CN110240668A - Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst - Google Patents
Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst Download PDFInfo
- Publication number
- CN110240668A CN110240668A CN201910547870.3A CN201910547870A CN110240668A CN 110240668 A CN110240668 A CN 110240668A CN 201910547870 A CN201910547870 A CN 201910547870A CN 110240668 A CN110240668 A CN 110240668A
- Authority
- CN
- China
- Prior art keywords
- ethyl
- catalyst
- component
- compound
- catalyst component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 92
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000011954 Ziegler–Natta catalyst Substances 0.000 title claims abstract description 10
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 57
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000005977 Ethylene Substances 0.000 claims abstract description 42
- 239000011777 magnesium Substances 0.000 claims abstract description 29
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 29
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000007334 copolymerization reaction Methods 0.000 claims abstract description 11
- -1 ethyl acetate compound Chemical class 0.000 claims description 67
- 239000010936 titanium Substances 0.000 claims description 38
- 239000007787 solid Substances 0.000 claims description 36
- 229910052719 titanium Inorganic materials 0.000 claims description 36
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Natural products CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 35
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 20
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 239000002904 solvent Substances 0.000 claims description 17
- 150000001298 alcohols Chemical class 0.000 claims description 11
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 239000003701 inert diluent Substances 0.000 claims description 8
- 150000002430 hydrocarbons Chemical group 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- SJMLNDPIJZBEKY-UHFFFAOYSA-N ethyl 2,2,2-trichloroacetate Chemical compound CCOC(=O)C(Cl)(Cl)Cl SJMLNDPIJZBEKY-UHFFFAOYSA-N 0.000 claims description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- NIJGVVHCUXNSLL-UHFFFAOYSA-N ethyl 2,2-dibromoacetate Chemical compound CCOC(=O)C(Br)Br NIJGVVHCUXNSLL-UHFFFAOYSA-N 0.000 claims description 4
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 claims description 4
- YMCDYRGMTRCAPZ-UHFFFAOYSA-N ethyl 2-acetyl-3-oxobutanoate Chemical compound CCOC(=O)C(C(C)=O)C(C)=O YMCDYRGMTRCAPZ-UHFFFAOYSA-N 0.000 claims description 4
- VEUUMBGHMNQHGO-UHFFFAOYSA-N ethyl chloroacetate Chemical compound CCOC(=O)CCl VEUUMBGHMNQHGO-UHFFFAOYSA-N 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- GSWWPLIBOXOWMF-UHFFFAOYSA-N ethyl 2-(chloromethoxy)acetate Chemical compound CCOC(=O)COCCl GSWWPLIBOXOWMF-UHFFFAOYSA-N 0.000 claims description 3
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 125000005233 alkylalcohol group Chemical group 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 claims description 2
- ZIFPHSMTRJVGDT-UHFFFAOYSA-N ethyl 2,2,2-triiodoacetate Chemical compound CCOC(=O)C(I)(I)I ZIFPHSMTRJVGDT-UHFFFAOYSA-N 0.000 claims description 2
- CJMICXOYEKRPMW-UHFFFAOYSA-N ethyl 2,2-diiodoacetate Chemical compound CCOC(=O)C(I)I CJMICXOYEKRPMW-UHFFFAOYSA-N 0.000 claims description 2
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 claims description 2
- MFFXVVHUKRKXCI-UHFFFAOYSA-N ethyl iodoacetate Chemical compound CCOC(=O)CI MFFXVVHUKRKXCI-UHFFFAOYSA-N 0.000 claims description 2
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- ZZUKBDJWZXVOQG-UHFFFAOYSA-N ethyl 2,2,2-tribromoacetate Chemical compound CCOC(=O)C(Br)(Br)Br ZZUKBDJWZXVOQG-UHFFFAOYSA-N 0.000 claims 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims 1
- NPSWTRNNDJCJMR-UHFFFAOYSA-N C(C)(=O)OCC.ClC(C(=O)O)Cl Chemical compound C(C)(=O)OCC.ClC(C(=O)O)Cl NPSWTRNNDJCJMR-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 14
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 238000009826 distribution Methods 0.000 abstract description 5
- 239000002002 slurry Substances 0.000 abstract description 3
- 238000012685 gas phase polymerization Methods 0.000 abstract description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 abstract 2
- 229920002554 vinyl polymer Polymers 0.000 abstract 2
- 239000010419 fine particle Substances 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 abstract 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 60
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 42
- 238000003756 stirring Methods 0.000 description 20
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 18
- 150000002681 magnesium compounds Chemical class 0.000 description 18
- 239000012456 homogeneous solution Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000011949 solid catalyst Substances 0.000 description 11
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 10
- 229910003074 TiCl4 Inorganic materials 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 10
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 229910001629 magnesium chloride Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- HUNISAHOCCASGM-UHFFFAOYSA-N ethyl 2-dimethoxyphosphorylacetate Chemical compound CCOC(=O)CP(=O)(OC)OC HUNISAHOCCASGM-UHFFFAOYSA-N 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- OIGWAXDAPKFNCQ-UHFFFAOYSA-N 4-isopropylbenzyl alcohol Chemical compound CC(C)C1=CC=C(CO)C=C1 OIGWAXDAPKFNCQ-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 230000037048 polymerization activity Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- PAHCSXMDRKCMGY-UHFFFAOYSA-N 2-(chloromethoxy)ethyl acetate Chemical compound CC(=O)OCCOCCl PAHCSXMDRKCMGY-UHFFFAOYSA-N 0.000 description 1
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical group [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N carbon tetrachloride Substances ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- IWYBVQLPTCMVFO-UHFFFAOYSA-N ethyl 2,2-dichloroacetate Chemical compound CCOC(=O)C(Cl)Cl IWYBVQLPTCMVFO-UHFFFAOYSA-N 0.000 description 1
- BTRGZBIXPLFVNK-UHFFFAOYSA-N ethyl 2-(4-methylphenyl)acetate Chemical compound CCOC(=O)CC1=CC=C(C)C=C1 BTRGZBIXPLFVNK-UHFFFAOYSA-N 0.000 description 1
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
技术领域technical field
本发明属于乙烯聚合催化剂领域,涉及一种Ziegler-Natta催化剂,尤其是一种用于乙烯聚合的Ziegler-Natta催化剂的给电子体、催化剂组分及其在乙烯聚合反应中的应用。The invention belongs to the field of ethylene polymerization catalysts, and relates to a Ziegler-Natta catalyst, in particular to an electron donor and a catalyst component of the Ziegler-Natta catalyst used for ethylene polymerization and its application in ethylene polymerization.
技术背景technical background
近年来,高端牌号聚烯烃专用料的开发和应用一直是该领域内的重点,相应催化剂的研究开发也是聚烯烃树脂研究领域中的难点,催化剂的组成和结构对聚烯烃树脂的结构和性能有着重要的影响。钛系Ziegler-Natta催化剂目前仍然是工业上生产聚烯烃树脂的主要催化剂,开发出高催化活性、氢调敏感性好、共聚性能好、得到聚合物粒度分布均匀、细粉少、蜡含量低、生产平稳可控的聚烯烃催化剂是科研人员和工程技术人员追求的目标。有很多文献和专利报道了许多制备氯化镁负载的钛系Ziegler-Natta催化剂作为烯烃聚合和共聚合用催化剂的方法。根据聚合工艺的不同,要求所对应的催化剂的性能也各有不同,因此对应的催化剂的生产方法也略有不同。如用于乙烯气相流化床聚合工艺的Ziegler-Natta催化剂,要求催化剂颗粒形态好、细粉少,这样用于乙烯气相流化床聚合时产生的聚乙烯细粉少,可以避免因静电而引起的反应器结片。用于乙烯气相聚合的催化剂一般是将活性组分直接负载于大表面的惰性载体如硅胶等上,由于硅胶的颗粒直径容易控制,而且颗粒形态较好,因此可得到颗粒均匀的催化剂粒子。但由于载体上活性组分的负载量受到限制,因此这种方法制得的催化剂中钛含量较低,聚合活性不高。例如,在专利CN99103280中,以MgCl2、SiO2为载体,TiCl4为活性组分,催化剂的制备方法如下:将MgCl2在THF中与TiCl4反应形成催化剂母液,再与经烷基铝活化处理过的载体SiO2混合,除去部分四氢呋喃后制得催化剂前体组分。在用于乙烯聚合时,由于催化剂中的钛含量较低,从而聚合活性较低。因此,这种催化剂体系虽然可用于乙烯的气相流化床聚合工艺,但由于较低的催化活性很难适用于乙烯的淤浆聚合工艺中。In recent years, the development and application of high-end polyolefin special materials has always been the focus in this field, and the research and development of corresponding catalysts is also a difficult point in the field of polyolefin resin research. The composition and structure of catalysts have great influence on the structure and performance of polyolefin resins. important influence. Titanium-based Ziegler-Natta catalysts are still the main catalysts for the industrial production of polyolefin resins. They have been developed with high catalytic activity, good hydrogen adjustment sensitivity, good copolymerization performance, uniform particle size distribution, less fine powder, and low wax content. The production of stable and controllable polyolefin catalysts is the goal pursued by researchers and engineers. There are many documents and patents reporting many methods for preparing magnesium chloride-supported titanium-based Ziegler-Natta catalysts as catalysts for olefin polymerization and copolymerization. Depending on the polymerization process, the performance of the corresponding catalyst is also different, so the production method of the corresponding catalyst is also slightly different. For example, the Ziegler-Natta catalyst used in the ethylene gas-phase fluidized-bed polymerization process requires good catalyst particle shape and less fine powder, so that the polyethylene fine powder produced when used in ethylene gas-phase fluidized-bed polymerization can avoid static electricity. Reactor slices. Catalysts for gas-phase polymerization of ethylene are generally loaded with active components directly on inert carriers with large surfaces such as silica gel. Since the particle diameter of silica gel is easy to control and the particle shape is good, catalyst particles with uniform particles can be obtained. However, since the loading amount of the active components on the carrier is limited, the titanium content in the catalyst prepared by this method is low, and the polymerization activity is not high. For example, in the patent CN99103280, MgCl 2 and SiO 2 are used as the carrier, and TiCl 4 is the active component. The preparation method of the catalyst is as follows: MgCl 2 is reacted with TiCl 4 in THF to form a catalyst mother liquor, and then activated with alkylaluminum The treated carrier SiO 2 was mixed, and the catalyst precursor component was prepared after removing part of THF. When used in ethylene polymerization, due to the low content of titanium in the catalyst, the polymerization activity is low. Therefore, although this catalyst system can be used in the gas-phase fluidized bed polymerization process of ethylene, it is difficult to be suitable for the slurry polymerization process of ethylene due to its low catalytic activity.
用于乙烯淤浆聚合工艺的Ziegler-Natta催化剂,要求催化剂活性高、氢调敏感性能好,同时要求聚合产物细粉少、蜡含量少,这样可以保证生产装置的连续长周期运行。对于这种催化剂的制备方法是将氯化镁等镁化合物溶解在溶剂中得到均匀溶液,然后再将该溶液与钛化合物和给电子体混合,通过沉淀的方法得到含镁、钛和给电子体的固体物,并将该固体物用过量的液态钛化合物进行处理后得到催化剂颗粒。如中国专利CN1099041A、CN1229092、CN1958620A、CN100513433、CN100532406、CN102344514B、CN102344515B、CN101274967B、CN102453172A、CN102432726A、CN102344506A、CN102344507、CN102286119A、CN102286120A等公开了制备这种催化剂的方法。这种催化剂的制备一般是通过氯化镁的结晶析出过程控制催化剂的颗粒大小和颗粒形态,在析出过程中加入给电子体化合物改善催化剂性能。加入的给电子体化合物既影响催化剂的颗粒形态、又影响催化剂的氢调敏感性和共聚性能,因此给电子体的选择是该类催化剂开发的一个关键。如中国专利CN1958620A采用四乙氧基硅烷为给电子体、CN2010102089331采用带有机官能团的一类硅氧烷化合物(POSS)为给电子体,但这种硅氧烷化合物的价格非常昂贵,限制了它在催化剂中的应用。The Ziegler-Natta catalyst used in the ethylene slurry polymerization process requires high catalyst activity and good hydrogen adjustment sensitivity. At the same time, it is required to have less fine powder and less wax content in the polymerization product, so as to ensure continuous long-term operation of the production unit. The preparation method for this catalyst is to dissolve magnesium compounds such as magnesium chloride in a solvent to obtain a uniform solution, and then mix the solution with a titanium compound and an electron donor, and obtain a solid containing magnesium, titanium and an electron donor by precipitation. matter, and the solid matter is treated with an excess of liquid titanium compound to obtain catalyst particles.如中国专利CN1099041A、CN1229092、CN1958620A、CN100513433、CN100532406、CN102344514B、CN102344515B、CN101274967B、CN102453172A、CN102432726A、CN102344506A、CN102344507、CN102286119A、CN102286120A等公开了制备这种催化剂的方法。 The preparation of this catalyst is generally to control the particle size and particle shape of the catalyst through the crystallization and precipitation process of magnesium chloride, and add electron donor compounds during the precipitation process to improve the performance of the catalyst. The added electron donor compound not only affects the particle shape of the catalyst, but also affects the hydrogen modulation sensitivity and copolymerization performance of the catalyst, so the selection of the electron donor is a key to the development of this type of catalyst. For example, Chinese patent CN1958620A adopts tetraethoxysilane as electron donor, and CN2010102089331 adopts a class of siloxane compound (POSS) with organic functional groups as electron donor, but the price of this siloxane compound is very expensive, which limits its application in catalysts.
发明内容Contents of the invention
本发明是针对上述现有技术方法的不足,提供一种乙烯聚合Ziegler-Natta催化剂的给电子体、包含该给电子体的催化剂组分,包含该催化剂组分的催化剂,及其在乙烯聚合、共聚合反应中的应用。The present invention is aimed at the deficiency of above-mentioned prior art method, provides a kind of electron donor of ethylene polymerization Ziegler-Natta catalyst, the catalyst component that comprises this electron donor, the catalyst that comprises this catalyst component, and its in ethylene polymerization, Applications in copolymerization reactions.
一种Ziegler-Natta催化剂的给电子体,为取代乙酸乙酯化合物,具有如下结构:The electron donor of a kind of Ziegler-Natta catalyst, for replacing ethyl acetate compound, has following structure:
式中:R1、R2和R3可以相同或不同,分别选自氢、甲基、乙基、C3~C10的烷基、环烷基、芳香基、卤素、烷基膦酰基、烷氧基及卤代烷氧基等;In the formula: R 1 , R 2 and R 3 can be the same or different, and they are respectively selected from hydrogen, methyl, ethyl, C3-C10 alkyl, cycloalkyl, aryl, halogen, alkylphosphono, alkoxy group and haloalkoxy group, etc.;
优选的,取代乙酸乙酯化合物为:氯乙酸乙酯、溴乙酸乙酯、碘乙酸乙酯、二氯乙酸乙酯、二溴乙酸乙酯、二碘乙酸乙酯、三氯乙酸乙酯、三溴乙酸乙酯、三碘乙酸乙酯、三甲基乙酸乙酯、氰基乙酸乙酯、二甲基膦酰基乙酸乙酯、二乙酰乙酸乙酯、对甲苯乙酸乙酯、2-(氯甲氧基)乙酸乙酯等。Preferably, the substituted ethyl acetate compound is: ethyl chloroacetate, ethyl bromoacetate, ethyl iodoacetate, ethyl dichloroacetate, ethyl dibromoacetate, ethyl diiodoacetate, ethyl trichloroacetate, trichloroacetate Ethyl bromoacetate, ethyl triiodoacetate, ethyl trimethylacetate, ethyl cyanoacetate, ethyl dimethylphosphonoacetate, ethyl diacetoacetate, ethyl p-tolueneacetate, 2-(chloromethyl Oxy)ethyl acetate, etc.
一种包含所述的内给电子体的催化剂组分,该催化剂组分包括:A catalyst component comprising the internal electron donor, the catalyst component comprising:
①镁络合物;②钛化合物;③取代乙酸乙酯化合物;①Magnesium complexes; ②Titanium compounds; ③Substituted ethyl acetate compounds;
组分①中所述的镁络合物是将卤化镁溶解于含有有机醇化合物的溶剂体系中所得到的产物;所述的有机醇化合物是碳原子数为1~10的直链、支链的烷基醇、碳原子数为3~10的环烷醇和碳原子数为7~20的芳醇,以及上述有机醇的卤代物;上述醇是单一的一种,或两种以上醇的混合物。The magnesium complex described in component ① is a product obtained by dissolving magnesium halide in a solvent system containing an organic alcohol compound; the organic alcohol compound is a straight chain or branched chain with 1 to 10 carbon atoms. Alkyl alcohols, cycloalkanols with 3 to 10 carbon atoms, aromatic alcohols with 7 to 20 carbon atoms, and halogenated organic alcohols; the above alcohols are a single type or a mixture of two or more alcohols.
组分②中所述的钛化合物通式为Ti(OR)aXb,式中R为C1~C10的脂肪烃基或芳基,X为卤素,a是0、1、2或3,b是1至4的整数,a+b=3或4。The general formula of the titanium compound described in component ② is Ti(OR) a X b , where R is a C1-C10 aliphatic hydrocarbon group or aryl group, X is a halogen, a is 0, 1, 2 or 3, and b is Integer of 1 to 4, a+b=3 or 4.
以每摩尔卤化镁计,有机醇化合物含量为:0.1~10.0摩尔,取代乙酸乙酯化合物含量为0.05~1.0摩尔,钛化合物含量为1.0~15.0摩尔。Calculated per mole of magnesium halide, the content of the organic alcohol compound is 0.1-10.0 moles, the content of the substituted ethyl acetate compound is 0.05-1.0 moles, and the content of the titanium compound is 1.0-15.0 moles.
取代乙酸乙酯化合物的加入有两种方式,分别为:There are two ways to replace the addition of ethyl acetate compound, which are:
一种所述的催化剂组分的制备方法,步骤如下:A kind of preparation method of described catalyst component, the steps are as follows:
⑴将卤化镁溶解于含有有机醇化合物的溶剂体系中,加入惰性稀释剂,溶解温度为50~125℃,得到组分①,向组分①中加入组分③,得到反应液;(1) Dissolving magnesium halide in a solvent system containing an organic alcohol compound, adding an inert diluent, the dissolution temperature is 50-125°C to obtain component ①, adding component ③ to component ① to obtain a reaction solution;
⑵在-24℃~10℃,将反应液与组分②进行接触反应,将混合物缓慢升温至80~125℃,固体物逐渐析出并形成颗粒,反应一定的时间后,除去未反应物和溶剂,并采用惰性稀释剂洗涤,得到颗粒形固体钛催化剂组分。⑵At -24°C~10°C, contact the reaction solution with component ②, and slowly raise the temperature of the mixture to 80~125°C, the solid matter gradually precipitates and forms particles, after a certain period of reaction, remove the unreacted matter and solvent , and washed with an inert diluent to obtain a particle-shaped solid titanium catalyst component.
一种所述的催化剂组分的制备方法,步骤如下:A kind of preparation method of described catalyst component, the steps are as follows:
⑴将卤化镁溶解于含有有机醇化合物的溶剂体系中,加入惰性稀释剂,溶解温度为50~125℃,得到组分①;(1) Dissolve magnesium halide in a solvent system containing organic alcohol compounds, add an inert diluent, and dissolve at a temperature of 50-125°C to obtain component ①;
⑵在-24℃~10℃,将组分①与组分②先进行接触反应,再加入组分③,将混合物缓慢升温至80~125℃,固体物逐渐析出并形成颗粒,反应一定的时间后,除去未反应物和溶剂,并采用惰性稀释剂洗涤,得到颗粒形固体钛催化剂组分。(2) At -24°C to 10°C, first contact component ① and component ② for a contact reaction, then add component ③, and slowly raise the temperature of the mixture to 80-125°C, the solids will gradually precipitate and form particles, and react for a certain period of time Afterwards, unreacted substances and solvents are removed, and an inert diluent is used for washing to obtain a particle-shaped solid titanium catalyst component.
一种包含所述催化剂组分的催化剂,包含:A catalyst comprising said catalyst component, comprising:
⑴权利要求3所述的催化剂组分;(1) the catalyst component described in claim 3;
⑵通式为AlRnX3-n的有机铝化合物,式中R为氢原子或碳原子数为1~20的烃基,X为卤素,0<n≤3。(2) Organoaluminum compounds with the general formula AlR n X 3-n , where R is a hydrogen atom or a hydrocarbon group with 1 to 20 carbon atoms, X is a halogen, and 0<n≤3.
组份⑵中铝与组分⑴中钛的摩尔比为10~1000。The molar ratio of aluminum in component (2) to titanium in component (1) is 10-1000.
一种所述的给电子体在乙烯聚合反应中的应用。An application of the electron donor in ethylene polymerization.
一种所述的催化剂组分或催化剂在乙烯聚合反应中的应用。An application of the catalyst component or catalyst in ethylene polymerization.
本发明的催化剂通过以下步骤制备:(1)使卤化镁化合物溶解在有机醇化合物中制备均相镁溶液;(2)使所述均相镁溶液与至少一种取代乙酸乙酯化合物反应产生镁组合物溶液;(3)使所述镁组合物溶液与钛化合物反应产生固体钛催化剂,与钛化合物的反应可以进行一次,也可以进行多次。所述镁化合物可以是卤化镁化合物。用于本发明的卤化镁化合物的类型可包括以下类型:二卤化镁化合物如氯化镁、碘化镁、氟化镁、和溴化镁;卤化烷基镁化合物如卤化甲基镁、卤化乙基镁、卤化丙基镁、卤化丁基镁、卤化异丁基镁、卤化己基镁、和卤化戊基镁;卤化烷氧基镁化合物如卤化甲氧基镁、卤化乙氧基镁、卤化异丙氧基镁、卤化丁氧基镁和卤化辛氧基镁;卤化芳氧基镁如卤化苯氧基镁和卤化甲基苯氧基镁。这些镁化合物可以单一化合物或以两或多种化合物的混合物形式使用。此外,上述镁化合物可有效地以与其它金属的配位化合物形式使用。其它镁化合物包括由可依赖于镁化合物制备方法而存在但不能用分子式表示的化合物,一般可视为镁化合物的混合物。例如,可用以下化合物作为镁化合物:通过镁化合物与取代乙酸乙酯化合物、包含卤素的硅烷化合物、酯、或醇反应得到的化合物;通过金属镁与醇、酚或醚在卤代硅烷、五氯化磷、或亚硫酰氯存在下反应得到的化合物。所述镁化合物可以是卤化镁,尤其是氯化镁或有1~10个碳原子的烷基的氯化烷基镁;有1~10个碳原子的烷氧基的氯化烷氧基镁;有6~20个碳原子的芳氧基的氯化芳氧基镁。所用镁溶液可通过在存在或不存在烃类溶剂的情况下使所述镁化合物溶于醇制成溶液而制备。用于本发明的烃类溶剂的类型可以是脂族烃如戊烷、己烷、庚烷、辛烷、癸烷和煤油;脂环族烃如环苯、甲基环苯、环己烷、和甲基环己烷;芳族烃如苯、甲苯、二甲苯、乙基苯等;卤代烃如二氯丙烷、二氯乙烯、三氯乙烯、四氯化碳和氯苯等。由镁化合物制备镁溶液可用醇做溶剂在加或不加烃类溶剂的情况下进行。醇的类型可包括含1~20个碳原子的醇如甲醇、乙醇、丙醇、丁醇、戊醇、己醇、辛醇、癸醇、十二烷醇、十四烷醇、十六烷醇、十八烷醇、苄醇、苯乙醇、异丙基苄醇、和枯醇,优选的醇可选自含1~12个碳原子的醇。所得催化剂的平均粒度和粒度分布可取决于所用醇的类型、醇的用量、镁化合物的类型和镁化合物与醇之比。制备镁溶液的过程中,镁化合物与醇的反应可在烃溶剂的存在下进行。反应温度虽然可根据所用醇的类型和用量改变,但可为至少约-25℃、优选约-20至150℃、或更优选约-10至110℃。反应时间可为约15分钟至10小时、或优选约30分钟至4小时。The catalyst of the present invention is prepared by the following steps: (1) dissolving a magnesium halide compound in an organic alcohol compound to prepare a homogeneous magnesium solution; (2) reacting the homogeneous magnesium solution with at least one substituted ethyl acetate compound to produce magnesium Composition solution; (3) reacting the magnesium composition solution with a titanium compound to produce a solid titanium catalyst, and the reaction with the titanium compound can be performed once or multiple times. The magnesium compound may be a magnesium halide compound. The types of magnesium halide compounds used in the present invention may include the following types: magnesium dihalide compounds such as magnesium chloride, magnesium iodide, magnesium fluoride, and magnesium bromide; alkylmagnesium halide compounds such as methylmagnesium halide, ethylmagnesium halide , propylmagnesium halide, butylmagnesium halide, isobutylmagnesium halide, hexylmagnesium halide, and pentylmagnesium halide; alkoxymagnesium halide compounds such as methoxymagnesium halide, ethoxymagnesium halide, isopropoxyhalide Magnesium halides, butoxymagnesium halides and octoxymagnesium halides; aryloxymagnesium halides such as phenoxymagnesium halides and methylphenoxymagnesium halides. These magnesium compounds may be used as a single compound or as a mixture of two or more compounds. In addition, the above-mentioned magnesium compounds can be effectively used in the form of complex compounds with other metals. Other magnesium compounds include compounds that may exist depending on the method of preparation of the magnesium compound but cannot be represented by a molecular formula, and may generally be regarded as a mixture of magnesium compounds. For example, the following compounds can be used as the magnesium compound: a compound obtained by reacting a magnesium compound with a substituted ethyl acetate compound, a halogen-containing silane compound, an ester, or an alcohol; Compounds obtained by reacting in the presence of phosphorous or thionyl chloride. The magnesium compound can be a magnesium halide, especially magnesium chloride or an alkylmagnesium chloride with an alkyl group of 1 to 10 carbon atoms; an alkoxymagnesium chloride with an alkoxy group of 1 to 10 carbon atoms; An aryloxymagnesium chloride of an aryloxy group with 6 to 20 carbon atoms. The magnesium solution used can be prepared by dissolving the magnesium compound in alcohol to make a solution in the presence or absence of a hydrocarbon solvent. The types of hydrocarbon solvents used in the present invention can be aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and kerosene; alicyclic hydrocarbons such as cyclobenzene, methylcyclobenzene, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, etc.; halogenated hydrocarbons such as dichloropropane, dichloroethylene, trichloroethylene, carbon tetrachloride, and chlorobenzene. The preparation of the magnesium solution from the magnesium compound can be carried out with or without the addition of a hydrocarbon solvent using an alcohol as a solvent. The type of alcohol may include alcohols containing 1 to 20 carbon atoms such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, dodecanol, tetradecanol, hexadecanol Alcohol, stearyl alcohol, benzyl alcohol, phenethyl alcohol, cumyl alcohol, and cumyl alcohol, preferably alcohols can be selected from alcohols containing 1 to 12 carbon atoms. The average particle size and particle size distribution of the resulting catalyst can depend on the type of alcohol used, the amount of alcohol used, the type of magnesium compound and the ratio of magnesium compound to alcohol. During the preparation of the magnesium solution, the reaction of the magnesium compound with the alcohol may be carried out in the presence of a hydrocarbon solvent. The reaction temperature may be at least about -25°C, preferably about -20 to 150°C, or more preferably about -10 to 110°C, although it may vary depending on the type and amount of alcohol used. The reaction time may be about 15 minutes to 10 hours, or preferably about 30 minutes to 4 hours.
所述的镁组合物溶液与钛化合物反应时,析出的固体钛催化剂组分的形状和大小主要取决于反应的条件。为了控制粒子形状,可能优选使所述镁化合物溶液与钛化合物、取代乙酸乙酯化合物的混合物在足够低的温度下反应产生固体物质组合物。所述的取代乙酸乙酯化合物可以在镁化合物溶液与钛化合物接触前加入体系,也可在镁化合物溶液与钛化合物接触后加入体系。所述反应温度可为约-70至70℃、更优选约-50至50℃。所述接触反应之后,使所述反应温度缓慢升高以约50至150℃下持续约0.5~5小时的充分反应。可使如上所述得到的固体催化剂粒子再与附加的钛化合物反应。所用钛化合物可以是卤化钛或卤化烷氧基钛,其中烷氧基官能团有1~20个碳原子。适当时也可使用这些化合物的混合物。这些化合物中,卤化钛或其中烷氧基官能团有1~8个碳原子的卤化烷氧基钛是适合的,更优选的化合物是四卤化钛。按本发明所述方法制备的催化剂可用于乙烯的聚合和共聚合。特别地,所述催化剂可用于乙烯的均聚,也可用于乙烯与有3或更多碳原子的α-烯烃如丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯或1-己烯的共聚。使用本发明所述催化剂的聚合反应可用催化剂体系进行,所述催化剂体系包括:(1)本文所述包括镁、钛和给电子化合物的固体钛络合物催化剂;(2)烷基金属化合物或铝氧类金属化合物。所述有机金属化合物为有1~6个碳原子的烷基的三烷基铝,如三乙基铝和三异丁基铝、或其混合物。适当时,也可使用有一或多个卤素或氢根基团的有机铝化合物,如二氯化乙基铝、氯化二乙基铝、倍半氯化乙基铝、或氢化二异丁基铝。用于聚合反应之前,可使本文所述固体钛络合物催化剂组分与乙烯或α-烯烃预聚。所述的预聚可在烃类溶剂如己烷存在下、在足够低的温度下、在乙烯或α-烯烃的压力下和在上述催化剂组分和有机铝化合物如三乙基铝存在下进行。聚合反应体系中有机铝化合物与固体钛络合物催化剂中钛的摩尔比为1~1000,优选20~200。为确保高聚合反应速率,所述聚合反应需在足够高的温度下进行,一般地,适合的温度为约20至200℃、更优选约60至95℃。聚合过程中适合的单体压力为0.1~10.0MPa、更优选约0.2~5.0MPa。When the magnesium composition solution reacts with the titanium compound, the shape and size of the precipitated solid titanium catalyst component mainly depends on the reaction conditions. In order to control particle shape, it may be preferable to react the magnesium compound solution with a mixture of titanium compound, substituted ethyl acetate compound at a temperature low enough to produce a solid matter composition. The substituted ethyl acetate compound can be added to the system before the magnesium compound solution is in contact with the titanium compound, or can be added to the system after the magnesium compound solution is in contact with the titanium compound. The reaction temperature may be about -70 to 70°C, more preferably about -50 to 50°C. After the contacting reaction, the reaction temperature is slowly increased for a sufficient reaction at about 50 to 150° C. for about 0.5 to 5 hours. The solid catalyst particles obtained as described above can then be reacted with additional titanium compounds. The titanium compound used may be a titanium halide or an alkoxy titanium halide, wherein the alkoxy functional group has 1 to 20 carbon atoms. Mixtures of these compounds may also be used where appropriate. Of these compounds, titanium halides or alkoxytitanium halides in which the alkoxy functional group has 1 to 8 carbon atoms are suitable, and more preferred compounds are titanium tetrahalides. The catalyst prepared by the method of the present invention can be used for the polymerization and copolymerization of ethylene. In particular, the catalyst can be used for the homopolymerization of ethylene, and also for ethylene with α-olefins having 3 or more carbon atoms such as propylene, 1-butene, 1-pentene, 4-methyl-1-pentene Copolymerization of alkenes or 1-hexene. Polymerization using the catalysts of the present invention can be carried out with a catalyst system comprising: (1) a solid titanium complex catalyst as described herein comprising magnesium, titanium and an electron-donating compound; (2) an alkyl metal compound or Aluminometallic compounds. The organometallic compound is a trialkylaluminum having an alkyl group of 1 to 6 carbon atoms, such as triethylaluminum and triisobutylaluminum, or a mixture thereof. Where appropriate, organoaluminum compounds with one or more halogen or hydrogen radical groups can also be used, such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, or diisobutylaluminum hydride . The solid titanium complex catalyst components described herein may be prepolymerized with ethylene or alpha-olefins prior to use in polymerization reactions. The prepolymerization can be carried out in the presence of a hydrocarbon solvent such as hexane, at a sufficiently low temperature, under the pressure of ethylene or α-olefin, and in the presence of the above-mentioned catalyst component and an organoaluminum compound such as triethylaluminum . The molar ratio of the organoaluminum compound to the titanium in the solid titanium complex catalyst in the polymerization reaction system is 1-1000, preferably 20-200. In order to ensure a high polymerization reaction rate, the polymerization reaction needs to be carried out at a sufficiently high temperature, generally, a suitable temperature is about 20 to 200°C, more preferably about 60 to 95°C. A suitable monomer pressure during polymerization is 0.1-10.0 MPa, more preferably about 0.2-5.0 MPa.
本发明的优点和积极效果Advantages and positive effects of the present invention
1、本发明发现,采用取代乙酸乙酯化合物为给电子体加入到氯化镁负载的钛系Ziegler-Natta催化剂中,可以使得到的催化剂颗粒形态规则、呈颗粒形,粒径分布好、聚合产物细粉少、堆积密度高,同时得到的催化剂具有较好的氢调敏感性能及共聚性能。1. The present invention finds that the use of substituted ethyl acetate compounds as electron donors added to titanium-based Ziegler-Natta catalysts supported by magnesium chloride can make the obtained catalyst particles regular in shape, particle-shaped, with good particle size distribution and fine-grained polymerization products. Less powder, high bulk density, and the obtained catalyst has good hydrogen adjustment sensitivity and copolymerization performance.
2、本发明所用的取代乙酸乙酯化合物的分子结构中含有卤素、膦、氰基等电负性较大的基团或原子,这些富电子基团参与镁、钛之间的配位,影响钛活性中心的化学环境,因此达到调控催化剂氢调敏感性和共聚性能的目的。2. The molecular structure of the substituted ethyl acetate compound used in the present invention contains groups or atoms with higher electronegativity such as halogen, phosphine, and cyano groups. These electron-rich groups participate in the coordination between magnesium and titanium, affecting The chemical environment of the titanium active center can thus achieve the purpose of regulating the hydrogen modulation sensitivity and copolymerization performance of the catalyst.
3、本发明所用的取代乙酸乙酯化合物属于常用化学品,生产成本较低,可应用到催化剂的工业制备中。3. The substituted ethyl acetate compound used in the present invention belongs to commonly used chemicals with low production cost and can be applied to the industrial preparation of catalysts.
具体实施方式Detailed ways
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。The present invention will be further described in detail below through the specific examples, the following examples are only descriptive, not restrictive, and cannot limit the protection scope of the present invention with this.
实施例1Example 1
把4.76克(50mmol)无水MgCl2、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时得到均相透明的溶液。向该溶液中加入15mmol的三甲基乙酸乙酯并在50℃下搅拌2小时以使三甲基乙酸乙酯溶解于该溶液。将上述得到的均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-10℃的150mL TiCl4中。滴完后使混合物温度在-10℃下保持1小时,然后在搅拌下在按照一定的升温速率把温度提至120℃,并将此温度保持2小时。反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous MgCl 2 , 75 ml of decane and 16.3 g (125 mmol) of iso-octanol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous and transparent solution. To this solution was added 15 mmol of ethyl trimethyl acetate and stirred at 50° C. for 2 hours to dissolve ethyl trimethyl acetate in the solution. The homogeneous solution obtained above was cooled to room temperature and then added dropwise to 150 mL of TiCl4 maintained at -10 °C within 1 h with stirring. After dropping, the temperature of the mixture was maintained at -10°C for 1 hour, then the temperature was raised to 120°C at a certain rate of temperature increase under stirring, and the temperature was maintained for 2 hours. After the reaction, the generated solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium can be detected in the cleaning solution, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
2L的不锈钢聚合反应釜,经高纯氮气充分置换后,加入己烷1.0L和浓度为1.0M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。2L stainless steel polymerization reaction kettle, after being fully replaced by high-purity nitrogen, add 1.0L of hexane and 1.0mL of triethylaluminum with a concentration of 1.0M, add the catalyst prepared above accurately with a syringe, raise the temperature to 75°C, and pass Add hydrogen to make the pressure in the kettle reach 0.28MPa, then feed ethylene to make the total pressure in the kettle reach 0.73MPa (gauge pressure), and polymerize at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例2Example 2
把4.76克(50mmol)无水MgCl2、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加15mmol的氯乙酸乙酯并在50℃下搅拌2小时以使氯乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-15℃的200mL TiCl4中。滴完后使混合物温度在-15℃下保持1小时,然后在搅拌下在4小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous MgCl 2 , 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl chloroacetate and stirred at 50°C for 2 hours to dissolve ethyl chloroacetate in the solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise to 200 mL of TiCl4 maintained at -15 °C within 1 h with stirring. After completion of the dropwise addition, the temperature of the mixture was maintained at -15°C for 1 hour, then raised to 120°C over 4 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, add 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M, add the catalyst prepared above with a syringe, raise the temperature to 75°C, and pass in hydrogen Make the pressure in the kettle reach 0.28MPa, then feed ethylene to make the total pressure in the kettle reach 0.73MPa (gauge pressure), and polymerize at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例3Example 3
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加15mmol的三氯乙酸乙酯并在50℃下搅拌2小时以使三氯乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为0℃的150mL TiCl4中。滴完后使混合物温度在0℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl trichloroacetate and stirred at 50° C. for 2 hours to dissolve ethyl trichloroacetate in the solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at 0 °C within 1 h. After completion of the dropwise addition, the temperature of the mixture was maintained at 0°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, add 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M, add the catalyst prepared above with a syringe, raise the temperature to 75°C, and pass in hydrogen Make the pressure in the kettle reach 0.28MPa, then feed ethylene to make the total pressure in the kettle reach 0.73MPa (gauge pressure), and polymerize at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例4Example 4
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加入15mmol的二甲基膦酰基乙酸乙酯并在50℃下搅拌2小时以使二甲基膦酰基乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为0℃的150mL TiCl4中。滴完后使混合物温度在0℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl dimethylphosphonoacetate and stirred at 50° C. for 2 hours to dissolve ethyl dimethylphosphonoacetate in the solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at 0 °C within 1 h. After completion of the dropwise addition, the temperature of the mixture was maintained at 0°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度为1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M are added, and the catalyst prepared above is accurately weighed with a syringe. Hydrogen made the pressure in the kettle reach 0.28MPa, and then ethylene was introduced to make the total pressure in the kettle reach 0.73MPa (gauge pressure). Polymerization was carried out at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例5Example 5
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加入15mmol的二乙酰乙酸乙酯并在50℃下搅拌2小时以使二乙酰乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-10℃的150mL TiCl4中。滴完后使混合物温度在-10℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl diacetoacetate and stirred at 50° C. for 2 hours to dissolve ethyl diacetoacetate in the solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at -10 °C within 1 h. After completion of the dropwise addition, the temperature of the mixture was maintained at -10°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度为1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M are added, and the catalyst prepared above is accurately weighed with a syringe. Hydrogen made the pressure in the kettle reach 0.28MPa, and then ethylene was introduced to make the total pressure in the kettle reach 0.73MPa (gauge pressure). Polymerization was carried out at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例6Example 6
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加入15mmol的2-(氯甲氧基)乙酸乙酯并在50℃下搅拌2小时以使2-(氯甲氧基)乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-10℃的150mL TiCl4中。滴完后使混合物温度在-10℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl 2-(chloromethoxy)acetate and stirred at 50° C. for 2 hours to dissolve ethyl 2-(chloromethoxy)acetate in the solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at -10 °C within 1 h. After completion of the dropwise addition, the temperature of the mixture was maintained at -10°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度为1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M are added, and the catalyst prepared above is accurately weighed with a syringe. Hydrogen made the pressure in the kettle reach 0.28MPa, and then ethylene was introduced to make the total pressure in the kettle reach 0.73MPa (gauge pressure). Polymerization was carried out at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例7Example 7
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-10℃的150mL TiCl4中。然后向该溶液中加入15mmol的三氯乙酸乙酯。滴完后使混合物温度在-10℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at -10 °C within 1 h. Then 15 mmol of ethyl trichloroacetate was added to the solution. After completion of the dropwise addition, the temperature of the mixture was maintained at -10°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L和浓度为1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a capacity of 2L is fully replaced by high-purity nitrogen, 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M are added, and the catalyst prepared above is accurately weighed with a syringe. Hydrogen made the pressure in the kettle reach 0.28MPa, and then ethylene was introduced to make the total pressure in the kettle reach 0.73MPa (gauge pressure). Polymerization was carried out at 80°C for 2 hours. The polymerization results are shown in Table 1.
实施例8Example 8
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。将上述得到的所有均相溶液冷却至室温,然后在1小时内边搅拌边将其滴加到温度保持为-10℃的150mL TiCl4中。然后向该溶液中加入15mmol的氰基乙酸乙酯。滴完后使混合物温度在-10℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. The entire homogeneous solution obtained above was cooled to room temperature and then added dropwise with stirring to 150 mL of TiCl4 maintained at -10 °C within 1 h. Then 15 mmol of ethyl cyanoacetate was added to this solution. After completion of the dropwise addition, the temperature of the mixture was maintained at -10°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合Ethylene polymerization
容积为2L的不锈钢反应釜,经高纯氮气充分置换后,加入己烷1L,浓度1M的三乙基铝1.0mL,用注射器加入准确称量上述制备的催化剂,升温至75℃,通入氢气使釜内压力达到0.28MPa,再通入乙烯使釜内总压达到0.73MPa(表压),在80℃条件下聚合2小时,聚合结果见表1。A stainless steel reaction kettle with a volume of 2L is fully replaced by high-purity nitrogen, 1L of hexane and 1.0mL of triethylaluminum with a concentration of 1M are added, and the catalyst prepared above is accurately weighed with a syringe, the temperature is raised to 75°C, and hydrogen is introduced. Make the pressure in the kettle reach 0.28MPa, then feed ethylene to make the total pressure in the kettle reach 0.73MPa (gauge pressure), and polymerize at 80°C for 2 hours. The polymerization results are shown in Table 1.
对比例1Comparative example 1
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加入15mmol的四乙氧基硅烷并在50℃下搅拌2小时以使四乙氧基硅烷溶解于该溶液。将上述得到的所有均相溶液冷却至-10℃,然后在1小时内边搅拌边将保持为-10℃的150mLTiCl4滴加到上述均相溶液中。滴完后使混合物温度在0℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. 15 mmol of tetraethoxysilane was added to the solution and stirred at 50° C. for 2 hours to dissolve tetraethoxysilane in the solution. All the homogeneous solutions obtained above were cooled to −10 °C, and then 150 mL of TiCl4 maintained at −10 °C was added dropwise to the above homogeneous solutions within 1 h while stirring. After completion of the dropwise addition, the temperature of the mixture was maintained at 0°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合同实施例1,聚合结果见表1。Ethylene polymerization is the same as in Example 1, and the polymerization results are shown in Table 1.
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。What has been described above is only a preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, some modifications and improvements can be made without departing from the inventive concept, and these all belong to the scope of the present invention. protected range.
对比例2Comparative example 2
把4.76克(50mmol)无水氯化镁、75毫升癸烷和16.3克(125mmol)异辛醇加热至125℃,恒温反应3小时,得到一种均相溶液。向该溶液中加入15mmol的乙酸乙酯并在50℃下搅拌2小时以使乙酸乙酯溶解于该溶液。将上述得到的所有均相溶液冷却至-10℃,然后在1小时内边搅拌边将保持为-10℃的150mLTiCl4滴加到上述均相溶液中。滴完后使混合物温度在0℃下保持1小时,然后在搅拌下在2小时内把温度提至120℃,并将此温度保持2小时。当2小时反应结束后,对生成的固体进行热过滤分离。分别用癸烷和己烷对固体催化剂进行充分洗涤,直至在清洗液中检测不出析出的钛化合物,经干燥后得到一种固体钛催化剂组分。4.76 g (50 mmol) of anhydrous magnesium chloride, 75 ml of decane and 16.3 g (125 mmol) of isooctyl alcohol were heated to 125° C. and reacted at constant temperature for 3 hours to obtain a homogeneous solution. To this solution was added 15 mmol of ethyl acetate and stirred at 50° C. for 2 hours to dissolve ethyl acetate in the solution. All the homogeneous solutions obtained above were cooled to −10 °C, and then 150 mL of TiCl4 maintained at −10 °C was added dropwise to the above homogeneous solutions within 1 h while stirring. After completion of the dropwise addition, the temperature of the mixture was maintained at 0°C for 1 hour, then raised to 120°C over 2 hours with stirring, and maintained at this temperature for 2 hours. After 2 hours of reaction, the resulting solid was separated by hot filtration. The solid catalyst is fully washed with decane and hexane respectively until no precipitated titanium compound can be detected in the cleaning liquid, and a solid titanium catalyst component is obtained after drying.
乙烯聚合同实施例1,聚合结果见表1。Ethylene polymerization is the same as in Example 1, and the polymerization results are shown in Table 1.
表1聚合实验结果Table 1 Polymerization experiment results
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。What has been described above is only a preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, some modifications and improvements can be made without departing from the inventive concept, and these all belong to the scope of the present invention. protected range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910547870.3A CN110240668A (en) | 2019-06-24 | 2019-06-24 | Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910547870.3A CN110240668A (en) | 2019-06-24 | 2019-06-24 | Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110240668A true CN110240668A (en) | 2019-09-17 |
Family
ID=67889005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910547870.3A Pending CN110240668A (en) | 2019-06-24 | 2019-06-24 | Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110240668A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113817083A (en) * | 2021-09-29 | 2021-12-21 | 天津华聚化工科技有限公司 | Temperature-sensitive ultrahigh molecular weight polyethylene catalyst, preparation method and application thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140722A (en) * | 1995-05-22 | 1997-01-22 | 三井石油化学工业株式会社 | Solid titanium catalyst component, ethylene polymerization catalyst containing the same, and ethylene polymerization process |
CN1489600A (en) * | 2000-08-22 | 2004-04-14 | 恩格哈德公司 | (Cycloakyl methyl silanes as external donors for polyfin catalysts |
CN1976959A (en) * | 2004-06-28 | 2007-06-06 | 恩格哈德公司 | High activity and good hydrogen response ziegler-natta polyethylene catalyst |
CN101501078A (en) * | 2006-08-15 | 2009-08-05 | 巴塞尔聚烯烃意大利有限责任公司 | Process for preparing a catalyst component for the polymerization of olefins |
CN103635494A (en) * | 2011-07-06 | 2014-03-12 | 胜亚诺盟股份有限公司 | Method for polymerizing [alpha]-olefin |
CN103772542A (en) * | 2012-10-19 | 2014-05-07 | 中国石油化工股份有限公司 | Catalyst component for ethylene slurry polymerization reaction, and catalyst thereof |
CN103772536A (en) * | 2012-10-18 | 2014-05-07 | 中国石油化工股份有限公司 | Catalyst component for polymerization or copolymerization of ethylene and catalyst thereof |
CN106478844A (en) * | 2015-08-26 | 2017-03-08 | 中国石油化工股份有限公司 | A kind of catalyst carrier for olefinic polymerization, catalytic component and catalyst |
CN109553712A (en) * | 2017-09-27 | 2019-04-02 | 中国石油化工股份有限公司 | A kind of catalytic component and its catalyst for olefinic polymerization |
-
2019
- 2019-06-24 CN CN201910547870.3A patent/CN110240668A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1140722A (en) * | 1995-05-22 | 1997-01-22 | 三井石油化学工业株式会社 | Solid titanium catalyst component, ethylene polymerization catalyst containing the same, and ethylene polymerization process |
CN1489600A (en) * | 2000-08-22 | 2004-04-14 | 恩格哈德公司 | (Cycloakyl methyl silanes as external donors for polyfin catalysts |
CN1976959A (en) * | 2004-06-28 | 2007-06-06 | 恩格哈德公司 | High activity and good hydrogen response ziegler-natta polyethylene catalyst |
CN101501078A (en) * | 2006-08-15 | 2009-08-05 | 巴塞尔聚烯烃意大利有限责任公司 | Process for preparing a catalyst component for the polymerization of olefins |
CN103635494A (en) * | 2011-07-06 | 2014-03-12 | 胜亚诺盟股份有限公司 | Method for polymerizing [alpha]-olefin |
CN103772536A (en) * | 2012-10-18 | 2014-05-07 | 中国石油化工股份有限公司 | Catalyst component for polymerization or copolymerization of ethylene and catalyst thereof |
CN103772542A (en) * | 2012-10-19 | 2014-05-07 | 中国石油化工股份有限公司 | Catalyst component for ethylene slurry polymerization reaction, and catalyst thereof |
CN106478844A (en) * | 2015-08-26 | 2017-03-08 | 中国石油化工股份有限公司 | A kind of catalyst carrier for olefinic polymerization, catalytic component and catalyst |
CN109553712A (en) * | 2017-09-27 | 2019-04-02 | 中国石油化工股份有限公司 | A kind of catalytic component and its catalyst for olefinic polymerization |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113817083A (en) * | 2021-09-29 | 2021-12-21 | 天津华聚化工科技有限公司 | Temperature-sensitive ultrahigh molecular weight polyethylene catalyst, preparation method and application thereof |
CN113817083B (en) * | 2021-09-29 | 2023-03-03 | 天津华聚化工科技有限公司 | Temperature-sensitive ultrahigh molecular weight polyethylene catalyst, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization | |
CN108864337B (en) | Catalyst composition for olefin polymerization and olefin polymerization method | |
CN102336846B (en) | Loaded alpha-palladium diimine and method for preparing hyperbranched polyethylene by catalyzing with same | |
JP2000505504A (en) | Catalyst for the production of olefin polymers | |
CN109983040B (en) | Polyolefin catalyst and method for preparing polyolefin using the same | |
CN1183105A (en) | Process for producing LLDPE polymer | |
WO2011050566A1 (en) | Supported non-metallocene catalyst, preparation method and uses thereof | |
CN107556409B (en) | Internal electron donor, catalyst component and preparation method of Ziegler-Natta catalyst for ethylene polymerization | |
CN109320638B (en) | Ziegler-Natta catalyst component and catalyst for ethylene polymerization | |
CN106008759B (en) | A kind of electron donor of Ziegler Natta catalyst and its application in ethylene polymerization | |
CN105859927B (en) | Vinyl polymerization Ziegler-Natta catalyst electron donor, catalytic component, catalyst | |
CN108864344B (en) | Catalyst composition for olefin polymerization and olefin polymerization method | |
CN108864340B (en) | Catalyst composition and olefin polymerization process | |
CN110240668A (en) | Internal Electron Donor, Catalyst Component, Preparation Method and Application of Ziegler-Natta Catalyst | |
ZA200304674B (en) | Catalyst for polymerization and copolymerization of ethylene. | |
CN101798362B (en) | A Class of Ziegler-Natta Catalysts for Olefin Polymerization with Single Site Properties | |
CN108864338B (en) | Catalyst composition for olefin polymerization and olefin polymerization method | |
CN108440692B (en) | Catalytic ethylene polymerization Ziegler-Natta catalyst internal electron donor, catalyst component and preparation method | |
CN108341902B (en) | Catalyst component for ethylene polymerization, preparation method thereof and catalyst for ethylene polymerization | |
CN101838352B (en) | Catalyst component for vinyl polymerization or copolymerization and catalyst thereof | |
CN102718897B (en) | Loaded olefin polymerization solid catalyst ingredient, and preparation method and application thereof | |
CN107522804B (en) | Internal electron donors, catalyst components, spherical-like catalysts for ethylene polymerization | |
CN103073660B (en) | Magnesium halide carrier and application thereof, and olefin polymerization catalyst, olefin polymerization catalyst system, and olefin polymerization method | |
KR101724512B1 (en) | A supported nonmetallocene catalyst, preparation and use thereof | |
CN110240667A (en) | Internal Electron Donors, Catalyst Components and Applications of Ziegler-Natta Catalysts for Ethylene Polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190917 |