CN110240207A - A method of recycling waste lithium battery to prepare ternary cathode material - Google Patents
A method of recycling waste lithium battery to prepare ternary cathode material Download PDFInfo
- Publication number
- CN110240207A CN110240207A CN201910520840.3A CN201910520840A CN110240207A CN 110240207 A CN110240207 A CN 110240207A CN 201910520840 A CN201910520840 A CN 201910520840A CN 110240207 A CN110240207 A CN 110240207A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- lithium
- electrode material
- ternary
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 33
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 29
- 238000004064 recycling Methods 0.000 title claims abstract description 23
- 239000010406 cathode material Substances 0.000 title claims description 19
- 239000011259 mixed solution Substances 0.000 claims abstract description 32
- 239000007774 positive electrode material Substances 0.000 claims abstract description 31
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 22
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 13
- 238000002386 leaching Methods 0.000 claims abstract description 12
- 239000010941 cobalt Substances 0.000 claims abstract description 11
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000706 filtrate Substances 0.000 claims abstract description 10
- 239000002253 acid Substances 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract 2
- 239000000843 powder Substances 0.000 claims description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical group [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- 239000001099 ammonium carbonate Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 5
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 5
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229940011182 cobalt acetate Drugs 0.000 claims description 5
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000011565 manganese chloride Substances 0.000 claims description 5
- 229940099607 manganese chloride Drugs 0.000 claims description 5
- 235000002867 manganese chloride Nutrition 0.000 claims description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 5
- 238000001694 spray drying Methods 0.000 claims description 5
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 4
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 4
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 3
- 239000004471 Glycine Substances 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 3
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 3
- 239000008103 glucose Substances 0.000 claims description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 3
- 229940071125 manganese acetate Drugs 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- 229940078494 nickel acetate Drugs 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 235000011054 acetic acid Nutrition 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 229940087559 grape seed Drugs 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 4
- 239000000047 product Substances 0.000 abstract description 2
- 229910021645 metal ion Inorganic materials 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 2
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 2
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940006116 lithium hydroxide Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开一种废旧锂电池回收制备三元正极材料的方法,将废旧锂离子电池经预处理分离得到废旧正极材料物料,加入酸浸剂、还原剂和水,浸出、过滤获得滤液,补加锂源、镍源、钴源、锰源制得混合溶液,将混合溶液经喷雾干燥得到前驱体物料,再经两段煅烧制得三元正极材料;本发明方法制备的三元正极材料结晶度高,结构稳定,循环性能和倍率性能优异,本发明工艺简单、适用性强、产品性能优异,可实现废旧锂离子电池的绿色回收利用。The invention discloses a method for recycling waste lithium batteries to prepare ternary positive electrode materials. The waste lithium ion batteries are pretreated and separated to obtain waste positive electrode materials, acid leaching agent, reducing agent and water are added, leaching and filtration to obtain filtrate, and then adding Lithium source, nickel source, cobalt source and manganese source are used to prepare a mixed solution, and the mixed solution is spray-dried to obtain a precursor material, and then calcined in two stages to obtain a ternary positive electrode material; the crystallinity of the ternary positive electrode material prepared by the method of the present invention is High, stable structure, excellent cycle performance and rate performance, the invention has simple process, strong applicability, and excellent product performance, and can realize green recycling of waste lithium ion batteries.
Description
技术领域technical field
本发明涉及一种废旧锂电池回收制备三元正极材料的方法,属于锂离子电池回收利用技术领域。The invention relates to a method for recycling waste lithium batteries to prepare a ternary positive electrode material, and belongs to the technical field of lithium ion battery recycling.
背景技术Background technique
锂离子电池具有放电电压高、比能量大、自放电小、循环寿命长和无记忆效应等优点,现已广泛用于3C电子设备、航天航空、医疗等领域,加之我国正大力发展新能源汽车、智能电网、可再生能源等产业,锂离子电池作为良好的动力电池和储能材料,其需求量及产量进一步增加。预计,到2020年,三元锂离子电池产量达到71.6Gwh。而锂离子电池经多次循环充放电后,活性材料由于结构改变而失活报废,因而,废旧锂离子电池数量巨大,预计,到2020年,我国三元锂离子电池的报废量将达到19.2Gwh,约30万吨。Lithium-ion batteries have the advantages of high discharge voltage, large specific energy, small self-discharge, long cycle life and no memory effect. They are now widely used in 3C electronic equipment, aerospace, medical and other fields. In addition, my country is vigorously developing new energy vehicles. , smart grid, renewable energy and other industries, lithium-ion battery as a good power battery and energy storage material, its demand and output have further increased. It is estimated that by 2020, the output of ternary lithium-ion batteries will reach 71.6Gwh. After the lithium-ion battery is charged and discharged for many times, the active material is inactivated and scrapped due to structural changes. Therefore, the number of waste lithium-ion batteries is huge. It is estimated that by 2020, the scrapped amount of ternary lithium-ion batteries in my country will reach 19.2Gwh , about 300,000 tons.
废旧锂离子电池中电解液的释放会污染环境和危害生态系统,同时电极材料中含有大量的镍、铁、锰、钴、锂等有价金属,而新能源产业的飞速发展导致锂离子电池原料矿产资源日益减少,制约了锂离子电池产业的良性发展。为此,科学高效地回收废旧锂离子电池成为目前亟待解决的问题。The release of electrolyte in waste lithium-ion batteries will pollute the environment and harm the ecosystem. At the same time, the electrode materials contain a large amount of valuable metals such as nickel, iron, manganese, cobalt, and lithium. The rapid development of the new energy industry has led to the development of lithium-ion battery raw materials. Mineral resources are decreasing day by day, restricting the healthy development of the lithium-ion battery industry. Therefore, scientific and efficient recycling of waste lithium-ion batteries has become an urgent problem to be solved.
废旧三元锂离子电池回收方法主要集中在湿法工艺和火法工艺两种,并以回收其中有价金属元素为主。其中,火法能耗高、污染严重、分离效果差,湿法具有条件温和、能耗较小等优点,但湿法工艺技术研究主要为浸出-金属离子分离回收工艺,但浸出后溶液中各金属离子的高效分离技术难度大,分离指标差,为此,有研究者采用化学沉淀法、溶胶-凝胶法从浸出溶液中回收有价金属离子直接制备正极材料,但存在沉淀剂的使用、条件不易控制、重复性较差,不易大规模工业应用等不足。现未有采用喷雾干燥法从浸出溶液中回收制备三元正极材料的报道。The recycling methods of waste ternary lithium-ion batteries mainly focus on the wet process and the fire process, and mainly focus on the recovery of valuable metal elements. Among them, the fire method has the advantages of high energy consumption, serious pollution and poor separation effect, and the wet method has the advantages of mild conditions and low energy consumption. The high-efficiency separation technology of metal ions is difficult and the separation index is poor. For this reason, some researchers use chemical precipitation and sol-gel methods to recover valuable metal ions from the leaching solution to directly prepare cathode materials, but there are the use of precipitants, The conditions are not easy to control, the repeatability is poor, and the large-scale industrial application is not easy. There is no report on the preparation of ternary cathode materials recovered from the leaching solution by spray drying.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供一种废旧锂电池回收制备三元正极材料的方法,包括以下步骤:In view of the problems existing in the prior art, the present invention provides a method for recycling waste lithium batteries to prepare a ternary positive electrode material, comprising the following steps:
(1)将废旧锂离子电池放余电,拆解分离得到废旧正极材料;(1) Discharging the waste lithium-ion battery, dismantling and separating to obtain waste positive electrode material;
(2)将步骤(1)中废旧正极材料置于反应器中,加入酸浸剂、还原剂和加水,混合液在搅拌条件下,60~100℃反应1~3h,反应结束后,过滤,滤液为富含有价金属离子的贵液;(2) The waste cathode material in step (1) is placed in the reactor, acid leaching agent, reducing agent and water are added, and the mixed solution is reacted at 60-100 ° C for 1-3 hours under stirring conditions, and after the reaction is completed, filter, The filtrate is a precious liquid rich in valuable metal ions;
(3)向步骤(2)的滤液中补加锂源、镍源、钴源、锰源制得混合溶液,混合溶液中锂元素、镍元素、钴元素、锰元素的摩尔比为1:x:y:1-x-y,x>0,y>0,x+y<1,调节溶液pH值为2~7,搅拌均匀,然后将混合溶液经喷雾干燥制得三元前驱体粉料;(3) in the filtrate of step (2), add lithium source, nickel source, cobalt source, manganese source to make mixed solution, and the mol ratio of lithium element, nickel element, cobalt element, manganese element in the mixed solution is 1:x :y:1-x-y, x>0, y>0, x+y<1, adjust the pH value of the solution to 2-7, stir well, and then spray-dry the mixed solution to obtain the ternary precursor powder;
(4)步骤(3)制得的三元前驱体粉料在氧气氛围下两段煅烧,第一段煅烧是在400~600℃保温4~6h,第二段煅烧是在800~900℃保温10~12h,随炉冷却制得三元正极材料。(4) The ternary precursor powder obtained in step (3) is calcined in two stages under an oxygen atmosphere, the first stage of calcination is kept at 400-600°C for 4-6 hours, and the second stage of calcination is kept at 800-900°C For 10 to 12 hours, the ternary cathode material is obtained by cooling with the furnace.
步骤(1)中拆解方式为机械、手工或两者联合方法。The dismantling method in step (1) is mechanical, manual or a combination of the two.
步骤(2)中酸浸剂为乙酸、草酸、乳酸、酒石酸、甘氨酸中的一种或多种任意比例混合,反应器内的混合液中H+浓度为1~5mol/L。In step (2), the acid leaching agent is one or more of acetic acid, oxalic acid, lactic acid, tartaric acid, and glycine mixed in any proportion, and the H concentration in the mixed solution in the reactor is 1 to 5 mol/L.
步骤(2)中还原剂为葡萄糖、葡萄籽、维C、水合肼、硼氢化钠一种或多种任意比例混合,反应器内的混合液中还原剂的浓度为1~3mol/L。In step (2), the reducing agent is one or more of glucose, grape seed, vitamin C, hydrazine hydrate, and sodium borohydride mixed in any proportion, and the concentration of the reducing agent in the mixed solution in the reactor is 1-3 mol/L.
步骤(2)正极材料与水的质量体积比g:mL为1:10~100。Step (2) The mass-volume ratio g:mL of the positive electrode material to water is 1:10-100.
步骤(3)中锂源为氢氧化锂、碳酸锂、氯化锂、醋酸锂或硝酸锂中的一种或几种任意比例混合;镍源为氯化镍、醋酸镍或硝酸镍中的一种或几种任意比例混合;钴源为氯化钴、醋酸钴或硝酸钴中的一种或几种任意比例混合;锰源为氯化锰、醋酸锰或硝酸锰中的一种或几种任意比例混合。In step (3), lithium source is one or more arbitrary proportions in lithium hydroxide, lithium carbonate, lithium chloride, lithium acetate or lithium nitrate mixing; nickel source is one in nickel chloride, nickel acetate or nickel nitrate. One or more are mixed in any proportion; the cobalt source is one or more of cobalt chloride, cobalt acetate or cobalt nitrate mixed in any proportion; the manganese source is one or more of manganese chloride, manganese acetate or manganese nitrate Mix in any ratio.
步骤(3)中采用氨水、碳酸铵溶液或碳酸氢铵溶液调解pH值。In step (3), ammonia water, ammonium carbonate solution or ammonium bicarbonate solution is used to adjust the pH value.
步骤(3)中喷雾干燥的入口温度为150~200℃,进料速度200~700mL/h。In the step (3), the inlet temperature of the spray drying is 150-200° C., and the feeding rate is 200-700 mL/h.
步骤(4)中氧气氛围下两段煅烧时氧气的通入量为8~10mL/min。In step (4), the amount of oxygen supplied during the two-stage calcination under an oxygen atmosphere is 8-10 mL/min.
本发明的有益效果:本发明主要是针对废旧锂离子电池浸出回收制备过程,可实现有效地缓解回收过程中稳定性差、操作复杂、沉淀剂的使用等问题,实现废旧锂离子电池正极材料绿色高效回收利用,本发明方法制备的三元正极材料结晶度高,结构稳定,循环性能和倍率性能优异,本发明工艺简单、适用性强、产品性能优异。Beneficial effects of the present invention: the present invention is mainly aimed at the preparation process of leaching and recycling waste lithium ion batteries, which can effectively alleviate the problems of poor stability, complicated operation, and the use of precipitants in the recycling process, and realize green and efficient cathode materials of waste lithium ion batteries. Recycling, the ternary cathode material prepared by the method of the invention has high crystallinity, stable structure, excellent cycle performance and rate performance, and the invention has simple process, strong applicability and excellent product performance.
附图说明Description of drawings
图1为实施例1制备得到的三元正极材料制备得到的电池的首次充放电性能图;Fig. 1 is the first charge-discharge performance diagram of the battery prepared from the ternary positive electrode material prepared in Example 1;
图2为实施例2制备得到的三元正极材料SEM图;Fig. 2 is the SEM image of the ternary positive electrode material prepared in Example 2;
图3为实施例3制备得到的三元正极材料制备得到的电池的循环性能曲线。FIG. 3 is a cycle performance curve of a battery prepared from the ternary positive electrode material prepared in Example 3. FIG.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。The present invention will be further described in detail below with reference to the specific embodiments, but the protection scope of the present invention is not limited to the content.
实施例1Example 1
一种废旧锂电池回收制备三元正极材料的方法,该废旧锂电池来自广东省深圳市某回收企业,主要为废旧三元动力用锂电池,具体包括如下步骤:A method for recycling waste lithium batteries to prepare ternary positive electrode materials, the waste lithium batteries are from a recycling enterprise in Shenzhen, Guangdong Province, and are mainly used lithium batteries for ternary power, which specifically includes the following steps:
(1)将该废旧锂离子电池放余电,再经机械拆解分离得到废旧正极材料;(1) The waste lithium-ion battery is discharged, and then the waste positive electrode material is obtained by mechanical disassembly and separation;
(2)将步骤(1)中废旧正极粉料置于反应器中,加入酸浸剂乙酸、还原剂葡萄糖,而后加水得到混合液,正极材料与水的质量体积比g:mL为1:20,混合液中H+浓度为1mol/L,还原剂的浓度为1mol/L,混合液在搅拌条件下,80℃反应2h,反应结束后,过滤,滤液为富含有价金属离子的贵液;(2) The waste positive electrode powder in step (1) is placed in the reactor, the acid leaching agent acetic acid and the reducing agent glucose are added, and then water is added to obtain a mixed solution, and the mass volume ratio g:mL of the positive electrode material and water is 1:20 , the H + concentration in the mixture is 1mol/L, the concentration of the reducing agent is 1mol/L, the mixture is reacted at 80 °C for 2h under stirring conditions, after the reaction is completed, filtered, and the filtrate is a noble liquid rich in valuable metal ions ;
(3)向步骤(2)的滤液中补加氢氧化锂、氯化镍、氯化钴、氯化锰制得混合溶液,混合溶液中锂元素、镍元素、钴元素、锰元素的摩尔比为1:0.6:0.2:0.2,使得得到的三元材料的化学式为LiNi0.6Co0.2Mn0.2O2,用质量百分比浓度28%的氨水调节混合溶液pH值为2,搅拌均匀,后将混合溶液进行喷雾干燥,喷雾干燥机的入口温度为170℃,进料速度500mL/h,制得三元前驱体粉料;(3) in the filtrate of step (2), add lithium hydroxide, nickel chloride, cobalt chloride, manganese chloride to make mixed solution, the mol ratio of lithium element, nickel element, cobalt element, manganese element in the mixed solution 1:0.6:0.2:0.2, so that the chemical formula of the obtained ternary material is LiNi 0.6 Co 0.2 Mn 0.2 O 2 , adjust the pH value of the mixed solution to 2 with ammonia water with a concentration of 28% by mass, stir evenly, and then mix the mixed solution Carry out spray drying, the inlet temperature of the spray dryer is 170°C, and the feed rate is 500mL/h, to obtain the ternary precursor powder;
(4)将步骤(3)制得的三元前驱体粉料在氧气通入量为9mL/min氛围下两段煅烧,第一段煅烧是在温度480℃保温5h,第一段煅烧是在850℃保温11h,随炉冷却制得三元正极材料。(4) The ternary precursor powder obtained in step (3) is calcined in two stages in an atmosphere with an oxygen supply rate of 9 mL/min. The ternary cathode material was prepared by holding the temperature at 850°C for 11h, and cooling with the furnace.
本实施例制得的三元正极材料LiNi0.6Co0.2Mn0.2O2制备得到的电池的的首次充放电性能如图1所示,从图1可知,该方法制得的三元正极材料在0.1C下的充放电性能优良,说明本方法适用性强。The first charge-discharge performance of the battery prepared from the ternary cathode material LiNi 0.6 Co 0.2 Mn 0.2 O 2 prepared in this example is shown in Figure 1. It can be seen from Figure 1 that the ternary cathode material prepared by this method is at 0.1 The charge-discharge performance under C is excellent, indicating that this method has strong applicability.
实施例2Example 2
一种废旧锂电池回收制备三元正极材料的方法,废旧锂电池样品来自云南省昆明市某回收企业,样品主要为废旧手机锂电池,具体包括如下步骤:A method for recycling waste lithium batteries to prepare ternary positive electrode materials. Samples of waste lithium batteries are from a recycling enterprise in Kunming City, Yunnan Province. The samples are mainly used lithium batteries for mobile phones, which specifically includes the following steps:
(1)先将废旧锂离子电池放余电,再经手工拆解分离得到废旧正极材料;(1) Discharge the waste lithium-ion battery first, and then disassemble and separate by hand to obtain waste positive electrode material;
(2)将步骤(1)中废旧正极粉料置于反应器中,加入酸浸剂甘氨酸、还原剂维C,而后加水得到混合液,正极材料与水的质量体积比g:mL为1:100,混合液中H+浓度为5mol/L,还原剂的浓度为3mol/L,混合液在搅拌条件下,100℃反应1h,反应结束后,过滤,滤液为富含有价金属离子的贵液;(2) place the waste positive electrode powder in the reactor in step (1), add acid leaching agent glycine, reducing agent vitamin C, then add water to obtain a mixed solution, and the mass volume ratio g:mL of positive electrode material and water is 1: 100, the H + concentration in the mixed solution is 5 mol/L, the concentration of the reducing agent is 3 mol/L, the mixed solution is reacted at 100 °C for 1 h under stirring conditions, after the reaction is completed, filtered, and the filtrate is a precious metal ion rich in precious metal ions. liquid;
(3)向步骤(2)的滤液中补加氢氧化锂、醋酸镍、醋酸钴、醋酸锰制得混合溶液,混合溶液中锂元素、镍元素、钴元素、锰元素的摩尔比为1:0.5:0.2:0.3,使得得到的三元材料的化学式为LiNi0.5Co0.2Mn0.3O2,用浓度为0.5mol/L的碳酸铵溶液调节混合溶液pH值为3,搅拌均匀,后将混合溶液进行喷雾干燥,喷雾干燥机的入口温度为200℃,进料速度200mL/h,制得三元前驱体粉料;(3) in the filtrate of step (2), add lithium hydroxide, nickel acetate, cobalt acetate, manganese acetate to make mixed solution, and the mol ratio of lithium element, nickel element, cobalt element, manganese element in the mixed solution is 1: 0.5:0.2:0.3, so that the chemical formula of the obtained ternary material is LiNi 0.5 Co 0.2 Mn 0.3 O 2 , adjust the pH of the mixed solution to 3 with an ammonium carbonate solution with a concentration of 0.5 mol/L, stir evenly, and then mix the mixed solution Carry out spray drying, the inlet temperature of the spray dryer is 200°C, and the feed rate is 200mL/h, to obtain the ternary precursor powder;
(4)将步骤(3)制得的三元前驱体粉料在氧气通入量为10mL/min氛围下两段煅烧,第一段煅烧是在温度600℃保温4h,第一段煅烧是在900℃保温10h,随炉冷却制得三元正极材料。(4) The ternary precursor powder obtained in step (3) is calcined in two stages in an atmosphere with an oxygen supply rate of 10 mL/min. The ternary cathode material was prepared by holding the temperature at 900°C for 10h and cooling with the furnace.
本实施例制得的三元正极材料LiNi0.5Co0.2Mn0.3O2的SEM如图2所示,从图2可知,该方法制得的三元锂离子正极材料呈球形,结构性能优良。The SEM of the ternary cathode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 prepared in this example is shown in Figure 2. It can be seen from Figure 2 that the ternary lithium ion cathode material prepared by this method is spherical and has excellent structural properties.
实施例3Example 3
一种废旧锂电池回收制备三元正极材料的方法,废旧锂电池样品来自湖南省长沙市某回收企业,样品主要为废旧三元动力用锂电池得,具体包括如下步骤:A method for recycling waste lithium batteries to prepare ternary positive electrode materials. Samples of waste lithium batteries are from a recycling enterprise in Changsha City, Hunan Province. The samples are mainly obtained from waste lithium batteries for ternary power, which specifically includes the following steps:
(1)先将废旧锂离子电池放余电,再经机械和手工联合拆解得到废旧正极材料;(1) Discharge the waste lithium-ion battery first, and then disassemble the waste cathode material by mechanical and manual joint disassembly;
(2)将步骤(1)中废旧正极粉料置于反应器中,加入酸浸剂酒石酸、还原剂水合肼,而后加水得到混合液,正极材料与水的质量体积比g:mL为1:10,混合液中H+浓度为2mol/L,还原剂的浓度为2mol/L,混合液在搅拌条件下,60℃反应3h,反应结束后,过滤,滤液为富含有价金属离子的贵液;(2) in the step (1), the waste positive electrode powder is placed in the reactor, and the acid leaching agent tartaric acid and the reducing agent hydrazine hydrate are added, and then water is added to obtain a mixed solution, and the mass volume ratio g:mL of the positive electrode material and water is 1: 10. The H + concentration in the mixed solution is 2mol/L, and the concentration of the reducing agent is 2mol/L. The mixed solution is reacted at 60°C for 3h under stirring conditions. After the reaction is completed, filter the filtrate. liquid;
(3)向步骤(2)的滤液中补加醋酸锂、氯化锂、硝酸镍、氯化镍、硝酸钴、醋酸钴、氯化锰、硝酸锰制得混合溶液,醋酸锂和氯化锂的摩尔比为1:1,硝酸镍和氯化镍的摩尔比为1:1,硝酸钴和醋酸钴的摩尔比为1:1,氯化锰和硝酸锰的摩尔比为1:1,混合溶液中锂元素、镍元素、钴元素、锰元素的摩尔比为1:1/3:1/3:1/3,使得得到的三元材料的化学式为LiNi1/3Co1/3Mn1/3O2,用浓度为1mol/L的碳酸氢铵溶液调节混合溶液pH值为7,搅拌均匀,后将混合溶液进行喷雾干燥,喷雾干燥机的入口温度为150℃,进料速度700mL/h,制得三元前驱体粉料;(3) in the filtrate of step (2), add lithium acetate, lithium chloride, nickel nitrate, nickel chloride, cobalt nitrate, cobalt acetate, manganese chloride, manganese nitrate to obtain mixed solution, lithium acetate and lithium chloride The molar ratio of nickel nitrate and nickel chloride is 1:1, the molar ratio of cobalt nitrate and cobalt acetate is 1:1, and the molar ratio of manganese chloride and manganese nitrate is 1:1. The molar ratio of lithium element, nickel element, cobalt element and manganese element in the solution is 1:1/3:1/3:1/3, so that the chemical formula of the obtained ternary material is LiNi 1/3 Co 1/3 Mn 1 /3 O 2 , adjust the pH of the mixed solution to 7 with a concentration of 1 mol/L ammonium bicarbonate solution, stir evenly, and then spray dry the mixed solution. The inlet temperature of the spray dryer is 150°C, and the feed rate is 700mL/ h, to obtain ternary precursor powder;
(4)将步骤(3)制得的三元前驱体粉料在氧气通入量为8mL/min氛围下两段煅烧,第一段煅烧是在温度400℃保温6h,第一段煅烧是在800℃保温12h,随炉冷却制得三元正极材料。(4) The ternary precursor powder obtained in step (3) is calcined in two stages in an atmosphere with an oxygen supply rate of 8 mL/min. The ternary cathode material was prepared by holding the temperature at 800°C for 12h and cooling with the furnace.
本实施例制得的三元正极材料LiNi1/3Co1/3Mn1/3O2制备得到的电池的循环性能如图3所示,从图3可知,再生正极材料在1C倍率下,首圈放电比容量达到171.21mAh/g,循环50圈容量保持率约为98.17%,该方法制得的三元锂正极材料循环性能优良。The cycle performance of the battery prepared by the ternary cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 prepared in this example is shown in Figure 3. It can be seen from Figure 3 that the regenerated cathode material is The discharge specific capacity in the first cycle reaches 171.21mAh/g, and the capacity retention rate after 50 cycles is about 98.17%. The ternary lithium cathode material prepared by this method has excellent cycle performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910520840.3A CN110240207A (en) | 2019-06-17 | 2019-06-17 | A method of recycling waste lithium battery to prepare ternary cathode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910520840.3A CN110240207A (en) | 2019-06-17 | 2019-06-17 | A method of recycling waste lithium battery to prepare ternary cathode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110240207A true CN110240207A (en) | 2019-09-17 |
Family
ID=67887434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910520840.3A Pending CN110240207A (en) | 2019-06-17 | 2019-06-17 | A method of recycling waste lithium battery to prepare ternary cathode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110240207A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110615486A (en) * | 2019-09-18 | 2019-12-27 | 陕西科技大学 | Process for selectively extracting valuable metals from waste power lithium batteries and preparing ternary cathode material |
CN110943263A (en) * | 2019-11-29 | 2020-03-31 | 湖北万润新能源科技发展有限公司 | Ternary positive electrode material recycling and reusing method |
CN111129487A (en) * | 2020-01-03 | 2020-05-08 | 昆明理工大学 | Hydrothermal lithium supplement-spray remodeling regeneration method for waste ternary cathode material |
CN111252814A (en) * | 2020-01-19 | 2020-06-09 | 广西师范大学 | A kind of recycling method of waste ternary lithium ion battery cathode material |
CN111430829A (en) * | 2020-03-11 | 2020-07-17 | 中南大学 | Method for recycling and regenerating waste lithium battery anode material under assistance of biomass waste |
CN112786987A (en) * | 2021-02-10 | 2021-05-11 | 昆明理工大学 | Regeneration method of retired lithium ion battery positive electrode material |
CN113120971A (en) * | 2021-03-17 | 2021-07-16 | 广东邦普循环科技有限公司 | Regeneration method and application of waste ternary cathode material |
CN113328161A (en) * | 2021-05-14 | 2021-08-31 | 昆明理工大学 | Method for preparing monocrystal-like ternary cathode material by regenerating waste lithium ion battery cathode material |
CN113488713A (en) * | 2021-02-03 | 2021-10-08 | 江苏电科环保有限公司 | Method for recycling ternary material of power battery |
CN115784324A (en) * | 2022-11-29 | 2023-03-14 | 四川蜀矿环锂科技有限公司 | Method for recycling and preparing ternary cathode material precursor by using waste ternary lithium battery |
US20240297357A1 (en) * | 2020-10-09 | 2024-09-05 | The Regents Of The University Of California | Recycling and regeneration of lithium-ion battery cathodes |
CN119069862A (en) * | 2024-11-04 | 2024-12-03 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | A method for repairing and regenerating the positive electrode material of waste lithium cobalt oxide batteries |
US12368194B2 (en) * | 2021-10-08 | 2025-07-22 | The Regents Of The University Of California | Recycling and regeneration of lithium-ion battery cathodes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105990617A (en) * | 2015-02-28 | 2016-10-05 | 微宏动力系统(湖州)有限公司 | Method for recycling and regenerating waste lithium ion battery electrode materials |
CN107546437A (en) * | 2017-09-05 | 2018-01-05 | 华东理工大学 | Lithium, nickel, cobalt, the method for manganese are reclaimed from waste and old lithium ion battery |
CN108767351A (en) * | 2018-04-19 | 2018-11-06 | 江苏理工学院 | A kind of regeneration method of waste and old nickel-cobalt-manganese ternary anode material of lithium battery |
CN109065996A (en) * | 2018-08-02 | 2018-12-21 | 中南大学 | A kind of waste and old nickle cobalt lithium manganate tertiary cathode material regeneration method |
CN109704412A (en) * | 2018-12-05 | 2019-05-03 | 郑州中科新兴产业技术研究院 | A method for recycling and reusing nickel-cobalt lithium manganate ternary cathode materials for retired lithium-ion power batteries |
-
2019
- 2019-06-17 CN CN201910520840.3A patent/CN110240207A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105990617A (en) * | 2015-02-28 | 2016-10-05 | 微宏动力系统(湖州)有限公司 | Method for recycling and regenerating waste lithium ion battery electrode materials |
CN107546437A (en) * | 2017-09-05 | 2018-01-05 | 华东理工大学 | Lithium, nickel, cobalt, the method for manganese are reclaimed from waste and old lithium ion battery |
CN108767351A (en) * | 2018-04-19 | 2018-11-06 | 江苏理工学院 | A kind of regeneration method of waste and old nickel-cobalt-manganese ternary anode material of lithium battery |
CN109065996A (en) * | 2018-08-02 | 2018-12-21 | 中南大学 | A kind of waste and old nickle cobalt lithium manganate tertiary cathode material regeneration method |
CN109704412A (en) * | 2018-12-05 | 2019-05-03 | 郑州中科新兴产业技术研究院 | A method for recycling and reusing nickel-cobalt lithium manganate ternary cathode materials for retired lithium-ion power batteries |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110615486A (en) * | 2019-09-18 | 2019-12-27 | 陕西科技大学 | Process for selectively extracting valuable metals from waste power lithium batteries and preparing ternary cathode material |
CN110943263A (en) * | 2019-11-29 | 2020-03-31 | 湖北万润新能源科技发展有限公司 | Ternary positive electrode material recycling and reusing method |
CN111129487A (en) * | 2020-01-03 | 2020-05-08 | 昆明理工大学 | Hydrothermal lithium supplement-spray remodeling regeneration method for waste ternary cathode material |
CN111129487B (en) * | 2020-01-03 | 2021-03-30 | 昆明理工大学 | Hydrothermal lithium supplement-spray remodeling regeneration method for waste ternary cathode material |
CN111252814A (en) * | 2020-01-19 | 2020-06-09 | 广西师范大学 | A kind of recycling method of waste ternary lithium ion battery cathode material |
CN111430829A (en) * | 2020-03-11 | 2020-07-17 | 中南大学 | Method for recycling and regenerating waste lithium battery anode material under assistance of biomass waste |
US12315899B2 (en) * | 2020-10-09 | 2025-05-27 | The Regents Of The Unversity Of California | Recycling and regeneration of lithium-ion battery cathodes |
US20240297357A1 (en) * | 2020-10-09 | 2024-09-05 | The Regents Of The University Of California | Recycling and regeneration of lithium-ion battery cathodes |
CN113488713A (en) * | 2021-02-03 | 2021-10-08 | 江苏电科环保有限公司 | Method for recycling ternary material of power battery |
CN112786987B (en) * | 2021-02-10 | 2022-06-03 | 昆明理工大学 | A kind of regeneration method of decommissioned lithium-ion battery cathode material |
CN112786987A (en) * | 2021-02-10 | 2021-05-11 | 昆明理工大学 | Regeneration method of retired lithium ion battery positive electrode material |
WO2022193781A1 (en) * | 2021-03-17 | 2022-09-22 | 广东邦普循环科技有限公司 | Regeneration method for waste ternary positive electrode material, and use thereof |
GB2618688A (en) * | 2021-03-17 | 2023-11-15 | Guangdong Brunp Recycling Technology Co Ltd | Regeneration method for waste ternary positive electrode material, and use thereof |
ES2962915A1 (en) * | 2021-03-17 | 2024-03-21 | Guangdong Brunp Recycling Technology Co Ltd | Waste ternary cathode material regeneration method and application thereof |
CN113120971A (en) * | 2021-03-17 | 2021-07-16 | 广东邦普循环科技有限公司 | Regeneration method and application of waste ternary cathode material |
GB2618688B (en) * | 2021-03-17 | 2025-05-14 | Guangdong Brunp Recycling Technology Co Ltd | Regeneration method for waste ternary positive electrode material, and use thereof |
CN113328161A (en) * | 2021-05-14 | 2021-08-31 | 昆明理工大学 | Method for preparing monocrystal-like ternary cathode material by regenerating waste lithium ion battery cathode material |
CN113328161B (en) * | 2021-05-14 | 2022-06-03 | 昆明理工大学 | A method for regenerating and preparing quasi-single crystal ternary positive electrode material from waste lithium ion battery positive electrode material |
US12368194B2 (en) * | 2021-10-08 | 2025-07-22 | The Regents Of The University Of California | Recycling and regeneration of lithium-ion battery cathodes |
CN115784324A (en) * | 2022-11-29 | 2023-03-14 | 四川蜀矿环锂科技有限公司 | Method for recycling and preparing ternary cathode material precursor by using waste ternary lithium battery |
CN115784324B (en) * | 2022-11-29 | 2024-04-12 | 四川蜀矿环锂科技有限公司 | Method for recycling and preparing ternary positive electrode material precursor by using waste ternary lithium battery |
CN119069862A (en) * | 2024-11-04 | 2024-12-03 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | A method for repairing and regenerating the positive electrode material of waste lithium cobalt oxide batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110240207A (en) | A method of recycling waste lithium battery to prepare ternary cathode material | |
CN109119711B (en) | A method for preparing high-voltage positive electrode material by using waste lithium cobalt oxide battery | |
CN112374553B (en) | Method for recycling and regenerating retired lithium ion battery anode material | |
CN109052492B (en) | Method for preparing ternary cathode material from laterite nickel ore nitric acid leaching solution | |
CN109088115A (en) | Waste lithium ion cell anode closed matereial cycle prepares tertiary cathode material method | |
CN108649291A (en) | It is a kind of using waste and old lithium ion battery as the technique of raw materials recovery nickel-cobalt lithium manganate cathode material | |
CN106929664B (en) | A method of recycling lithium from waste and old ternary lithium ion battery | |
CN109546254A (en) | A kind of processing method of waste and old nickle cobalt lithium manganate ion battery positive electrode | |
CN107699692A (en) | A kind of recovery and the method for regenerating waste used anode material for lithium-ion batteries | |
CN106745331A (en) | A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide | |
CN108946827B (en) | Ultra-small particle size nickel-cobalt-manganese hydroxide and preparation method thereof | |
CN101264876B (en) | Method for preparing ferric lithium phosphate precursor by comprehensive utilization of ilmenite | |
CN112830526B (en) | Method for regenerating ternary precursor by using nickel-cobalt-manganese slag | |
CN115472948B (en) | A method for regenerating sodium positive electrode material using waste lithium manganate | |
CN112095000A (en) | Method for recovering cobalt and lithium metals from waste lithium cobalt oxide batteries | |
CN102730659A (en) | Method for preparing battery-level ferric phosphate using pyrite cinders | |
CN103022491A (en) | Method for preparing lithium iron phosphate precursor for positive pole material of lithium-ion battery | |
CN111333123A (en) | Method for leaching valuable metal from waste lithium ion ternary positive electrode material and preparing ternary positive electrode material precursor | |
CN112591806A (en) | Method for recovering and regenerating anode active material of waste lithium ion battery | |
CN117023661A (en) | Sodium ion battery positive electrode material precursor, preparation method thereof and positive electrode material | |
CN108807967B (en) | Preparation method of nickel-cobalt-aluminum ternary cathode material | |
CN112591808B (en) | A kind of preparation method of nickel-cobalt-manganese ternary precursor of low sodium sulfur | |
CN114804220B (en) | Porous spherical cobalt oxide particles and preparation method thereof | |
CN102610808A (en) | Preparation method for lithium-nickel-cobalt-manganese-vanadium oxygen electrode material | |
CN108910965B (en) | Method for preparing ternary hydroxide precursor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190917 |