[go: up one dir, main page]

CN110232432B - Lithium battery pack SOC prediction method based on artificial life model - Google Patents

Lithium battery pack SOC prediction method based on artificial life model Download PDF

Info

Publication number
CN110232432B
CN110232432B CN201810194036.6A CN201810194036A CN110232432B CN 110232432 B CN110232432 B CN 110232432B CN 201810194036 A CN201810194036 A CN 201810194036A CN 110232432 B CN110232432 B CN 110232432B
Authority
CN
China
Prior art keywords
cell
artificial life
lithium battery
battery pack
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810194036.6A
Other languages
Chinese (zh)
Other versions
CN110232432A (en
Inventor
朴昌浩
徐峰
林松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Zhejiang Wolong Energy Storage System Co ltd
Wolong Electric Drive Group Co Ltd
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810194036.6A priority Critical patent/CN110232432B/en
Publication of CN110232432A publication Critical patent/CN110232432A/en
Application granted granted Critical
Publication of CN110232432B publication Critical patent/CN110232432B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Robotics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本专利发明了一种基于人工生命模型的锂电池组SOC预测方法,该方法包括人工生命模型建立和人工生命模型进化两部分。首先,建立锂电池SOC预测的人工生命模型。其次,为了使人工生命体可以更快速地学习,从而引入人工神经网络并将QPSO算法作为人工生命体的学习算法。之后,将采集电动汽车锂电池组的历史充放电数据以及对应的SOC数据提供给人工生命体进而使它们不断进化。再次,进化完成时,选取最优的种群中的最优个体作为预测锂电池SOC的模型。最后,通过测试数据对所得模型进行评估,并计算出模型的准确率。本发明无需复杂的参数配置,就可以准确地获得预测结果,而且预测精度高、误差小,预测成本低,可广泛应用于电动汽车的控制行业中。

Figure 201810194036

This patent invents a method for predicting the SOC of a lithium battery pack based on an artificial life model. The method includes two parts: the establishment of the artificial life model and the evolution of the artificial life model. First, an artificial life model for lithium battery SOC prediction is established. Secondly, in order to make the artificial life body learn more quickly, the artificial neural network is introduced and the QPSO algorithm is used as the learning algorithm of the artificial life body. After that, the collected historical charge and discharge data of the lithium battery pack of the electric vehicle and the corresponding SOC data are provided to the artificial life body to make them evolve continuously. Thirdly, when the evolution is completed, the optimal individual in the optimal population is selected as the model for predicting the SOC of the lithium battery. Finally, the resulting model is evaluated on the test data and the accuracy of the model is calculated. The invention can accurately obtain prediction results without complicated parameter configuration, has high prediction accuracy, small error and low prediction cost, and can be widely used in the control industry of electric vehicles.

Figure 201810194036

Description

一种基于人工生命模型的锂电池组SOC预测方法A SOC prediction method of lithium battery pack based on artificial life model

技术领域technical field

本发明涉及电池能源管理系统领域,特别是涉及一种基于人工生命模型的锂电池组SOC预测方法。The invention relates to the field of battery energy management systems, in particular to a method for predicting the SOC of a lithium battery pack based on an artificial life model.

背景技术Background technique

名词解释:Glossary:

元胞自动机:cellular automata,是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局部的网格动力学模型,具有模拟复杂系统时空演化能力,是一种典型的人工生命模型。Cellular automata: cellular automata, is a grid dynamics model with discrete time, space and state, spatial interaction and time causal relationship as local, with the ability to simulate the space-time evolution of complex systems, is a typical artificial life Model.

SOC:荷电状态,也叫剩余电量,代表的是电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示;SOC: state of charge, also known as remaining power, represents the ratio of the remaining capacity of the battery after a period of use or long-term shelving to the capacity of the fully charged state, commonly expressed as a percentage;

BP神经网络:Back Propagation神经网络,按误差逆传播算法训练的多层前馈网络。BP neural network: Back Propagation neural network, a multi-layer feedforward network trained according to the error back propagation algorithm.

QPSO算法:Quantum-behaved Particle Swarm Optimization,量子微粒群算法,是一种改进的微粒群优化算法(PSO),克服了PSO算法搜索空间有限和易陷入局部极值的不足,同时该算法具有参数少、易实现、收敛速度快等优点。QPSO algorithm: Quantum-behaved Particle Swarm Optimization, quantum particle swarm optimization, is an improved particle swarm optimization algorithm (PSO), which overcomes the shortcomings of the limited search space and easy to fall into local extreme values of the PSO algorithm, and the algorithm has fewer parameters. , easy to implement, fast convergence speed and so on.

近年来雾霾不断出现,是因为传统的燃油汽车越来越多,所产生的汽车尾气也更多了,随着化石能源的逐渐枯竭,环境问题日益突出。锂电池的出现恰好可以满足现代社会对既绿色又环保的新能源需求,锂电池因其高能量密度和高比功率广泛应用在电动汽车的电池系统中,电池的性能不但决定着电动汽车系统的安全性,而且还决定着其可靠性以及效率。电池管理系统(BMS)需要提供精确的电池状态信息以供人参考,而电池管理系统的核心则是电池荷电状态(SOC),只有精确的锂电池SOC预测才可以准确预测电池的剩余容量,同时确定行之有效的电池管理策略,从而避免出现电池的过充电和过放电情况,延长电池的使用寿命。In recent years, smog has continued to appear because there are more and more traditional fuel vehicles and more vehicle exhaust. With the gradual depletion of fossil energy, environmental problems have become increasingly prominent. The emergence of lithium batteries can just meet the needs of modern society for new energy that is both green and environmentally friendly. Lithium batteries are widely used in electric vehicle battery systems because of their high energy density and high specific power. The performance of the battery not only determines the performance of the electric vehicle system. Safety, but also determines its reliability and efficiency. The battery management system (BMS) needs to provide accurate battery status information for human reference, and the core of the battery management system is the battery state of charge (SOC). Only accurate lithium battery SOC prediction can accurately predict the remaining capacity of the battery. At the same time, an effective battery management strategy is determined to avoid overcharging and overdischarging of the battery and prolong the service life of the battery.

可是SOC又不能够直接测量得到,必须通过可测量的电压、电流来预测,SOC预测的准确性对电池的使用效率、使用寿命以及安全性有着决定性影响。However, SOC cannot be directly measured, and must be predicted by measurable voltage and current. The accuracy of SOC prediction has a decisive impact on the efficiency, service life and safety of the battery.

从目前来看,SOC的研究方法很多,常见测量或者预测方法的有开路电压法、安时积分法、放电实验法、神经网络算法、卡尔曼滤波等。分析得出现有方法不足之处,现列举如下:1.开路电压法,通过开路电压和SOC的对应关系,可是需要静置的时间较长,由查表得到电池的SOC,这种方法操作简单,但是电池组要间歇静置,只适用实验室用,不能满足电动汽车在线要求;2.安时积分法,可在线测试,使用简单,但该方法会随着时间的积累导致估算误差增大;3.放电实验法,该方法可以测量得到可靠的SOC,但是该方法需要离线测试,并且需要充放电机,而且充放电时间长,因而导致成本增加;4.神经网络算法预测,这种方法的预测精度依赖于大量的训练数据和合适的训练方法;5.卡尔曼滤波算法,适合电动车剧烈运行的工况,但是传统的卡尔曼滤波算法只适合线性系统,对于在运行中成剧烈非线性的锂电池不适合。From the current point of view, there are many research methods for SOC. Common measurement or prediction methods include open circuit voltage method, ampere-hour integration method, discharge experiment method, neural network algorithm, Kalman filter, etc. The shortcomings of the existing methods are analyzed and listed as follows: 1. Open circuit voltage method, through the corresponding relationship between open circuit voltage and SOC, but it needs to stand for a long time, and the SOC of the battery is obtained by looking up the table, this method is simple to operate , but the battery pack should be left to stand intermittently, which is only suitable for laboratory use and cannot meet the online requirements of electric vehicles; 2. The ampere-hour integration method can be tested online and is simple to use, but this method will increase the estimation error with the accumulation of time. 3. Discharge experiment method, this method can measure reliable SOC, but this method requires off-line test, and requires charging and discharging machine, and the charging and discharging time is long, which leads to an increase in cost; 4. Neural network algorithm predicts, this method The prediction accuracy depends on a large amount of training data and suitable training methods; 5. The Kalman filter algorithm is suitable for the severe running conditions of electric vehicles, but the traditional Kalman filter algorithm is only suitable for linear systems, and it is not suitable for severe abnormal conditions during operation. Linear lithium batteries are not suitable.

总的来说,就目前对电动车锂电池组SOC的在线测量或者预测方法存在误差大、精度低、成本高或者建模准确度低等问题,很难准确地获得电动汽车锂电池的SOC。In general, the current online measurement or prediction methods for the SOC of lithium battery packs for electric vehicles have problems such as large errors, low accuracy, high cost or low modeling accuracy, and it is difficult to accurately obtain the SOC of lithium batteries for electric vehicles.

发明内容SUMMARY OF THE INVENTION

针对以上技术背景中的问题,本发明的目的是提出一种基于人工生命模型的锂电池组SOC预测方法。In view of the problems in the above technical background, the purpose of the present invention is to propose a method for predicting the SOC of a lithium battery pack based on an artificial life model.

本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:

一种基于人工生命模型的锂电池SOC预测方法,包括步骤:A lithium battery SOC prediction method based on an artificial life model, comprising the steps of:

S1、建立基本人工生命体模型;S1. Establish a basic artificial life model;

S2、改善基本人工生命体模型的结构;S2. Improve the structure of the basic artificial life model;

S3、改进人工生命体模型的学习算法。S3, improving the learning algorithm of the artificial life model.

S4、采集锂电池组的历史充放电数据以及对应的SOC数据;S4. Collect historical charge and discharge data and corresponding SOC data of the lithium battery pack;

S5、对锂电池组的历史充放电数据以及对应的SOC数据进行归一化处理;S5, normalize the historical charge and discharge data of the lithium battery pack and the corresponding SOC data;

S6、将处理完成的数据输入到每个个体元胞中去,并赋予元胞空间内的每个元胞一套自身的网络权重系数,利用权重网络计算每个元胞的实际输出,若元胞空间的平均实际输出达到标准或者完成训练步数,则结束算法,否则继续。S6. Input the processed data into each individual cell, and assign each cell in the cell space a set of its own network weight coefficients, and use the weight network to calculate the actual output of each cell. If the average actual output of the cell space reaches the standard or the number of training steps is completed, the algorithm ends, otherwise it continues.

S7、计算适应度。比较期望输出与每个元胞的实际输出,计算每个元胞的适应度。S7. Calculate the fitness. Compare the expected output with the actual output of each cell, and calculate the fitness of each cell.

S8、选择与复制。每个元胞均在邻居范围内选择适应度最大的个体作为学习对象,每个元胞对选择出的邻居中的优秀个体进行复制操作,更新自身的网络权重系数,然后返回步骤S6S8. Select and copy. Each cell selects the individual with the largest fitness as the learning object within the neighbor range, and each cell replicates the outstanding individuals in the selected neighbors, updates its own network weight coefficient, and then returns to step S6

进一步,所述步骤S1,其具体为:Further, the step S1 is specifically:

建立n×n的网格Moore型元胞自动机,其中n取20,作为本专利的人工生命模型。Establish an n×n grid Moore-type cellular automaton, where n is 20, as the artificial life model of this patent.

进一步,所述步骤S2,其具体为:Further, the step S2 is specifically:

将人工神经网络引入每个元胞中,每个元胞内存放了需要训练的神经网络,其神经网络为三层结构,分别是输入层、隐藏层、输出层。The artificial neural network is introduced into each cell, and each cell stores the neural network that needs to be trained. The neural network has a three-layer structure, namely the input layer, the hidden layer, and the output layer.

进一步,所述步骤S3,其具体为:Further, the step S3 is specifically:

利用QPSO算法作为元胞的学习算法,步骤如下:Using the QPSO algorithm as the learning algorithm of the cell, the steps are as follows:

S31、设迭代次数n=0。初始化粒子群,包括粒子的个数,搜索空间,随机初始化每个粒子初始位置;S31. Set the number of iterations n=0. Initialize the particle swarm, including the number of particles, search space, and randomly initialize the initial position of each particle;

S32、在第一次迭代时,每个粒子的初始位置即为个体最好的位置。每个粒子的位置为神经网络中的参数,计算所有输入组数据神经网络的实际输出,根据实际输出和期望输出得到该粒子所对应的目标函数值,所有的粒子的目标函数值相比较就能找到一个具有最小目标函数值的粒子,该粒子的位置即为全局最好的位置,同时保存该粒子所对应的结论参数矩阵;S32. In the first iteration, the initial position of each particle is the best position of the individual. The position of each particle is a parameter in the neural network. Calculate the actual output of the neural network for all input data groups, and obtain the objective function value corresponding to the particle according to the actual output and expected output. The objective function values of all particles can be compared. Find a particle with the smallest objective function value, the position of the particle is the best position in the world, and save the conclusion parameter matrix corresponding to the particle;

S33、由所有的粒子的个体最好位置计算个体的平均最好位置,对每个粒子的位置进行更新,计算每个粒子的目标函数值,并更新个体最好位置。最后,比较所有粒子的个体最好位置,得到全局最好位置,同时保存具有全局最好位置粒子所对应的参数矩阵;S33: Calculate the average best position of the individual from the individual best positions of all the particles, update the position of each particle, calculate the objective function value of each particle, and update the individual best position. Finally, compare the individual best positions of all particles to obtain the global best positions, and save the parameter matrix corresponding to the particles with the global best positions;

S34、当达到迭代结束条件时,训练结束,全局最好位置即为所要确定的神经网络参数值,保存的结论参数矩阵即为要确定的结论参数。当迭代结束条件未达到时,设n=n+1,转到步骤S33。S34. When the iteration end condition is reached, the training ends, the global best position is the neural network parameter value to be determined, and the saved conclusion parameter matrix is the conclusion parameter to be determined. When the iteration end condition is not reached, set n=n+1, and go to step S33.

进一步,所述步骤S4,其具体为:Further, the step S4 is specifically:

所述充放电数据包括锂电池组的各单体电池的充放电电流、单体电压。The charge-discharge data includes charge-discharge current and single-cell voltage of each single cell of the lithium battery pack.

进一步,所述步骤S5,其具体为:Further, the step S5 is specifically:

根据下式,对电动汽车锂电池组的历史充放电数据进行归一化处理,同时对SOC数据进行反归一化处理:According to the following formula, the historical charge and discharge data of the electric vehicle lithium battery pack is normalized, and the SOC data is de-normalized at the same time:

Figure BSA0000160426230000031
Figure BSA0000160426230000031

上式中,X表示归一化处理后的数据,xk表示实际输入的历史充放电数据,k为自然数,表示序号,xmax表示xk所在的数据序列中的最大值,xmin表示xk所在的数据序列中的最小值。In the above formula, X represents the normalized data, x k represents the actual input historical charge and discharge data, k is a natural number, representing the serial number, x max represents the maximum value in the data sequence where x k is located, and x min represents x The minimum value in the data sequence in which k is located.

进一步,所述步骤S6,包括:Further, the step S6 includes:

S61、根据采集的电动汽车锂电池组的历史充放电数据以及对应的SOC数据,将任一时刻的SOC数据作为BP神经网络的输出数据,同时将该时刻之前预设时间内的历史充放电数据作为BP神经网络的输入数据,进而确定元胞体的网络结构中的输入和输出结点的个数;S61. According to the collected historical charge and discharge data of the lithium battery pack of the electric vehicle and the corresponding SOC data, use the SOC data at any time as the output data of the BP neural network, and at the same time use the historical charge and discharge data in a preset time before the time As the input data of the BP neural network, and then determine the number of input and output nodes in the network structure of the cell body;

S62、赋予元胞空间内的每个元胞一套自身的网络权重系数S62. Give each cell in the cell space a set of its own network weight coefficients

S63、为每个元胞提供相同的步骤S5处理过的数据,利用权重网络计算每个元胞的实际输出,若元胞空间的平均实际输出达到标准或者完成训练步数,则结束算法,否则继续。S63. Provide each cell with the same data processed in step S5, and use the weight network to calculate the actual output of each cell. If the average actual output of the cell space reaches the standard or the number of training steps is completed, the algorithm ends, otherwise continue.

进一步,所述步骤S7,其具体为:Further, the step S7 is specifically:

每个元胞比较自身实际输出与期望输出的差距,计算适应度,方式如下:Each cell compares the gap between its actual output and the expected output, and calculates the fitness as follows:

Figure BSA0000160426230000041
Figure BSA0000160426230000041

上式中,fitness是适应度,outa是元胞实际输出,outq是期望输出。In the above formula, fitness is the fitness, out a is the actual output of the cell, and out q is the expected output.

进一步,所述步骤S8,其具体为:Further, the step S8 is specifically:

每个元胞均在邻居范围内(包括自身)中选择适应度fitstar=max{fitj,j∈Ω}作为学习对象,每个元胞对选择出适应度最大的元胞个体进行复制,并更新自身的网络权重系数:Each cell selects fitness fit star =max{fit j , j∈Ω} as the learning object in the range of its neighbors (including itself), and each cell replicates the selected cell individual with the largest fitness, And update its own network weight coefficient:

Wi,t′=Wstar,t Wi ,t '= Wstar,t

Vi,t′=Vstar,t Vi ,t '= Vstar,t

然后返回步骤S6。Then it returns to step S6.

本发明的有益效果在于:本发明是基于人工生命模型的锂电池组SOC预测方法,该发明通过人工生命模型准确地对电动车锂电池组的SOC值进行建模并获得SOC的在线预测值,而且没有误差积累,预测精度高、误差小、预测成本低,便于广泛使用。The beneficial effects of the present invention are as follows: the present invention is a method for predicting the SOC of a lithium battery pack based on an artificial life model, and the present invention accurately models the SOC value of the lithium battery pack of an electric vehicle through the artificial life model and obtains the online predicted value of the SOC, Moreover, there is no accumulation of errors, the prediction accuracy is high, the error is small, and the prediction cost is low, which is convenient for wide use.

附图说明Description of drawings

下面结合附图和实施例对本发明作进一步说明The present invention will be further described below in conjunction with the accompanying drawings and embodiments

图1是本发明的一种基于人工生命模型的锂电池组SOC预测方法流程图;1 is a flowchart of a method for predicting the SOC of a lithium battery pack based on an artificial life model of the present invention;

图2是本发明所建立的生命生命模型------Moore型元胞自动机Fig. 2 is the life model established by the present invention---Moore cellular automata

图3是本发明所改进的元胞自动机------元胞遗传神经网络结构Fig. 3 is the improved cellular automata of the present invention ------ cellular genetic neural network structure

具体实施方式Detailed ways

参照图1,本发明提供了一种基于人工生命模型的锂电池组SOC预测方法,包括步骤:1, the present invention provides a method for predicting the SOC of a lithium battery pack based on an artificial life model, including the steps:

S1、建立基本人工生命体模型;S1. Establish a basic artificial life model;

S2、改善基本人工生命体模型的结构;S2. Improve the structure of the basic artificial life model;

S3、改进人工生命体模型的学习算法。S3, improving the learning algorithm of the artificial life model.

S4、采集锂电池组的历史充放电数据以及对应的SOC数据;S4. Collect historical charge and discharge data and corresponding SOC data of the lithium battery pack;

S5、对锂电池组的历史充放电数据以及对应的SOC数据进行归一化处理;S5, normalize the historical charge and discharge data of the lithium battery pack and the corresponding SOC data;

S6、将处理完成的数据输入到每个个体元胞中去,并赋予元胞空间内的每个元胞一套自身的网络权重系数,利用权重网络计算每个元胞的实际输出,若元胞空间的平均实际输出达到标准或者完成训练步数,则结束算法,否则继续。S6. Input the processed data into each individual cell, and assign each cell in the cell space a set of its own network weight coefficients, and use the weight network to calculate the actual output of each cell. If the average actual output of the cell space reaches the standard or the number of training steps is completed, the algorithm ends, otherwise it continues.

S7、计算适应度。比较期望输出与每个元胞的实际输出,计算每个元胞的适应度。S7. Calculate the fitness. Compare the expected output with the actual output of each cell, and calculate the fitness of each cell.

S8、选择与复制。每个元胞均在邻居范围内选择适应度最大的个体作为学习对象,每个元胞对选择出的邻居中的优秀个体进行复制操作,更新自身的网络权重系数,然后返回步骤S6。S8. Select and copy. Each cell selects the individual with the greatest fitness as the learning object within the neighbor range, and each cell replicates the outstanding individuals in the selected neighbors, updates its own network weight coefficient, and then returns to step S6.

进一步作为优选的实施方式,所述步骤S1,包括:Further as a preferred embodiment, the step S1 includes:

参照图2,建立n×n的Moore型元胞自动机的人工生命模型,其中n取20。Referring to FIG. 2 , an artificial life model of n×n Moore-type cellular automata is established, where n is 20.

进一步作为优选的实施方式,所述步骤S2,包括:Further as a preferred embodiment, the step S2 includes:

参照图3,将人工神经网络引入每个元胞中,每个元胞内存放了需要训练的神经网络,其神经网络为三层结构,分别是输入层、隐藏层、输出层。Referring to Figure 3, an artificial neural network is introduced into each cell, and each cell stores a neural network that needs to be trained. The neural network has a three-layer structure, which are an input layer, a hidden layer, and an output layer.

进一步作为优选的实施方式,所述步骤S3,包括:Further as a preferred embodiment, the step S3 includes:

利用QPSO算法作为元胞的学习算法,具体步骤如下:Using the QPSO algorithm as the learning algorithm of the cell, the specific steps are as follows:

S31、设迭代次数n=0。初始化粒子群,包括粒子的个数,搜索空间,随机初始化每个粒子初始位置;S31. Set the number of iterations n=0. Initialize the particle swarm, including the number of particles, search space, and randomly initialize the initial position of each particle;

S32、在第一次迭代时,每个粒子的初始位置即为个体最好的位置。每个粒子的位置为神经网络中的参数,计算所有输入组数据神经网络的实际输出,根据实际输出和期望输出得到该粒子所对应的目标函数值,所有的粒子的目标函数值相比较就能找到一个具有最小目标函数值的粒子,该粒子的位置即为全局最好的位置,同时保存该粒子所对应的结论参数矩阵;S32. In the first iteration, the initial position of each particle is the best position of the individual. The position of each particle is a parameter in the neural network. Calculate the actual output of the neural network for all input data groups, and obtain the objective function value corresponding to the particle according to the actual output and expected output. The objective function values of all particles can be compared. Find a particle with the smallest objective function value, the position of the particle is the best position in the world, and save the conclusion parameter matrix corresponding to the particle;

S33、由所有的粒子的个体最好位置计算个体的平均最好位置,对每个粒子的位置进行更新,计算每个粒子的目标函数值,并更新个体最好位置。最后,比较所有粒子的个体最好位置,得到全局最好位置,同时保存具有全局最好位置粒子所对应的参数矩阵;S33: Calculate the average best position of the individual from the individual best positions of all the particles, update the position of each particle, calculate the objective function value of each particle, and update the individual best position. Finally, compare the individual best positions of all particles to obtain the global best positions, and save the parameter matrix corresponding to the particles with the global best positions;

S34、当达到迭代结束条件时,训练结束,全局最好位置即为所要确定的神经网络参数值,保存的结论参数矩阵即为要确定的结论参数。当迭代结束条件未达到时,设n=n+1,转到步骤S33。S34. When the iteration end condition is reached, the training ends, the global best position is the neural network parameter value to be determined, and the saved conclusion parameter matrix is the conclusion parameter to be determined. When the iteration end condition is not reached, set n=n+1, and go to step S33.

进一步作为优选的实施方式,所述步骤S4,包括:Further as a preferred embodiment, the step S4 includes:

所述充放电数据包括锂电池组的各单体电池的充放电电流、单体电压。The charge-discharge data includes charge-discharge current and single-cell voltage of each single cell of the lithium battery pack.

进一步作为优选的实施方式,所述步骤S5,包括:Further as a preferred embodiment, the step S5 includes:

根据下式,对电动汽车锂电池组的历史充放电数据进行归一化处理,同时对SOC数据进行反归一化处理:According to the following formula, the historical charge and discharge data of the electric vehicle lithium battery pack is normalized, and the SOC data is de-normalized at the same time:

Figure BSA0000160426230000061
Figure BSA0000160426230000061

上式中,X表示归一化处理后的数据,xk表示实际输入的历史充放电数据,k为自然数,表示序号,xmax表示xk所在的数据序列中的最大值,xmin表示xk所在的数据序列中的最小值。In the above formula, X represents the normalized data, x k represents the actual input historical charge and discharge data, k is a natural number, representing the serial number, x max represents the maximum value in the data sequence where x k is located, and x min represents x The minimum value in the data sequence in which k is located.

进一步作为优选的实施方式,所述步骤S6,包括:Further as a preferred embodiment, the step S6 includes:

S61、根据采集的电动汽车锂电池组的历史充放电数据以及对应的SOC数据,将任一时刻的SOC数据作为BP神经网络的输出数据,同时将该时刻之前预设时间内的历史充放电数据作为BP神经网络的输入数据,进而确定元胞体的网络结构中的输入和输出结点的个数;S61. According to the collected historical charge and discharge data of the lithium battery pack of the electric vehicle and the corresponding SOC data, use the SOC data at any time as the output data of the BP neural network, and at the same time use the historical charge and discharge data in a preset time before the time As the input data of the BP neural network, and then determine the number of input and output nodes in the network structure of the cell body;

S62、赋予元胞空间内的每个元胞一套自身的网络权重系数S62. Give each cell in the cell space a set of its own network weight coefficients

S63、为每个元胞提供相同的步骤S5处理过的数据,利用权重网络计算每个元胞的实际输出,若元胞空间的平均实际输出达到标准或者完成训练步数,则结束算法,否则继续。S63. Provide each cell with the same data processed in step S5, and use the weight network to calculate the actual output of each cell. If the average actual output of the cell space reaches the standard or the number of training steps is completed, the algorithm ends, otherwise continue.

进一步作为优选的实施方式,所述步骤S7,包括:Further as a preferred embodiment, the step S7 includes:

每个元胞比较自身实际输出与期望输出的差距,计算适应度,方式如下:Each cell compares the gap between its actual output and the expected output, and calculates the fitness as follows:

Figure BSA0000160426230000062
Figure BSA0000160426230000062

上式中,fitness是适应度,outa是元胞实际输出,outq是期望输出。In the above formula, fitness is the fitness, out a is the actual output of the cell, and out q is the expected output.

进一步作为优选的实施方式,所述步骤S8,包括:Further as a preferred embodiment, the step S8 includes:

每个元胞均在邻居范围内(包括自身)中选择适应度fitstar=max{fitj,j∈Ω}作为学习对象,每个元胞对选择出适应度最大的元胞个体进行复制,并更新自身的网络权重系数:Each cell selects fitness fit star =max{fit j , j∈Ω} as the learning object in the range of its neighbors (including itself), and each cell replicates the selected cell individual with the largest fitness, And update its own network weight coefficient:

Wi,t′=Wstar,t Wi ,t '= Wstar,t

Vi,t′=Vstar,t Vi ,t '= Vstar,t

然后返回步骤S6。Then it returns to step S6.

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或者替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the present invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent deformations or replacements on the premise that does not violate the spirit of the present invention , these equivalent modifications or substitutions are all included within the scope defined by the claims of the present application.

Claims (7)

1.一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,包括具体步骤:1. a lithium battery pack SOC prediction method based on artificial life model, is characterized in that, comprises concrete steps: S1、建立基本人工生命体模型;S1. Establish a basic artificial life model; S2、改善基本人工生命体模型的结构,即将神经网络引入基本人工生命体模型的每个元胞中,每个元胞内存放了需要训练的神经网络,神经网络为三层结构,分别是输入层、隐藏层、输出层;S2. Improve the structure of the basic artificial life model, that is, introduce the neural network into each cell of the basic artificial life model, and each cell stores the neural network that needs to be trained. The neural network has a three-layer structure, which are the input layer, hidden layer, output layer; S3、改进人工生命体模型的学习算法,即利用QPSO算法来替换人工生命体原来的学习算法之后,通过调整其参数β来实现学习过程,具体包括以下步骤:S3. Improve the learning algorithm of the artificial life body model, that is, after replacing the original learning algorithm of the artificial life body with the QPSO algorithm, the learning process is realized by adjusting its parameter β, which specifically includes the following steps: S31、设迭代次数n=0,初始化粒子群,包括粒子的个数,搜索空间,随机初始化每个粒子初始位置;S31, set the number of iterations n=0, initialize the particle swarm, including the number of particles, search space, and randomly initialize the initial position of each particle; S32、在第一次迭代时,每个粒子的初始位置即为个体最好的位置;每个粒子的位置为神经网络中的参数,计算所有输入组数据神经网络的实际输出,根据实际输出和期望输出得到该粒子所对应的目标函数值,所有的粒子的目标函数值相比较就能找到一个具有最小目标函数值的粒子,该粒子的位置即为全局最好的位置,同时保存该粒子所对应的结论参数矩阵;S32. In the first iteration, the initial position of each particle is the best position of the individual; the position of each particle is a parameter in the neural network, calculate the actual output of the neural network for all input group data, according to the actual output and The objective function value corresponding to the particle is expected to be output. By comparing the objective function values of all particles, a particle with the smallest objective function value can be found. The position of the particle is the best position in the world. The corresponding conclusion parameter matrix; S33、由所有的粒子的个体最好位置计算个体的平均最好位置,对每个粒子的位置进行更新,计算每个粒子的目标函数值,并更新个体最好位置;比较所有粒子的个体最好位置,得到全局最好位置,同时保存具有全局最好位置粒子所对应的参数矩阵;S33. Calculate the average best position of the individual from the individual best positions of all the particles, update the position of each particle, calculate the objective function value of each particle, and update the individual best position; compare the individual best positions of all particles Good position, get the global best position, and save the parameter matrix corresponding to the particle with the global best position; S34、当达到迭代结束条件时,训练结束,全局最好位置即为所要确定的神经网络参数值,保存的结论参数矩阵即为要确定的结论参数;当迭代结束条件未达到时,设n=n+1,转到步骤S3;其中n表示基本人工生命体模型的规模;S34. When the iteration end condition is reached, the training ends, the global best position is the neural network parameter value to be determined, and the saved conclusion parameter matrix is the conclusion parameter to be determined; when the iteration end condition is not reached, set n= n+1, go to step S3; wherein n represents the scale of the basic artificial life model; S4、采集锂电池组的历史充放电数据以及对应的SOC数据;S4. Collect historical charge and discharge data and corresponding SOC data of the lithium battery pack; S5、对锂电池组的历史充放电数据以及对应的SOC数据进行归一化处理;S5, normalize the historical charge and discharge data of the lithium battery pack and the corresponding SOC data; S6、将处理完成的数据输入到每个个体元胞中去,并赋予元胞空间内的每个元胞一套自身的网络权重系数,利用权重网络计算每个元胞的实际输出,若元胞空间的平均实际输出达到标准或者完成训练步数,则结束算法,否则继续;S6. Input the processed data into each individual cell, and assign each cell in the cell space a set of its own network weight coefficients, and use the weight network to calculate the actual output of each cell. If the average actual output of the cell space reaches the standard or the number of training steps is completed, the algorithm ends, otherwise it continues; S7、计算适应度,比较期望输出与每个元胞的实际输出,计算每个元胞的适应度;S7. Calculate the fitness, compare the expected output with the actual output of each cell, and calculate the fitness of each cell; S8、选择与复制,每个元胞均在邻居范围内选择适应度最大的个体作为学习对象,每个元胞对选择出的邻居中的优秀个体进行复制操作,更新自身的网络权重系数,然后返回步骤S6。S8. Selection and replication. Each cell selects the individual with the largest fitness within the neighbor range as the learning object. Each cell replicates the outstanding individuals in the selected neighbors, updates its own network weight coefficient, and then Return to step S6. 2.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,所述步骤S1中,建立基本的人工生命模型是指的建立n×n的网格元胞自动机模型。2 . The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1 , wherein in the step S1 , establishing a basic artificial life model refers to establishing n×n grid elements. 3 . cellular automata model. 3.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,所述步骤S4,其具体为:所述的采集数据是锂电池组的各个单体电池的充放电电流、单体电压。3. The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1, wherein the step S4 is specifically: the collected data is each single cell of the lithium battery pack charge and discharge current and cell voltage. 4.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,所述步骤S5,其具体为:所述采集数据经过归一化处理,据跟下式,对锂电池组的历史充放电数据进行归一化处理:4. The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1, wherein the step S5 is specifically: the collected data is subjected to normalization processing, according to the following formula , normalize the historical charge and discharge data of the lithium battery pack:
Figure FDA0003766593380000021
Figure FDA0003766593380000021
上式中,X表示归一化处理后的数据,xk表示实际输入的历史充放电数据,In the above formula, X represents the normalized data, x k represents the actual input historical charge and discharge data, k为自然数,表示序号,xmax表示xk所在的数据序列中的最大值,xmin表示xk所在的数据序列中的最小值。k is a natural number, representing the sequence number, x max represents the maximum value in the data sequence where x k is located, and x min represents the minimum value in the data sequence where x k is located.
5.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于:所述步骤S6,其具体为:步骤S3所建立的人工生命体模型将对基于步骤S5处理的数据进行学习,该模型会在不断进化,直到完成进化。5 . The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1 , wherein the step S6 is specifically: the artificial life model established in the step S3 will be based on the step S5 . 6 . Processed data to learn, the model will continue to evolve until it completes the evolution. 6.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,所述步骤S7,其具体为:每个元胞比较自身实际输出与期望输出的差距,计算适应度,方式如下:6. The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1, wherein the step S7 is specifically: each cell compares the difference between its actual output and the expected output, The fitness is calculated as follows:
Figure FDA0003766593380000022
Figure FDA0003766593380000022
上式中,fitness是适应度,outa是元胞实际输出,outq是期望输出。In the above formula, fitness is the fitness, out a is the actual output of the cell, and out q is the expected output.
7.根据权利要求1所述的一种基于人工生命模型的锂电池组SOC预测方法,其特征在于,所述步骤S8,其具体为:每个元胞均在邻居范围内中选择适应度fitstar=max{fitj,j∈Ω}作为学习对象,元胞的邻居范围包括自身,每个元胞对选择出适应度最大的元胞个体进行复制,并更新自身的网络权重系数:7. The method for predicting the SOC of a lithium battery pack based on an artificial life model according to claim 1, wherein the step S8 is specifically as follows: each cell selects fitness fit within a neighbor range star =max{fit j , j∈Ω} is used as the learning object, the neighbor range of the cell includes itself, each cell replicates the selected cell individual with the greatest fitness, and updates its own network weight coefficient: Wi,t'=Wstar,t W i,t '=W star,t Vi.t'=Vstar,t V it '=V star,t 然后返回步骤S6。Then it returns to step S6.
CN201810194036.6A 2018-03-05 2018-03-05 Lithium battery pack SOC prediction method based on artificial life model Active CN110232432B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810194036.6A CN110232432B (en) 2018-03-05 2018-03-05 Lithium battery pack SOC prediction method based on artificial life model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810194036.6A CN110232432B (en) 2018-03-05 2018-03-05 Lithium battery pack SOC prediction method based on artificial life model

Publications (2)

Publication Number Publication Date
CN110232432A CN110232432A (en) 2019-09-13
CN110232432B true CN110232432B (en) 2022-09-20

Family

ID=67862270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810194036.6A Active CN110232432B (en) 2018-03-05 2018-03-05 Lithium battery pack SOC prediction method based on artificial life model

Country Status (1)

Country Link
CN (1) CN110232432B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794308B (en) * 2019-11-07 2021-09-10 交控科技股份有限公司 Method and device for predicting train battery capacity
CN113109714A (en) * 2020-01-10 2021-07-13 宁波吉利汽车研究开发有限公司 Intelligent monitoring method, device and system for automobile storage battery
CN113496309B (en) * 2021-06-15 2024-04-19 中国食品药品检定研究院 American ginseng growth age prediction method, model training method and device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1896925A1 (en) * 2005-06-13 2008-03-12 LG Chem, Ltd. Apparatus and method for testing state of charge in battery
CN102110021A (en) * 2010-12-08 2011-06-29 浙江大学 Automatic optimization method for cloud computing
CN104484715A (en) * 2014-11-28 2015-04-01 江苏大学 Neural network and particle swarm optimization algorithm-based building energy consumption predicting method
CN105823989A (en) * 2016-05-04 2016-08-03 安徽工程大学 Improved battery SOC prediction method for RBF neural network
CN105974327A (en) * 2016-06-12 2016-09-28 广州市香港科大霍英东研究院 Lithium battery pack SOC prediction method based on neural network and UKF
CN106443453A (en) * 2016-07-04 2017-02-22 陈逸涵 Lithium battery SOC estimation method based on BP neural network
CN106501721A (en) * 2016-06-03 2017-03-15 湘潭大学 A kind of lithium battery SOC estimation method based on biological evolution
CN106558064A (en) * 2016-12-07 2017-04-05 江南大学 A kind of method for tracking target based on cellular quantum-behaved particle swarm optimization
CN107316099A (en) * 2017-05-22 2017-11-03 沈阳理工大学 Ammunition Storage Reliability Forecasting Methodology based on particle group optimizing BP neural network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10740646B2 (en) * 2017-10-30 2020-08-11 The Aerospace Corporation Programmable cellular automata for memory search, recall, simulation, and improvisation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1896925A1 (en) * 2005-06-13 2008-03-12 LG Chem, Ltd. Apparatus and method for testing state of charge in battery
CN102110021A (en) * 2010-12-08 2011-06-29 浙江大学 Automatic optimization method for cloud computing
CN104484715A (en) * 2014-11-28 2015-04-01 江苏大学 Neural network and particle swarm optimization algorithm-based building energy consumption predicting method
CN105823989A (en) * 2016-05-04 2016-08-03 安徽工程大学 Improved battery SOC prediction method for RBF neural network
CN106501721A (en) * 2016-06-03 2017-03-15 湘潭大学 A kind of lithium battery SOC estimation method based on biological evolution
CN105974327A (en) * 2016-06-12 2016-09-28 广州市香港科大霍英东研究院 Lithium battery pack SOC prediction method based on neural network and UKF
CN106443453A (en) * 2016-07-04 2017-02-22 陈逸涵 Lithium battery SOC estimation method based on BP neural network
CN106558064A (en) * 2016-12-07 2017-04-05 江南大学 A kind of method for tracking target based on cellular quantum-behaved particle swarm optimization
CN107316099A (en) * 2017-05-22 2017-11-03 沈阳理工大学 Ammunition Storage Reliability Forecasting Methodology based on particle group optimizing BP neural network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Integration of neural networks and cellular automata for urban planning;Anthony Yeh , Li Xia;《Geo-spatial Information Science》;20040331;6-13 *
一种新的元胞网络模型;李学伟,孙有发,吴今培;《五邑大学学报》;20111130;14-21 *
基于QPSO算法的RBF神经网络参数优化仿真研究;陈伟,冯斌,孙俊;《计算机应用》;20060831;1928-1931 *

Also Published As

Publication number Publication date
CN110232432A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
Zhang et al. Intelligent state of charge estimation of battery pack based on particle swarm optimization algorithm improved radical basis function neural network
CN112434463B (en) Energy management system for vehicle hybrid power supply
CN110850298B (en) Data-driven SOH estimation method and system for lithium batteries
CN113702843B (en) Lithium battery parameter identification and SOC estimation method based on suburb optimization algorithm
CN110133507B (en) Battery remaining capacity estimation method based on NARX-UKF algorithm
CN106842056B (en) Estimation method of peak power of power battery based on two-step online intelligent optimization algorithm
CN110994050B (en) A management and control method and device for a DC power supply battery pack
CN110929464B (en) Storage battery parameter identification method based on improved dragonfly algorithm
CN110232432B (en) Lithium battery pack SOC prediction method based on artificial life model
CN109884526A (en) Battery fault diagnosis method based on cross-optimized fuzzy BP neural network
CN110488203A (en) A kind of aging lithium battery group SOC On-line Estimation method
CN115963407A (en) A lithium battery SOC estimation method based on ICGWO optimized ELM
CN113807039A (en) Power state prediction method of series battery system
CN114977410A (en) A power lithium battery active balance control strategy and method based on PSO-GA-FCM clustering
Sangwan et al. Estimation of battery parameters of the equivalent circuit models using meta-heuristic techniques
Geng et al. SOC Prediction of power lithium battery using BP neural network theory based on keras
KR20220112997A (en) An apparatus for real time state of charge estimation for each cell of lithium battery pack using neural networks
Zhang et al. Lithium battery SOC prediction based on mproved BP eural etwork algorithm
CN111762059A (en) An Equalization Method for Multivariable Fusion Battery Packs Considering Battery Charging and Discharging Conditions
Zhang et al. Research for SOC prediction of lithium battery based on GA-ESN
CN113671378A (en) Fractional order theory-based lithium ion battery modeling and parameter identification method
CN117169731A (en) Charging and discharging flow giving method based on intelligent estimation of residual electric quantity of energy storage battery
Hua et al. Surrogate modelling for battery state-of-charge estimation in electric vehicles based on pseudo-2-dimensional model and gradient boosting machines
CN114091975B (en) Method for evaluating operation life of energy storage power station
CN117007970A (en) Lithium ion battery RUL prediction method based on mixed ISSA-LSTM

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231227

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: Chongqing University of Posts and telecommunications, No.2 Chongwen Road, Nan'an District, Chongqing 400065

Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS

Effective date of registration: 20231227

Address after: No. 1801, Renmin West Road, Cao'e street, Shangyu District, Shaoxing City, Zhejiang Province

Patentee after: Zhejiang Wolong Energy Storage System Co.,Ltd.

Patentee after: WOLONG ELECTRIC GROUP Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

TR01 Transfer of patent right