CN110241130B - GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight - Google Patents
GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight Download PDFInfo
- Publication number
- CN110241130B CN110241130B CN201810196424.8A CN201810196424A CN110241130B CN 110241130 B CN110241130 B CN 110241130B CN 201810196424 A CN201810196424 A CN 201810196424A CN 110241130 B CN110241130 B CN 110241130B
- Authority
- CN
- China
- Prior art keywords
- gsn1
- protein
- plant
- grain
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03017—[Phosphorylase] phosphatase (3.1.3.17)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/573—Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/916—Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Plant Pathology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Botany (AREA)
- Mycology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及农学领域,具体地,本发明涉及控制植物粒数和粒重的GSN1基因、编码蛋白及其应用。The invention relates to the field of agronomy, in particular, the invention relates to the GSN1 gene, encoded protein and application thereof for controlling the grain number and grain weight of plants.
背景技术Background technique
随着世界范围内人口数量的不断增长以及全球生态环境的逐渐恶化,粮食短缺已经成为一个日益严重的世界性问题,预计到2050年全球人口将达到90亿,这要求世界粮食作物的产量要大幅度提升。因此,传统遗传育种的方法已经不能满足这一需求,利用现代分子遗传学的理论方法深入研究作物产量形成的分子机理可以帮助我们最大程度地提高作物的产量,从而满足人口增长的迫切需要。水稻是世界上最重要的粮食作物之一,而且也已经被发展成植物科学研究中重要的模式植物。水稻种子的每穗粒数和粒重性状是决定水稻产量的三个主要因素(即每株有效穗数、每穗粒数和粒重)中的两个要素,而粒重是由水稻种子的粒长、粒宽和粒厚决定的。一般来说,增多水稻每穗粒数会使得其千粒重下降,相反,提高水稻的千粒重通常又使得水稻的每穗粒数减少。每穗粒数和粒重虽然都是碳物质库,但是在发育过程中存在着对源的竞争,使得两个性状之间相互牵制。在植物进化过程中,种子的大小和种子数目之间也存在着同样的负相关性。因此,通过分子遗传学方法揭示每穗粒数和粒重之间的分子调控机理具有重要的生物学意义,而且可以为作物产量的遗传改良提供了技术方法。With the continuous growth of the worldwide population and the gradual deterioration of the global ecological environment, food shortage has become an increasingly serious worldwide problem. It is estimated that the global population will reach 9 billion by 2050, which requires a large output of food crops in the world. Amplitude increased. Therefore, traditional methods of genetic breeding can no longer meet this demand. Using modern molecular genetics theory to study the molecular mechanism of crop yield formation can help us maximize crop yield and meet the urgent needs of population growth. Rice is one of the most important food crops in the world, and it has also been developed into an important model plant in plant science research. The traits of grains per panicle and grain weight of rice seeds are two of the three main factors that determine rice yield (i.e. effective panicles per plant, grains per panicle and grain weight), while grain weight is determined by the Determined by grain length, grain width and grain thickness. Generally speaking, increasing the number of grains per panicle of rice will reduce the thousand-grain weight of rice, on the contrary, increasing the number of grains per panicle of rice will usually reduce the number of grains per panicle of rice. Although the number of grains per panicle and grain weight are both carbon pools, there is competition for the source during development, which makes the two traits check each other. The same inverse correlation between seed size and seed number has also been observed during plant evolution. Therefore, it is of great biological significance to reveal the molecular regulation mechanism between grain number per panicle and grain weight by molecular genetic methods, and it can provide a technical method for genetic improvement of crop yield.
目前本领域稻类控制水稻粒数和粒重的基因的克隆和研究至今还没有获得突破。因此,本领域迫切需要开展控制水稻粒型和粒重等相关基因的功能研究,以便用于改善植物的性状。So far, no breakthrough has been achieved in the cloning and research of genes controlling rice grain number and grain weight in this field. Therefore, there is an urgent need in this field to carry out functional research on genes related to controlling rice grain shape and grain weight, so as to improve plant traits.
发明内容Contents of the invention
本发明的目的就是提供控制水稻等植物的粒型、粒重和粒数等相关基因及其应用。The object of the present invention is to provide related genes for controlling the grain type, grain weight and grain number of plants such as rice and the application thereof.
本发明的第一方面提供了一种物质的用途,所述物质为GSN1基因或其编码蛋白、或其突变蛋白、或其促进剂或抑制剂,用于调控植物的性状或用于制备调控植物的性状的组合物,所述性状包括选自下组的一种或多种性状:The first aspect of the present invention provides a use of a substance, the substance is the GSN1 gene or its encoded protein, or its mutant protein, or its promoter or inhibitor, for regulating the traits of plants or for preparing and regulating plant Compositions of traits comprising one or more traits selected from the group consisting of:
(i)粒型;(i) grain type;
(ii)穗粒数;(ii) the number of grains per ear;
(iii)结实率。(iii) Seed setting rate.
在另一优选例中,所述性状还包括选自下组的一种或多种性状:In another preferred example, the traits also include one or more traits selected from the following group:
(iv)株高;(iv) plant height;
(v)分蘖数;(v) number of tillers;
(vi)单株产量;(vi) Yield per plant;
(vii)一级枝梗数;(vii) Number of primary branches;
(viii)二级枝梗数;(viii) Number of secondary branches;
(ix)长角果;(ix) siliques;
(x)穗长。(x) Ear length.
在另一优选例中,所述粒型包括粒长、粒宽、和/或千粒重。In another preferred example, the grain type includes grain length, grain width, and/or thousand grain weight.
在另一优选例中,所述的组合物为农用组合物。In another preferred example, the composition is an agricultural composition.
本发明第二方面提供了一种物质的用途,所述物质为GSN1基因或其编码蛋白、活性增强的GSN1突变蛋白、或其促进剂,调控植物的性状或用于制备调控植物的性状的组合物,其中所述性状包括选自下组的一种或多种性状:The second aspect of the present invention provides a use of a substance, the substance is the GSN1 gene or its encoded protein, the GSN1 mutant protein with enhanced activity, or its promoter, to regulate the traits of plants or to prepare a combination for regulating the traits of plants Objects, wherein the traits include one or more traits selected from the group consisting of:
(i)缩小粒型;(i) reduced particle size;
(ii)增加穗粒数;(ii) increase the number of grains per ear;
(iii)增加结实率。(iii) Increase seed setting rate.
在另一优选例中,所述的活性为GSN1的去磷酸化活性。In another preferred example, the activity is the dephosphorylation activity of GSN1.
在另一优选例中,所述的活性增强指所述突变蛋白的去磷酸化活性A1与野生型GSN1蛋白的去磷酸化活性A0之比≥1.2,较佳地≥1.5。In another preferred example, the activity enhancement refers to the ratio of the dephosphorylation activity A1 of the mutein to the dephosphorylation activity A0 of the wild-type GSN1 protein ≥ 1.2, preferably ≥ 1.5.
在另一优选例中,所述物质为GSN1基因或其编码蛋白、或其促进剂,其还用于调控植物的以下一种或多种性状:In another preferred embodiment, the substance is the GSN1 gene or its encoded protein, or its promoter, which is also used to regulate one or more of the following traits of plants:
(iv)在禾本科植物中增加分蘖数;(iv) increasing the number of tillers in grasses;
(v)在拟南芥中导致分枝增多;(v) lead to increased branching in Arabidopsis;
(vi)在拟南芥中导致长角果缩短。(vi) results in silique shortening in Arabidopsis.
在另一优选例中,所述促进剂为促进GSN1基因或其编码蛋白表达的小分子化合物。In another preferred example, the promoter is a small molecular compound that promotes the expression of the GSN1 gene or its encoded protein.
在另一优选例中,所述的促进剂选自下组:小分子化合物、核酸分子、或其组合。In another preferred embodiment, the accelerator is selected from the group consisting of small molecule compounds, nucleic acid molecules, or combinations thereof.
在另一优选例中,所述植物包括农作物、林业植物、蔬菜、瓜果、花卉、牧草(包括草坪草);优选地包括禾本科,豆科以及十字花科植物,更优选地包括水稻、玉米、高粱、小麦、大豆或拟南芥。In another preferred example, the plants include crops, forestry plants, vegetables, fruits, flowers, pastures (including turfgrass); preferably include grasses, leguminous plants and cruciferous plants, more preferably include rice, Corn, sorghum, wheat, soybean or Arabidopsis.
在另一优选例中,所述的植物包括:水稻、小麦、玉米、高粱、十字花科植物(卷心菜)。In another preferred example, the plants include: rice, wheat, corn, sorghum, and cruciferous plants (cabbage).
在另一优选例中,所述的水稻选自下组:籼稻、粳稻、或其组合。In another preferred embodiment, the rice is selected from the group consisting of indica rice, japonica rice, or a combination thereof.
在另一优选例中,所述的GSN1基因选自下组:cDNA序列、基因组序列、或其组合。In another preferred example, the GSN1 gene is selected from the group consisting of cDNA sequence, genome sequence, or a combination thereof.
在另一优选例中,所述GSN1基因来自禾本科植物。In another preferred example, the GSN1 gene is from a Poaceae plant.
在另一优选例中,所述的GSN1基因来自选自下组的一种或多种植物:水稻、玉米、高粱、小麦、大豆或拟南芥、谷子、苜蓿、二穗短柄草、番茄、毛果杨、桃、耧斗菜。In another preferred embodiment, the GSN1 gene is from one or more plants selected from the group consisting of rice, corn, sorghum, wheat, soybean or Arabidopsis, millet, alfalfa, Brachypodium distachys, tomato , Populus trichocarpa, peach, columbine.
在另一优选例中,所述GSN1蛋白的氨基酸序列选自下组:In another preferred example, the amino acid sequence of the GSN1 protein is selected from the following group:
(i)具有SEQ ID NO.:2所示氨基酸序列的多肽;(i) a polypeptide having the amino acid sequence shown in SEQ ID NO.:2;
(ii)将如SEQ ID NO.:2所示的氨基酸序列经过一个或几个(如1-10个)氨基酸残基的取代、缺失或添加而形成的,具有所述调控农艺性状功能或具有去磷酸化活性的、由(i)衍生的多肽;或(ii) The amino acid sequence shown in SEQ ID NO.: 2 is formed by substitution, deletion or addition of one or several (such as 1-10) amino acid residues, and has the function of regulating agronomic traits or has A polypeptide derived from (i) that is dephosphorylated; or
(iii)氨基酸序列与SEQ ID NO.:2所示氨基酸序列的同源性≥80%(较佳地≥90%,更佳地≥95%或≥98%),具有所述GSN1活性的多肽。(iii) The amino acid sequence has a homology of ≥80% (preferably ≥90%, more preferably ≥95% or ≥98%) with the amino acid sequence shown in SEQ ID NO.:2, a polypeptide having the GSN1 activity .
在另一优选例中,所述GSN1基因的核苷酸序列选自下组:In another preferred example, the nucleotide sequence of the GSN1 gene is selected from the following group:
(a)编码如SEQ ID NO.:2所示多肽的多核苷酸;(a) a polynucleotide encoding a polypeptide as shown in SEQ ID NO.:2;
(b)序列如SEQ ID NO.:1所示的多核苷酸;(b) a polynucleotide whose sequence is as shown in SEQ ID NO.:1;
(c)核苷酸序列与SEQ ID NO.:1所示序列的同源性≥75%(较佳地≥85%,更佳地≥90%或≥95%)的多核苷酸;(c) a polynucleotide whose nucleotide sequence has a homology of ≥75% (preferably ≥85%, more preferably ≥90% or ≥95%) to the sequence shown in SEQ ID NO.:1;
(d)在SEQ ID NO.:1所示多核苷酸的5'端和/或3'端截短或添加1-60个(较佳地1-30,更佳地1-10个)核苷酸的多核苷酸;(d) truncating or adding 1-60 (preferably 1-30, more preferably 1-10) cores at the 5' end and/or 3' end of the polynucleotide shown in SEQ ID NO.:1 polynucleotides of nucleotides;
(e)与(a)-(d)任一所述的多核苷酸互补的多核苷酸。(e) A polynucleotide complementary to the polynucleotide described in any one of (a)-(d).
本发明第三方面提供了一种物质的用途,所述物质为GSN1突变蛋白、或其抑制剂,所述的突变蛋白为与野生型GSN1蛋白相比活性下降的GSN1突变蛋白,用于调控植物的以下一种或多种性状:The third aspect of the present invention provides a use of a substance, the substance is a GSN1 mutant protein or an inhibitor thereof, and the mutant protein is a GSN1 mutant protein whose activity is reduced compared with the wild-type GSN1 protein, and is used for regulating plant One or more of the following traits:
(i)增大粒型;(i) increasing grain size;
(ii)减少穗粒数;(ii) reduce the number of grains per ear;
(iii)减少结实率。(iii) Reduce seed setting rate.
在另一优选例中,所述物质为GSN1活性下降的突变蛋白。In another preferred embodiment, the substance is a mutant protein with reduced GSN1 activity.
在另一优选例中,所述的活性为GSN1的去磷酸化活性。In another preferred example, the activity is the dephosphorylation activity of GSN1.
在另一优选例中,所述的活性下降指所述突变蛋白的去磷酸化活性A1与野生型GSN1蛋白的去磷酸化活性A0之比≤0.8,较佳地≤0.6。In another preferred example, the decrease in activity means that the ratio of the dephosphorylation activity A1 of the mutant protein to the dephosphorylation activity A0 of the wild-type GSN1 protein is ≤0.8, preferably ≤0.6.
在另一优选例中,所述的GSN1突变蛋白是活性丧失的突变蛋白。In another preferred example, the GSN1 mutein is an activity-losing mutein.
在另一优选例中,所述物质还用于调控植物的以下一种或多种性状:In another preferred example, the substance is also used to regulate one or more of the following traits of plants:
(iv)在禾本科植物中减少分蘖数;(iv) reducing the number of tillers in grasses;
(v)在拟南芥中导致分枝减少;(v) results in reduced branching in Arabidopsis;
(vi)在拟南芥中导致长角果变长。(vi) leads to elongated siliques in Arabidopsis.
在另一优选例中,所述突变蛋白的氨基酸序列选自下组:In another preferred example, the amino acid sequence of the mutein is selected from the following group:
(i)具有SEQ ID NO.:3所示氨基酸序列的多肽;(i) a polypeptide having the amino acid sequence shown in SEQ ID NO.:3;
(ii)将如SEQ ID NO.:3所示的氨基酸序列经过一个或几个(如1-10个)氨基酸残基的取代、缺失或添加而形成的,具有所述调控农艺性状功能的、由(i)衍生的多肽;或(ii) The amino acid sequence shown in SEQ ID NO.: 3 is formed by substitution, deletion or addition of one or several (such as 1-10) amino acid residues, and has the function of regulating agronomic traits, a polypeptide derived from (i); or
(iii)氨基酸序列与SEQ ID NO.:3所示氨基酸序列的同源性≥80%(较佳地≥90%,更佳地≥95%或98%),且具有下降的GSN1蛋白活性的多肽。(iii) Amino acid sequence has a homology of ≥80% (preferably ≥90%, more preferably ≥95% or 98%) with the amino acid sequence shown in SEQ ID NO.:3, and has decreased GSN1 protein activity peptide.
在另一优选例中,所述编码突变蛋白的核苷酸序列选自下组:In another preferred example, the nucleotide sequence encoding the mutein is selected from the following group:
(a)编码如SEQ ID NO.:3所示多肽的多核苷酸;(a) a polynucleotide encoding a polypeptide as shown in SEQ ID NO.:3;
(b)序列如SEQ ID NO.:4所示的多核苷酸;(b) a polynucleotide whose sequence is as shown in SEQ ID NO.:4;
(c)核苷酸序列与SEQ ID NO.:4所示序列的同源性≥75%(较佳地≥85%,更佳地≥90%)的多核苷酸;(c) a polynucleotide whose nucleotide sequence is ≥75% (preferably ≥85%, more preferably ≥90%) homologous to the sequence shown in SEQ ID NO.:4;
(d)在SEQ ID NO.:4所示多核苷酸的5'端和/或3'端截短或添加1-60个(较佳地1-30,更佳地1-10个)核苷酸的多核苷酸;(d) truncating or adding 1-60 (preferably 1-30, more preferably 1-10) cores at the 5' end and/or 3' end of the polynucleotide shown in SEQ ID NO.:4 polynucleotides of nucleotides;
(e)与(a)-(d)任一所述的多核苷酸互补的多核苷酸。(e) A polynucleotide complementary to the polynucleotide described in any one of (a)-(d).
在另一优选例中,所述的抑制剂选自下组:小分子化合物、反义核酸、microRNA、siRNA、RNAi、Crispr试剂、或其组合。In another preferred embodiment, the inhibitor is selected from the group consisting of small molecule compounds, antisense nucleic acids, microRNA, siRNA, RNAi, Crispr reagents, or combinations thereof.
在另一优选例中,当所述物质为GSN1基因或其编码蛋白(包括活性增加的突变蛋白)、或其促进剂时,所述物质还用于:In another preferred example, when the substance is the GSN1 gene or its encoded protein (including mutant proteins with increased activity), or its promoter, the substance is also used for:
(a)对MPK1蛋白进行去磷酸化修饰。(a) Dephosphorylation modification of MPK1 protein.
在另一优选例中,当所述物质对MPK1蛋白进行去磷酸化修饰时,所述植物的性状表现为:粒型变小、和/或穗粒数增加。In another preferred example, when the substance dephosphorylates the MPK1 protein, the traits of the plant are as follows: the grain size becomes smaller and/or the number of grains per panicle increases.
在另一优选例中,当所述物质为GSN1活性下降的突变蛋白或GSN1抑制剂时,所述物质还用于:In another preferred example, when the substance is a mutant protein with reduced GSN1 activity or a GSN1 inhibitor, the substance is also used for:
(a)抑制MPK1蛋白的去磷酸化修饰。(a) Inhibition of dephosphorylation modification of MPK1 protein.
在另一优选例中,当所述物质(如GSN1活性下降的突变蛋白或GSN1抑制剂)抑制MPK1蛋白的去磷酸化修饰时,所述植物的性状表现为:粒型变大、和/或穗粒数减少。In another preferred example, when the substance (such as a mutant protein with reduced GSN1 activity or a GSN1 inhibitor) inhibits the dephosphorylation modification of the MPK1 protein, the traits of the plant are: the grain size becomes larger, and/or The number of grains per spike is reduced.
本发明第四方面提供了一种改良植物性状的方法,包括步骤:The fourth aspect of the present invention provides a method for improving plant traits, comprising the steps of:
(i)调节所述植物中GSN1蛋白的表达量和/或活性,从而改良植物性状。(i) Regulating the expression level and/or activity of the GSN1 protein in the plant, thereby improving plant traits.
在另一优选例中,在步骤(i)中,调节野生型GSN1蛋白和突变型gns 1蛋白的相对表达量,从而改良植物性状。In another preference, in step (i), the relative expression of wild-type GSN1 protein and mutant gns1 protein is regulated, thereby improving plant traits.
在另一优选例中,所述的突变型gns1蛋白的去磷酸化活性下降或缺失。In another preferred example, the dephosphorylation activity of the mutant gns1 protein is reduced or absent.
在另一优选例中,在步骤(i)中,上调野生型GSN1基因的表达量和/或活性。In another preferred embodiment, in step (i), the expression level and/or activity of the wild-type GSN1 gene is up-regulated.
在另一优选例中,在步骤(i)中,下调野生型GSN1基因的表达量和/或活性。In another preferred embodiment, in step (i), the expression level and/or activity of the wild-type GSN1 gene is down-regulated.
在另一优选例中,所述野生型GSN1蛋白的氨基酸序列如SEQ ID NO.:2所示。In another preferred example, the amino acid sequence of the wild-type GSN1 protein is shown in SEQ ID NO.:2.
在另一优选例中,所述GSN1基因的核苷酸序列如SEQ ID NO.:1所示。In another preferred example, the nucleotide sequence of the GSN1 gene is shown in SEQ ID NO.:1.
在另一优选例中,所述突变型gsn1蛋白的氨基酸序列如SEQ ID NO.:3所示。In another preferred example, the amino acid sequence of the mutant gsn1 protein is shown in SEQ ID NO.:3.
在另一优选例中,所述gsn1基因的核苷酸序列如SEQ ID NO.:4所示。In another preferred example, the nucleotide sequence of the gsn1 gene is shown in SEQ ID NO.:4.
在另一优选例中,当所述植物中GSN1的活性E1与所述植物中的野生型GSN本底活性E0之比≥2倍,较佳地≥5倍,更佳地≥10倍时,所述植物的性状改良为粒型变小和/或穗粒数增加。In another preferred example, when the ratio of the activity E1 of GSN1 in the plant to the background activity E0 of the wild-type GSN in the plant is ≥2 times, preferably ≥5 times, more preferably ≥10 times, The improved traits of the plant are smaller grain shape and/or increased grain number per panicle.
在另一优选例中,当所述植物中GSN1的活性E1与所述植物中的野生型GSN本底活性E0之比≤1/2,较佳地≤1/5,更佳地≤1/10时,所述植物的性状改良为粒型变大和/或穗粒数减少。In another preferred example, when the ratio of the activity E1 of GSN1 in the plant to the background activity E0 of the wild-type GSN in the plant is ≤1/2, preferably ≤1/5, more preferably ≤1/ At 10 o'clock, the traits of the plant were improved as the grain shape became larger and/or the number of grains per panicle decreased.
本发明第五方面提供了一种对MPK1蛋白进行去磷酸化的方法,包括步骤:The fifth aspect of the present invention provides a method for dephosphorylating MPK1 protein, comprising the steps of:
将GSN1蛋白与MPK1蛋白接触,从而对MPK1蛋白进行去磷酸化。The GSN1 protein is contacted with the MPK1 protein, thereby dephosphorylating the MPK1 protein.
在另一优选例中,所述的GSN1蛋白包括野生型GSN1蛋白或其突变蛋白。In another preferred example, the GSN1 protein includes wild-type GSN1 protein or its mutant protein.
在另一优选例中,所述的突变蛋白包括活性增强的突变蛋白。In another preferred example, the mutein includes a mutein with enhanced activity.
在另一优选例中,所述MPK1蛋白的来源选自下组的一种或多种植物:水稻、玉米、高粱、小麦、大豆或拟南芥、谷子、苜蓿、二穗短柄草、番茄、毛果杨、桃、耧斗菜。In another preferred example, the source of the MPK1 protein is selected from one or more plants of the following group: rice, corn, sorghum, wheat, soybean or Arabidopsis, millet, alfalfa, Brachypodium distachys, tomato , Populus trichocarpa, peach, columbine.
本发明第六方面提供了一种分离的突变型GSN1蛋白,所述突变型GSN1蛋白为非天然蛋白,且所述突变型GSN1蛋白具有调控植物性状的活性,所述性状选自下组的一种或多种性状:The sixth aspect of the present invention provides an isolated mutant GSN1 protein, the mutant GSN1 protein is a non-natural protein, and the mutant GSN1 protein has the activity of regulating plant traits, and the traits are selected from one of the following groups One or more traits:
(i)粒型;(i) grain type;
(ii)穗粒数;(ii) the number of grains per ear;
(iii)结实率。(iii) Seed setting rate.
在另一优选例中,所述的突变型GSN1蛋白包括活性增加的突变蛋白、或活性下降的突变蛋白。In another preferred example, the mutant GSN1 protein includes a mutant protein with increased activity or a mutant protein with decreased activity.
在另一优选例中,所述突变型GSN1蛋白是活性下降的突变蛋白。In another preferred example, the mutant GSN1 protein is a mutant protein with reduced activity.
在另一优选例中,所述突变型GSN1蛋白在野生型的GSN1蛋白的对应于SEQ IDNO.:2的选自下组的核心氨基酸发生突变:In another preferred example, the mutant GSN1 protein is mutated at the core amino acid of the wild-type GSN1 protein corresponding to SEQ ID NO.:2 selected from the following group:
第146位丝氨酸(S)。Serine (S) at position 146.
在另一优选例中,所述第146位氨基酸突变为苯丙氨酸(F)。In another preferred example, the amino acid at position 146 is mutated to phenylalanine (F).
在另一优选例中,所述突变型GSN1蛋白的氨基酸序列如SEQ ID NO.:3所示。In another preferred example, the amino acid sequence of the mutant GSN1 protein is shown in SEQ ID NO.:3.
在另一优选例中,所述突变型GSN1蛋白除所述突变(如146位氨基酸)外,其余的氨基酸序列与SEQ ID NO.:2所示的序列相同或基本相同。In another preferred example, except for the mutation (such as amino acid 146), the remaining amino acid sequence of the mutant GSN1 protein is identical or substantially identical to the sequence shown in SEQ ID NO.:2.
在另一优选例中,所述的基本相同是至多有50个(较佳地为1-20个,更佳地为1-10个、更佳地1-5个)氨基酸不相同,其中,所述的不相同包括氨基酸的取代、缺失或添加,且所述突变型GSN1蛋白仍具有去磷酸化活性(如使得MPK1蛋白发生去磷酸化的活性)。In another preferred embodiment, the substantially identical is at most 50 (preferably 1-20, more preferably 1-10, more preferably 1-5) amino acid differences, wherein, The difference includes amino acid substitution, deletion or addition, and the mutant GSN1 protein still has dephosphorylation activity (such as dephosphorylation activity of MPK1 protein).
在另一优选例中,与SEQ ID NO.:2所示序列的同源性至少为80%,较佳地至少为85%或90%,更佳地至少为95%,最佳地至少为98%。In another preferred example, the homology with the sequence shown in SEQ ID NO.: 2 is at least 80%, preferably at least 85% or 90%, more preferably at least 95%, and most preferably at least 98%.
在另一优选例中,所述的突变型GSN1蛋白还额外含有选自下组的辅助元件:信号肽、分泌肽、标签序列(如6His)、或其组合。In another preferred example, the mutant GSN1 protein additionally contains auxiliary elements selected from the group consisting of signal peptide, secretory peptide, tag sequence (such as 6His), or a combination thereof.
在另一优选例中,所述突变型GSN1蛋白具有调控植物性状的活性,所述性状选自下组的一种或多种性状:In another preferred example, the mutant GSN1 protein has the activity of regulating plant traits, and the traits are selected from one or more traits of the following group:
(i)粒型变大;(i) The particle shape becomes larger;
(ii)穗粒数减少;(ii) the number of grains per ear decreases;
(iii)结实率下降。(iii) Decreased seed setting rate.
本发明第七方面提供了一种多核苷酸,所述多核苷酸编码本发明第六方面所述的突变型GSN1蛋白。The seventh aspect of the present invention provides a polynucleotide encoding the mutant GSN1 protein described in the sixth aspect of the present invention.
在另一优选例中,所述多核苷酸选自下组:In another preferred embodiment, the polynucleotide is selected from the following group:
(a)编码如SEQ ID NO.:3所示多肽的多核苷酸;(a) a polynucleotide encoding a polypeptide as shown in SEQ ID NO.:3;
(b)序列如SEQ ID NO.:4所示的多核苷酸;(b) a polynucleotide whose sequence is as shown in SEQ ID NO.:4;
(c)核苷酸序列与SEQ ID NO.:4所示序列的同源性≥80%(较佳地≥90%),且编码SEQ ID NO.:3所示多肽的多核苷酸;(c) A polynucleotide whose nucleotide sequence has a homology of ≥80% (preferably ≥90%) to the sequence shown in SEQ ID NO.:4 and encodes the polypeptide shown in SEQ ID NO.:3;
(d)与(a)-(c)任一所述的多核苷酸互补的多核苷酸。(d) A polynucleotide complementary to the polynucleotide described in any one of (a)-(c).
在另一优选例中,所述的多核苷酸选自下组:DNA序列、RNA序列、或其组合。In another preferred embodiment, the polynucleotide is selected from the group consisting of DNA sequence, RNA sequence, or a combination thereof.
本发明第八方面提供了一种载体,所述载体含有本发明第七方面所述的多核苷酸。The eighth aspect of the present invention provides a vector containing the polynucleotide described in the seventh aspect of the present invention.
在另一优选例中,所述载体包括表达载体、穿梭载体、整合载体。In another preferred example, the vectors include expression vectors, shuttle vectors, and integration vectors.
本发明第九方面提供了一种宿主细胞,所述宿主细胞含有本发明第八方面所述的载体,或其基因组中整合有本发明第七方面所述的多核苷酸。The ninth aspect of the present invention provides a host cell containing the vector of the eighth aspect of the present invention, or the polynucleotide of the seventh aspect of the present invention integrated in its genome.
在另一优选例中,所述的宿主细胞为真核细胞,如酵母细胞或植物细胞。In another preferred embodiment, the host cells are eukaryotic cells, such as yeast cells or plant cells.
在另一优选例中,所述的宿主细胞为原核细胞,如大肠杆菌。In another preferred embodiment, the host cell is a prokaryotic cell, such as Escherichia coli.
本发明第十方面提供了一种产生本发明第六方面所述的突变型GSN1蛋白的方法,包括步骤:The tenth aspect of the present invention provides a method for producing the mutant GSN1 protein described in the sixth aspect of the present invention, comprising the steps of:
在适合表达的条件下,培养本发明第九方面所述的宿主细胞,从而表达出突变型GSN1蛋白;和Under conditions suitable for expression, culturing the host cell according to the ninth aspect of the present invention, so as to express the mutant GSN1 protein; and
分离所述突变型GSN1蛋白。The mutant GSN1 protein was isolated.
本发明第十一发明提供了一种酶制剂,所述酶制剂包含本发明第六方面所述的突变型GSN1蛋白。The eleventh invention of the present invention provides an enzyme preparation comprising the mutant GSN1 protein described in the sixth aspect of the present invention.
本发明第十二方面提供了一种制备转基因植物的方法,包括步骤:The twelfth aspect of the present invention provides a method for preparing transgenic plants, comprising the steps of:
将编码本发明第六方面所述蛋白的多核苷酸导入植物细胞中,培养所述植物细胞,再生成植物。The polynucleotide encoding the protein described in the sixth aspect of the present invention is introduced into plant cells, and the plant cells are cultured to regenerate plants.
在另一优选例中,所述方法包括步骤:In another preferred embodiment, the method includes the steps of:
(s1)提供携带表达载体的农杆菌,所述的表达载体含有编码本发明第六方面所述蛋白的多核苷酸;(s1) providing an Agrobacterium carrying an expression vector containing a polynucleotide encoding the protein described in the sixth aspect of the present invention;
(s2)将植物细胞或组织或器官与步骤(s1)中的农杆菌接触,从而使编码本发明第六方面所述蛋白的多核苷酸转入植物细胞、组织或器官;(s2) contacting the plant cell, tissue or organ with the Agrobacterium in step (s1), so that the polynucleotide encoding the protein described in the sixth aspect of the present invention is transferred into the plant cell, tissue or organ;
(s3)筛选转入编码本发明第六方面所述蛋白的多核苷酸的植物细胞或组织或器官;和(s3) Screening the plant cells or tissues or organs transfected with the polynucleotide encoding the protein described in the sixth aspect of the present invention; and
(s4)将步骤(s3)中的植物细胞或组织或器官再生成植物。(s4) regenerating the plant cells or tissues or organs in step (s3) into plants.
本发明第十三方面提供了一种鉴定大粒型或小粒型植物的方法,包括步骤:The thirteenth aspect of the present invention provides a method for identifying large-grained or small-grained plants, comprising the steps of:
(i)鉴定植物样本是否具有SEQ ID NO.:2或3所示氨基酸序列的多肽或其编码基因;如具有SEQ ID NO.:2所示氨基酸序列的多肽或其编码基因,则为小粒型植物,如具有由SEQ ID NO.:3所示氨基酸序列的多肽或其编码基因,则为大粒型植物。(i) Identify whether the plant sample has the polypeptide or its coding gene of the amino acid sequence shown in SEQ ID NO.: 2 or 3; if it has the polypeptide or its coding gene of the amino acid sequence shown in SEQ ID NO.: 2, it is small grain type A plant, such as a polypeptide having an amino acid sequence shown in SEQ ID NO.: 3 or a gene encoding it, is a large-grained plant.
在另一优选例中,在步骤(i)中,通过测序确定所述植物样本中是否具有如SEQ IDNO.:1或SEQ ID NO.:4所示的核苷酸序列。In another preferred example, in step (i), it is determined by sequencing whether the plant sample has the nucleotide sequence shown in SEQ ID NO.:1 or SEQ ID NO.:4.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.
附图说明Description of drawings
下列附图用于说明本发明的具体实施方案,而不用于限定由权利要求书所界定的本发明范围。The following drawings are used to illustrate specific embodiments of the present invention, but not to limit the scope of the present invention defined by the claims.
图1显示了gsn1突变体的表型特征。Figure 1 shows the phenotypic characteristics of gsn1 mutants.
(A)野生型FAZ1(一个籼稻品种“丰矮占1号”的简称)和gsn1的株型;(B)FAZ1和gsn1的粒型;(C)脱壳后的FAZ1和gsn1籽粒;(D)FAZ1和gsn1的穗型;(E)FAZ1和gsn1的雌蕊;(F)FAZ1和gsn1的花药;(G-Q)FAZ1和gsn1的表型比较,包括株高(G)、分蘖数(H)、粒长(I)、粒宽(J)、千粒重(K)、穗粒数(L)、结实率(M)、单株产量(N)、一级枝梗数(O)、二级枝梗数(P)和穗长(Q)。(A) Plant type of wild-type FAZ1 (abbreviation of "
图2显示了GSN1基因的定位克隆以及遗传互补验证。Figure 2 shows the positional cloning and genetic complementation verification of the GSN1 gene.
(A)GSN1的图位克隆;(B)不同物种中GSN1蛋白保守区域序列比对;(C-D)FAZ1、gsn1以及互补植株gGSN1com的穗型(C)和粒型(D);(E-F)FAZ1以及RNAi植株GSN1RNAi的穗型(E)和粒型(F);(G-H)FAZ1以及过表达植株UBI::GSN1的穗型(G)和粒型(H);(I-J)FAZ1以及RNAi植株GSN1RNAi的粒长(I)和穗粒数(J)比较;(K-L)FAZ1、gsn1以及过表达植株UBI::GSN1的粒长(K)和穗粒数(L)比较。(A) Map-based cloning of GSN1; (B) Sequence alignment of conserved regions of GSN1 proteins in different species; (C-D) panicle type (C) and grain type (D) of FAZ1, gsn1 and complementary plant gGSN1com; (E-F) FAZ1 And the panicle type (E) and grain type (F) of the RNAi plant GSN1RNAi; (G-H) FAZ1 and the panicle type (G) and grain type (H) of the overexpression plant UBI::GSN1; (I-J) FAZ1 and the RNAi plant GSN1RNAi Comparison of grain length (I) and number of grains per ear (J) in (K-L) comparison of grain length (K) and number of grains per ear (L) of FAZ1, gsn1 and overexpression plants UBI::GSN1.
图3显示了粳稻品种95-22和近等基因系NIL(gsn1)的表型特征。Figure 3 shows the phenotypic characteristics of the japonica rice variety 95-22 and the near isogenic line NIL(gsn1).
(A)95-22和近等基因系NIL(gsn1)的株型;(B)95-22和近等基因系NIL(gsn1)的穗型;(C)95-22和近等基因系NIL(gsn1)的粒型;(D)95-22和近等基因系NIL(gsn1)脱壳的粒型;(E-G)95-22和近等基因系NIL(gsn1)的粒长(E)、粒宽(F)、和穗粒数(G)比较。(A) Plant type of 95-22 and near isogenic line NIL(gsn1); (B) panicle type of 95-22 and near isogenic line NIL(gsn1); (C) 95-22 and near isogenic line NIL (gsn1) grain shape; (D) 95-22 and near isogenic line NIL (gsn1) grain shape; (E-G) 95-22 and near isogenic line NIL (gsn1) grain length (E), Comparison of grain width (F) and grain number per panicle (G).
图4显示了抑制GSN1导致水稻粒型增大,每穗粒数减少。Figure 4 shows that inhibition of GSN1 leads to increased grain shape and decreased grain number per panicle in rice.
(A)粳稻品种ZH11和GSN1RNAi植株的株型、粒型和穗型表型;(B)ZH11和GSN1CRISPR植株的株型、粒型和穗型表型;(C-F)ZH11和GSN1RNAi的粒长(C)、粒宽(D)、穗粒数(E)、以及体内GSN1基因的相对表达量(F);(G-J)ZH11和GSN1CRISPR的粒长(G)、粒宽(H)、穗粒数(I)、以及GSN1基因CRISPR/Cas9基因编辑位点(J)。(A) Plant type, grain type and panicle type phenotype of japonica rice variety ZH11 and GSN1RNAi plants; (B) Plant type, grain type and panicle type phenotype of ZH11 and GSN1CRISPR plants; (C-F) grain length of ZH11 and GSN1RNAi ( C), grain width (D), number of grains per ear (E), and relative expression of GSN1 gene in vivo (F); (G-J) grain length (G), grain width (H), and number of grains per ear of ZH11 and GSN1 CRISPR (I), and the GSN1 gene CRISPR/Cas9 gene editing site (J).
图5显示了ZH11背景下过表达突变来源于gsn1突变体的GSN1具有显性负抑制效应。Figure 5 shows that overexpression of GSN1 derived from the gsn1 mutant in the ZH11 background has a dominant negative inhibitory effect.
(A)粳稻ZH11和过表达GSN1FAZ1(来源于FAZ1)植株UBI::GSN1FAZ1的株型、粒型和穗型;(B)粳稻ZH11和过表达GSN1S146F(来源于gsn1)植株UBI::GSN1S146F的株型、粒型和穗型;(C-F)ZH11和UBI::GSN1FAZ1的粒长(C)、粒宽(D)、穗粒数(E)以及GSN1的相对表达量(F);(G-J)ZH11和UBI::GSN1S146F的粒长(G)、粒宽(H)、穗粒数(I)以及GSN1的相对表达量(J)。(A) Plant type, grain type and panicle type of japonica rice ZH11 and overexpressed GSN1FAZ1 (derived from FAZ1) plant UBI::GSN1FAZ1; (B) Japonica rice ZH11 and overexpressed GSN1S146F (derived from gsn1) plant UBI::GSN1S146F Type, grain type and panicle type; (C-F) Grain length (C), grain width (D), grain number per panicle (E) and relative expression level of GSN1 (F) of ZH11 and UBI::GSN1FAZ1; (G-J) ZH11 and UBI::GSN1S146F grain length (G), grain width (H), grain number per panicle (I) and relative expression level of GSN1 (J).
图6显示了过表达GSN1导致每穗粒数增多、粒型减小。Figure 6 shows that the overexpression of GSN1 resulted in an increase in the number of grains per panicle and a decrease in grain shape.
(A)粳稻ZH11和过表达GSN1ZH11(来源于ZH11)植株UBI::GSN1ZH11的株型、粒型和穗型;(B)粳稻ZH11和过表达GSN1ZH11植株35S::GSN1ZH11的株型、粒型和穗型;(C-F)ZH11和UBI::GSN1ZH11的粒长(C)、粒宽(D)、穗粒数(E)以及GSN1的相对表达量(F);(G-J)ZH11和35S::GSN1ZH11的粒长(G)、粒宽(H)、穗粒数(I)以及GSN1的相对表达量(J)。(A) Plant type, grain type and panicle type of japonica rice ZH11 and overexpressed GSN1ZH11 (derived from ZH11) plant UBI::GSN1ZH11; (B) Plant type, grain type and panicle type of japonica rice ZH11 and overexpressed
图7显示了GSN1突变导致细胞分裂加快,而不影响细胞的扩展或伸长。Figure 7 shows that mutations in GSN1 lead to accelerated cell division without affecting cell expansion or elongation.
(A)抽穗期FAZ1和gsn1的颖壳;(B)FAZ1和gsn1颖壳的横切面;(C)颖壳横切面的局部放大;(D)FAZ1和gsn1花药横切面比较;(E)颖壳横切面薄壁细胞数量和大小比较;(F)花药横切面药隔维管束面积和细胞数量比较;(G)FAZ1和gsn1颖壳外表皮乳突扫描电镜观察;(H)FAZ1和gsn1颖壳内表皮细胞扫描电镜观察;(I)FAZ1和gsn1颖壳外表皮乳突间距比较;(J)FAZ1和gsn1颖壳内表皮细胞大小比较;(K)FAZ1和gsn1幼穗颖壳细胞的流式细胞分析;(L)FAZ1和gsn1幼穗颖壳细胞的细胞周期分布比较。(A) glumes of FAZ1 and gsn1 at heading stage; (B) cross-section of glumes of FAZ1 and gsn1; (C) partial enlargement of the cross-section of glumes; (D) comparison of cross-sections of FAZ1 and gsn1 anthers; (E) glume Comparison of the number and size of parenchyma cells in the cross-section of the shell; (F) the comparison of the area of the septum vascular bundles and the number of cells in the cross-section of the anther; (G) scanning electron microscope observation of papillae on the epidermis of the glume of FAZ1 and gsn1; (H) the glume of FAZ1 and gsn1 Scanning electron microscope observation of epidermal cells in the shell; (I) Comparison of papillae spacing in the outer glume of FAZ1 and gsn1; (J) Comparison of the size of epidermal cells in the glume of FAZ1 and gsn1; (K) Flow of glume cells in FAZ1 and gsn1 young panicles Cell analysis; (L) Comparison of the cell cycle distribution of FAZ1 and gsn1 young spike glume cells.
图8显示了GSN1编码一个定位于细胞质的双特异性磷酸酶,第146位丝氨酸突变为苯丙氨酸导致GSN1蛋白失去去磷酸化活性。Figure 8 shows that GSN1 encodes a dual-specificity phosphatase localized in the cytoplasm, and the mutation of serine at position 146 to phenylalanine results in the loss of dephosphorylation activity of the GSN1 protein.
(A-B)分别以PNPP(A)和OMFP(B)为底物检测GSN1和GSN1S146F的酶活;(C)GSN1的酶活动力学曲线;(D)GSN1定位于烟草叶片表皮细胞的细胞质内;(E)GSN1定位于水稻原生质体的细胞质内;(F-G)GSN1在苗期(F)和生殖生长期(G)的表达模式。(A-B) PNPP (A) and OMFP (B) were used as substrates to detect the enzyme activity of GSN1 and GSN1S146F; (C) The kinetic curve of GSN1 enzyme activity; (D) GSN1 was localized in the cytoplasm of tobacco leaf epidermal cells; ( E) GSN1 is localized in the cytoplasm of rice protoplasts; (F-G) Expression patterns of GSN1 at seedling (F) and reproductive growth (G) stages.
图9显示了GSN1和OsMPK1特异性发生互作,并对OsMPK1进行去磷酸化修饰。Figure 9 shows that GSN1 and OsMPK1 specifically interact and dephosphorylate OsMPK1.
(A)酵母双杂交验证GSN1和OsMPK1在酵母细胞内发生互作;(B)BiFC实验验证GSN1和OsMPK1在烟草叶片表皮细胞内发生互作;(C)co-IP实验证明GSN1和OsMPK1发生互作;(D)GSN1可以对OsMPK1进行去磷酸化修饰,GSN1S146F不能对OsMPK1进行去磷酸化修饰。(A) Yeast two-hybrid experiment verified the interaction between GSN1 and OsMPK1 in yeast cells; (B) BiFC experiment verified the interaction between GSN1 and OsMPK1 in tobacco leaf epidermal cells; (C) co-IP experiment proved the interaction between GSN1 and OsMPK1 (D) GSN1 can dephosphorylate OsMPK1, but GSN1S146F cannot dephosphorylate OsMPK1.
图10显示了GSN1是水稻OsMKKK10-OsMKK4-OsMPK1级联反应通路的负调控因子。Figure 10 shows that GSN1 is a negative regulator of the rice OsMKKK10-OsMKK4-OsMPK1 cascade pathway.
(A)FAZ1、gsn1、OsMPK1RNAi和gsn1/OsMPK1RNAi双突的穗型;(B)FAZ1、gsn1、OsMPK1RNAi和gsn1/OsMPK1RNAi双突的粒型;(C)FAZ1、gsn1、OsMKK4CRISPR和gsn1/OsMKK4CRISPR双突的穗型;(D)FAZ1、gsn1、OsMKK4CRISPR和gsn1/OsMKK4CRISPR双突的粒型;(E)FAZ1、gsn1、OsMKKK10CRISPR和gsn1/OsMKKK10CRISPR双突的穗型;(F)FAZ1、gsn1、OsMKKK10CRISPR和gsn1/OsMKKK10CRISPR双突的粒型;(G)FAZ1、gsn1、OsMPK1RNAi和gsn1/OsMPK1RNAi双突的粒长比较;(H)FAZ1、gsn1、OsMKK4CRISPR和gsn1/OsMKK4CRISPR双突的粒长比较;(I)FAZ1、gsn1、OsMKKK10CRISPR和gsn1/OsMKKK10CRISPR双突的粒长比较。(A) Spike type of FAZ1, gsn1, OsMPK1RNAi and gsn1/OsMPK1RNAi double mutation; (B) Grain type of FAZ1, gsn1, OsMPK1RNAi and gsn1/OsMPK1RNAi double mutation; (C) FAZ1, gsn1, OsMKK4CRISPR and gsn1/OsMKK4CRISPR double mutation (D) Grain type of FAZ1, gsn1, OsMKK4CRISPR and gsn1/OsMKK4CRISPR double spike; (E) FAZ1, gsn1, OsMKKK10CRISPR and gsn1/OsMKKK10CRISPR double spike type; (F) FAZ1, gsn1, OsMKKK10CRISPR and gsn1 /OsMKKK10CRISPR double process grain type; (G) comparison of grain length of FAZ1, gsn1, OsMPK1RNAi and gsn1/OsMPK1RNAi double process; (H) comparison of grain length of FAZ1, gsn1, OsMKK4CRISPR and gsn1/OsMKK4CRISPR double process; (I) FAZ1 , gsn1, OsMKKK10CRISPR and gsn1/OsMKKK10CRISPR doublet grain length comparison.
图11显示了在拟南芥中过表达水稻GSN1基因导致其分枝增多、长角果变短。表明GSN1在其他物种中也发挥作用、具有功能保守性。其中,CK为对照,#1和#2为35S::GSN1过表达转基因植株两个独立株系,比例尺5cm。Figure 11 shows that the overexpression of the rice GSN1 gene in Arabidopsis resulted in more branches and shorter siliques. It shows that GSN1 also plays a role in other species and has functional conservation. Among them, CK is the control, #1 and #2 are two independent lines of 35S::GSN1 overexpression transgenic plants, the scale bar is 5cm.
具体实施方式Detailed ways
经过广泛而深入的研究,本发明人通过对大量的植物性状位点的研究,首次意外地发现了一种植物(如水稻)的GSN1基因或其编码蛋白、或其突变蛋白、或其促进剂或抑制剂,用于调控植物的性状,所述性状包括选自下组的一种或多种性状:(i)粒型;(ii)穗粒数;(iii)结实率。此外,本发明人还首次意外地发现,将植物中的GSN1蛋白的第146为氨基酸(丝氨酸)突变为苯丙氨酸,可显著增加粒型,并减少穗粒数。此外,本发明人还首次意外地发现,通过调节植物中GSN1蛋白的表达活性,可改良植物的性状。实验结果表明,本发明的野生型GSN1蛋白可与OsMPK1发生作用,并对OsMPK1进行去磷酸化修饰,而一种活性缺失的突变型gsn1蛋白不能对已发生磷酸化的GST-OsMPK1进行去磷酸化修饰。在此基础上,本发明人完成了本发明。After extensive and in-depth research, the present inventor unexpectedly discovered a plant (such as rice) GSN1 gene or its encoded protein, or its mutant protein, or its promoter for the first time by studying a large number of plant trait loci Or inhibitors, for regulating the traits of plants, said traits include one or more traits selected from the group: (i) grain type; (ii) ear grain number; (iii) seed setting rate. In addition, the present inventors also unexpectedly found for the first time that mutating the 146th amino acid (serine) of the GSN1 protein in plants to phenylalanine can significantly increase the grain shape and reduce the number of grains per panicle. In addition, the present inventors unexpectedly discovered for the first time that the traits of plants can be improved by regulating the expression activity of GSN1 protein in plants. Experimental results show that the wild-type GSN1 protein of the present invention can interact with OsMPK1 and dephosphorylate OsMPK1, while a mutant gsn1 protein that lacks activity cannot dephosphorylate phosphorylated GST-OsMPK1 grooming. On this basis, the present inventors have completed the present invention.
术语the term
如本文所用,术语“AxxB”表示第xx位的氨基酸A变为氨基酸B,例如“D308N”表示第308位的氨基酸D突变为N,以此类推。As used herein, the term "AxxB" means that amino acid A at position xx is changed to amino acid B, for example "D308N" means that amino acid D at position 308 is mutated to N, and so on.
本发明突变蛋白及其编码核酸Mutant protein of the present invention and encoding nucleic acid thereof
如本文所用,术语“突变蛋白”、“本发明突变蛋白”、“突变型GSN1蛋白”、“本发明突变型GSN1蛋白”可互换使用,均指非天然存在的GSN1突变蛋白,且所述突变蛋白为基于SEQID NO.:2所示蛋白进行人工改造的蛋白,其中,所述的突变蛋白含有与调控植物性状(如粒型、穗粒重)活性相关的核心氨基酸,且所述核心氨基酸中至少有一个是经过人工改造的;并且本发明突变蛋白具有增加粒型、和/或减少穗粒数的活性。As used herein, the terms "mutant protein", "mutant protein of the present invention", "mutant GSN1 protein", and "mutant GSN1 protein of the present invention" are used interchangeably, and all refer to a non-naturally occurring GSN1 mutein, and the The mutant protein is an artificially modified protein based on the protein shown in SEQID NO.: 2, wherein the mutant protein contains core amino acids related to the activity of regulating plant traits (such as grain shape, ear grain weight), and the core amino acids At least one of them is artificially modified; and the mutant protein of the present invention has the activity of increasing grain shape and/or reducing the number of grains per panicle.
术语“核心氨基酸”指的是基于SEQ ID NO.:2,且与SEQ ID NO.:2同源性达至少80%,如84%、85%、90%、92%、95%、98%的序列中,相应位点是本文所述的特定氨基酸,如基于SEQ ID NO.:2所示的序列,核心氨基酸为:第146位丝氨酸(S);The term "core amino acid" refers to an amino acid that is based on SEQ ID NO.:2 and that is at least 80% homologous to SEQ ID NO.:2, such as 84%, 85%, 90%, 92%, 95%, 98%. In the sequence, the corresponding position is the specific amino acid described herein, such as based on the sequence shown in SEQ ID NO.: 2, the core amino acid is: Serine (S) at position 146;
且对上述核心氨基酸进行突变所得到的活性下降的突变蛋白具有增加粒型、和/或减少穗粒数的活性。Moreover, the mutant protein with reduced activity obtained by mutating the above-mentioned core amino acid has the activity of increasing grain shape and/or reducing the number of grains per panicle.
优选地,在本发明中,对本发明的所述核心氨基酸进行如下突变:第146位丝氨酸(S)突变为苯丙氨酸(F),该突变可导致GSN1蛋白的活性大幅下降甚至丧失。Preferably, in the present invention, the core amino acid of the present invention is mutated as follows: the 146th serine (S) is mutated to phenylalanine (F), which can lead to a significant decrease or even loss of the activity of the GSN1 protein.
应理解,本发明突变蛋白中的氨基酸编号基于SEQ ID NO.:2作出,当某一具体突变蛋白与SEQ ID NO.:2所示序列的同源性达到80%或以上时,突变蛋白的氨基酸编号可能会有相对于SEQ ID NO.:2的氨基酸编号的错位,如向氨基酸的N末端或C末端错位1-5位,而采用本领域常规的序列比对技术,本领域技术人员通常可以理解这样的错位是在合理范围内的,且不应当由于氨基酸编号的错位而使同源性达80%(如90%、95%、98%)的、具有相同或相似的增加粒型、和/或减少穗粒数的活性的突变蛋白不在本发明突变蛋白的范围内。It should be understood that the numbering of the amino acids in the mutant protein of the present invention is based on SEQ ID NO.: 2. When the homology of a specific mutant protein to the sequence shown in SEQ ID NO.: 2
本发明突变蛋白是合成蛋白或重组蛋白,即可以是化学合成的产物,或使用重组技术从原核或真核宿主(例如,细菌、酵母、植物)中产生。根据重组生产方案所用的宿主,本发明的突变蛋白可以是糖基化的,或可以是非糖基化的。本发明的突变蛋白还可包括或不包括起始的甲硫氨酸残基。The mutein of the present invention is a synthetic protein or a recombinant protein, that is, it may be a product of chemical synthesis, or produced from a prokaryotic or eukaryotic host (eg, bacteria, yeast, plant) using recombinant technology. Depending on the host used in the recombinant production protocol, muteins of the invention may be glycosylated, or may be non-glycosylated. The muteins of the invention may or may not include an initial methionine residue.
本发明还包括所述突变蛋白的片段、衍生物和类似物。如本文所用,术语“片段”、“衍生物”和“类似物”是指基本上保持所述突变蛋白相同的生物学功能或活性的蛋白。The present invention also includes fragments, derivatives and analogs of said muteins. As used herein, the terms "fragment", "derivative" and "analogue" refer to a protein that substantially retains the same biological function or activity of the mutein.
本发明的突变蛋白片段、衍生物或类似物可以是(i)有一个或多个保守或非保守性氨基酸残基(优选保守性氨基酸残基)被取代的突变蛋白,而这样的取代的氨基酸残基可以是也可以不是由遗传密码编码的,或(ii)在一个或多个氨基酸残基中具有取代基团的突变蛋白,或(iii)成熟突变蛋白与另一个化合物(比如延长突变蛋白半衰期的化合物,例如聚乙二醇)融合所形成的突变蛋白,或(iv)附加的氨基酸序列融合到此突变蛋白序列而形成的突变蛋白(如前导序列或分泌序列或用来纯化此突变蛋白的序列或蛋白原序列,或与抗原IgG片段的形成的融合蛋白)。根据本文的教导,这些片段、衍生物和类似物属于本领域熟练技术人员公知的范围。本发明中,保守性替换的氨基酸最好根据表I进行氨基酸替换而产生。The mutein fragments, derivatives or analogs of the present invention may be (i) muteins having one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) substituted, and such substituted amino acid residues may or may not be encoded by the genetic code, or (ii) a mutein with a substitution group in one or more amino acid residues, or (iii) a mature mutein combined with another compound (such as an elongated mutein A mutein formed by fusion of a compound with a half-life, such as polyethylene glycol), or (iv) an additional amino acid sequence fused to the mutein sequence (such as a leader sequence or secretory sequence or used to purify the mutein The sequence or protein sequence, or the fusion protein formed with the antigen IgG fragment). Such fragments, derivatives and analogs are within the purview of those skilled in the art in light of the teachings herein. In the present invention, the conservatively substituted amino acid is preferably produced by performing amino acid substitution according to Table I.
表ITable I
本发明的活性下降的突变蛋白具有增加粒型、和/或减少穗粒数的活性。The mutein with reduced activity of the present invention has the activity of increasing grain shape and/or reducing the number of grains per panicle.
一种活性缺失的GSN1突变蛋白如SEQ ID NO.:3所示。应理解,本发明突变蛋白与SEQ ID NO.:3所示的序列相比,通常具有较高的同源性(相同性),优选地,所述的突变蛋白与SEQ ID NO.:3所示序列的同源性至少为80%,较佳地至少为85%-90%,更佳地至少为95%,最佳地至少为98%。An activity-deficient GSN1 mutant protein is shown in SEQ ID NO.:3. It should be understood that, compared with the sequence shown in SEQ ID NO.: 3, the mutant protein of the present invention generally has higher homology (identity), preferably, the mutant protein and the sequence shown in SEQ ID NO.: 3 The homology of the indicated sequences is at least 80%, preferably at least 85%-90%, more preferably at least 95%, most preferably at least 98%.
此外,还可以对本发明突变蛋白进行修饰。修饰(通常不改变一级结构)形式包括:体内或体外的突变蛋白的化学衍生形式如乙酰化或羧基化。修饰还包括糖基化,如那些在突变蛋白的合成和加工中或进一步加工步骤中进行糖基化修饰而产生的突变蛋白。这种修饰可以通过将突变蛋白暴露于进行糖基化的酶(如哺乳动物的糖基化酶或去糖基化酶)而完成。修饰形式还包括具有磷酸化氨基酸残基(如磷酸酪氨酸,磷酸丝氨酸,磷酸苏氨酸)的序列。还包括被修饰从而提高了其抗蛋白水解性能或优化了溶解性能的突变蛋白。In addition, the muteins of the present invention can also be modified. Modified (usually without altering primary structure) forms include: chemically derivatized forms of muteins such as acetylation or carboxylation in vivo or in vitro. Modifications also include glycosylation, such as those produced by glycosylation modifications during the synthesis and processing of the mutein or during further processing steps. This modification can be accomplished by exposing the mutein to an enzyme that performs glycosylation, such as a mammalian glycosylase or deglycosylation enzyme. Modified forms also include sequences with phosphorylated amino acid residues (eg, phosphotyrosine, phosphoserine, phosphothreonine). Also included are muteins that have been modified to increase their resistance to proteolysis or to optimize solubility.
本发明还提供了编码GSN1多肽、蛋白或其变体的多核苷酸序列。本发明的多核苷酸可以是DNA形式或RNA形式。DNA形式包括:DNA、基因组DNA或人工合成的DNA,DNA可以是单链的或是双链的。DNA可以是编码链或非编码链。编码成熟多肽的编码区序列可以与SEQ IDNO.:4所示的编码区序列相同或者是简并的变异体。The present invention also provides polynucleotide sequences encoding GSN1 polypeptides, proteins or variants thereof. A polynucleotide of the invention may be in the form of DNA or RNA. Forms of DNA include: DNA, genomic DNA, or synthetic DNA, and DNA can be single-stranded or double-stranded. DNA can be either the coding strand or the non-coding strand. The sequence of the coding region encoding the mature polypeptide can be the same as the sequence of the coding region shown in SEQ ID NO.: 4 or a degenerate variant.
术语“编码突变蛋白的多核苷酸”可以是包括编码本发明突变蛋白的多核苷酸,也可以是还包括附加编码和/或非编码序列的多核苷酸。在本发明中,一种优选的编码突变蛋白gsn1的多核苷酸序列如SEQ ID NO.:4所示。The term "polynucleotide encoding a mutein" may include a polynucleotide encoding a mutein of the present invention, or may also include additional coding and/or non-coding sequences. In the present invention, a preferred polynucleotide sequence encoding the mutein gsn1 is shown in SEQ ID NO.:4.
本发明还涉及上述多核苷酸的变异体,其编码与本发明有相同的氨基酸序列的多肽或突变蛋白的片段、类似物和衍生物。这些核苷酸变异体包括取代变异体、缺失变异体和插入变异体。如本领域所知的,等位变异体是一个多核苷酸的替换形式,它可能是一个或多个核苷酸的取代、缺失或插入,但不会从实质上改变其编码的突变蛋白的功能。The present invention also relates to variants of the above-mentioned polynucleotides, which encode fragments, analogs and derivatives of polypeptides or muteins having the same amino acid sequence as the present invention. These nucleotide variants include substitution variants, deletion variants and insertion variants. As known in the art, an allelic variant is an alternative form of a polynucleotide which may be a substitution, deletion or insertion of one or more nucleotides without substantially altering its encoded mutein. Function.
本发明还涉及与上述的序列杂交且两个序列之间具有至少50%,较佳地至少70%,更佳地至少80%相同性的多核苷酸。本发明特别涉及在严格条件(或严紧条件)下与本发明所述多核苷酸可杂交的多核苷酸。在本发明中,“严格条件”是指:(1)在较低离子强度和较高温度下的杂交和洗脱,如0.2×SSC,0.1%SDS,60℃;或(2)杂交时加有变性剂,如50%(v/v)甲酰胺,0.1%小牛血清/0.1%Ficoll,42℃等;或(3)仅在两条序列之间的相同性至少在90%以上,更好是95%以上时才发生杂交。The present invention also relates to polynucleotides that hybridize to the above-mentioned sequences and have at least 50%, preferably at least 70%, more preferably at least 80% identity between the two sequences. The present invention particularly relates to polynucleotides hybridizable under stringent conditions (or stringent conditions) to the polynucleotides of the present invention. In the present invention, "stringent conditions" refers to: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2×SSC, 0.1% SDS, 60°C; or (2) hybridization with There are denaturing agents, such as 50% (v/v) formamide, 0.1% calf serum/0.1% Ficoll, 42°C, etc.; or (3) only if the identity between the two sequences is at least 90%, more Preferably, hybridization occurs above 95%.
本发明的突变蛋白和多核苷酸优选以分离的形式提供,更佳地,被纯化至均质。The muteins and polynucleotides of the present invention are preferably provided in an isolated form, more preferably, purified to homogeneity.
应理解,虽然本发明的GSN1基因优选来自水稻,但是来自其它植物的与水稻GSN1基因高度同源(如具有80%以上,如85%,90%,95%甚至98%序列相同性)的其它基因也在本发明考虑的范围之内。比对序列相同性的方法和工具也是本领域周知的,例如BLAST。It should be understood that although the GSN1 gene of the present invention is preferably from rice, other plants that are highly homologous (such as having more than 80%, such as 85%, 90%, 95% or even 98% sequence identity) to the rice GSN1 gene from other plants Genes are also contemplated by the present invention. Methods and tools for aligning sequence identities are also well known in the art, such as BLAST.
本发明多核苷酸全长序列通常可以通过PCR扩增法、重组法或人工合成的方法获得。对于PCR扩增法,可根据本发明所公开的有关核苷酸序列,尤其是开放阅读框序列来设计引物,并用市售的cDNA库或按本领域技术人员已知的常规方法所制备的cDNA库作为模板,扩增而得有关序列。当序列较长时,常常需要进行两次或多次PCR扩增,然后再将各次扩增出的片段按正确次序拼接在一起。The full-length polynucleotide sequence of the present invention can usually be obtained by PCR amplification, recombination or artificial synthesis. For the PCR amplification method, primers can be designed according to the relevant nucleotide sequences disclosed in the present invention, especially the open reading frame sequence, and the cDNA prepared by a commercially available cDNA library or a conventional method known to those skilled in the art can be used. The library is used as a template to amplify related sequences. When the sequence is long, two or more PCR amplifications are often required, and then the amplified fragments are spliced together in the correct order.
一旦获得了有关的序列,就可以用重组法来大批量地获得有关序列。这通常是将其克隆入载体,再转入细胞,然后通过常规方法从增殖后的宿主细胞中分离得到有关序列。Once the relevant sequences are obtained, recombinant methods can be used to obtain the relevant sequences in large quantities. Usually, it is cloned into a vector, then transformed into a cell, and then the relevant sequence is isolated from the proliferated host cell by conventional methods.
此外,还可用人工合成的方法来合成有关序列,尤其是片段长度较短时。通常,通过先合成多个小片段,然后再进行连接可获得序列很长的片段。In addition, related sequences can also be synthesized by artificial synthesis, especially when the fragment length is relatively short. Often, fragments with very long sequences are obtained by synthesizing multiple small fragments and then ligating them.
目前,已经可以完全通过化学合成来得到编码本发明蛋白(或其片段,或其衍生物)的DNA序列。然后可将该DNA序列引入本领域中已知的各种现有的DNA分子(或如载体)和细胞中。此外,还可通过化学合成将突变引入本发明蛋白序列中。At present, the DNA sequence encoding the protein of the present invention (or its fragment, or its derivative) can be obtained completely through chemical synthesis. This DNA sequence can then be introduced into various existing DNA molecules (or eg vectors) and cells known in the art. In addition, mutations can also be introduced into the protein sequences of the invention by chemical synthesis.
应用PCR技术扩增DNA/RNA的方法被优选用于获得本发明的多核苷酸。特别是很难从文库中得到全长的cDNA时,可优选使用RACE法(RACE-cDNA末端快速扩增法),用于PCR的引物可根据本文所公开的本发明的序列信息适当地选择,并可用常规方法合成。可用常规方法如通过凝胶电泳分离和纯化扩增的DNA/RNA片段。The method of amplifying DNA/RNA using PCR technique is preferably used to obtain the polynucleotide of the present invention. Especially when it is difficult to obtain full-length cDNA from the library, the RACE method (RACE-cDNA terminal rapid amplification method) can be preferably used, and the primers used for PCR can be appropriately selected according to the sequence information of the present invention disclosed herein, And can be synthesized by conventional methods. Amplified DNA/RNA fragments can be separated and purified by conventional methods such as by gel electrophoresis.
野生型GSN1蛋白和基因Wild-type GSN1 protein and gene
如本文所用,“野生型GSN1蛋白”、“野生型控制水稻粒数和粒重的GSN1蛋白”可互换使用,是指天然存在的、未经过人工改造的GSN1蛋白,其核苷酸可以通过基因工程技术来获得,如基因组测序、聚合酶链式反应(PCR)等,其氨基酸序列可由核苷酸序列推导而得到。As used herein, "wild-type GSN1 protein" and "wild-type GSN1 protein controlling rice grain number and grain weight" are used interchangeably, and refer to a naturally occurring, unmodified GSN1 protein whose nucleotides can be passed through It is obtained by genetic engineering techniques, such as genome sequencing, polymerase chain reaction (PCR), etc., and its amino acid sequence can be deduced from the nucleotide sequence.
在本发明中,GSN1的基因包括基因组基因以及cDNA基因。In the present invention, the gene of GSN1 includes genome gene and cDNA gene.
对于水稻而言,一种典型的野生型GSN1蛋白的氨基酸序列如SEQ ID NO.:2所示。一种典型的编码野生型GSN1蛋白的cDNA核苷酸序列如SEQ ID NO.:1所示,而水稻的GSN1基因组序列的登录号为LOC_Os05g02500。For rice, the amino acid sequence of a typical wild-type GSN1 protein is shown in SEQ ID NO.:2. A typical cDNA nucleotide sequence encoding wild-type GSN1 protein is shown in SEQ ID NO.: 1, and the accession number of the rice GSN1 genome sequence is LOC_Os05g02500.
代表性的其他物种的GSN1同源基因包括(但并不限于):水稻的GSN1基因(OsGSN1)、玉米的GSN1同源基因(GRMZM2G005350和水稻相似性84.4%)、高粱的GSN1同源基因(Sobic.009G017400和水稻相似性89.5%)、小麦的GSN1同源基因(A基因组Traes_1AS_73C2E93D4和水稻相似性87%;B基因组Traes_1BS_90AEC8678和水稻相似性84.6%;D基因组Traes_1DS_4C0964710和水稻相似性88.1%)、谷子的GSN1同源基因(Seita.3G061100和水稻相似性80.4%)、二穗短柄草的GSN1同源基因(Bradi2g37450和水稻相似性83.4%)、大豆的GSN1同源基因(Glyma.02G095100和水稻相似性62.4%)、拟南芥的GSN1同源基因(AT3G55270和水稻相似性59.7%)、苜蓿的GSN1同源基因(Medtr7g023250和水稻相似性65.7%)、番茄的GSN1同源基因(Solyc05g054700和水稻相似性53.1%)、毛果杨的GSN1同源基因(Potri.008G049900和水稻相似性58.8%)、桃的GSN1同源基因(Prupe.2G228100和水稻相似性63.4%)、耧斗菜的GSN1同源基因(Aqcoe1G474900和水稻相似性64.5%)。Representative GSN1 homologs of other species include (but are not limited to): the GSN1 gene of rice (OsGSN1), the GSN1 homolog of maize (GRMZM2G005350 and rice similarity 84.4%), the GSN1 homolog of sorghum (Sobic .009G017400 and rice similarity 89.5%), wheat GSN1 homologous gene (A genome Traes_1AS_73C2E93D4 and rice similarity 87%; B genome Traes_1BS_90AEC8678 and rice similarity 84.6%; D genome Traes_1DS_4C0964710 and rice similarity 88.1%), millet GSN1 homologous gene (Seita.3G061100 and rice similarity 80.4%), Brachypodium distachyon GSN1 homologous gene (Bradi2g37450 and rice similarity 83.4%), soybean GSN1 homologous gene (Glyma.02G095100 and rice similarity 62.4%), Arabidopsis GSN1 homolog (AT3G55270 and rice similarity 59.7%), alfalfa GSN1 homolog (Medtr7g023250 and rice similarity 65.7%), tomato GSN1 homolog (Solyc05g054700 and rice similarity 53.1%), the GSN1 homologous gene of Populus trichocarpa (Potri.008G049900 and rice similarity 58.8%), the GSN1 homologous gene of peach (Prupe.2G228100 and rice similarity 63.4%), the GSN1 homologous gene of Aquilegia (64.5% similarity between Aqcoe1G474900 and rice).
表达载体Expression vector
本发明也涉及包含本发明的多核苷酸的载体,以及用本发明的载体或本发明突变蛋白编码序列经基因工程产生的宿主细胞,以及经重组技术产生本发明所述多肽的方法。The present invention also relates to vectors containing the polynucleotides of the present invention, host cells produced by genetic engineering using the vectors of the present invention or the mutant protein coding sequences of the present invention, and methods for producing the polypeptides of the present invention through recombinant techniques.
通过常规的重组DNA技术,可利用本发明的多聚核苷酸序列可用来表达或生产重组的突变蛋白。一般来说有以下步骤:The polynucleotide sequences of the present invention can be used to express or produce recombinant muteins by conventional recombinant DNA techniques. Generally speaking, there are the following steps:
(1).用本发明的编码本发明突变蛋白的多核苷酸(或变异体),或用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;(1). Use the polynucleotide (or variant) encoding the mutein of the present invention, or transform or transduce a suitable host cell with a recombinant expression vector containing the polynucleotide;
(2).在合适的培养基中培养的宿主细胞;(2). Host cells cultured in a suitable medium;
(3).从培养基或细胞中分离、纯化蛋白质。(3). Isolate and purify protein from culture medium or cells.
本发明还提供了一种包括本发明的基因的重组载体。作为一种优选的方式,重组载体的启动子下游包含多克隆位点或至少一个酶切位点。当需要表达本发明目的基因时,将目的基因连接入适合的多克隆位点或酶切位点内,从而将目的基因与启动子可操作地连接。作为另一种优选方式,所述的重组载体包括(从5'到3'方向):启动子,目的基因,和终止子。如果需要,所述的重组载体还可以包括选自下组的元件:3'多聚核苷酸化信号;非翻译核酸序列;转运和靶向核酸序列;抗性选择标记(二氢叶酸还原酶、新霉素抗性、潮霉素抗性以及绿色荧光蛋白等);增强子;或操作子。The present invention also provides a recombinant vector comprising the gene of the present invention. As a preferred manner, the downstream of the promoter of the recombinant vector contains multiple cloning sites or at least one restriction site. When the target gene of the present invention needs to be expressed, the target gene is linked into a suitable multiple cloning site or restriction site, so that the target gene is operably linked to the promoter. As another preferred mode, the recombinant vector includes (from 5' to 3' direction): a promoter, a target gene, and a terminator. If necessary, the recombinant vector may also include elements selected from the group consisting of: 3' polynucleotide signal; non-translated nucleic acid sequence; transport and targeting nucleic acid sequence; resistance selectable marker (dihydrofolate reductase, neomycin resistance, hygromycin resistance, and green fluorescent protein, etc.); enhancers; or operons.
在本发明中,编码突变蛋白的多核苷酸序列可插入到重组表达载体中。术语“重组表达载体”指本领域熟知的细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒如腺病毒、逆转录病毒或其他载体。只要能在宿主体内复制和稳定,任何质粒和载体都可以用。表达载体的一个重要特征是通常含有复制起点、启动子、标记基因和翻译控制元件。In the present invention, the polynucleotide sequence encoding the mutant protein can be inserted into the recombinant expression vector. The term "recombinant expression vector" refers to bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus such as adenovirus, retrovirus or other vectors well known in the art. Any plasmid and vector can be used as long as it can be replicated and stabilized in the host. An important feature of expression vectors is that they usually contain an origin of replication, a promoter, marker genes, and translational control elements.
本领域的技术人员熟知的方法能用于构建含本发明突变蛋白编码DNA序列和合适的转录/翻译控制信号的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。所述的DNA序列可有效连接到表达载体中的适当启动子上,以指导mRNA合成。这些启动子的代表性例子有:大肠杆菌的lac或trp启动子;λ噬菌体PL启动子;真核启动子包括CMV立即早期启动子、HSV胸苷激酶启动子、早期和晚期SV40启动子、反转录病毒的LTRs和其他一些已知的可控制基因在原核或真核细胞或其病毒中表达的启动子。表达载体还包括翻译起始用的核糖体结合位点和转录终止子。Methods well known to those skilled in the art can be used to construct expression vectors containing DNA sequences encoding muteins of the present invention and appropriate transcription/translation control signals. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology and the like. Said DNA sequence can be operably linked to an appropriate promoter in the expression vector to direct mRNA synthesis. Representative examples of these promoters are: E. coli lac or trp promoter; lambda phage PL promoter; eukaryotic promoters include CMV immediate early promoter, HSV thymidine kinase promoter, early and late SV40 promoter, reverse LTRs of transcription viruses and other promoters known to control the expression of genes in prokaryotic or eukaryotic cells or their viruses. The expression vector also includes a ribosome binding site for translation initiation and a transcription terminator.
本领域普通技术人员可以使用熟知的方法构建含有本发明所述的基因的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。使用本发明的基因构建重组表达载体时,可在其转录起始核苷酸前加上任何一种增强型、组成型、组织特异型或诱导型启动子。Those of ordinary skill in the art can use well-known methods to construct expression vectors containing the genes described in the present invention. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology and the like. When using the gene of the present invention to construct a recombinant expression vector, any enhanced, constitutive, tissue-specific or inducible promoter can be added before the transcription initiation nucleotide.
包括本发明基因、表达盒或载体可以用于转化适当的宿主细胞,以使宿主表达蛋白质。宿主细胞可以是原核细胞,如大肠杆菌,链霉菌属、农杆菌;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如植物细胞。本领域一般技术人员都清楚如何选择适当的载体和宿主细胞。用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物(如大肠杆菌)时,可以用CaCl2法处理,也可用电穿孔法进行。当宿主是真核生物,可选用如下的DNA转染方法:磷酸钙共沉淀法,常规机械方法(如显微注射、电穿孔、脂质体包装等)。转化植物也可使用农杆菌转化或基因枪转化等方法,例如叶盘法、幼胚转化法、花芽浸泡法等。对于转化的植物细胞、组织或器官可以用常规方法再生成植株,从而获得转基因的植物。An expression cassette or vector comprising the gene of the present invention can be used to transform an appropriate host cell such that the host expresses the protein. The host cells can be prokaryotic cells, such as Escherichia coli, Streptomyces, and Agrobacterium; or lower eukaryotic cells, such as yeast cells; or higher eukaryotic cells, such as plant cells. Those of ordinary skill in the art will know how to select appropriate vectors and host cells. Transformation of host cells with recombinant DNA can be performed using conventional techniques well known to those skilled in the art. When the host is a prokaryotic organism (such as Escherichia coli), it can be treated with CaCl 2 or electroporation. When the host is a eukaryote, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, conventional mechanical methods (such as microinjection, electroporation, liposome packaging, etc.). Transformation of plants can also use methods such as Agrobacterium transformation or gene gun transformation, such as leaf disk method, immature embryo transformation method, flower bud soaking method and the like. Transformed plant cells, tissues or organs can be regenerated into plants by conventional methods, so as to obtain transgenic plants.
此外,表达载体优选地包含一个或多个选择性标记基因,以提供用于选择转化的宿主细胞的表型性状,如真核细胞培养用的二氢叶酸还原酶、新霉素抗性以及绿色荧光蛋白(GFP),或用于大肠杆菌的四环素或氨苄青霉素抗性。In addition, the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase for eukaryotic cell culture, neomycin resistance, and green Fluorescent protein (GFP), or tetracycline or ampicillin resistance for E. coli.
包含上述的适当DNA序列以及适当启动子或者控制序列的载体,可以用于转化适当的宿主细胞,以使其能够表达蛋白质。Vectors containing the above-mentioned appropriate DNA sequences and appropriate promoters or control sequences can be used to transform appropriate host cells so that they can express proteins.
宿主细胞可以是原核细胞,如细菌细胞;或是低等真核细胞,如酵母细胞;或是高等真核细胞,如哺乳动物细胞。代表性例子有:大肠杆菌,链霉菌属;鼠伤寒沙门氏菌的细菌细胞;真菌细胞如酵母、植物细胞(如水稻细胞)。The host cell may be a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: Escherichia coli, Streptomyces; bacterial cells of Salmonella typhimurium; fungal cells such as yeast, plant cells (eg rice cells).
本发明的多核苷酸在高等真核细胞中表达时,如果在载体中插入增强子序列时将会使转录得到增强。增强子是DNA的顺式作用因子,通常大约有10到300个碱基对,作用于启动子以增强基因的转录。可举的例子包括在复制起始点晚期一侧的100到270个碱基对的SV40增强子、在复制起始点晚期一侧的多瘤增强子以及腺病毒增强子等。When the polynucleotide of the present invention is expressed in higher eukaryotic cells, if an enhancer sequence is inserted into the vector, the transcription will be enhanced. Enhancers are cis-acting elements of DNA, usually about 10 to 300 base pairs in length, that act on promoters to enhance gene transcription. Examples include the SV40 enhancer of 100 to 270 base pairs on the late side of the replication origin, the polyoma enhancer on the late side of the replication origin, and the adenovirus enhancer.
本领域一般技术人员都清楚如何选择适当的载体、启动子、增强子和宿主细胞。Those of ordinary skill in the art will know how to select appropriate vectors, promoters, enhancers and host cells.
用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物如大肠杆菌时,能吸收DNA的感受态细胞可在指数生长期后收获,用CaCl2法处理,所用的步骤在本领域众所周知。另一种方法是使用MgCl2。如果需要,转化也可用电穿孔的方法进行。当宿主是真核生物,可选用如下的DNA转染方法:磷酸钙共沉淀法,常规机械方法如显微注射、电穿孔、脂质体包装等。Transformation of host cells with recombinant DNA can be performed using conventional techniques well known to those skilled in the art. When the host is a prokaryotic organism such as E. coli, competent cells capable of taking up DNA can be harvested after the exponential growth phase and treated with the CaCl2 method using procedures well known in the art. Another method is to use MgCl2 . Transformation can also be performed by electroporation, if desired. When the host is eukaryotic, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, conventional mechanical methods such as microinjection, electroporation, liposome packaging, etc.
获得的转化子可以用常规方法培养,表达本发明的基因所编码的多肽。根据所用的宿主细胞,培养中所用的培养基可选自各种常规培养基。在适于宿主细胞生长的条件下进行培养。当宿主细胞生长到适当的细胞密度后,用合适的方法(如温度转换或化学诱导)诱导选择的启动子,将细胞再培养一段时间。The obtained transformant can be cultured by conventional methods to express the polypeptide encoded by the gene of the present invention. The medium used in the culture can be selected from various conventional media according to the host cells used. The culture is carried out under conditions suitable for the growth of the host cells. After the host cells have grown to an appropriate cell density, the selected promoter is induced by an appropriate method (such as temperature shift or chemical induction), and the cells are cultured for an additional period of time.
在上面的方法中的重组多肽可在细胞内、或在细胞膜上表达、或分泌到细胞外。如果需要,可利用其物理的、化学的和其它特性通过各种分离方法分离和纯化重组的蛋白。这些方法是本领域技术人员所熟知的。这些方法的例子包括但并不限于:常规的复性处理、用蛋白沉淀剂处理(盐析方法)、离心、渗透破菌、超处理、超离心、分子筛层析(凝胶过滤)、吸附层析、离子交换层析、高效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。The recombinant polypeptide in the above method can be expressed inside the cell, or on the cell membrane, or secreted outside the cell. The recombinant protein can be isolated and purified by various separation methods by taking advantage of its physical, chemical and other properties, if desired. These methods are well known to those skilled in the art. Examples of these methods include, but are not limited to: conventional refolding treatment, treatment with protein precipitating agents (salting out method), centrifugation, osmotic disruption, supertreatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption layer Analysis, ion exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
本发明的主要优点包括:The main advantages of the present invention include:
(1)本发明的GSN1或其编码蛋白、或其突变蛋白、或其促进剂、或其抑制剂可调控植物的农艺性状(比如,粒型、穗粒数和结实率等)。(1) The GSN1 of the present invention or its encoded protein, or its mutant protein, or its accelerator, or its inhibitor can regulate the agronomic traits of plants (eg, grain shape, grain number per ear, seed setting rate, etc.).
(2)将所述植物中GSN1蛋白的第146位氨基酸(丝氨酸)突变为苯丙氨酸,可显著改善植物的性状(如增大粒型、减少穗粒数等)。(2) Mutating the 146th amino acid (serine) of the GSN1 protein in the plant to phenylalanine, which can significantly improve the plant's traits (such as increasing the grain shape, reducing the number of grains per ear, etc.).
(3)本发明的GSN1蛋白具有去磷酸化活性,而发生突变的GSN1S146F蛋白失去了去磷酸化能力。(3) The GSN1 protein of the present invention has dephosphorylation activity, while the mutated GSN1 S146F protein loses the dephosphorylation ability.
(4)本发明首次发现,完整OsMKKK10-OsMKK4-OsMPK1级联信号通路参与水稻粒型和穗型发育。(4) The present invention finds for the first time that the complete OsMKKK10-OsMKK4-OsMPK1 cascade signaling pathway is involved in the development of rice grain shape and panicle shape.
(5)本发明首次发现,GSN1是OsMKKK10-OsMKK4-OsMPK1信号通路的负调控因子,通过精准调控该信号通路来平衡水稻每穗粒数和粒型(粒重)大小。(5) The present invention finds for the first time that GSN1 is a negative regulator of the OsMKKK10-OsMKK4-OsMPK1 signaling pathway, and the number of grains per panicle and grain type (grain weight) of rice can be balanced by precise regulation of the signaling pathway.
(6)本发明首次发现,植物OsMKKK10-OsMKK4-OsMPK1级联信号通路是参与植物发育过程的负调控因子。(6) The present invention finds for the first time that the plant OsMKKK10-OsMKK4-OsMPK1 cascade signaling pathway is a negative regulatory factor involved in plant development.
(7)本发明首次发现,基于GSN1的对植物种子大小和种子数目发育平衡进行调控的分子遗传机制。(7) The present invention discovers, for the first time, the molecular genetic mechanism based on GSN1 that regulates the developmental balance of plant seed size and seed number.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor LaboratoryPress,1989)中所述的条件,或按照制造厂商所建议的条件。除非有特别说明,否则实施例中所用的材料和试剂均为市售产品。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. The experimental methods not indicating specific conditions in the following examples are usually according to conventional conditions such as Sambrook et al., molecular cloning: the conditions described in the laboratory manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer's instructions suggested conditions. Unless otherwise specified, the materials and reagents used in the examples are all commercially available products.
通用方法general method
1.实验材料和定位克隆1. Experimental materials and positional cloning
本发明利用籼稻品种FAZ1进行EMS诱变,然后筛选穗型、粒型突变体gsn1,再将其和FAZ1回交纯化背景。为了定位gsn1突变体基因,将其与粳稻品种ZH11杂交产生F1群体,进而产生F2分离群体,用于后续定位。首先,利用682株水稻将GSN1初定位在第五号染色体的短臂端,分子标记G05220和G05591之间。然后,利用13792株水稻将其精细定位在分子标记G05333和G05340之间,大约17.5kb。这个区间内有两个候选基因LOC_Os05g02490和LOC_Os05g02500。我们通过引物GSN1 Genotyping测序发现候选基因LOC_Os05g02500编码区的第437位碱基由C突变为T,进而导致第146位丝氨酸突变为苯丙氨酸。因此,猜测候选基因LOC_Os05g02500可能就是GSN1。In the invention, the indica rice variety FAZ1 is used for EMS mutagenesis, then the panicle type and grain type mutant gsn1 is screened, and the background is purified by backcrossing it with FAZ1. In order to locate the gsn1 mutant gene, it was crossed with the japonica rice variety ZH11 to generate an F 1 population, and then an F 2 segregated population for subsequent mapping. First, 682 rice plants were used to initially locate GSN1 at the short arm of
G05220的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence of G05220 is:
5'-ATAGCTAGAGAGAGCGGTCA-3'(SEQ ID NO.:5)5'-ATAGCTAGAGAGAGCGGTCA-3' (SEQ ID NO.:5)
3'端引物序列为:The 3' end primer sequence is:
5'-GAGAGTAACTGAAGCAGCAAG-3'(SEQ ID NO.:6)5'-GAGAGTAACTGAAGCAGCAAG-3'(SEQ ID NO.:6)
G05591的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence of G05591 is:
5'-TGACTTTAAGGGCCTGTTT-3'(SEQ ID NO.:7)5'-TGACTTTAAGGGCCTGTTT-3' (SEQ ID NO.: 7)
3'端引物序列为:The 3' end primer sequence is:
5'-GGGGTATTTCAGACAATTCA-3'(SEQ ID NO.:8)5'-GGGGTATTTCAGACAATTCA-3' (SEQ ID NO.:8)
G05333的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence of G05333 is:
5'-CTGGATATACATGTGTCTAATTCT-3'(SEQ ID NO.:9)5'-CTGGATATACATGTGTCTAATTCT-3' (SEQ ID NO.:9)
3'端引物序列为:The 3' end primer sequence is:
5'-GCATATCCAGGTTAATTTATAGC-3'(SEQ ID NO.:10)5'-GCATATCCAGGTTAATTTATAGC-3'(SEQ ID NO.:10)
G05340的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence of G05340 is:
5'-TGGCTAAAATAATATCGTATCG-3'(SEQ ID NO.:11)5'-TGGCTAAAATAATATCGTATCG-3'(SEQ ID NO.:11)
3'端引物序列为:The 3' end primer sequence is:
5'-AGGATCTCAGTTGCAGTAATCT-3'(SEQ ID NO.:12)5'-AGGATCTCAGTTGCAGTAATCT-3' (SEQ ID NO.: 12)
GSN1 Genotyping的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence for GSN1 Genotyping is:
5'-GGGGGTTCTTCTACTTTTGTTTTT-3'(SEQ ID NO.:13)5'-GGGGGTTTCTTCTACTTTTGTTTTT-3' (SEQ ID NO.: 13)
3'端引物序列为:The 3' end primer sequence is:
5'-CTCCACATCAAGTACGCTATCACC-3'(SEQ ID NO.:14)5'-CTCCACATCAAGTACGCTATCACC-3' (SEQ ID NO.: 14)
2.遗传互补验证、过表达、RNA干扰和CRISPR/Cas9基因编辑2. Genetic complementation verification, overexpression, RNA interference and CRISPR/Cas9 gene editing
为了进一步验证候选基因LOC_Os05g02500,将来源于野生型FAZ1的LOC_Os05g02500全长基因组序列构建到pCOMBIA1300互补载体上,然后通过根癌农杆菌EHA105介导的水稻幼胚转化法进行遗传转化,筛选转基因阳性株系。另外,将来源于FAZ1的GSN1基因构建到pCOMBIA1301载体上,在泛素启动子驱动下过表达GSN1基因。为了干扰GSN1、OsMPK1的表达,分别设计了人工小干扰RNA和反义RNA,以此来抑制GSN1、OsMPK1的表达。CRISPR/Cas9技术用于基因编辑,根据实验需要,针对几个目的基因(GSN1、OsMKK4、OsMKKK10)分别设计了CRISPR/Cas9基因敲除载体,用于目的基因的敲除。和遗传互补相同,通过根癌农杆菌EHA105介导的水稻幼胚转化法进行遗传转化,筛选转基因阳性株系,种植在大田并在转基因T2代考察表型。In order to further verify the candidate gene LOC_Os05g02500, the full-length genome sequence of LOC_Os05g02500 derived from the wild-type FAZ1 was constructed on the pCOMBIA1300 complementary vector, and then genetically transformed by the rice immature embryo transformation method mediated by Agrobacterium tumefaciens EHA105, and the transgenic positive lines were screened . In addition, the GSN1 gene derived from FAZ1 was constructed on the pCOMBIA1301 vector, and the GSN1 gene was overexpressed under the ubiquitin promoter. In order to interfere with the expression of GSN1 and OsMPK1, artificial small interfering RNA and antisense RNA were designed respectively to inhibit the expression of GSN1 and OsMPK1. CRISPR/Cas9 technology is used for gene editing. According to experimental needs, CRISPR/Cas9 gene knockout vectors were designed for several target genes (GSN1, OsMKK4, OsMKKK10) for knockout of target genes. Similar to genetic complementation, the genetic transformation was carried out through the rice immature embryo transformation method mediated by Agrobacterium tumefaciens EHA105, and the transgenic positive lines were screened, planted in the field, and the phenotype was investigated in the transgenic T2 generation.
pCOMBIA1300互补载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the pCOMBIA1300 complementary vector is:
5'-GATCAATAAAAGATGGTCATCAGTG-3'(SEQ ID NO.:15)5'-GATCAATAAAAGATGGTCATCAGTG-3' (SEQ ID NO.: 15)
3'端引物序列为:The 3' end primer sequence is:
5'-GGAGATAGGAAAGGTGGTGATGT-3'(SEQ ID NO.:16)5'-GGAGATAGGAAAGGTGGTGATGT-3' (SEQ ID NO.: 16)
pCOMBIA1301过表达载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the pCOMBIA1301 overexpression vector is:
5'-CACCATGGCCACGCCCGACGACGGCG-3'(SEQ ID NO.:17)5'-CACCATGGCCACGCCCGACGACGGCG-3'(SEQ ID NO.:17)
3'端引物序列为:The 3' end primer sequence is:
5'-ACGAGCATTCAGCACTTCCAAAAGAT-3'(SEQ ID NO.:18)5'-ACGAGCATTCAGCACTTCCAAAAGAT-3' (SEQ ID NO.: 18)
GSN1人工小干扰RNA载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the GSN1 artificial small interfering RNA vector is:
5'-TCGGTACCCAGCAGCAGCCACAGCAAAA-3'(SEQ ID NO.:19)5'-TCGGTACCCAGCAGCAGCCACAGCAAAA-3'(SEQ ID NO.:19)
3'端引物序列为:The 3' end primer sequence is:
5'-TCTCTAGAGCTGCTGATGCTGATGCCAT-3'(SEQ ID NO.:20)5'-TCTCTAGAGCTGCTGATGCTGATGCCAT-3' (SEQ ID NO.:20)
OsMPK1人工反义RNA载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the OsMPK1 artificial antisense RNA vector is:
5'-CCCGGATCCGAGCTCATGGACGCCGGGGCGCAGCC-3'(SEQ ID NO.:21)5'-CCCGGATCCGAGCTCATGGACGCCGGGGCGCAGCC-3'(SEQ ID NO.:21)
3'端引物序列为:The 3' end primer sequence is:
5'-GGGGGTACCACTAGTTTGTACTTGGCGGTGACCTC-3'(SEQ ID NO.:22)5'-GGGGGTACCACTAGTTTGTACTTGGCGGTGACCTC-3' (SEQ ID NO.: 22)
CRISPR/Cas9敲除GSN1载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by CRISPR/Cas9 knockout GSN1 vector is:
5'-GGCAGTTCTGGCGCTCCGCGTCG-3'(SEQ ID NO.:23)5'-GGCAGTTCTGGCGCTCCGCGTCG-3'(SEQ ID NO.:23)
3'端引物序列为:The 3' end primer sequence is:
5'-AAACCGACGCGGAGCGCCAGAAC-3'(SEQ ID NO.:24)5'-AAACCGACGCGGAGCGCCAGAAC-3'(SEQ ID NO.:24)
CRISPR/Cas9敲除OsMKK4载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by CRISPR/Cas9 knockout OsMKK4 vector is:
5'-GGCAGCGACGTGAGGTCCCGCTG-3'(SEQ ID NO.:25)5'-GGCAGCGACGTGAGGTCCCGCTG-3'(SEQ ID NO.:25)
3'端引物序列为:The 3' end primer sequence is:
5'-AAACCAGCGGGACCTCACGTCGC-3'(SEQ ID NO.:26)5'-AAACCAGCGGGACCTCACGTCGC-3'(SEQ ID NO.:26)
CRISPR/Cas9敲除OsMKKK10载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by CRISPR/Cas9 knockout OsMKKK10 vector is:
5'-GGCACCTCATCGATACATTTCAT-3'(SEQ ID NO.:27)5'-GGCACCTCATCGATACATTTCAT-3' (SEQ ID NO.:27)
3'端引物序列为:The 3' end primer sequence is:
5'-AAACATGAAATGTATCGATGAGG-3'(SEQ ID NO.:28)5'-AAACATGAAATGTATCGATGAGG-3'(SEQ ID NO.:28)
3.GSN1酶活检测3. GSN1 enzyme activity detection
GSN1编码一个去磷酸化酶,具有去磷酸化能力。本发明猜测gsn1突变体背景下的GSN1S146F失去了去磷酸化能力。因此,在体外分别纯化MBP-GSN1和MBP-GSN1S146F融合蛋白,然后分别以磷酸盐PNPP(p-nitrophenyl phosphate)和OMFP(3-o-methylfluoresceinphosphate)为底物,在吸光度值405nm和477nm处进行检测以评估MBP-GSN1和MBP-GSN1S146F的去磷酸化能力。纯化的MBP蛋白可以被用作阴性对照。和猜测的一致,GSN1S146F的确失去了去磷酸化活性。GSN1 encodes a dephosphorylase with dephosphorylation ability. The present invention speculates that GSN1 S146F in the background of the gsn1 mutant has lost the ability to dephosphorylate. Therefore, MBP-GSN1 and MBP-GSN1 S146F fusion proteins were purified in vitro, and then phosphate PNPP (p-nitrophenyl phosphate) and OMFP (3-o-methylfluoresceinphosphate) were used as substrates, respectively, at absorbance values of 405nm and 477nm. Assay to assess the dephosphorylation capacity of MBP-GSN1 and MBP-GSN1 S146F . Purified MBP protein can be used as a negative control. Consistent with the speculation, GSN1 S146F did lose its dephosphorylation activity.
MBP-GSN1和MBP-GSN1S146F蛋白表达载体pMAL-c5x构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by MBP-GSN1 and MBP-GSN1 S146F protein expression vector pMAL-c5x is:
5'-CGGGATCGAGGGAAGGATTTCAATGGCCACGCCCGA-3'(SEQ ID NO.:29)5'-CGGGATCGAGGGAAGGATTTCAATGGCCACGCCCGA-3' (SEQ ID NO.:29)
3'端引物序列为:The 3' end primer sequence is:
5'-AGCTTATTTAATTACCTGCAGGTTAACGAGCATTCAGC-3'(SEQ ID NO.:30)5'-AGCTTATTTAATTACCTGCAGGTTAACGAGCATTCAGC-3' (SEQ ID NO.:30)
4.细胞学检测4. Cytology detection
gsn1突变体和野生型FAZ1相比,具有明显增加的粒长和粒宽,因此进行了一系列观察来研究水稻粒型变大的细胞学基础。选取大苞期即将抽穗的水稻颖壳固定在FAA中,一部分用于石蜡包埋半薄切片,一部分用于颖壳外表皮和内表皮的电镜扫描观察。石蜡包埋半薄切片用于观察统计颖壳横切面薄壁细胞的大小和数目,以此来反映细胞的伸长或者分裂。对FAA固定的样品脱水干燥后进行电镜扫描观察,颖壳内表皮主要是观察内表皮细胞的大小以及单位面积内细胞的数目;颖壳外表皮主要是观察表面乳突之间的距离(每个细胞中间都有一个乳突,据此可以来判断细胞的平均大小)。一般而言,处于分裂旺盛期的细胞,其四倍体细胞数目相对增多,细胞周期的分布也发生了变化。据此,选取了幼嫩的水稻幼穗和颖壳,提取细胞核后用DAPI染色,再用流式细胞仪分析每个样品的细胞倍性,以此来比较FAZ1和gsn1样品细胞分裂的相对速率。Compared with wild-type FAZ1, the gsn1 mutant has significantly increased grain length and grain width, so a series of observations were carried out to study the cytological basis of rice grain size enlargement. Rice glumes that were about to head at the big bract stage were selected and fixed in FAA, part of which was used for paraffin-embedded semi-thin sections, and part of which was used for scanning electron microscope observation of the outer and inner epidermis of the glumes. Paraffin-embedded semi-thin sections were used to observe and count the size and number of parenchyma cells in the cross-section of glume, which reflected cell elongation or division. Carry out scanning electron microscope observation after the sample dehydration that FAA is fixed, epidermis in glume is mainly to observe the size of inner epidermis cell and the number of cells per unit area; Epidermis in glume is mainly to observe the distance between surface papilla There is a papillae in the middle of the cells, based on which the average size of the cells can be judged). Generally speaking, the number of tetraploid cells is relatively increased in cells in vigorous division phase, and the distribution of cell cycle is also changed. Accordingly, the young rice spikes and glumes were selected, the nuclei were extracted and stained with DAPI, and the cell ploidy of each sample was analyzed by flow cytometry to compare the relative rates of cell division of FAZ1 and gsn1 samples .
5.蛋白互作检测5. Protein interaction detection
为了寻找GSN1蛋白的互作蛋白和去磷酸化底物,利用酵母双杂交技术进行了体外蛋白的互作验证。分别将GSN1和OsMPK1基因的编码序列融合构建在PGBKT7和PGADT7载体上,然后共转酵母Y2HGOLD菌株,让其在三缺或者四缺的SD培养基上生长,3天后根据菌斑的大小和颜色判断两个目的蛋白GSN1和OsMPK1是否发生互作。基于酵母双杂交的结果,发现GSN1和OsMPK1发生互作。因此,我们又利用双分子荧光互补BiFC技术进一步在烟草体内进行了验证。分别将GSN1和OsMPK1基因的编码区构建在YFP的N端和C端,即nYFP-GSN1和cYFP-OsMPK1,然后经农杆菌介导将其共转烟草,暗下培养48小时后利用激光共聚焦显微镜进行观察。BiFC实验发现,GSN1和OsMPK1的确发生互作。又更进一步利用免疫共沉淀co-IP技术确实了这个结果。即将GSN1融合在含有Flag标签的载体上,将OsMPK1融合在含有Myc标签的载体上,然后经农杆菌介导共转烟草,培养48小时后提取烟草总蛋白。接着,用亲和Flag标签蛋白的磁珠和烟草总蛋白孵育,使得带有Flag标签的蛋白结合在磁珠上,洗脱磁珠后用Flag和Myc抗体分别进行检测。co-IP实验也验证了GSN1和OsMPK1在体内发生互作。In order to find the interaction protein and dephosphorylation substrate of GSN1 protein, the in vitro protein interaction verification was carried out by yeast two-hybrid technology. The coding sequences of the GSN1 and OsMPK1 genes were fused and constructed on the PGBKT7 and PGADT7 vectors, and then the yeast Y2HGOLD strain was co-transfected and allowed to grow on the three-deficient or four-deficient SD medium. After 3 days, it was judged according to the size and color of the plaques Whether the two target proteins GSN1 and OsMPK1 interact. Based on the results of yeast two-hybrid, it was found that GSN1 and OsMPK1 interacted. Therefore, we further verified in vivo by using bimolecular fluorescence complementary BiFC technology. The coding regions of GSN1 and OsMPK1 genes were respectively constructed at the N-terminal and C-terminal of YFP, that is, nYFP-GSN1 and cYFP-OsMPK1, and then co-transformed into tobacco through the mediation of Agrobacterium, cultured in the dark for 48 hours, and then used laser confocal microscopy Make observations. BiFC experiments found that GSN1 and OsMPK1 do interact. This result was further confirmed by co-immunoprecipitation co-IP technology. That is, GSN1 was fused to a carrier containing a Flag tag, and OsMPK1 was fused to a carrier containing a Myc tag, and then co-transfected tobacco was mediated by Agrobacterium, and the total protein of tobacco was extracted after culturing for 48 hours. Next, incubate with the magnetic beads of the affinity Flag tag protein and the total tobacco protein, so that the protein with the Flag tag is bound to the magnetic beads, and after the magnetic beads are eluted, the Flag and Myc antibodies are used for detection respectively. The co-IP experiment also verified the interaction between GSN1 and OsMPK1 in vivo.
酵母双杂交载体PGBKT7-GSN1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the yeast two-hybrid vector PGBKT7-GSN1 is:
5'-ATGGCCATGGAGGCCGAATTCATGGCCACGCCCGA-3'(SEQ ID NO.:31)5'-ATGGCCATGGAGGCCGAATTCATGGCCACGCCCGA-3'(SEQ ID NO.:31)
3'端引物序列为:The 3' end primer sequence is:
5'-TGCGGCCGCTGCAGGTCGTGCGGCCGCTGCAGGTCG-3'(SEQ ID NO.:32)5'-TGCGGCCGCTGCAGGTCGTGCGGCCGCTGCAGGTCG-3'(SEQ ID NO.:32)
酵母双杂交载体PGADT7-GSN1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the yeast two-hybrid vector PGADT7-GSN1 is:
5'-ATGGCCATGGAGGCCAGTGAAATGGCCACGCCCGA-3'(SEQ ID NO.:33)5'-ATGGCCATGGAGGCCAGTGAAATGGCCACGCCCGA-3'(SEQ ID NO.:33)
3'端引物序列为:The 3' end primer sequence is:
5'-TGCAGCTCGAGCTCGATGGATCGGCCGCTGCAGGTCG-3'(SEQ ID NO.:34)5'-TGCAGCTCGAGCTCGATGGATCGGCCGCTGCAGGTCG-3'(SEQ ID NO.:34)
酵母双杂交载体PGBKT7-OsMPK1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the yeast two-hybrid vector PGBKT7-OsMPK1 is:
5'-ATGGCCATGGAGGCatggacgccggggcgcagccgc-3'(SEQ ID NO.:35)5'-ATGGCCATGGAGGCatggacgccggggcgcagccgc-3'(SEQ ID NO.:35)
3'端引物序列为:The 3' end primer sequence is:
5'-TGCGGCCGCTGCAGGTctactggtaatcagggttgaacgcaa-3'(SEQ ID NO.:36)5'-TGCGGCCGCTGCAGGTctactggtaatcagggttgaacgcaa-3' (SEQ ID NO.:36)
酵母双杂交载体PGADT7-OsMPK1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the yeast two-hybrid vector PGADT7-OsMPK1 is:
5'-ATGGCCATGGAGGCCatggacgccggggcgcagccgc-3'(SEQ ID NO.:37)5'-ATGGCCATGGAGGCCatggacgccggggcgcagccgc-3'(SEQ ID NO.:37)
3'端引物序列为:The 3' end primer sequence is:
5'-TGCAGCTCGAGCTCctactggtaatcagggttgaacgcaa-3'(SEQ ID NO.:38)5'-TGCAGCTCGAGCTCctactggtaatcagggttgaacgcaa-3' (SEQ ID NO.:38)
BiFC载体nYFP-GSN1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the BiFC vector nYFP-GSN1 is:
5'-GATTTCTGAGGAGGATCTTCCCGGGGCCACGCCCGA-3'(SEQ ID NO.:39)5'-GATTTCTGAGGAGGATCTTCCCGGGGCCACGCCCGA-3'(SEQ ID NO.:39)
3'端引物序列为:The 3' end primer sequence is:
5'-AAGCAGGGCATGCCTGCAGGTCGACTTAACGAGCATT-3'(SEQ ID NO.:40)5'-AAGCAGGGCATGCCTGCAGGTCGACTTAACGAGCATT-3'(SEQ ID NO.:40)
BiFC载体cYFP-GSN1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the BiFC vector cYFP-GSN1 is:
5'-CGACTCTAGGAGCTCGGTACCCGGGATGGCCACGCC-3'(SEQ ID NO.:41)5'-CGACTCTAGGAGCTCGGTACCCGGGATGGCCACGCC-3' (SEQ ID NO.:41)
3'端引物序列为:The 3' end primer sequence is:
5'-GAACATCGTATGGGTACATACTAGTACGAGCATTCA-3'(SEQ ID NO.:42)5'-GAACATCGTATGGGTACATACTAGTACGAGCATTCA-3' (SEQ ID NO.:42)
BiFC载体nYFP-OsMPK1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the BiFC vector nYFP-OsMPK1 is:
5'-GATTTCTGAGGAGGATCTTCCCGGGgacgccggggcgc-3'(SEQ ID NO.:43)5'-GATTTCTGAGGAGGATCTTCCCGGGgacgccggggcgc-3' (SEQ ID NO.:43)
3'端引物序列为:The 3' end primer sequence is:
5'-AAGCAGGGCATGCCTGCAGGTCGACctactggtaatcaggg-3'(SEQ ID NO.:44)5'-AAGCAGGGCATGCCTGCAGGTCGACctactggtaatcaggg-3' (SEQ ID NO.:44)
BiFC载体cYFP-OsMPK1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the BiFC vector cYFP-OsMPK1 is:
5'-CGACTCTAGGAGCTCGGTACCCGGGatggacgccggggcg-3'(SEQ ID NO.:45)5'-CGACTCTAGGAGCTCGGTACCCGGGatggacgccggggcg-3'(SEQ ID NO.:45)
3'端引物序列为:The 3' end primer sequence is:
5'-GAACATCGTATGGGTACATACTAGTctggtaatcagggttga-3'(SEQ ID NO.:46)5'-GAACATCGTATGGGTACATACTAGTctggtaatcagggttga-3' (SEQ ID NO.: 46)
Co-IP载体pCOMBIA1306-Flag-GSN1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the Co-IP vector pCOMBIA1306-Flag-GSN1 is:
5'-AGAGAACACGGGGGACGAGCTCGGTACCATGGCCAC-3'(SEQ ID NO.:47)5'-AGAGAACACGGGGGACGAGCTCGGTACCATGGCCAC-3' (SEQ ID NO.:47)
3'端引物序列为:The 3' end primer sequence is:
5'-ATCCAAGGGCGAATTGGTCGACTCTAGAACGAGCATT-3'(SEQ ID NO.:48)5'-ATCCAAGGGCGAATTGGTCGACTCTAGAACGAGCATT-3' (SEQ ID NO.:48)
Co-IP载体pCOMBIA1301-Myc-OsMPK1构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the Co-IP vector pCOMBIA1301-Myc-OsMPK1 is:
5'-tttggagagaacacgggggactTCTAGAatggacgccggggcgcagccgc-3'(SEQ ID NO.:49)5'-tttggagagaacacgggggactTCTAGAatggacgccggggcgcagccgc-3' (SEQ ID NO.:49)
3'端引物序列为:The 3' end primer sequence is:
5'-tcggagattagcttttgttcGGATCCctggtaatcagggttgaacgca-3'(SEQ ID NO.:50)5'-tcggagattagcttttgttcGGATCCctggtaatcagggttgaacgca-3' (SEQ ID NO.:50)
6.磷酸化和去磷酸化检测6. Phosphorylation and dephosphorylation detection
通过体外和体内实验证明GSN1和OsMPK1蛋白互作之后,还需要在体外验证GSN1是否可以对OsMPK1进行去磷酸化修饰。分别纯化了MBP-GSN1、MBP-GSN1S146F、MBP-OsMKK4CA以及GST-OsMPK1融合蛋白。首先,利用纯化的融合蛋白MBP-OsMKK4CA磷酸化修饰GST-OsMPK1,此修饰发生在GST-OsMPK1的TEY motif上,可以用磷酸化抗体phos-p42/44检测。然后,把纯化的融合蛋白MBP-GSN1、MBP-GSN1S146F和已经被磷酸化修饰的GST-OsMPK1共同孵育,利用磷酸化抗体phos-p42/44来检测磷酸化GST-OsMPK1的去磷酸化程度。After proving the interaction between GSN1 and OsMPK1 proteins through in vitro and in vivo experiments, it is necessary to verify whether GSN1 can dephosphorylate OsMPK1 in vitro. MBP-GSN1, MBP-GSN1 S146F , MBP-OsMKK4 CA and GST-OsMPK1 fusion proteins were purified respectively. First, the purified fusion protein MBP-OsMKK4 CA was used to phosphorylate GST-OsMPK1. This modification occurred on the TEY motif of GST-OsMPK1, which could be detected by phosphorylation antibody phos-p42/44. Then, the purified fusion protein MBP-GSN1, MBP-GSN1 S146F and phosphorylated modified GST-OsMPK1 were incubated together, and the phosphorylated antibody phos-p42/44 was used to detect the degree of dephosphorylation of phosphorylated GST-OsMPK1.
GST-OsMPK1蛋白表达载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the GST-OsMPK1 protein expression vector is:
5'-CCGGAATTCCCATGGCCACGCCCGACGACGGCG-3'(SEQ ID NO.:51)5'-CCGGAATTCCCATGGCCACGCCCGACGACGGCG-3' (SEQ ID NO.:51)
3'端引物序列为:The 3' end primer sequence is:
5'-ATAAGAATGCGGCCGCTTAACGAGCATTCAGCACTTCC-3'(SEQ ID NO.:52)5'-ATAAGAATGCGGCCGCTTAACGAGCATTCAGCACTTCC-3'(SEQ ID NO.:52)
MBP-OsMKK4CA蛋白表达载体构建的5'端寡核苷酸引物序列为:The 5' end oligonucleotide primer sequence constructed by the MBP-OsMKK4 CA protein expression vector is:
5'-CGGGATCGAGGGAAGGATTTCAATGCGACCGGGCGG-3'(SEQ ID NO.:53)5'-CGGGATCGAGGGAAGGATTTCAATGCGACCGGGCGG-3' (SEQ ID NO.:53)
3'端引物序列为:The 3' end primer sequence is:
5'-AGCTTATTTAATTACCTGCAGGTCATGACGGAGGCGG-3'(SEQ ID NO.:54)5'-AGCTTATTTAATTACCTGCAGGTCATGACGGAGGCGG-3' (SEQ ID NO.:54)
实施例1通过对水稻籼稻品种丰矮占1号(FAZ1)进行EMS诱变,获得了一个水稻粒型明显变大、每穗粒数减少的突变体gsn1,并克隆了控制其表型的GSN1基因Example 1 Through the EMS mutagenesis of the indica rice variety Fengaizhan No. 1 (FAZ1), a mutant gsn1 with significantly larger grain size and reduced number of grains per panicle was obtained, and GSN1 that controlled its phenotype was cloned Gene
gsn1突变体粒长、粒宽和千粒重明显增加;每穗粒数明显减少;花器官增大、育性减弱。因此,gsn1突变体是研究产量因素每穗粒数和粒重互作关系的好材料(如图1所示)。利用gsn1突变体和粳稻品种中花11的F2分离群体成功定位并克隆了候选基因GSN1。通过研究表明,来自gsn1突变体背景的GSN1等位基因第437位核苷酸C突变为T,从而导致编码蛋白的第146位丝氨酸突变为苯丙氨酸。通过转基因遗传互补验证确认了候选基因GSN1,正是由于它的突变才导致了gsn1的表型。另外,发现在野生型FAZ1背景下降低(下调)GSN1的表达可以使得水稻籽粒增大,穗粒数减少;相反,增强(提高)GSN1的表达使得籽粒减小,穗粒数增加(如图2所示)。另外,将突变体gsn1与粳稻品种95-22进行多代回交,然后在BC6F2中获得只含有gsn1突变位点的近等基因系NIL(gsn1)。该近等基因系表现出和gsn1突变体极其相似的表型:籽粒变大、穗粒数减少,表明该基因在籼稻和粳稻中均对粒重和粒数有调控作用。因此,GSN1基因是一个非常具有潜力的平衡水稻每穗粒数和粒型的遗传改良位点(如图3所示)。The grain length, grain width and 1000-grain weight of the gsn1 mutant increased significantly; the number of grains per panicle decreased significantly; flower organs increased and fertility decreased. Therefore, the gsn1 mutant is a good material for studying the interaction between grain number per panicle and grain weight (as shown in Figure 1). The candidate gene GSN1 was successfully mapped and cloned using the gsn1 mutant and the F 2 segregating population of the japonica
实施例2在粳稻品种ZH11背景下过表达突变的GSN1具有显性负抑制效应Example 2 Overexpression of mutant GSN1 under the background of japonica rice variety ZH11 has a dominant negative inhibitory effect
GSN1是一个每穗粒数的正调控因子,但同时又是粒重粒型的负调控因子。在粳稻ZH11背景下降低GSN1的表达可以使得水稻每穗粒数减少,籽粒增大。相反,在其背景下分别过表达来自ZH11的等位基因GSN1ZH11和FAZ1的等位基因GSN1都可以使得每穗粒数增多而籽粒减小。据此,在ZH11背景下过表达来自gsn1突变体的GSN1等位基因,发现水稻粒型变大,穗粒数减少,和GSN1受到抑制后的表型基本一致。因此,推断在ZH11背景下过表达GSN1突变基因具有显性负抑制效应(如图4、图5和图6所示)。GSN1 is a positive regulator of grain number per panicle, but a negative regulator of grain weight and grain type at the same time. Reducing the expression of GSN1 in the japonica rice ZH11 background can reduce the number of grains per panicle and increase the size of rice grains. On the contrary, the overexpression of the allele GSN1 from ZH11 and the allele GSN1 of FAZ1 in their background, respectively, could increase the number of grains per panicle and reduce the number of grains. Accordingly, overexpressing the GSN1 allele from the gsn1 mutant in the ZH11 background revealed that the rice grain size became larger and the number of grains per panicle decreased, which was basically consistent with the phenotype after GSN1 was inhibited. Therefore, it was inferred that the overexpression of the GSN1 mutant gene in the ZH11 background had a dominant negative inhibitory effect (as shown in Figure 4, Figure 5 and Figure 6).
实施例3GSN1的突变导致特异性影响细胞分裂,而不影响细胞的扩展或伸长Example 3 Mutations in GSN1 cause specific effects on cell division, but do not affect cell expansion or elongation
由于gsn1突变体的粒长和粒宽均有增加,花器官也相应增大,在细胞学水平上证实了GSN1参与调控细胞分裂,而不影响细胞伸长。水稻抽穗期FAZ1和gsn1的颖壳橫切以及花药横切显示,FAZ1和gsn1颖壳薄壁细胞和药隔维管束细胞的大小差异不显著,但是gsn1突变体细胞数量明显增加。利用扫描电镜观察成熟颖壳的外表皮和内表皮,FZA1和gsn1外表皮颖壳表面乳突间的距离以及内表皮细胞大小都无差异。另外,利用FAZ1和gsn1两者的幼穗细胞进行流式细胞分析发现,相较于野生型,突变体4C期细胞明显增多。以上这些结果表明,gsn1突变体细胞分裂速率加快,从而导致了更大的器官(如图7所示)。Since the grain length and grain width of the gsn1 mutant increased, the floral organs also increased accordingly, which confirmed that GSN1 was involved in the regulation of cell division at the cytological level, but did not affect cell elongation. Transverse sectioning of glumes and anthers of FAZ1 and gsn1 at the heading stage of rice showed that there was no significant difference in the size of glume parenchyma cells and septum vascular bundle cells between FAZ1 and gsn1, but the number of cells in the gsn1 mutant increased significantly. Using scanning electron microscope to observe the outer and inner epidermis of the mature glume, there was no difference in the distance between the papillae on the surface of the outer glume and the cell size of the inner epidermis between FZA1 and gsn1. In addition, the flow cytometric analysis of the young panicle cells of both FAZ1 and gsn1 found that compared with the wild type, the number of cells in the 4C phase of the mutant was significantly increased. These results above indicate that gsn1 mutants have an accelerated cell division rate, resulting in larger organs (as shown in Figure 7).
实施例4GSN1编码一个定位于细胞质的双特异性磷酸酶,第146位丝氨酸突变为苯丙氨酸导致GSN1蛋白失去去磷酸化活性Example 4 GSN1 encodes a dual-specificity phosphatase localized in the cytoplasm, and the mutation of the 146th serine to phenylalanine results in the loss of dephosphorylation activity of the GSN1 protein
通过在体外分别纯化MBP-GSN1和MBP-GSN1S146F融合蛋白,以化合物OMFP(3-o-methylfluorescein phosphate)为底物进行酶活实验发现,融合蛋白MBP-GSN1具有明显的去磷酸化活性,而突变的MBP-GSN1S146F则失去了去磷酸化活性。因此,第146位保守的丝氨酸对于GSN1蛋白完整的生物学功能是非常重要的。另外,分别利用烟草叶片细胞和水稻原生质体研究发现,GSN1蛋白定位于细胞质中。qRT-PCR结果显示,GSN1在各个时期的组织都有表达,但是主要在幼穗期和小穗中有较高的表达(如图8所示)。By purifying MBP-GSN1 and MBP-GSN1 S146F fusion proteins in vitro, and using the compound OMFP (3-o-methylfluorescein phosphate) as a substrate for enzyme activity experiments, it was found that the fusion protein MBP-GSN1 had obvious dephosphorylation activity, while The mutant MBP-GSN1 S146F lost its dephosphorylation activity. Therefore, the conserved serine at position 146 is very important for the complete biological function of GSN1 protein. In addition, studies using tobacco leaf cells and rice protoplasts respectively found that GSN1 protein was localized in the cytoplasm. The qRT-PCR results showed that GSN1 was expressed in tissues at various stages, but it was mainly expressed at the young panicle stage and spikelet (as shown in Figure 8).
实施例5GSN1和OsMPK1特异性发生互作,并且GSN1对OsMPK1进行去磷酸化修饰Example 5 GSN1 and OsMPK1 interact specifically, and GSN1 dephosphorylates OsMPK1
通过酵母双杂交技术发现GSN1和OsMPK1在体外可以发生互作。然后,利用BiFC双分子荧光互补实验和co-IP免疫共沉淀确认了这个结果。这些体内结果共同显示,GSN1和OsMPK1确实可以发生互作。为了研究GSN1和OsMPK1互作后是否可以对OsMPK1发生去磷酸化修饰,分别表达了融合蛋白MBP-GSN1、MBP-GSN1S146F、GST-OsMPK1和组成型激活的MBP-MKK4CA(T238D和S244D),进行体外磷酸化和去磷酸化实验。结果表明,融合蛋白MBP-OsMKK4CA可以对GST-OsMPK1进行磷酸化修饰,接着磷酸化的GST-OsMPK1又可以被MBP-GSN1去磷酸化。然而,MBP-GSN1S146F却不能对已发生磷酸化的GST-OsMPK1进行去磷酸化修饰,这和本发明的预期是一致的。利用特异性磷酸化抗体phos-p42/44和质谱检测发现,磷酸化和去磷酸化都发生在GST-OsMPK1的激活环TEY motif上(如图9所示)。Through the yeast two-hybrid technique, it was found that GSN1 and OsMPK1 could interact in vitro. Then, this result was confirmed using BiFC bimolecular fluorescence complementation experiments and co-IP co-immunoprecipitation. Together, these in vivo results show that GSN1 and OsMPK1 can indeed interact. In order to study whether OsMPK1 can be dephosphorylated after the interaction between GSN1 and OsMPK1, fusion proteins MBP-GSN1, MBP-GSN1 S146F , GST-OsMPK1 and constitutively activated MBP-MKK4 CA (T238D and S244D) were expressed, respectively. Perform in vitro phosphorylation and dephosphorylation experiments. The results showed that the fusion protein MBP-OsMKK4 CA could phosphorylate GST-OsMPK1, and then the phosphorylated GST-OsMPK1 could be dephosphorylated by MBP-GSN1. However, MBP-GSN1 S146F cannot dephosphorylate the phosphorylated GST-OsMPK1, which is consistent with the expectation of the present invention. Using specific phosphorylation antibody phos-p42/44 and mass spectrometry detection, it was found that both phosphorylation and dephosphorylation occurred on the activation ring TEY motif of GST-OsMPK1 (as shown in Figure 9).
实施例6水稻OsMKKK10-OsMKK4-OsMPK1级联反应通路参与每穗粒数以及粒重(粒型大小)的发育与平衡Example 6 Rice OsMKKK10-OsMKK4-OsMPK1 cascade reaction pathway participates in the development and balance of grain number per panicle and grain weight (grain size)
目前水稻中参与发育过程的完整MAPK级联还没有被报道,在野生型FAZ1背景下通过CRISPR/Cas9基因敲除技术分别敲除OsMKKK10和OsMKK4发现,两者有着极其相似的表型,都表现为:水稻穗型变得紧凑、每穗粒数增多以及粒型变小(粒重减少)。利用CRISPR/Cas9技术敲除OsMPK1后虽然是致死的,但是通过RNAi技术干扰OsMPK1的表达发现,OsMPK1被抑制(被下调表达)的转基因株系其每穗粒数增多,粒型减小,与CRISPR/Cas9基因敲除OsMKKK10和OsMKK4在表型上具有明显的一致性。另外,在FAZ1背景下过表达组成型激活的OsMKK4CA(T238D和S244D),发现其籽粒变大(粒重增加),每穗粒数减少。因此,本发明的研究表明,OsMKKK10-OsMKK4-OsMPK1级联反应通路通过参与每穗粒数和粒型大小(粒重)的发育来控制水稻穗型的发育(如图10所示)。At present, the complete MAPK cascade involved in the development process in rice has not been reported. In the wild-type FAZ1 background, OsMKKK10 and OsMKK4 were knocked out by CRISPR/Cas9 gene knockout technology. : The rice panicle shape becomes compact, the number of grains per panicle increases and the grain shape becomes smaller (grain weight decreases). Although the knockout of OsMPK1 by CRISPR/Cas9 technology is lethal, it is found that the transgenic lines with suppressed (down-regulated expression) of OsMPK1 have increased number of grains per panicle and reduced grain size by RNAi technology to interfere with the expression of OsMPK1. /Cas9 knockout OsMKKK10 and OsMKK4 have obvious phenotype consistency. In addition, overexpression of constitutively activated OsMKK4 CA (T238D and S244D) in the FAZ1 background resulted in larger grain size (increased grain weight) and decreased number of grains per panicle. Therefore, the research of the present invention shows that the OsMKKK10-OsMKK4-OsMPK1 cascade reaction pathway controls the development of rice panicle type by participating in the development of grain number and grain size (grain weight) per panicle (as shown in Figure 10).
实施例7GSN1是水稻OsMKKK10-OsMKK4-OsMPK1级联反应通路的负调控因子Example 7 GSN1 is a negative regulator of rice OsMKKK10-OsMKK4-OsMPK1 cascade reaction pathway
gsn1突变体表现为稀穗(粒数减少)和大粒,而抑制OsMKKK10-OsMKK4-OsMPK1级联反应通路组分各自都表现为密穗(粒数增加)和小粒。因此,本发明在gsn1突变体背景下分别引入突变或者受抑制的级联组分,发现抑制OsMKKK10-OsMKK4-OsMPK1级联组分都可以回复gsn1的表型。这些研究表明,gsn1突变体的表型依赖于OsMKKK10-OsMKK4-OsMPK1级联组分的激活。因此,GSN1是该级联信号通路的负调控因子(如图10所示)。The gsn1 mutant exhibited sparse panicles (decreased grain number) and large grains, whereas the components of the inhibited OsMKKK10-OsMKK4-OsMPK1 cascade pathway each exhibited dense panicles (increased grain number) and small grains. Therefore, the present invention introduced mutations or suppressed cascade components in the gsn1 mutant background, and found that inhibiting OsMKKK10-OsMKK4-OsMPK1 cascade components can restore the phenotype of gsn1. These studies demonstrate that the phenotype of gsn1 mutants is dependent on the activation of components of the OsMKKK10-OsMKK4-OsMPK1 cascade. Therefore, GSN1 is a negative regulator of this cascade signaling pathway (as shown in Figure 10).
实施例8Example 8
拟南芥实验Arabidopsis experiments
在本实施例中,考虑到GSN1的功能保守性,把水稻GSN1基因在十字花科植物拟南芥中进行了过量表达,以了解该基因在拟南芥中的遗传功能,为GSN1在其它物种中的应用提供了依据。In this example, considering the functional conservation of GSN1, the rice GSN1 gene was overexpressed in Arabidopsis thaliana, a cruciferous plant, to understand the genetic function of the gene in Arabidopsis thaliana, and to provide a basis for GSN1 in other species. The application in provides the basis.
结果如图11所示,结果表明:在拟南芥中过表达来源于水稻的野生型GSN1,导致拟南芥分枝增多;以及导致长角果缩短。The results are shown in FIG. 11 , and the results indicated that overexpression of wild-type GSN1 derived from rice in Arabidopsis thaliana resulted in increased branches of Arabidopsis thaliana and shortened siliques.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application as if each were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
序列表sequence listing
<110> 中国科学院上海生命科学研究院<110> Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
<120> 控制植物粒数和粒重的GSN1基因、编码蛋白及其应用<120> GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight
<130> P2018-0007<130> P2018-0007
<160> 54<160> 54
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 2295<211> 2295
<212> DNA<212>DNA
<213> Oryza sativa<213> Oryza sativa
<400> 1<400> 1
atggccacgc ccgacgacgg cggagggggt gtcggcggcg gcgcggggaa gaagttctgg 60atggccacgc ccgacgacgg cggagggggt gtcggcggcg gcgcggggaa gaagttctgg 60
cgctccgcgt cgtggtccgc ctcccgggac acgccgcccg atgcggcgac gcctgcgggg 120cgctccgcgt cgtggtccgc ctcccgggac acgccgcccg atgcggcgac gcctgcgggg 120
gcgggcggcg gcggcggcgc gggggcaggg caggcgcgcc gcatcccgcc gccgccgcct 180gcgggcggcg gcggcggcgc gggggcaggg caggcgcgcc gcatcccgcc gccgccgcct 180
ctgaccccgc gcggcgggaa ggggcggtcc tgcctcccgc cgctgcagcc gctcaacatc 240ctgaccccgc gcggcgggaa ggggcggtcc tgcctcccgc cgctgcagcc gctcaacatc 240
acccgccgga gcctcgacga gtggccgcgg gcgggctccg acgacgtggg cgagtggccc 300acccgccgga gcctcgacga gtggccgcgg gcgggctccg acgacgtggg cgagtggccc 300
aacccgacca cccccggcgc ctccaaggcg gaaggcgccg gctcggccaa gcccggggag 360aacccgacca cccccggcgc ctccaaggcg gaaggcgccg gctcggccaa gcccggggag 360
ggcctccgct tggacctctc atccctccgg tcgcagggtc gcaaagacca gatcgccttc 420ggcctccgct tggacctctc atccctccgg tcgcagggtc gcaaagacca gatcgccttc 420
ttcgacaagg agtgctccaa ggttgctgac cacgtctacc ttggaggcga cgccgttgcc 480ttcgacaagg agtgctccaa ggttgctgac cacgtctacc ttggaggcga cgccgttgcc 480
aagaaccgcg acatcctgcg caagaacggg atcacccacg tgctcaattg cgtcggcttc 540aagaaccgcg acatcctgcg caagaacggg atcacccacg tgctcaattg cgtcggcttc 540
gtttgtcccg agtacttcaa gtcggacctc gtctaccgga cgctttggct tcaggacagc 600gtttgtcccg agtacttcaa gtcggacctc gtctaccgga cgctttggct tcaggacagc 600
ccgacggagg acatcaccag catcttgtat gatgtgtttg attactttga ggacgtcagg 660ccgacggagg acatcaccag catcttgtat gatgtgtttg attactttga ggacgtcagg 660
gagcagggtg ggcgtgtctt cgtacattgt tgccaggggg tatcaaggtc tacatcgctg 720gagcagggtg ggcgtgtctt cgtacattgt tgccagggggg tatcaaggtc tacatcgctg 720
gtgatagcgt acttgatgtg gagggaaggg cagagctttg acgatgcgtt ccagcttgtg 780gtgatagcgt acttgatgtg gagggaaggg cagagctttg acgatgcgtt ccagcttgtg 780
aaagctgccc gggggatcgc aaatccaaat atggggttcg cttgccagct actccagtgc 840aaagctgccc gggggatcgc aaatccaaat atggggttcg cttgccagct actccagtgc 840
cagaagcggg ttcatgcgat tccgctatct ccaaactcgg ttctgcggat gtaccggatg 900cagaagcggg ttcatgcgat tccgctatct ccaaactcgg ttctgcggat gtaccggatg 900
gcacctcact caccttatgc gccgctgcat ttagtaccca aaatgctgaa cgaaccctca 960gcacctcact caccttatgc gccgctgcat ttagtaccca aaatgctgaa cgaaccctca 960
cctgctgccc tggactctag gggtgcattc atcgttcatg tgctctcatc gatctatgtt 1020cctgctgccc tggactctag gggtgcattc atcgttcatg tgctctcatc gatctatgtt 1020
tgggttggaa tgaagtgtga tcaagtaatg gagaaggatg caagagcagc ggcgttccag 1080tgggttggaa tgaagtgtga tcaagtaatg gagaaggatg caagagcagc ggcgttccag 1080
gtggtgaggt atgagaaggt gcaggggcat atcaaagttg tcagggaagg attggagcta 1140gtggtgaggt atgagaaggt gcaggggcat atcaaagttg tcagggaagg attggagcta 1140
ccagaatttt gggacgcctt ttcaagtgca cctgttaatt cagacagcaa tacaaagatt 1200ccagaatttt gggacgcctt ttcaagtgca cctgttaatt cagacagcaa tacaaagatt 1200
agcaaggatc agattgattc agcatccaag actggcccgg ggaaccgtag ggtggaatct 1260agcaaggatc agattgattc agcatccaag actggcccgg ggaaccgtag ggtggaatct 1260
tatgatgctg attttgagct tgtatacaaa gcaatcactg ggggtgttgt gccagcattc 1320tatgatgctg attttgagct tgtatacaaa gcaatcactg ggggtgttgt gccagcattc 1320
tcttcttcag gtgctggtga tgagacccat cttccagcaa gagaaagtac ctggagttca 1380tcttcttcag gtgctggtga tgagacccat cttccagcaa gagaaagtac ctggagttca 1380
ctaaggcgca agttcatctc taggtcgtta gctcgagtct attcagattc tgctttaatc 1440ctaaggcgca agttcatctc taggtcgtta gctcgagtct attcagattc tgctttaatc 1440
agggacttgg atccgcgggt ggaccgagta caacacctgg ctgcagaggc atcaacatca 1500agggacttgg atccgcgggt ggaccgagta caacacctgg ctgcagaggc atcaacatca 1500
ccacctttcc tatctccgag ctctttgtca tcagattcaa gcatcagttc aaagtatagt 1560ccacctttcc tatctccgag ctctttgtca tcagattcaa gcatcagttc aaagtatagt 1560
tcagactcac cctcactgtc accttcaact agctcgccaa catcacttgg tctttcgccc 1620tcagactcac cctcactgtc accttcaact agctcgccaa catcacttgg tctttcgccc 1620
gcttcatcta atttttccca cactttggtg ccatcatcta ggtcccccct tcaccaatca 1680gcttcatcta atttttccca cactttggtg ccatcatcta ggtcccccct tcaccaatca 1680
tctaacgagg aaccttcaaa atctggcctg gggtcaatac gctctccctc caagacctct 1740tctaacgagg aaccttcaaa atctggcctg gggtcaatac gctctccctc caagacctct 1740
tctatagcag aaagaagagg agggttttca tctctgaagt taccatcatt ccaaaaggat 1800tctatagcag aaagaagagg agggttttca tctctgaagt taccatcatt ccaaaaggat 1800
ctagtattac caccaagggt accgaccagc cttcgcagag aagaggaagt cacagataag 1860ctagtattac caccaagggt accgaccagc cttcgcagag aagaggaagt cacagataag 1860
agtaataata atagtgtaaa acagcttact ggtgtgtgtt gcccagagaa atgcactggc 1920agtaataata atagtgtaaa acagcttact ggtgtgtgtt gcccagagaa atgcactggc 1920
aatacttcaa cagtgcacac taaaactgga ataactgagc gtactgacag tatctcagag 1980aatacttcaa cagtgcacac taaaactgga ataactgagc gtactgacag tatctcagag 1980
gcttgcggta atttacaact attagtctac cgttggccca gcaaggaaaa gctaactact 2040gcttgcggta atttacaact attagtctac cgttggccca gcaaggaaaa gctaactact 2040
ttcactcgca aggatcttga cccaaaatca gttttgattt ttgttactcc tgaagacagc 2100ttcactcgca aggatcttga cccaaaatca gttttgattt ttgttactcc tgaagacagc 2100
agaagtgaag cagttaaaac ggtacacatt tgggtaggag gtgaatatga gagcagcaaa 2160agaagtgaag cagttaaaac ggtacacatt tgggtagggag gtgaatatga gagcagcaaa 2160
tgtgttgaca ctgttgattg gcagcaagtt gttggtgatt tttttcatct aaaggagctc 2220tgtgttgaca ctgttgattg gcagcaagtt gttggtgatt tttttcatct aaaggagctc 2220
ggcaatactc ttcctgttaa ggttttcaaa gagcatgaaa cggagaatct tttggaagtg 2280ggcaatactc ttcctgttaa ggttttcaaa gagcatgaaa cggagaatct tttggaagtg 2280
ctgaatgctc gttaa 2295ctgaatgctc gttaa 2295
<210> 2<210> 2
<211> 764<211> 764
<212> PRT<212> PRT
<213> Oryza sativa<213> Oryza sativa
<400> 2<400> 2
Met Ala Thr Pro Asp Asp Gly Gly Gly Gly Val Gly Gly Gly Ala GlyMet Ala Thr Pro Asp Asp Gly Gly Gly Gly Val Gly Gly Gly Ala Gly
1 5 10 151 5 10 15
Lys Lys Phe Trp Arg Ser Ala Ser Trp Ser Ala Ser Arg Asp Thr ProLys Lys Phe Trp Arg Ser Ala Ser Trp Ser Ala Ser Arg Asp Thr Pro
20 25 3020 25 30
Pro Asp Ala Ala Thr Pro Ala Gly Ala Gly Gly Gly Gly Gly Ala GlyPro Asp Ala Ala Thr Pro Ala Gly Ala Gly Gly Gly Gly Gly Ala Gly
35 40 4535 40 45
Ala Gly Gln Ala Arg Arg Ile Pro Pro Pro Pro Pro Leu Thr Pro ArgAla Gly Gln Ala Arg Arg Ile Pro Pro Pro Pro Pro Leu Thr Pro Arg
50 55 6050 55 60
Gly Gly Lys Gly Arg Ser Cys Leu Pro Pro Leu Gln Pro Leu Asn IleGly Gly Lys Gly Arg Ser Cys Leu Pro Pro Leu Gln Pro Leu Asn Ile
65 70 75 8065 70 75 80
Thr Arg Arg Ser Leu Asp Glu Trp Pro Arg Ala Gly Ser Asp Asp ValThr Arg Arg Ser Leu Asp Glu Trp Pro Arg Ala Gly Ser Asp Asp Val
85 90 9585 90 95
Gly Glu Trp Pro Asn Pro Thr Thr Pro Gly Ala Ser Lys Ala Glu GlyGly Glu Trp Pro Asn Pro Thr Thr Pro Gly Ala Ser Lys Ala Glu Gly
100 105 110100 105 110
Ala Gly Ser Ala Lys Pro Gly Glu Gly Leu Arg Leu Asp Leu Ser SerAla Gly Ser Ala Lys Pro Gly Glu Gly Leu Arg Leu Asp Leu Ser Ser
115 120 125115 120 125
Leu Arg Ser Gln Gly Arg Lys Asp Gln Ile Ala Phe Phe Asp Lys GluLeu Arg Ser Gln Gly Arg Lys Asp Gln Ile Ala Phe Phe Asp Lys Glu
130 135 140130 135 140
Cys Ser Lys Val Ala Asp His Val Tyr Leu Gly Gly Asp Ala Val AlaCys Ser Lys Val Ala Asp His Val Tyr Leu Gly Gly Asp Ala Val Ala
145 150 155 160145 150 155 160
Lys Asn Arg Asp Ile Leu Arg Lys Asn Gly Ile Thr His Val Leu AsnLys Asn Arg Asp Ile Leu Arg Lys Asn Gly Ile Thr His Val Leu Asn
165 170 175165 170 175
Cys Val Gly Phe Val Cys Pro Glu Tyr Phe Lys Ser Asp Leu Val TyrCys Val Gly Phe Val Cys Pro Glu Tyr Phe Lys Ser Asp Leu Val Tyr
180 185 190180 185 190
Arg Thr Leu Trp Leu Gln Asp Ser Pro Thr Glu Asp Ile Thr Ser IleArg Thr Leu Trp Leu Gln Asp Ser Pro Thr Glu Asp Ile Thr Ser Ile
195 200 205195 200 205
Leu Tyr Asp Val Phe Asp Tyr Phe Glu Asp Val Arg Glu Gln Gly GlyLeu Tyr Asp Val Phe Asp Tyr Phe Glu Asp Val Arg Glu Gln Gly Gly
210 215 220210 215 220
Arg Val Phe Val His Cys Cys Gln Gly Val Ser Arg Ser Thr Ser LeuArg Val Phe Val His Cys Cys Gln Gly Val Ser Arg Ser Thr Ser Leu
225 230 235 240225 230 235 240
Val Ile Ala Tyr Leu Met Trp Arg Glu Gly Gln Ser Phe Asp Asp AlaVal Ile Ala Tyr Leu Met Trp Arg Glu Gly Gln Ser Phe Asp Asp Ala
245 250 255245 250 255
Phe Gln Leu Val Lys Ala Ala Arg Gly Ile Ala Asn Pro Asn Met GlyPhe Gln Leu Val Lys Ala Ala Arg Gly Ile Ala Asn Pro Asn Met Gly
260 265 270260 265 270
Phe Ala Cys Gln Leu Leu Gln Cys Gln Lys Arg Val His Ala Ile ProPhe Ala Cys Gln Leu Leu Gln Cys Gln Lys Arg Val His Ala Ile Pro
275 280 285275 280 285
Leu Ser Pro Asn Ser Val Leu Arg Met Tyr Arg Met Ala Pro His SerLeu Ser Pro Asn Ser Val Leu Arg Met Tyr Arg Met Ala Pro His Ser
290 295 300290 295 300
Pro Tyr Ala Pro Leu His Leu Val Pro Lys Met Leu Asn Glu Pro SerPro Tyr Ala Pro Leu His Leu Val Pro Lys Met Leu Asn Glu Pro Ser
305 310 315 320305 310 315 320
Pro Ala Ala Leu Asp Ser Arg Gly Ala Phe Ile Val His Val Leu SerPro Ala Ala Leu Asp Ser Arg Gly Ala Phe Ile Val His Val Leu Ser
325 330 335325 330 335
Ser Ile Tyr Val Trp Val Gly Met Lys Cys Asp Gln Val Met Glu LysSer Ile Tyr Val Trp Val Gly Met Lys Cys Asp Gln Val Met Glu Lys
340 345 350340 345 350
Asp Ala Arg Ala Ala Ala Phe Gln Val Val Arg Tyr Glu Lys Val GlnAsp Ala Arg Ala Ala Ala Phe Gln Val Val Arg Tyr Glu Lys Val Gln
355 360 365355 360 365
Gly His Ile Lys Val Val Arg Glu Gly Leu Glu Leu Pro Glu Phe TrpGly His Ile Lys Val Val Arg Glu Gly Leu Glu Leu Pro Glu Phe Trp
370 375 380370 375 380
Asp Ala Phe Ser Ser Ala Pro Val Asn Ser Asp Ser Asn Thr Lys IleAsp Ala Phe Ser Ser Ala Pro Val Asn Ser Asp Ser Asn Thr Lys Ile
385 390 395 400385 390 395 400
Ser Lys Asp Gln Ile Asp Ser Ala Ser Lys Thr Gly Pro Gly Asn ArgSer Lys Asp Gln Ile Asp Ser Ala Ser Lys Thr Gly Pro Gly Asn Arg
405 410 415405 410 415
Arg Val Glu Ser Tyr Asp Ala Asp Phe Glu Leu Val Tyr Lys Ala IleArg Val Glu Ser Tyr Asp Ala Asp Phe Glu Leu Val Tyr Lys Ala Ile
420 425 430420 425 430
Thr Gly Gly Val Val Pro Ala Phe Ser Ser Ser Gly Ala Gly Asp GluThr Gly Gly Val Val Pro Ala Phe Ser Ser Ser Ser Gly Ala Gly Asp Glu
435 440 445435 440 445
Thr His Leu Pro Ala Arg Glu Ser Thr Trp Ser Ser Leu Arg Arg LysThr His Leu Pro Ala Arg Glu Ser Thr Trp Ser Ser Leu Arg Arg Lys
450 455 460450 455 460
Phe Ile Ser Arg Ser Leu Ala Arg Val Tyr Ser Asp Ser Ala Leu IlePhe Ile Ser Arg Ser Leu Ala Arg Val Tyr Ser Asp Ser Ala Leu Ile
465 470 475 480465 470 475 480
Arg Asp Leu Asp Pro Arg Val Asp Arg Val Gln His Leu Ala Ala GluArg Asp Leu Asp Pro Arg Val Asp Arg Val Gln His Leu Ala Ala Glu
485 490 495485 490 495
Ala Ser Thr Ser Pro Pro Phe Leu Ser Pro Ser Ser Leu Ser Ser AspAla Ser Thr Ser Pro Pro Phe Leu Ser Pro Ser Ser Leu Ser Ser Asp
500 505 510500 505 510
Ser Ser Ile Ser Ser Lys Tyr Ser Ser Asp Ser Pro Ser Leu Ser ProSer Ser Ile Ser Ser Lys Tyr Ser Ser Asp Ser Pro Ser Leu Ser Pro
515 520 525515 520 525
Ser Thr Ser Ser Pro Thr Ser Leu Gly Leu Ser Pro Ala Ser Ser AsnSer Thr Ser Ser Pro Thr Ser Leu Gly Leu Ser Pro Ala Ser Ser Asn
530 535 540530 535 540
Phe Ser His Thr Leu Val Pro Ser Ser Arg Ser Pro Leu His Gln SerPhe Ser His Thr Leu Val Pro Ser Ser Arg Ser Pro Leu His Gln Ser
545 550 555 560545 550 555 560
Ser Asn Glu Glu Pro Ser Lys Ser Gly Leu Gly Ser Ile Arg Ser ProSer Asn Glu Glu Pro Ser Lys Ser Gly Leu Gly Ser Ile Arg Ser Pro
565 570 575565 570 575
Ser Lys Thr Ser Ser Ile Ala Glu Arg Arg Gly Gly Phe Ser Ser LeuSer Lys Thr Ser Ser Ser Ile Ala Glu Arg Arg Gly Gly Phe Ser Ser Leu
580 585 590580 585 590
Lys Leu Pro Ser Phe Gln Lys Asp Leu Val Leu Pro Pro Arg Val ProLys Leu Pro Ser Phe Gln Lys Asp Leu Val Leu Pro Pro Arg Val Pro
595 600 605595 600 605
Thr Ser Leu Arg Arg Glu Glu Glu Val Thr Asp Lys Ser Asn Asn AsnThr Ser Leu Arg Arg Glu Glu Glu Val Thr Asp Lys Ser Asn Asn Asn
610 615 620610 615 620
Ser Val Lys Gln Leu Thr Gly Val Cys Cys Pro Glu Lys Cys Thr GlySer Val Lys Gln Leu Thr Gly Val Cys Cys Pro Glu Lys Cys Thr Gly
625 630 635 640625 630 635 640
Asn Thr Ser Thr Val His Thr Lys Thr Gly Ile Thr Glu Arg Thr AspAsn Thr Ser Thr Val His Thr Lys Thr Gly Ile Thr Glu Arg Thr Asp
645 650 655645 650 655
Ser Ile Ser Glu Ala Cys Gly Asn Leu Gln Leu Leu Val Tyr Arg TrpSer Ile Ser Glu Ala Cys Gly Asn Leu Gln Leu Leu Val Tyr Arg Trp
660 665 670660 665 670
Pro Ser Lys Glu Lys Leu Thr Thr Phe Thr Arg Lys Asp Leu Asp ProPro Ser Lys Glu Lys Leu Thr Thr Phe Thr Arg Lys Asp Leu Asp Pro
675 680 685675 680 685
Lys Ser Val Leu Ile Phe Val Thr Pro Glu Asp Ser Arg Ser Glu AlaLys Ser Val Leu Ile Phe Val Thr Pro Glu Asp Ser Arg Ser Glu Ala
690 695 700690 695 700
Val Lys Thr Val His Ile Trp Val Gly Gly Glu Tyr Glu Ser Ser LysVal Lys Thr Val His Ile Trp Val Gly Gly Glu Tyr Glu Ser Ser Lys
705 710 715 720705 710 715 720
Cys Val Asp Thr Val Asp Trp Gln Gln Val Val Gly Asp Phe Phe HisCys Val Asp Thr Val Asp Trp Gln Gln Val Val Gly Asp Phe Phe His
725 730 735725 730 735
Leu Lys Glu Leu Gly Asn Thr Leu Pro Val Lys Val Phe Lys Glu HisLeu Lys Glu Leu Gly Asn Thr Leu Pro Val Lys Val Phe Lys Glu His
740 745 750740 745 750
Glu Thr Glu Asn Leu Leu Glu Val Leu Asn Ala ArgGlu Thr Glu Asn Leu Leu Glu Val Leu Asn Ala Arg
755 760755 760
<210> 3<210> 3
<211> 764<211> 764
<212> PRT<212> PRT
<213> Oryza sativa<213> Oryza sativa
<400> 3<400> 3
Met Ala Thr Pro Asp Asp Gly Gly Gly Gly Val Gly Gly Gly Ala GlyMet Ala Thr Pro Asp Asp Gly Gly Gly Gly Val Gly Gly Gly Ala Gly
1 5 10 151 5 10 15
Lys Lys Phe Trp Arg Ser Ala Ser Trp Ser Ala Ser Arg Asp Thr ProLys Lys Phe Trp Arg Ser Ala Ser Trp Ser Ala Ser Arg Asp Thr Pro
20 25 3020 25 30
Pro Asp Ala Ala Thr Pro Ala Gly Ala Gly Gly Gly Gly Gly Ala GlyPro Asp Ala Ala Thr Pro Ala Gly Ala Gly Gly Gly Gly Gly Ala Gly
35 40 4535 40 45
Ala Gly Gln Ala Arg Arg Ile Pro Pro Pro Pro Pro Leu Thr Pro ArgAla Gly Gln Ala Arg Arg Ile Pro Pro Pro Pro Pro Leu Thr Pro Arg
50 55 6050 55 60
Gly Gly Lys Gly Arg Ser Cys Leu Pro Pro Leu Gln Pro Leu Asn IleGly Gly Lys Gly Arg Ser Cys Leu Pro Pro Leu Gln Pro Leu Asn Ile
65 70 75 8065 70 75 80
Thr Arg Arg Ser Leu Asp Glu Trp Pro Arg Ala Gly Ser Asp Asp ValThr Arg Arg Ser Leu Asp Glu Trp Pro Arg Ala Gly Ser Asp Asp Val
85 90 9585 90 95
Gly Glu Trp Pro Asn Pro Thr Thr Pro Gly Ala Ser Lys Ala Glu GlyGly Glu Trp Pro Asn Pro Thr Thr Pro Gly Ala Ser Lys Ala Glu Gly
100 105 110100 105 110
Ala Gly Ser Ala Lys Pro Gly Glu Gly Leu Arg Leu Asp Leu Ser SerAla Gly Ser Ala Lys Pro Gly Glu Gly Leu Arg Leu Asp Leu Ser Ser
115 120 125115 120 125
Leu Arg Ser Gln Gly Arg Lys Asp Gln Ile Ala Phe Phe Asp Lys GluLeu Arg Ser Gln Gly Arg Lys Asp Gln Ile Ala Phe Phe Asp Lys Glu
130 135 140130 135 140
Cys Phe Lys Val Ala Asp His Val Tyr Leu Gly Gly Asp Ala Val AlaCys Phe Lys Val Ala Asp His Val Tyr Leu Gly Gly Asp Ala Val Ala
145 150 155 160145 150 155 160
Lys Asn Arg Asp Ile Leu Arg Lys Asn Gly Ile Thr His Val Leu AsnLys Asn Arg Asp Ile Leu Arg Lys Asn Gly Ile Thr His Val Leu Asn
165 170 175165 170 175
Cys Val Gly Phe Val Cys Pro Glu Tyr Phe Lys Ser Asp Leu Val TyrCys Val Gly Phe Val Cys Pro Glu Tyr Phe Lys Ser Asp Leu Val Tyr
180 185 190180 185 190
Arg Thr Leu Trp Leu Gln Asp Ser Pro Thr Glu Asp Ile Thr Ser IleArg Thr Leu Trp Leu Gln Asp Ser Pro Thr Glu Asp Ile Thr Ser Ile
195 200 205195 200 205
Leu Tyr Asp Val Phe Asp Tyr Phe Glu Asp Val Arg Glu Gln Gly GlyLeu Tyr Asp Val Phe Asp Tyr Phe Glu Asp Val Arg Glu Gln Gly Gly
210 215 220210 215 220
Arg Val Phe Val His Cys Cys Gln Gly Val Ser Arg Ser Thr Ser LeuArg Val Phe Val His Cys Cys Gln Gly Val Ser Arg Ser Thr Ser Leu
225 230 235 240225 230 235 240
Val Ile Ala Tyr Leu Met Trp Arg Glu Gly Gln Ser Phe Asp Asp AlaVal Ile Ala Tyr Leu Met Trp Arg Glu Gly Gln Ser Phe Asp Asp Ala
245 250 255245 250 255
Phe Gln Leu Val Lys Ala Ala Arg Gly Ile Ala Asn Pro Asn Met GlyPhe Gln Leu Val Lys Ala Ala Arg Gly Ile Ala Asn Pro Asn Met Gly
260 265 270260 265 270
Phe Ala Cys Gln Leu Leu Gln Cys Gln Lys Arg Val His Ala Ile ProPhe Ala Cys Gln Leu Leu Gln Cys Gln Lys Arg Val His Ala Ile Pro
275 280 285275 280 285
Leu Ser Pro Asn Ser Val Leu Arg Met Tyr Arg Met Ala Pro His SerLeu Ser Pro Asn Ser Val Leu Arg Met Tyr Arg Met Ala Pro His Ser
290 295 300290 295 300
Pro Tyr Ala Pro Leu His Leu Val Pro Lys Met Leu Asn Glu Pro SerPro Tyr Ala Pro Leu His Leu Val Pro Lys Met Leu Asn Glu Pro Ser
305 310 315 320305 310 315 320
Pro Ala Ala Leu Asp Ser Arg Gly Ala Phe Ile Val His Val Leu SerPro Ala Ala Leu Asp Ser Arg Gly Ala Phe Ile Val His Val Leu Ser
325 330 335325 330 335
Ser Ile Tyr Val Trp Val Gly Met Lys Cys Asp Gln Val Met Glu LysSer Ile Tyr Val Trp Val Gly Met Lys Cys Asp Gln Val Met Glu Lys
340 345 350340 345 350
Asp Ala Arg Ala Ala Ala Phe Gln Val Val Arg Tyr Glu Lys Val GlnAsp Ala Arg Ala Ala Ala Phe Gln Val Val Arg Tyr Glu Lys Val Gln
355 360 365355 360 365
Gly His Ile Lys Val Val Arg Glu Gly Leu Glu Leu Pro Glu Phe TrpGly His Ile Lys Val Val Arg Glu Gly Leu Glu Leu Pro Glu Phe Trp
370 375 380370 375 380
Asp Ala Phe Ser Ser Ala Pro Val Asn Ser Asp Ser Asn Thr Lys IleAsp Ala Phe Ser Ser Ala Pro Val Asn Ser Asp Ser Asn Thr Lys Ile
385 390 395 400385 390 395 400
Ser Lys Asp Gln Ile Asp Ser Ala Ser Lys Thr Gly Pro Gly Asn ArgSer Lys Asp Gln Ile Asp Ser Ala Ser Lys Thr Gly Pro Gly Asn Arg
405 410 415405 410 415
Arg Val Glu Ser Tyr Asp Ala Asp Phe Glu Leu Val Tyr Lys Ala IleArg Val Glu Ser Tyr Asp Ala Asp Phe Glu Leu Val Tyr Lys Ala Ile
420 425 430420 425 430
Thr Gly Gly Val Val Pro Ala Phe Ser Ser Ser Gly Ala Gly Asp GluThr Gly Gly Val Val Pro Ala Phe Ser Ser Ser Ser Gly Ala Gly Asp Glu
435 440 445435 440 445
Thr His Leu Pro Ala Arg Glu Ser Thr Trp Ser Ser Leu Arg Arg LysThr His Leu Pro Ala Arg Glu Ser Thr Trp Ser Ser Leu Arg Arg Lys
450 455 460450 455 460
Phe Ile Ser Arg Ser Leu Ala Arg Val Tyr Ser Asp Ser Ala Leu IlePhe Ile Ser Arg Ser Leu Ala Arg Val Tyr Ser Asp Ser Ala Leu Ile
465 470 475 480465 470 475 480
Arg Asp Leu Asp Pro Arg Val Asp Arg Val Gln His Leu Ala Ala GluArg Asp Leu Asp Pro Arg Val Asp Arg Val Gln His Leu Ala Ala Glu
485 490 495485 490 495
Ala Ser Thr Ser Pro Pro Phe Leu Ser Pro Ser Ser Leu Ser Ser AspAla Ser Thr Ser Pro Pro Phe Leu Ser Pro Ser Ser Leu Ser Ser Asp
500 505 510500 505 510
Ser Ser Ile Ser Ser Lys Tyr Ser Ser Asp Ser Pro Ser Leu Ser ProSer Ser Ile Ser Ser Lys Tyr Ser Ser Asp Ser Pro Ser Leu Ser Pro
515 520 525515 520 525
Ser Thr Ser Ser Pro Thr Ser Leu Gly Leu Ser Pro Ala Ser Ser AsnSer Thr Ser Ser Pro Thr Ser Leu Gly Leu Ser Pro Ala Ser Ser Asn
530 535 540530 535 540
Phe Ser His Thr Leu Val Pro Ser Ser Arg Ser Pro Leu His Gln SerPhe Ser His Thr Leu Val Pro Ser Ser Arg Ser Pro Leu His Gln Ser
545 550 555 560545 550 555 560
Ser Asn Glu Glu Pro Ser Lys Ser Gly Leu Gly Ser Ile Arg Ser ProSer Asn Glu Glu Pro Ser Lys Ser Gly Leu Gly Ser Ile Arg Ser Pro
565 570 575565 570 575
Ser Lys Thr Ser Ser Ile Ala Glu Arg Arg Gly Gly Phe Ser Ser LeuSer Lys Thr Ser Ser Ser Ile Ala Glu Arg Arg Gly Gly Phe Ser Ser Leu
580 585 590580 585 590
Lys Leu Pro Ser Phe Gln Lys Asp Leu Val Leu Pro Pro Arg Val ProLys Leu Pro Ser Phe Gln Lys Asp Leu Val Leu Pro Pro Arg Val Pro
595 600 605595 600 605
Thr Ser Leu Arg Arg Glu Glu Glu Val Thr Asp Lys Ser Asn Asn AsnThr Ser Leu Arg Arg Glu Glu Glu Val Thr Asp Lys Ser Asn Asn Asn
610 615 620610 615 620
Ser Val Lys Gln Leu Thr Gly Val Cys Cys Pro Glu Lys Cys Thr GlySer Val Lys Gln Leu Thr Gly Val Cys Cys Pro Glu Lys Cys Thr Gly
625 630 635 640625 630 635 640
Asn Thr Ser Thr Val His Thr Lys Thr Gly Ile Thr Glu Arg Thr AspAsn Thr Ser Thr Val His Thr Lys Thr Gly Ile Thr Glu Arg Thr Asp
645 650 655645 650 655
Ser Ile Ser Glu Ala Cys Gly Asn Leu Gln Leu Leu Val Tyr Arg TrpSer Ile Ser Glu Ala Cys Gly Asn Leu Gln Leu Leu Val Tyr Arg Trp
660 665 670660 665 670
Pro Ser Lys Glu Lys Leu Thr Thr Phe Thr Arg Lys Asp Leu Asp ProPro Ser Lys Glu Lys Leu Thr Thr Phe Thr Arg Lys Asp Leu Asp Pro
675 680 685675 680 685
Lys Ser Val Leu Ile Phe Val Thr Pro Glu Asp Ser Arg Ser Glu AlaLys Ser Val Leu Ile Phe Val Thr Pro Glu Asp Ser Arg Ser Glu Ala
690 695 700690 695 700
Val Lys Thr Val His Ile Trp Val Gly Gly Glu Tyr Glu Ser Ser LysVal Lys Thr Val His Ile Trp Val Gly Gly Glu Tyr Glu Ser Ser Lys
705 710 715 720705 710 715 720
Cys Val Asp Thr Val Asp Trp Gln Gln Val Val Gly Asp Phe Phe HisCys Val Asp Thr Val Asp Trp Gln Gln Val Val Gly Asp Phe Phe His
725 730 735725 730 735
Leu Lys Glu Leu Gly Asn Thr Leu Pro Val Lys Val Phe Lys Glu HisLeu Lys Glu Leu Gly Asn Thr Leu Pro Val Lys Val Phe Lys Glu His
740 745 750740 745 750
Glu Thr Glu Asn Leu Leu Glu Val Leu Asn Ala ArgGlu Thr Glu Asn Leu Leu Glu Val Leu Asn Ala Arg
755 760755 760
<210> 4<210> 4
<211> 2295<211> 2295
<212> DNA<212> DNA
<213> Oryza sativa<213> Oryza sativa
<400> 4<400> 4
atggccacgc ccgacgacgg cggagggggt gtcggcggcg gcgcggggaa gaagttctgg 60atggccacgc ccgacgacgg cggagggggt gtcggcggcg gcgcggggaa gaagttctgg 60
cgctccgcgt cgtggtccgc ctcccgggac acgccgcccg atgcggcgac gcctgcgggg 120cgctccgcgt cgtggtccgc ctcccgggac acgccgcccg atgcggcgac gcctgcgggg 120
gcgggcggcg gcggcggcgc gggggcaggg caggcgcgcc gcatcccgcc gccgccgcct 180gcgggcggcg gcggcggcgc gggggcaggg caggcgcgcc gcatcccgcc gccgccgcct 180
ctgaccccgc gcggcgggaa ggggcggtcc tgcctcccgc cgctgcagcc gctcaacatc 240ctgaccccgc gcggcgggaa ggggcggtcc tgcctcccgc cgctgcagcc gctcaacatc 240
acccgccgga gcctcgacga gtggccgcgg gcgggctccg acgacgtggg cgagtggccc 300acccgccgga gcctcgacga gtggccgcgg gcgggctccg acgacgtggg cgagtggccc 300
aacccgacca cccccggcgc ctccaaggcg gaaggcgccg gctcggccaa gcccggggag 360aacccgacca cccccggcgc ctccaaggcg gaaggcgccg gctcggccaa gcccggggag 360
ggcctccgct tggacctctc atccctccgg tcgcagggtc gcaaagacca gatcgccttc 420ggcctccgct tggacctctc atccctccgg tcgcagggtc gcaaagacca gatcgccttc 420
ttcgacaagg agtgcttcaa ggttgctgac cacgtctacc ttggaggcga cgccgttgcc 480ttcgacaagg agtgcttcaa ggttgctgac cacgtctacc ttggaggcga cgccgttgcc 480
aagaaccgcg acatcctgcg caagaacggg atcacccacg tgctcaattg cgtcggcttc 540aagaaccgcg acatcctgcg caagaacggg atcacccacg tgctcaattg cgtcggcttc 540
gtttgtcccg agtacttcaa gtcggacctc gtctaccgga cgctttggct tcaggacagc 600gtttgtcccg agtacttcaa gtcggacctc gtctaccgga cgctttggct tcaggacagc 600
ccgacggagg acatcaccag catcttgtat gatgtgtttg attactttga ggacgtcagg 660ccgacggagg acatcaccag catcttgtat gatgtgtttg attactttga ggacgtcagg 660
gagcagggtg ggcgtgtctt cgtacattgt tgccaggggg tatcaaggtc tacatcgctg 720gagcagggtg ggcgtgtctt cgtacattgt tgccagggggg tatcaaggtc tacatcgctg 720
gtgatagcgt acttgatgtg gagggaaggg cagagctttg acgatgcgtt ccagcttgtg 780gtgatagcgt acttgatgtg gagggaaggg cagagctttg acgatgcgtt ccagcttgtg 780
aaagctgccc gggggatcgc aaatccaaat atggggttcg cttgccagct actccagtgc 840aaagctgccc gggggatcgc aaatccaaat atggggttcg cttgccagct actccagtgc 840
cagaagcggg ttcatgcgat tccgctatct ccaaactcgg ttctgcggat gtaccggatg 900cagaagcggg ttcatgcgat tccgctatct ccaaactcgg ttctgcggat gtaccggatg 900
gcacctcact caccttatgc gccgctgcat ttagtaccca aaatgctgaa cgaaccctca 960gcacctcact caccttatgc gccgctgcat ttagtaccca aaatgctgaa cgaaccctca 960
cctgctgccc tggactctag gggtgcattc atcgttcatg tgctctcatc gatctatgtt 1020cctgctgccc tggactctag gggtgcattc atcgttcatg tgctctcatc gatctatgtt 1020
tgggttggaa tgaagtgtga tcaagtaatg gagaaggatg caagagcagc ggcgttccag 1080tgggttggaa tgaagtgtga tcaagtaatg gagaaggatg caagagcagc ggcgttccag 1080
gtggtgaggt atgagaaggt gcaggggcat atcaaagttg tcagggaagg attggagcta 1140gtggtgaggt atgagaaggt gcaggggcat atcaaagttg tcagggaagg attggagcta 1140
ccagaatttt gggacgcctt ttcaagtgca cctgttaatt cagacagcaa tacaaagatt 1200ccagaatttt gggacgcctt ttcaagtgca cctgttaatt cagacagcaa tacaaagatt 1200
agcaaggatc agattgattc agcatccaag actggcccgg ggaaccgtag ggtggaatct 1260agcaaggatc agattgattc agcatccaag actggcccgg ggaaccgtag ggtggaatct 1260
tatgatgctg attttgagct tgtatacaaa gcaatcactg ggggtgttgt gccagcattc 1320tatgatgctg attttgagct tgtatacaaa gcaatcactg ggggtgttgt gccagcattc 1320
tcttcttcag gtgctggtga tgagacccat cttccagcaa gagaaagtac ctggagttca 1380tcttcttcag gtgctggtga tgagacccat cttccagcaa gagaaagtac ctggagttca 1380
ctaaggcgca agttcatctc taggtcgtta gctcgagtct attcagattc tgctttaatc 1440ctaaggcgca agttcatctc taggtcgtta gctcgagtct attcagattc tgctttaatc 1440
agggacttgg atccgcgggt ggaccgagta caacacctgg ctgcagaggc atcaacatca 1500agggacttgg atccgcgggt ggaccgagta caacacctgg ctgcagaggc atcaacatca 1500
ccacctttcc tatctccgag ctctttgtca tcagattcaa gcatcagttc aaagtatagt 1560ccacctttcc tatctccgag ctctttgtca tcagattcaa gcatcagttc aaagtatagt 1560
tcagactcac cctcactgtc accttcaact agctcgccaa catcacttgg tctttcgccc 1620tcagactcac cctcactgtc accttcaact agctcgccaa catcacttgg tctttcgccc 1620
gcttcatcta atttttccca cactttggtg ccatcatcta ggtcccccct tcaccaatca 1680gcttcatcta atttttccca cactttggtg ccatcatcta ggtcccccct tcaccaatca 1680
tctaacgagg aaccttcaaa atctggcctg gggtcaatac gctctccctc caagacctct 1740tctaacgagg aaccttcaaa atctggcctg gggtcaatac gctctccctc caagacctct 1740
tctatagcag aaagaagagg agggttttca tctctgaagt taccatcatt ccaaaaggat 1800tctatagcag aaagaagagg agggttttca tctctgaagt taccatcatt ccaaaaggat 1800
ctagtattac caccaagggt accgaccagc cttcgcagag aagaggaagt cacagataag 1860ctagtattac caccaagggt accgaccagc cttcgcagag aagaggaagt cacagataag 1860
agtaataata atagtgtaaa acagcttact ggtgtgtgtt gcccagagaa atgcactggc 1920agtaataata atagtgtaaa acagcttact ggtgtgtgtt gcccagagaa atgcactggc 1920
aatacttcaa cagtgcacac taaaactgga ataactgagc gtactgacag tatctcagag 1980aatacttcaa cagtgcacac taaaactgga ataactgagc gtactgacag tatctcagag 1980
gcttgcggta atttacaact attagtctac cgttggccca gcaaggaaaa gctaactact 2040gcttgcggta atttacaact attagtctac cgttggccca gcaaggaaaa gctaactact 2040
ttcactcgca aggatcttga cccaaaatca gttttgattt ttgttactcc tgaagacagc 2100ttcactcgca aggatcttga cccaaaatca gttttgattt ttgttactcc tgaagacagc 2100
agaagtgaag cagttaaaac ggtacacatt tgggtaggag gtgaatatga gagcagcaaa 2160agaagtgaag cagttaaaac ggtacacatt tgggtagggag gtgaatatga gagcagcaaa 2160
tgtgttgaca ctgttgattg gcagcaagtt gttggtgatt tttttcatct aaaggagctc 2220tgtgttgaca ctgttgattg gcagcaagtt gttggtgatt tttttcatct aaaggagctc 2220
ggcaatactc ttcctgttaa ggttttcaaa gagcatgaaa cggagaatct tttggaagtg 2280ggcaatactc ttcctgttaa ggttttcaaa gagcatgaaa cggagaatct tttggaagtg 2280
ctgaatgctc gttaa 2295ctgaatgctc gttaa 2295
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 5<400> 5
atagctagag agagcggtca 20
<210> 6<210> 6
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 6<400> 6
gagagtaact gaagcagcaa g 21gagagtaact gaagcagcaa g 21
<210> 7<210> 7
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 7<400> 7
tgactttaag ggcctgttt 19
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 8<400> 8
ggggtatttc agacaattca 20ggggtatttc agacaattca 20
<210> 9<210> 9
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 9<400> 9
ctggatatac atgtgtctaa ttct 24ctggatatac atgtgtctaa ttct 24
<210> 10<210> 10
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 10<400> 10
gcatatccag gttaatttat agc 23gcatatccag gttaatttat agc 23
<210> 11<210> 11
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 11<400> 11
tggctaaaat aatatcgtat cg 22tggctaaaat aatatcgtat cg 22
<210> 12<210> 12
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 12<400> 12
aggatctcag ttgcagtaat ct 22aggatctcag ttgcagtaat ct 22
<210> 13<210> 13
<211> 24<211> 24
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 13<400> 13
gggggttctt ctacttttgt tttt 24gggggttctt ctacttttgt tttt 24
<210> 14<210> 14
<211> 24<211> 24
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 14<400> 14
ctccacatca agtacgctat cacc 24ctccacatca agtacgctat cacc 24
<210> 15<210> 15
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 15<400> 15
gatcaataaa agatggtcat cagtg 25gatcaataaa agatggtcat cagtg 25
<210> 16<210> 16
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 16<400> 16
ggagatagga aaggtggtga tgt 23
<210> 17<210> 17
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 17<400> 17
caccatggcc acgcccgacg acggcg 26caccatggcc acgcccgacg acggcg 26
<210> 18<210> 18
<211> 26<211> 26
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 18<400> 18
acgagcattc agcacttcca aaagat 26acgagcattc agcacttcca aaagat 26
<210> 19<210> 19
<211> 28<211> 28
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 19<400> 19
tcggtaccca gcagcagcca cagcaaaa 28tcggtaccca gcagcagcca cagcaaaa 28
<210> 20<210> 20
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 20<400> 20
tctctagagc tgctgatgct gatgccat 28tctctagagc tgctgatgct gatgccat 28
<210> 21<210> 21
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 21<400> 21
cccggatccg agctcatgga cgccggggcg cagcc 35cccggatccg agctcatgga cgccggggcg cagcc 35
<210> 22<210> 22
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 22<400> 22
gggggtacca ctagtttgta cttggcggtg acctc 35gggggtacca ctagtttgta cttggcggtg acctc 35
<210> 23<210> 23
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 23<400> 23
ggcagttctg gcgctccgcg tcg 23ggcagttctg gcgctccgcg tcg 23
<210> 24<210> 24
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 24<400> 24
aaaccgacgc ggagcgccag aac 23aaaccgacgc ggagcgccag
<210> 25<210> 25
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 25<400> 25
ggcagcgacg tgaggtcccg ctg 23ggcagcgacg tgaggtcccg ctg 23
<210> 26<210> 26
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 26<400> 26
aaaccagcgg gacctcacgt cgc 23aaaccagcgg gacctcacgt cgc 23
<210> 27<210> 27
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 27<400> 27
ggcacctcat cgatacattt cat 23ggcacctcat cgatacattt
<210> 28<210> 28
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 28<400> 28
aaacatgaaa tgtatcgatg agg 23aaacatgaaa tgtatcgatg agg 23
<210> 29<210> 29
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 29<400> 29
cgggatcgag ggaaggattt caatggccac gcccga 36cgggatcgag ggaaggattt caatggccac gcccga 36
<210> 30<210> 30
<211> 38<211> 38
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 30<400> 30
agcttattta attacctgca ggttaacgag cattcagc 38agcttattta attacctgca ggttaacgag cattcagc 38
<210> 31<210> 31
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 31<400> 31
atggccatgg aggccgaatt catggccacg cccga 35atggccatgg aggccgaatt catggccacg cccga 35
<210> 32<210> 32
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 32<400> 32
tgcggccgct gcaggtcgtg cggccgctgc aggtcg 36tgcggccgct gcaggtcgtg cggccgctgc aggtcg 36
<210> 33<210> 33
<211> 35<211> 35
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 33<400> 33
atggccatgg aggccagtga aatggccacg cccga 35atggccatgg aggccagtga aatggccacg cccga 35
<210> 34<210> 34
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 34<400> 34
tgcagctcga gctcgatgga tcggccgctg caggtcg 37tgcagctcga gctcgatgga tcggccgctg caggtcg 37
<210> 35<210> 35
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 35<400> 35
atggccatgg aggcatggac gccggggcgc agccgc 36atggccatgg aggcatggac gccggggcgc agccgc 36
<210> 36<210> 36
<211> 42<211> 42
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 36<400> 36
tgcggccgct gcaggtctac tggtaatcag ggttgaacgc aa 42tgcggccgct gcaggtctac tggtaatcag ggttgaacgc aa 42
<210> 37<210> 37
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 37<400> 37
atggccatgg aggccatgga cgccggggcg cagccgc 37atggccatgg aggccatgga cgccggggcg cagccgc 37
<210> 38<210> 38
<211> 40<211> 40
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 38<400> 38
tgcagctcga gctcctactg gtaatcaggg ttgaacgcaa 40tgcagctcga gctccctactg gtaatcaggg ttgaacgcaa 40
<210> 39<210> 39
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 39<400> 39
gatttctgag gaggatcttc ccggggccac gcccga 36gatttctgag gaggatcttc ccggggccac gcccga 36
<210> 40<210> 40
<211> 37<211> 37
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 40<400> 40
aagcagggca tgcctgcagg tcgacttaac gagcatt 37aagcagggca tgcctgcagg tcgacttaac gagcatt 37
<210> 41<210> 41
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 41<400> 41
cgactctagg agctcggtac ccgggatggc cacgcc 36cgactctagg agctcggtac ccgggatggc cacgcc 36
<210> 42<210> 42
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 42<400> 42
gaacatcgta tgggtacata ctagtacgag cattca 36gaacatcgta tgggtacata ctagtacgag cattca 36
<210> 43<210> 43
<211> 38<211> 38
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 43<400> 43
gatttctgag gaggatcttc ccggggacgc cggggcgc 38gatttctgag gaggatcttc ccggggacgc cggggcgc 38
<210> 44<210> 44
<211> 41<211> 41
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 44<400> 44
aagcagggca tgcctgcagg tcgacctact ggtaatcagg g 41aagcagggca tgcctgcagg tcgacctact ggtaatcagg g 41
<210> 45<210> 45
<211> 40<211> 40
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 45<400> 45
cgactctagg agctcggtac ccgggatgga cgccggggcg 40cgactctagg agctcggtac ccgggatgga cgccggggcg 40
<210> 46<210> 46
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 46<400> 46
gaacatcgta tgggtacata ctagtctggt aatcagggtt ga 42gaacatcgta tgggtacata ctagtctggt aatcagggtt ga 42
<210> 47<210> 47
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 47<400> 47
agagaacacg ggggacgagc tcggtaccat ggccac 36agagaacacg ggggacgagc tcggtaccat ggccac 36
<210> 48<210> 48
<211> 37<211> 37
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 48<400> 48
atccaagggc gaattggtcg actctagaac gagcatt 37atccaagggc gaattggtcg actctagaac gagcatt 37
<210> 49<210> 49
<211> 50<211> 50
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 49<400> 49
tttggagaga acacggggga cttctagaat ggacgccggg gcgcagccgc 50tttggagaga acacggggga cttctagaat ggacgccggg gcgcagccgc 50
<210> 50<210> 50
<211> 48<211> 48
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 50<400> 50
tcggagatta gcttttgttc ggatccctgg taatcagggt tgaacgca 48tcggagatta gcttttgttc ggatccctgg taatcagggt tgaacgca 48
<210> 51<210> 51
<211> 33<211> 33
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 51<400> 51
ccggaattcc catggccacg cccgacgacg gcg 33ccggaattcc catggccacg cccgacgacg gcg 33
<210> 52<210> 52
<211> 38<211> 38
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 52<400> 52
ataagaatgc ggccgcttaa cgagcattca gcacttcc 38ataagaatgc ggccgcttaa cgagcattca gcacttcc 38
<210> 53<210> 53
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 53<400> 53
cgggatcgag ggaaggattt caatgcgacc gggcgg 36cgggatcgag ggaaggattt caatgcgacc gggcgg 36
<210> 54<210> 54
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence (artificial sequence)
<400> 54<400> 54
agcttattta attacctgca ggtcatgacg gaggcgg 37agcttattta attacctgca ggtcatgacg gaggcgg 37
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810196424.8A CN110241130B (en) | 2018-03-09 | 2018-03-09 | GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810196424.8A CN110241130B (en) | 2018-03-09 | 2018-03-09 | GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110241130A CN110241130A (en) | 2019-09-17 |
CN110241130B true CN110241130B (en) | 2023-04-14 |
Family
ID=67882691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810196424.8A Active CN110241130B (en) | 2018-03-09 | 2018-03-09 | GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110241130B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112375779B (en) * | 2020-10-28 | 2022-07-05 | 山东舜丰生物科技有限公司 | Application of USE1 in regulation and control of plant traits |
CN118421689B (en) * | 2024-05-24 | 2024-12-31 | 四川农业大学 | Application of GSN4 gene in simultaneous regulation and control of thousand grain weight and spike grain number of rice |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1313894A (en) * | 1998-07-30 | 2001-09-19 | 辛根塔参与股份公司 | MAP kinase phosphatase mutant |
CN1786158A (en) * | 2004-12-10 | 2006-06-14 | 中国科学院上海生命科学研究院 | Paddg rice anti reverse related gene trehalose-6-phosphoric acid phosphorylase gene and its application |
CN102186879A (en) * | 2008-05-29 | 2011-09-14 | 韩诺生物制约株式会社 | Modified erythropoietin (epo)polypeptides that exhibit increased protease resistance and pharmaceutical compositions thereof |
-
2018
- 2018-03-09 CN CN201810196424.8A patent/CN110241130B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1313894A (en) * | 1998-07-30 | 2001-09-19 | 辛根塔参与股份公司 | MAP kinase phosphatase mutant |
CN1786158A (en) * | 2004-12-10 | 2006-06-14 | 中国科学院上海生命科学研究院 | Paddg rice anti reverse related gene trehalose-6-phosphoric acid phosphorylase gene and its application |
CN102186879A (en) * | 2008-05-29 | 2011-09-14 | 韩诺生物制约株式会社 | Modified erythropoietin (epo)polypeptides that exhibit increased protease resistance and pharmaceutical compositions thereof |
Non-Patent Citations (2)
Title |
---|
GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice;Tao Guo et al.;《The Plant Cell》;20180327;第30卷;第871-888页 * |
PREDICTED: protein-tyrosine-phosphatase MKP1 isoform X1 [Oryza sativa Japonica Group],NCBI Reference Sequence:XP_015639710.1;genbank;《Genbank》;20160301;第1页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110241130A (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ji et al. | The basic helix‐loop‐helix transcription factor, Os PIL 15, regulates grain size via directly targeting a purine permease gene Os PUP 7 in rice | |
AU2010234125B2 (en) | Rice zinc finger protein transcription factor DST and use thereof for regulating drought and salt tolerance | |
US11873499B2 (en) | Methods of increasing nutrient use efficiency | |
US20110207608A1 (en) | Transcriptional and post-transcription regulation of transcription factor for drought resistance | |
US11725214B2 (en) | Methods for increasing grain productivity | |
CN101161675A (en) | Rice big grain gene and uses thereof | |
CN107523574A (en) | Regulating cell programmed cell death and the rice uneven class sizes gene SPL35 of disease resistance and its application | |
US7078591B2 (en) | Cyclin-dependent kinase inhibitors as plant growth regulators | |
JP2019103526A (en) | Manipulation of self-incompatibility in plants | |
CN110241130B (en) | GSN1 Gene, Encoded Protein and Application for Controlling Plant Grain Number and Grain Weight | |
CN114807212B (en) | Gene for regulating or identifying grain type or yield character of plant and application thereof | |
Khaled et al. | Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize | |
CN101210247B (en) | Endosperm specific expression promoter, albuminous cell specific gene and application thereof | |
CN106939312B (en) | A kind of grain weight related gene and its application | |
CN111837964B (en) | A new gene TSG1 regulating tiller number and grain shape in rice and its application | |
CN115044592B (en) | Gene ZmADT2 for regulating and controlling maize plant type and resistance to tumor smut, and encoding protein and application thereof | |
US20230081195A1 (en) | Methods of controlling grain size and weight | |
US8461414B2 (en) | Gene having endoreduplication promoting activity | |
CA2632762A1 (en) | Barley row type gene and use thereof | |
CN114685634A (en) | Gene for regulating and controlling seed setting rate and application thereof | |
CN101575366B (en) | Rice plant type gene and application thereof | |
WO2021035558A1 (en) | Flowering time genes and methods of use | |
CN114763373B (en) | Gene for regulating spike number and application thereof | |
JP2004500091A (en) | Modification and adaptation of growth under hypoxic conditions | |
Sokolowska et al. | INDETERMINATE DOMAIN-DELLA protein interactions orchestrate gibberellin-mediated cell elongation in wheat and barley |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200511 Address after: 200032 building 4, No. 300 Fenglin Road, Xuhui District, Shanghai Applicant after: Center for excellence and innovation in molecular plant science, Chinese Academy of Sciences Address before: 200031 Yueyang Road, Shanghai, No. 319, No. Applicant before: SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES, CHINESE ACADEMY OF SCIENCES |
|
GR01 | Patent grant | ||
GR01 | Patent grant |