of the cellular protein ykt6 | |
Maddineni et al. | Genetic and pharmacological correction of impaired mitophagy in retinal ganglion cells rescues glaucomatous neurodegeneration | |
Zhang et al. | The GLP-1/GIP dual receptor agonist DA5-CH is superior to Exendin-4 in protecting neurons in the 6-OHDA rat Parkinson Model | |
AU2018100066A4 (en) | Methods for Treating Cancer | |
TWI726172B (en) | Use of a composition for treating, reducing, preventing deterioration or improving visual function after optic neuropathy | |
KR20170085792A (en) | Compositions containing Thrombospondin-1 for preventing or treating Alzheimer's disease | |
Forest | Characterizing The Protection Of An N-Terminal Active Core Peptide Within Β-Amyloid Against Β-Amyloid Neurotoxicity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40012341 Country of ref document: HK |
|
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190917 |
|
WD01 | Invention patent application deemed withdrawn after publication |