[go: up one dir, main page]

CN110232362B - Ship size estimation method based on convolutional neural network and multi-feature fusion - Google Patents

Ship size estimation method based on convolutional neural network and multi-feature fusion Download PDF

Info

Publication number
CN110232362B
CN110232362B CN201910526996.2A CN201910526996A CN110232362B CN 110232362 B CN110232362 B CN 110232362B CN 201910526996 A CN201910526996 A CN 201910526996A CN 110232362 B CN110232362 B CN 110232362B
Authority
CN
China
Prior art keywords
size
target
layer
input data
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910526996.2A
Other languages
Chinese (zh)
Other versions
CN110232362A (en
Inventor
王英华
王聪
刘宏伟
何敬鲁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910526996.2A priority Critical patent/CN110232362B/en
Publication of CN110232362A publication Critical patent/CN110232362A/en
Application granted granted Critical
Publication of CN110232362B publication Critical patent/CN110232362B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于卷积神经网络和多特征融合的舰船尺寸估计方法,主要解决现有技术在中低分辨情况下目标尺寸估计误差较大的问题。其实现方案是:1)获取训练样本和测试样本,进行预处理;2)获取目标区域幅度图像,计算多维特征;3)构建目标尺寸估计网络框架,并用训练样本对其训练,得到训练好的模型;4)用训练好的模型估计测试样本的初步尺寸特征;5)将多维特征与初步尺寸特征组成新多维特征;6)利用新的多维特征训练梯度提升决策树GBDT;7)利用训练好的GBDT模型估计测试样本的最终尺寸特征。本发明利用CNN网络能自主学习SAR图像目标特征,提高了目标尺寸估计精度,可用于SAR图像舰船目标的识别与分类。

Figure 201910526996

The invention discloses a method for estimating ship size based on convolutional neural network and multi-feature fusion, which mainly solves the problem in the prior art that the target size estimation error is relatively large under the condition of medium and low resolution. The implementation plan is: 1) Obtain training samples and test samples, and perform preprocessing; 2) Obtain the magnitude image of the target area, and calculate multi-dimensional features; 3) Construct the target size estimation network framework, and train it with training samples to obtain the trained model; 4) use the trained model to estimate the preliminary size feature of the test sample; 5) form the multi-dimensional feature and the preliminary size feature into a new multi-dimensional feature; 6) use the new multi-dimensional feature to train the gradient boosting decision tree GBDT; 7) use the trained The GBDT model estimates the final size characteristics of the test sample. The invention uses the CNN network to independently learn the target features of the SAR image, improves the estimation accuracy of the target size, and can be used for the identification and classification of the ship target in the SAR image.

Figure 201910526996

Description

基于卷积神经网络和多特征融合的舰船尺寸估计方法Ship size estimation method based on convolutional neural network and multi-feature fusion

技术领域Technical Field

本发明属于雷达图像处理技术领域,主要涉及SAR图像舰船尺寸估计方法,可用于SAR图像舰船目标的识别与分类。The invention belongs to the technical field of radar image processing, and mainly relates to a method for estimating the size of a ship in a SAR image, and can be used for identifying and classifying ship targets in a SAR image.

背景技术Background Art

合成孔径雷达SAR能够不受天气、环境等因素的影响,对海洋环境进行大范围的观测,已经成为海洋管理的一种有效手段,它还被广泛应用于军事侦察、灾情预报等领域, 具有广阔的研究和应用前景。近年来,在对海洋目标进行监测的基础上,开展了对船舶检 测与分类、冰山探测、风反演、溢油探测、海冰监测、船舶尾迹探测等领域的研究,并证 明了其实用性。其中,对于舰船目标的尺寸估计是对船舶目标检测与分类的关键和基础, 精细的几何参数估计同时也是SAR图像解译的关键,具有重要的研究意义。Synthetic aperture radar SAR can observe the marine environment over a large area without being affected by weather and environmental factors. It has become an effective means of marine management. It is also widely used in military reconnaissance, disaster forecasting and other fields, and has broad research and application prospects. In recent years, based on the monitoring of marine targets, research has been carried out in the fields of ship detection and classification, iceberg detection, wind inversion, oil spill detection, sea ice monitoring, ship wake detection, etc., and its practicality has been proved. Among them, the size estimation of ship targets is the key and basis for ship target detection and classification. The precise geometric parameter estimation is also the key to SAR image interpretation, which has important research significance.

对舰船目标尺寸估计的研究已经取得了很多的成果。然而,由于现实情况的限制,很 难得到大量的高分辨SAR图像。对于中低分辨SAR图像,舰船目标细节信息不够丰富, 这影响了目标尺寸估计的精度。为了解决这一问题,Bjorn Tings等人提出了动态自适应舰船参数估计方法,使用交叉熵和多元线性回归对算法参数进行优化,该方法在TerraSAR-X数据上取得了较高的估计精度,但算法受海杂波等环境因素影响较大。A lot of research has been done on ship target size estimation. However, due to practical limitations, it is difficult to obtain a large number of high-resolution SAR images. For medium and low-resolution SAR images, the ship target details are not rich enough, which affects the accuracy of target size estimation. To solve this problem, Bjorn Tings et al. proposed a dynamic adaptive ship parameter estimation method, which uses cross entropy and multivariate linear regression to optimize the algorithm parameters. This method has achieved high estimation accuracy on TerraSAR-X data, but the algorithm is greatly affected by environmental factors such as sea clutter.

此外,对于中低分辨SAR图像,Lui Bedini等人还提出了基于SAR图像的舰船目标尺寸提取方法,该方法对SAR图像做形态学分析,旨在从杂乱的SAR图像中找到目标的 轮廓,从而提取出目标的尺寸特征。此外,机器学习也开始被应用于舰船目标的尺寸估计 中,并取得了较好的结果。Boying Li等人提出了基于双极化融合和非线性回归的舰船尺 寸估计方法,利用梯度提升决策树GBDT来减少成像质量对舰船尺寸估计精度的影响,但 是这些算法均依赖于人工设计特征,且不具备鲁棒性。In addition, for medium and low resolution SAR images, Lui Bedini et al. also proposed a ship target size extraction method based on SAR images. This method performs morphological analysis on SAR images, aiming to find the outline of the target from the cluttered SAR images, thereby extracting the size characteristics of the target. In addition, machine learning has also begun to be applied to the size estimation of ship targets, and has achieved good results. Boying Li et al. proposed a ship size estimation method based on dual polarization fusion and nonlinear regression, using gradient boosting decision tree GBDT to reduce the impact of imaging quality on the accuracy of ship size estimation, but these algorithms all rely on artificially designed features and are not robust.

发明内容Summary of the invention

本发明的目的在于针对已有SAR目标尺寸估计方法的不足,提出了一种基于卷积神 经网络和多特征融合的舰船目标尺寸估计方法,以提高在中低分辨情况下的目标尺寸估计 的性能,从而提高目标尺寸估计的精度。The purpose of this invention is to address the shortcomings of existing SAR target size estimation methods and propose a ship target size estimation method based on convolutional neural network and multi-feature fusion to improve the performance of target size estimation in medium and low resolution situations, thereby improving the accuracy of target size estimation.

本发明的技术思路是:通过对训练样本和测试样本进行图像分割,得到每个样本的目 标区域幅度图像,对目标区域幅度图像进行特征提取,得到目标的多维特征;将训练样本 输入到基于卷积神经网络CNN的目标尺寸估计网络框架中进行训练,得到训练好的网络 模型,将测试样本输入到训练好的网络模型中,得到初步的目标尺寸估计结果。再利用梯 度提升决策树GBDT对初步的目标尺寸估计结果进行进一步的修正,得到最终的目标尺寸 特征。其实现步骤包括如下:The technical idea of the present invention is: by performing image segmentation on training samples and test samples, the target area amplitude image of each sample is obtained, and the feature extraction of the target area amplitude image is performed to obtain the multi-dimensional features of the target; the training samples are input into the target size estimation network framework based on the convolutional neural network CNN for training to obtain a trained network model, and the test samples are input into the trained network model to obtain a preliminary target size estimation result. Then, the gradient boosting decision tree GBDT is used to further correct the preliminary target size estimation result to obtain the final target size feature. The implementation steps include the following:

(1)从公开的OpenSARShip数据集中挑选出五类舰船目标作为实验数据集,并从实验数据集中随机选取70%为训练样本,30%为测试样本;(1) Five types of ship targets were selected from the public OpenSARShip dataset as the experimental dataset, and 70% of the experimental dataset was randomly selected as training samples and 30% as test samples;

(2)对数据集中的原始图像G依次进行直方图均衡化、均值滤波以去除噪声干扰,得到滤波后的图像P;(2) Perform histogram equalization and mean filtering on the original image G in the data set to remove noise interference and obtain the filtered image P;

(3)对滤波后的图像P进行阈值分割,并对分割结果依次进行形态学滤波和聚类处理,得到目标区域二值图像Q,然后进行去旁瓣处理,得到去旁瓣后的二值图像Q';(3) Performing threshold segmentation on the filtered image P, and performing morphological filtering and clustering processing on the segmentation results in turn to obtain a binary image Q of the target area, and then performing sidelobe removal processing to obtain a binary image Q' after sidelobe removal;

(4)对去旁瓣后的二值图像Q'与原始图像G做掩膜处理,得到目标区域幅度图像,计算目标区域幅度图像的多维特征,得到目标的多维特征h;(4) Masking the binary image Q' after removing the side lobes and the original image G to obtain the target area amplitude image, calculate the multi-dimensional features of the target area amplitude image, and obtain the multi-dimensional features h of the target;

(5)构建基于卷积神经网络CNN的目标尺寸估计网络框架Ψ:(5) Construct a target size estimation network framework Ψ based on convolutional neural network CNN:

5a)设置六层卷积层,即第一层卷积层L1、第二层卷积层L2、第三层卷积层L3、 第四层卷积层L4、第五层卷积层L5、第六层卷积层L65a) setting six convolutional layers, namely, a first convolutional layer L 1 , a second convolutional layer L 2 , a third convolutional layer L 3 , a fourth convolutional layer L 4 , a fifth convolutional layer L 5 , and a sixth convolutional layer L 6 ;

5b)设置四层最大池化层,即第一层最大池化层P1、第二层最大池化层P2、第三层最大池化层P3、第四层最大池化层P45b) setting four maximum pooling layers, namely, a first maximum pooling layer P 1 , a second maximum pooling layer P 2 , a third maximum pooling layer P 3 , and a fourth maximum pooling layer P 4 ;

5c)将5a)的六层卷积层与5b)四层最大池化层交叉排列,即由第一层卷积层L1、第一层最大池化层P1、第二层卷积层L2、第二层最大池化层P2、第三层卷积层L3、第三 层最大池化层P3、第四层卷积层L4、第四层最大池化层P4、第五层卷积层L5、第六层卷 积层L6依次串联构成的目标尺寸估计网络框架Ψ;5c) cross-arranging the six convolutional layers in 5a) and the four maximum pooling layers in 5b), that is, the target size estimation network framework Ψ is formed by sequentially connecting in series the first convolutional layer L 1 , the first maximum pooling layer P 1 , the second convolutional layer L 2 , the second maximum pooling layer P 2 , the third convolutional layer L 3 , the third maximum pooling layer P 3 , the fourth convolutional layer L 4 , the fourth maximum pooling layer P 4 , the fifth convolutional layer L 5 , and the sixth convolutional layer L 6 ;

(6)将训练样本输入到构建好的目标尺寸估计网络框架Ψ中进行训练,得到训练好 的网络模型Ψ′,同时得到训练样本的初步尺寸估计结果;(6) Input the training samples into the constructed target size estimation network framework Ψ for training, obtain the trained network model Ψ′, and obtain the preliminary size estimation results of the training samples;

(7)将测试样本输入到训练好的网络模型Ψ′中,得到测试样本的初步尺寸估计结果;(7) Input the test sample into the trained network model Ψ′ to obtain a preliminary size estimation result of the test sample;

(8)将多维特征向量h中训练样本部分与训练样本的初步尺寸估计结果进行组合,组成训练样本的新多维特征向量h1,将多维特征向量h中测试样本部分与测试样本的初步尺寸估计结果进行组合,组成测试样本的新多维特征向量h2(8) Combining the training sample part of the multidimensional feature vector h with the preliminary size estimation result of the training sample to form a new multidimensional feature vector h 1 of the training sample, and combining the test sample part of the multidimensional feature vector h with the preliminary size estimation result of the test sample to form a new multidimensional feature vector h 2 of the test sample;

(9)利用训练样本的多维特征向量h1训练梯度提升决策树GBDT分类器,得到训练好的梯度提升决策树GBDT模型;(9) Using the multi-dimensional feature vector h1 of the training sample to train the gradient boosting decision tree GBDT classifier, a trained gradient boosting decision tree GBDT model is obtained;

(10)将测试样本的多维特征向量h2送入到已经训练好的梯度提升决策树GBDT模型中,得到测试样本的最终尺寸特征。(10) The multidimensional feature vector h2 of the test sample is sent to the trained gradient boosting decision tree (GBDT) model to obtain the final size feature of the test sample.

本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

1)本发明利用卷积神经网络对SAR图像中的舰船目标做初步尺寸估计,不需要根据 SAR图像人工设计提取的特征,大大减少了人力的负担,提高了尺寸估计算法的鲁棒性。1) The present invention uses a convolutional neural network to make a preliminary size estimation of the ship target in the SAR image. It does not need to manually design and extract features based on the SAR image, which greatly reduces the burden of manpower and improves the robustness of the size estimation algorithm.

2)本发明借鉴深度学习的思想提取SAR图像舰船目标的尺寸特征,同时结合传统算 法提取SAR图像的散射信息,并进行多特征融合,提高了舰船目标尺寸估计的精度。2) This paper draws on the idea of deep learning to extract the size features of ship targets in SAR images. At the same time, it combines traditional algorithms to extract the scattering information of SAR images and performs multi-feature fusion to improve the accuracy of ship target size estimation.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明的实现流程图;Fig. 1 is a flow chart of the implementation of the present invention;

图2为本发明中的目标尺寸估计网络框架图;FIG2 is a diagram of a target size estimation network framework in the present invention;

图3为用本发明对部分样本图像分割的结果图;FIG3 is a diagram showing the result of segmenting a portion of a sample image using the present invention;

图4为用本发明估计目标尺寸结果与目标真实尺寸的对比结果图;FIG4 is a diagram showing a comparison between the target size estimation result and the target real size using the present invention;

具体实施方式DETAILED DESCRIPTION

下面结合附图对本发明的实施方案和效果进行详细说明:The implementation scheme and effects of the present invention are described in detail below with reference to the accompanying drawings:

参照图1,本实施的实现步骤如下:Referring to Figure 1, the implementation steps of this embodiment are as follows:

步骤1,获取训练样本和测试样本。Step 1: Obtain training samples and test samples.

从公开的OpenSARShip数据集中挑选出五类舰船目标作为实验数据集,从实验数据 集中随机选取70%为训练样本,30%为测试样本。Five types of ship targets are selected from the public OpenSARShip dataset as the experimental dataset, and 70% of the experimental dataset is randomly selected as training samples and 30% as test samples.

步骤2,对实验数据集中的原图像G进行预处理。Step 2: preprocess the original image G in the experimental data set.

对实验数据集中的原图像G先进行直方图均衡化,以提高目标区域与背景区域的明暗 对比度,再进行均值滤波以去除噪声干扰,得到滤波后的图像P。The original image G in the experimental data set is first histogram equalized to improve the light and dark contrast between the target area and the background area, and then mean filtering is performed to remove noise interference to obtain the filtered image P.

步骤3,对滤波后的图像P进行阈值分割。Step 3: Perform threshold segmentation on the filtered image P.

3a)获取图像P的最大幅度值Imax和最小幅度值Imin3a) Obtaining the maximum amplitude value I max and the minimum amplitude value I min of the image P;

3b)设定第一比例参数γ,计算目标-背景区域的分割阈值thr:3b) Set the first scale parameter γ and calculate the segmentation threshold thr of the target-background area:

thr=γ(Imax-Imin)+Imin thr=γ(I max −I min )+I min

3c)对图像P进行二值化运算:3c) Perform binarization operation on image P:

Figure BDA0002098553780000041
Figure BDA0002098553780000041

其中,I(x,y)为图像P中位于(x,y)位置处像素点的幅度值,Imask(x,y)为二值化后位 于(x,y)位置处像素点的编码值,编码后的图像即为分割后的二值化图像;Wherein, I(x,y) is the amplitude value of the pixel at the position (x,y) in the image P, I mask (x,y) is the encoding value of the pixel at the position (x,y) after binarization, and the encoded image is the binary image after segmentation;

步骤4,对分割后的二值化图像进行修正。Step 4: Correct the segmented binary image.

4a)对分割后的二值化图像依次做形态学滤波和聚类处理,得到目标区域二值图像Q;4a) Perform morphological filtering and clustering processing on the segmented binary image in turn to obtain a binary image Q of the target area;

4b)用主成分分析提取二值图像Q中目标区域的主轴,求取主轴的长度LPA4b) extracting the principal axis of the target area in the binary image Q by principal component analysis, and obtaining the length L PA of the principal axis;

4c)提取目标区域中平行于主轴的所有直线,并计算直线的长度Lline4c) extracting all straight lines parallel to the main axis in the target area and calculating the length L line of the straight lines;

4d)选取第二比例参数ρ,比较目标区域内主轴和其他所有直线的长度,如果 Lline<ρ×LPA,则擦除该直线Lline上的所有点,即像素点置为0,得到去旁瓣后的二值图像 Q'。4d) Select the second scale parameter ρ, compare the lengths of the main axis and all other straight lines in the target area, if L line <ρ×L PA , erase all points on the straight line L line , that is, set the pixels to 0, and obtain the binary image Q' after removing the side lobes.

步骤5,计算目标的多维特征h。Step 5: Calculate the multi-dimensional feature h of the target.

4a)对去旁瓣后的二值图像Q'与原图像G做掩膜处理,得到目标区域幅度图像;4a) Masking the binary image Q' after removing the side lobes and the original image G to obtain the amplitude image of the target area;

4b)用主成分分析提取目标区域幅度图像的主轴,得到目标的方位角θ,并计算方位角 值θ的余弦值θcos4b) Use principal component analysis to extract the principal axis of the target area amplitude image, obtain the target azimuth angle θ, and calculate the cosine value θ cos of the azimuth angle value θ.

4c)计算目标区域的像素点幅值和s1,均值μ1,方差σ1,令第一目标特征f1=(s111);4c) Calculate the pixel amplitude and s 1 , mean μ 1 , variance σ 1 of the target area, and let the first target feature f 1 =(s 111 );

4d)用边缘算子提取目标区域的边缘像素点,计算边缘像素点的幅值和s2,均值μ2,方差σ2,令第二目标特征f2=(s222);4d) Use edge operator to extract edge pixels of the target area, calculate the amplitude and s 2 , mean μ 2 , variance σ 2 of the edge pixels, and let the second target feature f 2 =(s 222 );

4e)将目标区域沿主轴方向等分成三部分,分别为船头、船中部、船尾,求船头部分的幅值和s3,均值μ3,方差σ3,求船中部部分的幅值和s4,均值μ4,方差σ4,求船尾部 分的幅值和s5,均值μ5,方差σ5,令第三目标特征f3=(s333,s444,s555);4e) Divide the target area into three equal parts along the main axis direction, namely, the bow, the midship, and the stern. Calculate the amplitude sum s 3 , mean μ 3 , and variance σ 3 of the bow part; calculate the amplitude sum s 4 , mean μ 4 , and variance σ 4 of the midship part; calculate the amplitude sum s 5 , mean μ 5 , and variance σ 5 of the stern part. Let the third target feature f 3 =(s 333 ,s 444 ,s 555 );

4f)将以上得到的特征组合成多维特征h=(θcos,f1,f2,f3)。4f) Combine the features obtained above into a multi-dimensional feature h = (θ cos , f 1 , f 2 , f 3 ).

上述幅值和,均值,方差的计算公式为:The calculation formulas for the above amplitude, mean, and variance are:

幅值和:

Figure BDA0002098553780000051
Amplitude and:
Figure BDA0002098553780000051

均值:

Figure BDA0002098553780000052
Mean:
Figure BDA0002098553780000052

方差:

Figure BDA0002098553780000053
variance:
Figure BDA0002098553780000053

其中,N为需要统计的区域内像素点的个数,I(xi,yi)为位于(xi,yi)处的像素点幅度 值,j代表第j组统计量j=1,…,5。Wherein, N is the number of pixels in the area to be counted, I( xi , yi ) is the amplitude value of the pixel located at ( xi , yi ), and j represents the jth group of statistics, j=1,…,5.

步骤6,构建基于卷积神经网络CNN的目标尺寸估计网络框架Ψ及参数。Step 6: Construct the target size estimation network framework Ψ and parameters based on the convolutional neural network CNN.

6a)参照图2,构建目标尺寸估计网络框架Ψ:6a) Referring to Figure 2, construct the target size estimation network framework Ψ:

6a1)设置六层卷积层,即第一层卷积层L1、第二层卷积层L2、第三层卷积层L3、第四层卷积层L4、第五层卷积层L5、第六层卷积层L66a1) setting six convolutional layers, namely, a first convolutional layer L 1 , a second convolutional layer L 2 , a third convolutional layer L 3 , a fourth convolutional layer L 4 , a fifth convolutional layer L 5 , and a sixth convolutional layer L 6 ;

6a2)设置四层最大池化层,即第一层最大池化层P1、第二层最大池化层P2、第三层最大池化层P3、第四层最大池化层P46a2) setting four maximum pooling layers, namely, a first maximum pooling layer P 1 , a second maximum pooling layer P 2 , a third maximum pooling layer P 3 , and a fourth maximum pooling layer P 4 ;

6a2)将6a1)的六层卷积层与6a2)的四层最大池化层交叉排列,6a2) Cross-arrange the six convolutional layers in 6a1) and the four maximum pooling layers in 6a2).

即由第一层卷积层L1、第一层最大池化层P1、第二层卷积层L2、第二层最大池化层P2、 第三层卷积层L3、第三层最大池化层P3、第四层卷积层L4、第四层最大池化层P4、第五 层卷积层L5、第六层卷积层L6依次串联构成的目标尺寸估计网络框架Ψ;That is, the target size estimation network framework Ψ is composed of the first convolution layer L 1 , the first maximum pooling layer P 1 , the second convolution layer L 2 , the second maximum pooling layer P 2 , the third convolution layer L 3 , the third maximum pooling layer P 3 , the fourth convolution layer L 4 , the fourth maximum pooling layer P 4 , the fifth convolution layer L 5 , and the sixth convolution layer L 6 which are sequentially connected in series;

6b)设置网络框架Ψ的各层参数:6b) Set the parameters of each layer of the network framework Ψ:

第一层卷积层L1,输入图像数据x1,尺寸大小为128×128×1,其卷积核K1的窗口大小为5×5,滑动步长SL1为1,填充参数P=0,用于对输入数据做卷积运算,输出16个特 征图Y1,Y1尺寸大小为124×124×16;The first convolution layer L 1 takes as input image data x 1 , with a size of 128×128×1, a window size of 5×5, a sliding step size S L1 of 1 , and a padding parameter P=0. It is used to perform convolution operations on the input data and output 16 feature maps Y 1 , with a size of 124×124×16.

第一层最大池化层P1,输入数据为Y1,填充参数P=0,池化核U1的窗口大小为2×2,滑动步长SP1为2,用于对输入数据做下采样运算,输出特征图Y2的大小为62×62×16;The first maximum pooling layer P 1 , the input data is Y 1 , the padding parameter P = 0, the window size of the pooling kernel U 1 is 2×2, the sliding step size S P1 is 2, which is used to downsample the input data, and the size of the output feature map Y 2 is 62×62×16;

第二层卷积层L2,输入数据为Y2,其卷积核K2的窗口大小为5×5,滑动步长SL2为 1,填充参数P=0,用于对输入数据做卷积运算,输出32个特征图Y3,Y3尺寸大小为 58×58×32;The second convolution layer L 2 , the input data is Y 2 , the window size of its convolution kernel K 2 is 5×5, the sliding step size S L2 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 32 feature maps Y 3 , the size of Y 3 is 58×58×32;

第二层最大池化层P2,输入数据为Y3,填充参数P=0,池化核U2的窗口大小为2×2,滑动步长SP2为2,用于对输入数据做下采样运算,输出特征图Y4的大小为29×29×32;The second maximum pooling layer P 2 , the input data is Y 3 , the padding parameter P = 0, the window size of the pooling kernel U 2 is 2×2, the sliding step size S P2 is 2, which is used to downsample the input data, and the size of the output feature map Y 4 is 29×29×32;

第三层卷积层L3,输入数据为Y4,其卷积核K3的窗口大小为6×6,滑动步长SL3为 1,填充参数P=0,用于对输入数据做卷积运算,输出64个特征图Y5,Y5尺寸大小为 24×24×64;The third convolution layer L 3 , the input data is Y 4 , the window size of its convolution kernel K 3 is 6×6, the sliding step size S L3 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 64 feature maps Y 5 , the size of Y 5 is 24×24×64;

第三层最大池化层P3,输入数据为Y5,填充参数P=0,池化核U3的窗口大小为2×2,滑动步长SP3为2,用于对输入数据做下采样运算,输出特征图Y6的大小为12×12×64;The third maximum pooling layer P 3 , the input data is Y 5 , the padding parameter P = 0, the window size of the pooling kernel U 3 is 2×2, the sliding step size S P3 is 2, which is used to downsample the input data, and the size of the output feature map Y 6 is 12×12×64;

第四层卷积层L4,输入数据为Y6,其卷积核K4的窗口大小为3×3,滑动步长SL4为 1,填充参数P=0,用于对输入数据做卷积运算,输出128个特征图Y7,Y7尺寸大小为 10×10×128;The fourth convolution layer L 4 , the input data is Y 6 , the window size of its convolution kernel K 4 is 3×3, the sliding step size S L4 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 128 feature maps Y 7 , the size of Y 7 is 10×10×128;

第四层最大池化层P4,输入数据为Y7,填充参数P=0,池化核U4的窗口大小为2×2,滑动步长SP4为2,用于对输入数据做下采样运算,输出特征图Y8的大小为5×5×128;The fourth maximum pooling layer P 4 , the input data is Y 7 , the padding parameter P = 0, the window size of the pooling kernel U 4 is 2×2, the sliding step size S P4 is 2, which is used to downsample the input data, and the size of the output feature map Y 8 is 5×5×128;

第五层卷积层L5,输入数据为Y8,其卷积核K5的窗口大小为3×3,滑动步长SL5为 1,填充参数P=0,用于对输入数据做卷积运算,输出64个特征图Y9,Y9尺寸大小为 3×3×64;The fifth convolution layer L 5 , the input data is Y 8 , the window size of its convolution kernel K 5 is 3×3, the sliding step size S L5 is 1, the padding parameter P=0, it is used to perform convolution operation on the input data, and output 64 feature maps Y 9 , the size of Y 9 is 3×3×64;

第六层卷积层L6,输入数据为Y9,其卷积核K6的窗口大小为3×3,滑动步长SL6为 1,填充参数P=0,用于对输入数据做卷积运算,输出1个特征图Y10,Y10尺寸大小为1×1×1,得到初步的目标尺寸。The sixth convolution layer L 6 , the input data is Y 9 , the window size of its convolution kernel K 6 is 3×3, the sliding step size S L6 is 1, the padding parameter P=0, it is used to perform a convolution operation on the input data and output a feature map Y 10 , the size of Y 10 is 1×1×1, and the preliminary target size is obtained.

步骤7,对目标尺寸估计网络框架Ψ进行训练,得到训练好的网络模型Ψ′,同时得到 训练样本的初步尺寸估计结果。Step 7: Train the target size estimation network framework Ψ to obtain the trained network model Ψ′ and obtain the preliminary size estimation result of the training sample.

7a)将训练样本输入到目标尺寸估计网络框架Ψ中,计算网络输出层的损失loss:7a) Input the training sample into the target size estimation network framework Ψ and calculate the loss of the network output layer:

loss=(ytrue-yprediction)2loss=(y true -y prediction ) 2 ,

式中ytrue为样本的真实尺寸,yprediction为样本目标的估计尺寸;Where y true is the true size of the sample, and y prediction is the estimated size of the sample target;

7b)利用反向传播算法将输出层的损失向前传播,并通过随机梯度下降算法计算损失 函数loss的梯度向量,更新网络中每一层的参数;7b) Use the back-propagation algorithm to propagate the loss of the output layer forward, and use the stochastic gradient descent algorithm to calculate the gradient vector of the loss function loss, and update the parameters of each layer in the network;

7c)重复7b),反复迭代不断更新参数,直到损失函数loss收敛,得到训练好的网络模型Ψ′;7c) Repeat 7b), iteratively update the parameters continuously until the loss function converges, and obtain the trained network model Ψ′;

7d)将训练样本输入到训练好的网络模型Ψ′中,得到训练样本的初步尺寸估计结果。7d) Input the training sample into the trained network model Ψ′ to obtain a preliminary size estimation result of the training sample.

步骤8,将测试样本输入到训练好的网络模型Ψ′中,得到测试样本的初步尺寸估计结 果。Step 8: Input the test sample into the trained network model Ψ′ to obtain the preliminary size estimation result of the test sample.

步骤9,将目标初步尺寸估计结果与多维特征向量进行融合。Step 9: Fusion the target preliminary size estimation result with the multi-dimensional feature vector.

将多维特征向量h中训练样本部分与训练样本的初步尺寸估计结果进行组合,组成训 练样本的新多维特征向量h1,将多维特征向量h中测试样本部分与测试样本的初步尺寸估 计结果进行组合,组成测试样本的新多维特征向量h2The training sample part of the multidimensional feature vector h is combined with the preliminary size estimation result of the training sample to form a new multidimensional feature vector h 1 of the training sample, and the test sample part of the multidimensional feature vector h is combined with the preliminary size estimation result of the test sample to form a new multidimensional feature vector h 2 of the test sample.

步骤10,训练梯度提升决策树GBDT,得到训练好的梯度提升决策树GBDT模型。Step 10: Train the gradient boosted decision tree GBDT to obtain a trained gradient boosted decision tree GBDT model.

10a)初始化梯度提升回归树模型f0=0;10a) Initialize the gradient boosting regression tree model f 0 = 0;

10b)训练梯度提升回归树模型,设循环次数t=1,…,10:10b) Train the gradient boosting regression tree model, assuming the number of cycles t = 1,…,10:

10b1)将训练样本的多维特征h1作为输入,通过拟合残差损失rt-1,得到一棵训练好 的回归树模型ft10b1) Taking the multi-dimensional feature h 1 of the training sample as input, a trained regression tree model f t is obtained by fitting the residual loss r t-1 :

rt-1=ytrue-ypre r t-1 = y true -y pre

式中ytrue为样本的真实尺寸,ypre为回归树模型ft-1输出的目标的估计尺寸;Where y true is the true size of the sample, and y pre is the estimated size of the target output by the regression tree model f t-1 ;

10b2)更新梯度提升回归树模型ft=ft-1+vft,其中v为学习率;10b2) Update the gradient boosting regression tree model ft = ft -1 + vft , where v is the learning rate;

10b3)反复迭代不断更新梯度提升回归树模型,直到迭代次数达到t=10,得到训练 好的梯度提升回归树模型ζ。10b3) Repeatedly iterate and continuously update the gradient boosting regression tree model until the number of iterations reaches t = 10, and the trained gradient boosting regression tree model ζ is obtained.

步骤11,将测试样本的多维特征向量h2送入到已经训练好的梯度提升决策树GBDT模型ζ中,得到测试样本的最终尺寸特征。Step 11, the multidimensional feature vector h2 of the test sample is sent to the trained gradient boosting decision tree GBDT model ζ to obtain the final size feature of the test sample.

本发明的效果可通过以下实验数据进一步说明:The effect of the present invention can be further illustrated by the following experimental data:

一.实验条件:1. Experimental conditions:

1)实验数据:1) Experimental data:

实验所用数据为上海交通大学整理的OpenSARShip数据集,数据集可由上海交通大 学的OpenSAR平台下载得到,下载网址为https://opensar.sjtu.edu.cn/。实验数据集来自于 VH极化的干涉宽幅IW模式,分辨率为20m×20m,像素间距为10m。本实验所用舰船图像的尺寸真值为船舶自动识别系统AIS提供,使用的数据集包含五类目标:油轮Tanker、 货船Cargo、散货船Bulk carrier、普通货船General cargo、集装箱船Container。The data used in the experiment is the OpenSARShip dataset compiled by Shanghai Jiao Tong University. The dataset can be downloaded from the OpenSAR platform of Shanghai Jiao Tong University at https://opensar.sjtu.edu.cn/. The experimental dataset comes from the VH polarization interferometric wide-band IW mode, with a resolution of 20m×20m and a pixel spacing of 10m. The size truth value of the ship image used in this experiment is provided by the ship automatic identification system AIS. The dataset used contains five types of targets: Tanker, Cargo, Bulk carrier, General cargo, and Container.

实验选取的数据集共包含2467幅目标图像,图像大小为128×128,随机选取数据集 的70%为训练样本,包含1727幅目标图像,数据集的30%为测试样本,包含740幅目标图像。The dataset selected for the experiment contains a total of 2467 target images with an image size of 128×128. 70% of the dataset is randomly selected as training samples, including 1727 target images, and 30% of the dataset is test samples, including 740 target images.

实验中所用目标的长度范围为42m-399m,宽度范围为6m-65m。The targets used in the experiment ranged from 42m to 399m in length and from 6m to 65m in width.

本实验选取相对误差和绝对误差两个评价标准对估计结果进行误差评定。This experiment selected two evaluation criteria, relative error and absolute error, to evaluate the error of the estimation results.

二.实验内容:2. Experimental content:

实验一:用本发明对上述实验数据进行实验,设置第一比例参数γ=0.67,第二比例 参数ρ=0.59,学习率v=0.5,对图像分割结果进行可视化,结果如图3,其中:Experiment 1: The present invention is used to conduct experiments on the above experimental data, setting the first scale parameter γ = 0.67, the second scale parameter ρ = 0.59, and the learning rate v = 0.5, and visualizing the image segmentation results. The results are shown in Figure 3, where:

图3(a)为部分样本的原始图像;Figure 3(a) shows the original images of some samples;

图3(b)为部分样本的目标区域分割图像。Figure 3(b) shows the target area segmentation image of some samples.

从图3可以看出,目标区域分割结果并不是十分准确,所以直接利用目标区域分割结 果对目标进行尺寸估计会产生较大误差。As can be seen from Figure 3, the target region segmentation result is not very accurate, so directly using the target region segmentation result to estimate the target size will produce a large error.

实验二:用本发明方法与现有方法对上述实验数据进行对比实验。为了验证本发明的 尺寸提取效果,将尺寸提取结果与其它方法进行对比,对比结果如表1所示。Experiment 2: The above experimental data were compared using the method of the present invention and the existing method. In order to verify the size extraction effect of the present invention, the size extraction results were compared with other methods. The comparison results are shown in Table 1.

表1本发明方法与现有方法尺寸估计精度对比结果Table 1 Comparison results of size estimation accuracy between the method of the present invention and the existing method

Figure BDA0002098553780000091
Figure BDA0002098553780000091

表1中:现有方法为基于双极化融合和非线性回归的舰船尺寸估计方法,主要包括图 像预处理和非线性回归两个阶段,实验复现的方法与原始方法可能存在细节上的差异。In Table 1: The existing method is a ship size estimation method based on dual polarization fusion and nonlinear regression, which mainly includes two stages: image preprocessing and nonlinear regression. The experimental reproduction method may differ from the original method in details.

从表1可以看出,利用本发明对舰船目标进行尺寸估计的误差小于现有方法的估计误 差,实现了更好的目标尺寸估计性能,且有更高的鲁棒性。对比初步目标尺寸估计结果与 最终目标尺寸估计结果发现,利用梯度提升回归树对初步尺寸估计结果进行修正,能够提 高目标尺寸估计的精度,说明由目标区域二值图像得到的多维特征,对目标尺寸回归具有 一定的帮助。As can be seen from Table 1, the error of ship size estimation using the present invention is smaller than the estimation error of the existing method, achieving better target size estimation performance and higher robustness. Comparing the preliminary target size estimation results with the final target size estimation results, it is found that the use of gradient boosting regression tree to correct the preliminary size estimation results can improve the accuracy of target size estimation, indicating that the multi-dimensional features obtained from the binary image of the target area are helpful for target size regression.

实验三:用本发明方法对上述实验数据进行实验,对目标估计尺寸与目标真实尺寸的 对比结果进行可视化,结果如图4,其中:Experiment 3: The above experimental data were tested using the method of the present invention, and the comparison results between the estimated target size and the actual target size were visualized. The results are shown in Figure 4, where:

图4(a)是利用本发明得到的目标估计长度与目标真实长度的对比结果;FIG4( a ) is a comparison result between the estimated target length and the actual target length obtained by using the present invention;

图4(b)是利用本发明得到的目标估计宽度与目标真实宽度的对比结果。FIG4( b ) is a comparison result between the estimated width of the target obtained by using the present invention and the actual width of the target.

从图4可以看出,利用本发明得到的目标尺寸估计值与目标的真实尺寸值存在很高的 相关性。As can be seen from FIG4 , there is a high correlation between the target size estimation value obtained by using the present invention and the real size value of the target.

以上描述仅是本发明的一个具体实例,并未构成对本发明的任何限制,显然对于本领 域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的 情况下,进行形式和细节上的各种修改和改变,但是这些基于本发明思想的修正和改变仍 在本发明的权利要求保护范围之内。The above description is only a specific example of the present invention and does not constitute any limitation to the present invention. It is obvious that for professionals in this field, after understanding the content and principles of the present invention, they may make various modifications and changes in form and details without departing from the principles and structures of the present invention. However, these modifications and changes based on the ideas of the present invention are still within the scope of protection of the claims of the present invention.

Claims (7)

1.一种基于卷积神经网络和多特征融合的舰船目标尺寸估计方法,其特征在于,包括:1. A ship target size estimation method based on convolutional neural network and multi-feature fusion, characterized by comprising: (1)从公开的OpenSARShip数据集中挑选出五类舰船目标作为实验数据集,随机选取70%为训练样本,30%为测试样本;(1) Five types of ship targets were selected from the public OpenSARShip dataset as the experimental dataset, and 70% were randomly selected as training samples and 30% as test samples; (2)对数据集中的原始图像G依次进行直方图均衡化、均值滤波以去除噪声干扰,得到滤波后的图像P;(2) Perform histogram equalization and mean filtering on the original image G in the data set to remove noise interference and obtain the filtered image P; (3)对滤波后的图像P进行阈值分割,并对分割结果依次做形态学滤波和聚类处理,得到目标区域二值图像Q,然后进行去旁瓣处理,得到去旁瓣后的二值图像Q';(3) Performing threshold segmentation on the filtered image P, and performing morphological filtering and clustering processing on the segmentation results in turn to obtain a binary image Q of the target area, and then performing sidelobe removal processing to obtain a binary image Q' after sidelobe removal; (4)对去旁瓣后的二值图像Q'与原始图像G做掩膜处理,得到目标区域幅度图像,计算目标区域幅度图像多维特征,得到目标的多维特征h;(4) Masking the binary image Q' after removing the side lobes and the original image G to obtain the target area amplitude image, calculate the multi-dimensional features of the target area amplitude image, and obtain the multi-dimensional features h of the target; (5)构建基于卷积神经网络CNN的目标尺寸估计网络框架Ψ:(5) Construct a target size estimation network framework Ψ based on convolutional neural network CNN: 5a)设置六层卷积层,即第一层卷积层L1、第二层卷积层L2、第三层卷积层L3、第四层卷积层L4、第五层卷积层L5、第六层卷积层L65a) setting six convolutional layers, namely, a first convolutional layer L 1 , a second convolutional layer L 2 , a third convolutional layer L 3 , a fourth convolutional layer L 4 , a fifth convolutional layer L 5 , and a sixth convolutional layer L 6 ; 5b)设置四层最大池化层,即第一层最大池化层P1、第二层最大池化层P2、第三层最大池化层P3、第四层最大池化层P45b) setting four maximum pooling layers, namely, a first maximum pooling layer P 1 , a second maximum pooling layer P 2 , a third maximum pooling layer P 3 , and a fourth maximum pooling layer P 4 ; 5c)将5a)的六层卷积层与5b)的四层最大池化层交叉排列,即由第一层卷积层L1、第一层最大池化层P1、第二层卷积层L2、第二层最大池化层P2、第三层卷积层L3、第三层最大池化层P3、第四层卷积层L4、第四层最大池化层P4、第五层卷积层L5、第六层卷积层L6依次串联构成的目标尺寸估计网络框架Ψ;5c) cross-arranging the six convolutional layers of 5a) and the four maximum pooling layers of 5b), that is, the target size estimation network framework Ψ is formed by sequentially connecting in series the first convolutional layer L 1 , the first maximum pooling layer P 1 , the second convolutional layer L 2 , the second maximum pooling layer P 2 , the third convolutional layer L 3 , the third maximum pooling layer P 3 , the fourth convolutional layer L 4 , the fourth maximum pooling layer P 4 , the fifth convolutional layer L 5 , and the sixth convolutional layer L 6 ; (6)将训练样本输入到构建好的目标尺寸估计网络框架Ψ中进行训练,得到训练好的网络模型Ψ′,同时得到训练样本的初步尺寸估计结果;(6) Inputting the training samples into the constructed target size estimation network framework Ψ for training, obtaining the trained network model Ψ′, and obtaining the preliminary size estimation results of the training samples; (7)将测试样本输入到训练好的网络模型Ψ′中,得到测试样本的初步尺寸估计结果;(7) Input the test sample into the trained network model Ψ′ to obtain a preliminary size estimation result of the test sample; (8)将多维特征向量h中训练样本部分与训练样本的初步尺寸估计结果进行组合,组成训练样本的新多维特征向量h1,将多维特征向量h中测试样本部分与测试样本的初步尺寸估计结果进行组合,组成测试样本的新多维特征向量h2(8) Combining the training sample part of the multidimensional feature vector h with the preliminary size estimation result of the training sample to form a new multidimensional feature vector h 1 of the training sample, and combining the test sample part of the multidimensional feature vector h with the preliminary size estimation result of the test sample to form a new multidimensional feature vector h 2 of the test sample; (9)利用训练样本的多维特征向量h1训练梯度提升决策树GBDT分类器,得到训练好的梯度提升决策树GBDT模型;(9) Using the multi-dimensional feature vector h1 of the training sample to train the gradient boosting decision tree GBDT classifier, a trained gradient boosting decision tree GBDT model is obtained; (10)将测试样本的多维特征向量h2送入到已经训练好的梯度提升决策树GBDT模型中,得到测试样本的最终尺寸特征。(10) The multidimensional feature vector h2 of the test sample is sent to the trained gradient boosting decision tree GBDT model to obtain the final size feature of the test sample. 2.根据权利要求1所述的方法,其特征在于,(3)中对图像P进行阈值分割,按照如下步骤进行:2. The method according to claim 1, characterized in that the threshold segmentation of the image P in (3) is performed according to the following steps: 3a)获取图像P的最大幅度值Imax和最小幅度值Imin3a) Obtaining the maximum amplitude value I max and the minimum amplitude value I min of the image P; 3b)设定第一比例参数γ,计算目标-背景区域的分割阈值thr:3b) Set the first scale parameter γ and calculate the segmentation threshold thr of the target-background area: thr=γ(Imax-Imin)+Imin thr=γ(I max −I min )+I min 3c)对图像P进行二值化运算:3c) Perform binarization operation on image P:
Figure FDA0003967659520000021
Figure FDA0003967659520000021
其中,I(x,y)为图像P中位于(x,y)位置处像素点的幅度值,Imask(x,y)为二值化后位于(x,y)位置处像素点的编码值,编码后的图像即为分割后的二值化图像。Among them, I(x,y) is the amplitude value of the pixel at the position (x,y) in the image P, I mask (x,y) is the encoding value of the pixel at the position (x,y) after binarization, and the encoded image is the binary image after segmentation.
3.根据权利要求1所述的方法,其特征在于,(3)中去除旁瓣处理,按照如下步骤进行:3. The method according to claim 1, characterized in that the sidelobe removal process in (3) is performed according to the following steps: 3d)用主成分分析提取二值图像Q中目标区域的主轴,求取主轴的长度LPA3d) extracting the principal axis of the target area in the binary image Q by principal component analysis, and obtaining the length L PA of the principal axis; 3e)提取目标区域中平行于主轴的所有直线,并计算直线的长度Lline3e) extracting all straight lines parallel to the main axis in the target area and calculating the length L line of the straight lines; 3f)选取第二比例参数ρ,比较目标区域内主轴和其他所有直线的长度,如果Lline<ρ×LPA,则擦除该直线Lline上的所有点,即像素点置为0,得到去旁瓣后的二值图像Q'。3f) Select the second scale parameter ρ, compare the lengths of the main axis and all other straight lines in the target area, if L line <ρ×L PA , erase all points on the straight line L line , that is, set the pixels to 0, and obtain the binary image Q' after removing the side lobes. 4.根据权利要求1所述的方法,其特征在于,(4)计算目标区域幅度图像的多维特征,得到目标的多维特征h,按照如下步骤进行:4. The method according to claim 1 is characterized in that (4) calculating the multidimensional features of the target area amplitude image to obtain the multidimensional features h of the target is performed according to the following steps: 4a)用主成分分析提取目标区域幅度图像的主轴,得到目标的方位角θ,并计算方位角值θ的余弦值
Figure FDA0003967659520000031
4a) Use principal component analysis to extract the principal axis of the target area amplitude image, obtain the target azimuth θ, and calculate the cosine value of the azimuth θ
Figure FDA0003967659520000031
4b)计算目标区域的像素点幅值和s1,均值μ1,方差σ1,令第一目标特征f1=(s111);4b) Calculate the pixel amplitude and s 1 , mean μ 1 , variance σ 1 of the target area, and let the first target feature f 1 =(s 111 ); 4c)用边缘算子提取目标区域的边缘像素点,计算边缘像素点的幅值和s2,均值μ2,方差σ2,令第二目标特征f2=(s222);4c) Use edge operator to extract edge pixels of the target area, calculate the amplitude and s 2 , mean μ 2 , variance σ 2 of the edge pixels, and let the second target feature f 2 =(s 222 ); 4d)将目标区域沿主轴方向等分成三部分,分别为船头、船中部、船尾,求船头部分的幅值和s3,均值μ3,方差σ3,求船中部部分的幅值和s4,均值μ4,方差σ4,求船尾部分的幅值和s5,均值μ5,方差σ5,令第三目标特征f3=(s333,s444,s555);4d) Divide the target area into three equal parts along the main axis direction, namely, the bow, the midship, and the stern. Calculate the amplitude sum s 3 , mean μ 3 , and variance σ 3 of the bow part; calculate the amplitude sum s 4 , mean μ 4 , and variance σ 4 of the midship part; calculate the amplitude sum s 5 , mean μ 5 , and variance σ 5 of the stern part. Let the third target feature f 3 =(s 333 ,s 444 ,s 555 ); 4e)将以上得到的特征组合成多维特征h=(θcos,f1,f2,f3)。4e) Combine the features obtained above into a multi-dimensional feature h = (θ cos , f 1 , f 2 , f 3 ).
5.根据权利要求1所述的方法,其特征在于,5c)中构建基于卷积神经网络的舰船尺寸估计网络框架Ψ,其各层参数如下:5. The method according to claim 1 is characterized in that, in 5c), a ship size estimation network framework Ψ based on a convolutional neural network is constructed, and the parameters of each layer are as follows: 第一层卷积层L1,输入图像数据x1,尺寸大小为128×128×1,其卷积核K1的窗口大小为5×5,滑动步长SL1为1,填充参数P=0,用于对输入数据做卷积运算,输出16个特征图Y1,Y1尺寸大小为124×124×16;The first convolution layer L 1 takes as input image data x 1 , with a size of 128×128×1, a window size of 5×5 for the convolution kernel K 1 , a sliding step size S L1 of 1, and a padding parameter P=0. It is used to perform convolution operations on the input data and output 16 feature maps Y 1 , with a size of 124×124×16. 第一层最大池化层P1,输入数据为Y1,填充参数P=0,池化核U1的窗口大小为2×2,滑动步长SP1为2,用于对输入数据做下采样运算,输出特征图Y2的大小为62×62×16;The first maximum pooling layer P 1 , the input data is Y 1 , the padding parameter P = 0, the window size of the pooling kernel U 1 is 2×2, the sliding step size S P1 is 2, which is used to downsample the input data, and the size of the output feature map Y 2 is 62×62×16; 第二层卷积层L2,输入数据为Y2,其卷积核K2的窗口大小为5×5,滑动步长SL2为1,填充参数P=0,用于对输入数据做卷积运算,输出32个特征图Y3,Y3尺寸大小为58×58×32;The second convolution layer L 2 , the input data is Y 2 , the window size of its convolution kernel K 2 is 5×5, the sliding step size S L2 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 32 feature maps Y 3 , the size of Y 3 is 58×58×32; 第二层最大池化层P2,输入数据为Y3,填充参数P=0,池化核U2的窗口大小为2×2,滑动步长SP2为2,用于对输入数据做下采样运算,输出特征图Y4的大小为29×29×32;The second maximum pooling layer P 2 , the input data is Y 3 , the padding parameter P = 0, the window size of the pooling kernel U 2 is 2×2, the sliding step size S P2 is 2, which is used to downsample the input data, and the size of the output feature map Y 4 is 29×29×32; 第三层卷积层L3,输入数据为Y4,其卷积核K3的窗口大小为6×6,滑动步长SL3为1,填充参数P=0,用于对输入数据做卷积运算,输出64个特征图Y5,Y5尺寸大小为24×24×64;The third convolution layer L 3 , the input data is Y 4 , the window size of its convolution kernel K 3 is 6×6, the sliding step size S L3 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 64 feature maps Y 5 , the size of Y 5 is 24×24×64; 第三层最大池化层P3,输入数据为Y5,填充参数P=0,池化核U3的窗口大小为2×2,滑动步长SP3为2,用于对输入数据做下采样运算,输出特征图Y6的大小为12×12×64;The third maximum pooling layer P 3 , the input data is Y 5 , the padding parameter P = 0, the window size of the pooling kernel U 3 is 2×2, the sliding step size S P3 is 2, which is used to downsample the input data, and the size of the output feature map Y 6 is 12×12×64; 第四层卷积层L4,输入数据为Y6,其卷积核K4的窗口大小为3×3,滑动步长SL4为1,填充参数P=0,用于对输入数据做卷积运算,输出128个特征图Y7,Y7尺寸大小为10×10×128;The fourth convolution layer L 4 , the input data is Y 6 , the window size of its convolution kernel K 4 is 3×3, the sliding step size S L4 is 1, the padding parameter P=0, which is used to perform convolution operation on the input data and output 128 feature maps Y 7 , the size of Y 7 is 10×10×128; 第四层最大池化层P4,输入数据为Y7,填充参数P=0,池化核U4的窗口大小为2×2,滑动步长SP4为2,用于对输入数据做下采样运算,输出特征图Y8的大小为5×5×128;The fourth maximum pooling layer P 4 , the input data is Y 7 , the padding parameter P = 0, the window size of the pooling kernel U 4 is 2×2, the sliding step size S P4 is 2, which is used to downsample the input data, and the size of the output feature map Y 8 is 5×5×128; 第五层卷积层L5,输入数据为Y8,其卷积核K5的窗口大小为3×3,滑动步长SL5为1,填充参数P=0,用于对输入数据做卷积运算,输出64个特征图Y9,Y9尺寸大小为3×3×64;The fifth convolution layer L 5 , the input data is Y 8 , the window size of its convolution kernel K 5 is 3×3, the sliding step size S L5 is 1, the padding parameter P=0, it is used to perform convolution operation on the input data, and output 64 feature maps Y 9 , the size of Y 9 is 3×3×64; 第六层卷积层L6,输入数据为Y9,其卷积核K6的窗口大小为3×3,滑动步长SL6为1,填充参数P=0,用于对输入数据做卷积运算,输出1个特征图Y10,Y10尺寸大小为1×1×1,得到初步的目标尺寸。The sixth convolution layer L 6 , the input data is Y 9 , the window size of its convolution kernel K 6 is 3×3, the sliding step size S L6 is 1, the padding parameter P=0, it is used to perform a convolution operation on the input data and output a feature map Y 10 , the size of Y 10 is 1×1×1, and the preliminary target size is obtained. 6.根据权利要求1所述的方法,其特征在于,(6)中将训练样本输入到构建好的目标尺寸估计网络框架Ψ中进行训练,其实现如下:6. The method according to claim 1 is characterized in that in (6), the training samples are input into the constructed target size estimation network framework Ψ for training, which is implemented as follows: 6a)将训练样本输入到目标尺寸估计网络框架Ψ中,计算网络输出层的损失loss:6a) Input the training sample into the target size estimation network framework Ψ and calculate the loss of the network output layer: loss=(ytrue-ypre)2 loss = (y true -y pre ) 2 式中ytrue为样本的真实尺寸,ypre为样本目标的估计尺寸;Where y true is the true size of the sample, and y pre is the estimated size of the sample target; 6b)利用反向传播算法将输出层的损失向前传播,并通过随机梯度下降算法计算损失函数loss的梯度向量,更新网络中每一层的权值;6b) Use the back-propagation algorithm to propagate the loss of the output layer forward, and calculate the gradient vector of the loss function loss through the stochastic gradient descent algorithm to update the weights of each layer in the network; 6c)重复6b),反复迭代不断更新权值,直到损失函数loss收敛,得到训练好的网络模型。6c) Repeat 6b) and iterate to continuously update the weights until the loss function converges to obtain a trained network model. 7.根据权利要求1所述的方法,其特征在于,(9)中利用训练样本的多维特征向量h1训练梯度提升决策树GBDT分类器,其实现如下:7. The method according to claim 1, characterized in that in (9), a gradient boosting decision tree (GBDT) classifier is trained using the multidimensional feature vector h1 of the training sample, which is implemented as follows: 9a)初始化梯度提升回归树模型f0=0;9a) Initialize the gradient boosting regression tree model f 0 = 0; 9b)训练梯度提升回归树模型,设循环次数t=1,…,10:9b) Train the gradient boosting regression tree model, assuming the number of cycles t = 1,…,10: 9b1)将训练样本的多维特征h1作为输入,通过拟合残差损失rt-1,得到一棵训练好的回归树模型ft9b1) Taking the multi-dimensional feature h 1 of the training sample as input, a trained regression tree model f t is obtained by fitting the residual loss r t-1 : rt-1=ytrue-ypre r t-1 = y true -y pre 式中ytrue为样本的真实尺寸,ypre为回归树模型ft-1输出的目标的估计尺寸;Where ytrue is the true size of the sample, and ypre is the estimated size of the target output by the regression tree model ft -1 ; 9b2)更新梯度提升回归树模型ft=ft-1+νft,其中ν为学习率;9b2) Update the gradient boosted regression tree model ft = ft -1 + νft , where ν is the learning rate; 9b3)反复迭代不断更新梯度提升回归树模型,直到迭代次数达到t=10,得到训练好梯度提升回归树模型ζ。9b3) Iterate repeatedly to continuously update the gradient boosting regression tree model until the number of iterations reaches t=10, and obtain the trained gradient boosting regression tree model ζ.
CN201910526996.2A 2019-06-18 2019-06-18 Ship size estimation method based on convolutional neural network and multi-feature fusion Active CN110232362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910526996.2A CN110232362B (en) 2019-06-18 2019-06-18 Ship size estimation method based on convolutional neural network and multi-feature fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910526996.2A CN110232362B (en) 2019-06-18 2019-06-18 Ship size estimation method based on convolutional neural network and multi-feature fusion

Publications (2)

Publication Number Publication Date
CN110232362A CN110232362A (en) 2019-09-13
CN110232362B true CN110232362B (en) 2023-04-07

Family

ID=67859639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910526996.2A Active CN110232362B (en) 2019-06-18 2019-06-18 Ship size estimation method based on convolutional neural network and multi-feature fusion

Country Status (1)

Country Link
CN (1) CN110232362B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111027454B (en) * 2019-12-06 2023-03-10 西安电子科技大学 SAR ship target classification method based on deep dense connection and metric learning
CN111222574B (en) * 2020-01-07 2022-04-05 西北工业大学 Target detection and classification method for ships and civilian ships based on multi-model decision-level fusion
CN111414972B (en) * 2020-03-30 2023-09-05 王雁 XGBoost-based eye refraction correction multisource data automatic classification method
CN113050090B (en) * 2021-03-28 2023-08-15 自然资源部国土卫星遥感应用中心 Dual-polarized HH, HV radar image feature fusion enhancement method
CN113658147B (en) * 2021-08-23 2024-03-29 宁波棱镜空间智能科技有限公司 Workpiece size measuring device and method based on deep learning
CN113989557A (en) * 2021-10-25 2022-01-28 电子科技大学 A ship classification method based on SAR images fused with dual-polarization features
CN114781528B (en) * 2022-04-24 2025-03-18 西安理工大学 SAR image scene classification method based on online gradient boosting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874889A (en) * 2017-03-14 2017-06-20 西安电子科技大学 Multiple features fusion SAR target discrimination methods based on convolutional neural networks
WO2018000752A1 (en) * 2016-06-27 2018-01-04 浙江工商大学 Monocular image depth estimation method based on multi-scale cnn and continuous crf
CN109063594A (en) * 2018-07-13 2018-12-21 吉林大学 Remote sensing images fast target detection method based on YOLOv2

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000752A1 (en) * 2016-06-27 2018-01-04 浙江工商大学 Monocular image depth estimation method based on multi-scale cnn and continuous crf
CN106874889A (en) * 2017-03-14 2017-06-20 西安电子科技大学 Multiple features fusion SAR target discrimination methods based on convolutional neural networks
CN109063594A (en) * 2018-07-13 2018-12-21 吉林大学 Remote sensing images fast target detection method based on YOLOv2

Also Published As

Publication number Publication date
CN110232362A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110232362B (en) Ship size estimation method based on convolutional neural network and multi-feature fusion
CN108510532B (en) Optical and SAR image registration method based on deep convolution GAN
CN108388896B (en) License plate identification method based on dynamic time sequence convolution neural network
CN105809198B (en) SAR image target recognition method based on depth confidence network
CN108573276B (en) A change detection method based on high-resolution remote sensing images
CN108776779B (en) Convolutional-circulation-network-based SAR sequence image target identification method
CN110992275B (en) A Refinement Single Image Rain Removal Method Based on Generative Adversarial Network
CN110378308B (en) Improved method for nearshore ship detection in port SAR images based on Faster R-CNN
CN108596055B (en) Airport target detection method of high-resolution remote sensing image under complex background
CN107563433B (en) Infrared small target detection method based on convolutional neural network
CN101329736B (en) Image Segmentation Method Based on Feature Selection and Hidden Markov Model
CN109766858A (en) Three-dimensional convolution neural network hyperspectral image classification method combined with bilateral filtering
CN105809693A (en) SAR image registration method based on deep neural networks
CN110163275A (en) SAR image objective classification method based on depth convolutional neural networks
CN108021890B (en) High-resolution remote sensing image port detection method based on PLSA and BOW
CN111191718A (en) Small sample SAR target identification method based on graph attention network
CN105260998A (en) MCMC sampling and threshold low-rank approximation-based image de-noising method
CN107909109A (en) SAR image sorting technique based on conspicuousness and multiple dimensioned depth network model
CN101964060B (en) SAR variant target identification method based on local textural feature
CN113627481A (en) Multi-model combined unmanned aerial vehicle garbage classification method for smart gardens
CN106295503A (en) The high-resolution remote sensing image Ship Target extracting method of region convolutional neural networks
CN112967210A (en) Unmanned aerial vehicle image denoising method based on full convolution twin network
Yaohua et al. A SAR oil spill image recognition method based on densenet convolutional neural network
CN109508674B (en) Airborne Down-View Heterogeneous Image Matching Method Based on Region Division
CN115223033A (en) Synthetic aperture sonar image target classification method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant