CN110212873B - Low noise high input impedance amplifier for wearable dry electrode ECG monitoring - Google Patents
Low noise high input impedance amplifier for wearable dry electrode ECG monitoring Download PDFInfo
- Publication number
- CN110212873B CN110212873B CN201910620696.0A CN201910620696A CN110212873B CN 110212873 B CN110212873 B CN 110212873B CN 201910620696 A CN201910620696 A CN 201910620696A CN 110212873 B CN110212873 B CN 110212873B
- Authority
- CN
- China
- Prior art keywords
- input
- electrode
- amplifier
- nmos tube
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 230000001629 suppression Effects 0.000 claims abstract description 95
- 238000005070 sampling Methods 0.000 claims abstract description 71
- 239000003990 capacitor Substances 0.000 claims description 79
- 101150060088 ampp gene Proteins 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 230000000630 rising effect Effects 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 230000002238 attenuated effect Effects 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000011084 recovery Methods 0.000 abstract description 6
- 230000006641 stabilisation Effects 0.000 abstract description 3
- 238000011105 stabilization Methods 0.000 abstract description 3
- 230000033228 biological regulation Effects 0.000 abstract 1
- 230000005764 inhibitory process Effects 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 1
- 206010015856 Extrasystoles Diseases 0.000 description 1
- 208000031662 Noncommunicable disease Diseases 0.000 description 1
- 208000000418 Premature Cardiac Complexes Diseases 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/68—Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/271—Indexing scheme relating to amplifiers the DC-isolation amplifier, e.g. chopper amplifier, modulation/demodulation amplifier, uses capacitive isolation means, e.g. capacitors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/294—Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/372—Noise reduction and elimination in amplifier
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域Technical field
本发明涉及集成电路技术领域,具体涉及一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器。The invention relates to the technical field of integrated circuits, and in particular to a low-noise, high-input-impedance amplifier used in wearable dry electrode ECG monitoring.
背景技术Background technique
随着社会的发展和科技的进步,健康问题已经逐渐成为人们关注的焦点。根据WHO统计,每年死于非传染疾病的人数大约为4100万人,死于心血管病的人数的比例超过50%。同时WHO预计2020年,全球死于心血管疾病的人数将高达2600万。而常规的临床心电图检测只能对心肌缺血、心率失常、早搏等疾病进行判断,无法预防突发心脏病。随着物联网、云平台等新型技术的成型,产生了一种“物联网+医疗”的全新格局。可穿戴的连续心电检测结合“物联网+”将可以全天候监控人体的心电信号,并实时通过云端进行分析,这样可以大大降低突发心脏病的死亡率。With the development of society and the advancement of science and technology, health issues have gradually become the focus of people's attention. According to WHO statistics, approximately 41 million people die from non-communicable diseases every year, and more than 50% die from cardiovascular diseases. At the same time, WHO predicts that in 2020, the number of people worldwide who will die from cardiovascular diseases will reach 26 million. Conventional clinical electrocardiogram testing can only diagnose myocardial ischemia, arrhythmia, premature beats and other diseases, but cannot prevent sudden heart disease. With the emergence of new technologies such as the Internet of Things and cloud platforms, a new pattern of "Internet of Things + Medical Care" has emerged. Wearable continuous ECG detection combined with "Internet of Things+" will be able to monitor the human body's ECG signals around the clock and analyze them in real time through the cloud, which can greatly reduce the mortality rate from sudden heart disease.
由于传统的临床心电图采用的是内阻较低、电极失调较小的湿电极,因此其对心电放大器的输入阻抗以及电极失调抑制能力要求不高。但是因为湿电极长期佩戴会引起皮肤瘙痒、湿疹等问题,从而无法直接应用于可穿戴心电检测中。相对于湿电极而言,干电极不需要进行皮肤准备及涂覆导电膏,因而从理论上来说,更适合于运用在需要长期佩戴的可穿戴心电检测设备中。但是,鉴于干电极具有较大的输出阻抗(1MΩ~100MΩ)和电极失调(±300mV),传统的心电放大器的输入阻抗难以和干电极的阻抗进行很好地匹配,并且在干电极大的失调下传统的心电放大器输出极易饱和,而导致干电极无法正常地应用于可穿戴设备。为此,需要对传统的心电放大器进行改进。Since traditional clinical electrocardiograms use wet electrodes with low internal resistance and small electrode misalignment, they do not have high requirements on the input impedance of the ECG amplifier and the ability to suppress electrode misalignment. However, long-term wearing of wet electrodes can cause skin itching, eczema and other problems, so they cannot be directly used in wearable ECG detection. Compared with wet electrodes, dry electrodes do not require skin preparation and conductive paste coating, so in theory, they are more suitable for use in wearable ECG detection equipment that requires long-term wear. However, in view of the large output impedance (1MΩ~100MΩ) and electrode offset (±300mV) of the dry electrode, it is difficult for the input impedance of the traditional ECG amplifier to match the impedance of the dry electrode well, and when the dry electrode is large The output of traditional ECG amplifiers is easily saturated under imbalance, which makes dry electrodes unable to be used in wearable devices. For this reason, the traditional ECG amplifier needs to be improved.
发明内容Contents of the invention
本发明所要解决的是传统的心电放大器无法和可穿戴心电检测设备中的高输出阻抗、高电极失调的干电极相匹配使用的问题,提供一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器。What the present invention aims to solve is the problem that traditional ECG amplifiers cannot be matched and used with dry electrodes with high output impedance and high electrode imbalance in wearable ECG detection equipment, and provides a device for use in wearable dry electrode ECG monitoring. Low noise high input impedance amplifier.
为解决上述问题,本发明是通过以下技术方案实现的:In order to solve the above problems, the present invention is implemented through the following technical solutions:
应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器,包括斩波放大器、纹波抑制环路和增益控制环路。纹波抑制环路的输入端连接斩波放大器的输出端,纹波抑制环路的输出端接斩波放大器内部第一级跨导放大器的输出端。增益控制环路的输入端连接斩波放大器的输出端,纹波抑制环路的输出端接斩波放大器内部第一级跨导放大器的输出端。其不同之处是,还进一步包括采样输入级电路、模拟电极失调抑制环路和数字电极失调抑制电路。采样输入级电路的输入端Vinn和Vinp形成本低噪声高输入阻抗心电放大器的输入端。采样输入级电路的输出端Vampn和Vampp连接斩波放大器的输入端。斩波放大器的输出端形成本低噪声高输入阻抗心电放大器的输出端。模拟电极失调抑制环路包括低通滤波器和衰减器。低通滤波器的一组输入端形成模拟电极失调抑制环路的输入端,并与斩波放大器的输出端连接。低通滤波器的输出端与衰减器的输入端连接。衰减器的输出端连接采样输入级电路的输入端VADSLn和VADSLp。数字电极失调抑制电路的输入端连接模拟电极失调抑制环路的低通滤波器的输出端,数字电极失调抑制电路的输出端连接采样输入级电路的输入端VDDSLn和VDDSLp。采样输入级电路完成对外部输入信号的采样和预处理,在输入信号进入斩波放大器前将输入信号中的电极失调和基线漂移干扰去除而不降低电路的输入阻抗。模拟电极失调抑制环路先利用低通滤波器对斩波放大器输出信号进行低通滤波取出电极失调和基线漂移干扰并进行放大后输出一个模拟反馈信号,再利用衰减器对模拟反馈信号进行衰减后送入到采样输入级电路,以抵消外部输入信号的电极失调和基线漂移干扰。数字电极失调抑制电路检测模拟电极失调抑制环路的有源低通滤波器输出的模拟反馈信号的电压,并据此产生一个数字补偿信号送入到采样输入级电路,以防止低通滤波器输出饱和。A low-noise, high-input impedance amplifier used in wearable dry electrode ECG monitoring, including a chopper amplifier, ripple suppression loop and gain control loop. The input terminal of the ripple suppression loop is connected to the output terminal of the chopper amplifier, and the output terminal of the ripple suppression loop is connected to the output terminal of the first-stage transconductance amplifier inside the chopper amplifier. The input terminal of the gain control loop is connected to the output terminal of the chopper amplifier, and the output terminal of the ripple suppression loop is connected to the output terminal of the first-stage transconductance amplifier inside the chopper amplifier. The difference is that it further includes a sampling input stage circuit, an analog electrode offset suppression loop and a digital electrode offset suppression circuit. The input terminals V inn and V inp of the sampling input stage circuit form the input terminals of the low-cost, low-noise, high input impedance ECG amplifier. The output terminals V ampn and V ampp of the sampling input stage circuit are connected to the input terminal of the chopper amplifier. The output of the chopper amplifier forms the output of the low-cost, low-noise, high-input-impedance ECG amplifier. The analog electrode offset suppression loop includes a low-pass filter and attenuator. A set of input terminals of the low-pass filter forms the input terminals of the analog electrode offset suppression loop and is connected to the output terminal of the chopper amplifier. The output of the low-pass filter is connected to the input of the attenuator. The output terminal of the attenuator is connected to the input terminals V ADSLn and V ADSLp of the sampling input stage circuit. The input terminal of the digital electrode offset suppression circuit is connected to the output terminal of the low-pass filter of the analog electrode offset suppression loop, and the output terminal of the digital electrode offset suppression circuit is connected to the input terminals V DDSLn and V DDSLp of the sampling input stage circuit. The sampling input stage circuit completes the sampling and preprocessing of the external input signal, and removes the electrode offset and baseline drift interference in the input signal before it enters the chopper amplifier without reducing the input impedance of the circuit. The analog electrode offset suppression loop first uses a low-pass filter to low-pass filter the chopper amplifier output signal to remove the electrode offset and baseline drift interference and amplify it to output an analog feedback signal. Then it uses an attenuator to attenuate the analog feedback signal. It is sent to the sampling input stage circuit to offset the electrode offset and baseline drift interference of the external input signal. The digital electrode offset suppression circuit detects the voltage of the analog feedback signal output by the active low-pass filter of the analog electrode offset suppression loop, and generates a digital compensation signal accordingly and sends it to the sampling input stage circuit to prevent the low-pass filter from outputting saturation.
上述方案中,采样输入级电路包括16个NMOS管K11~K18、K21~K28,以及4个采样电容Cin1~Cin4。NMOS管K11~K18的栅极与时钟信号φ1连接,NMOS管K21~K28的栅极与时钟信号φ2连接。上述时钟信号φ1与时钟信号φ2为一组不交叠时钟。电容Cin1的一端与NMOS管K11和K21的源极相连,电容Cin1的另一端与NMOS管K12和K22的漏极相连。电容Cin2的一端与NMOS管K13和K23的源极相连,电容Cin2的另一端与NMOS管K14和K24的漏极相连。电容Cin3的一端与NMOS管K15和K25的源极相连,电容Cin3的另一端与NMOS管K16和K26的漏极相连。电容Cin4的一端与NMOS管K17和K27的源极相连,电容Cin4的另一端与NMOS管K18和K28的漏极相连。NMOS管K11和K25的漏极形成采样输入级电路的输入端Vinn。NMOS管K13和K27的漏极形成采样输入级电路的输入端Vinp。NMOS管K15和K21的漏极形成采样输入级电路的输出端Vampn。NMOS管K17和K23的漏极形成采样输入级电路的输出端Vampp。NMOS管K16和K22的源极形成采样输入级电路的输入端VADSLn。NMOS管K18和K24的源极形成采样输入级电路的输入端VADSLp。NMOS管K12和K26的源极形成采样输入级电路的输入端VDDSLn。NMOS管K14和K28的源极形成采样输入级电路的输入端VDDSLp。In the above scheme, the sampling input stage circuit includes 16 NMOS tubes K 11 to K 18 , K 21 to K 28 , and 4 sampling capacitors C in1 to C in4 . The gates of the NMOS transistors K 11 to K 18 are connected to the clock signal φ1, and the gates of the NMOS transistors K 21 to K 28 are connected to the clock signal φ2. The above clock signal φ1 and clock signal φ2 are a set of non-overlapping clocks. One end of the capacitor C in1 is connected to the sources of the NMOS transistors K 11 and K 21 , and the other end of the capacitor C in1 is connected to the drains of the NMOS transistors K 12 and K 22 . One end of the capacitor C in2 is connected to the sources of the NMOS transistors K 13 and K 23 , and the other end of the capacitor C in2 is connected to the drains of the NMOS transistors K 14 and K 24 . One end of the capacitor C in3 is connected to the sources of the NMOS transistors K 15 and K 25 , and the other end of the capacitor C in3 is connected to the drains of the NMOS transistors K 16 and K 26 . One end of the capacitor C in4 is connected to the sources of the NMOS transistors K 17 and K 27 , and the other end of the capacitor C in4 is connected to the drains of the NMOS transistors K 18 and K 28 . The drains of NMOS transistors K 11 and K 25 form the input terminal V inn of the sampling input stage circuit. The drains of NMOS transistors K 13 and K 27 form the input terminal V inp of the sampling input stage circuit. The drains of NMOS transistors K 15 and K 21 form the output terminal V ampn of the sampling input stage circuit. The drains of NMOS transistors K 17 and K 23 form the output terminal V ampp of the sampling input stage circuit. The sources of NMOS transistors K 16 and K 22 form the input terminal V ADSLn of the sampling input stage circuit. The sources of NMOS transistors K 18 and K 24 form the input terminal V ADSLp of the sampling input stage circuit. The sources of NMOS transistors K 12 and K 26 form the input terminal V DDSLn of the sampling input stage circuit. The sources of NMOS transistors K 14 and K 28 form the input terminal V DDSLp of the sampling input stage circuit.
上述方案中,模拟电极失调抑制环路的低通滤波器包括迟滞比较器I1、I2,与非门I3,PMOS管M1–M3,NMOS管M4,放大器A3,以及电容C61、C62。迟滞比较器I1和迟滞比较器I2的反相输入端形成低通滤波器的一组输入端。迟滞比较器I1和迟滞比较器I2的同相输入端同时接参考电压Vref。迟滞比较器I1和迟滞比较器I2的输出端分别接与非门I3的2个输入端。非门I3的输出端同时接NMOS管M3和PMOS管M4的栅极。NMOS管M4的源极接参考电压Vb。PMOS管M3的源极接电源。NMOS管M3和PMOS管M4的漏极相连后,同时与PMOS管M1和PMOS管M2的栅极连接。PMOS管M1的漏极与迟滞比较器I2的反相输入端连接,PMOS管M1的源极连接放大器A3的反相输入端。PMOS管M2的漏极与迟滞比较器I1的反相输入端连接,PMOS管M2的源极连接放大器A3的同相输入端。电容C61的两端分别连接放大器A3的反相输入端和同相输出端。电容C62的两端分别连接放大器A3的同相输入端和反相输出端。放大器A3的同相输出端和反相输出端形成低通滤波器的一组输出端。In the above scheme, the low-pass filter of the analog electrode offset suppression loop includes hysteresis comparators I 1 and I 2 , NAND gate I 3 , PMOS tubes M 1 –M 3 , NMOS tube M 4 , amplifier A 3 , and capacitor C 61 , C 62 . The inverting input terminals of hysteresis comparator I 1 and hysteresis comparator I 2 form a set of input terminals of a low-pass filter. The non-inverting input terminals of the hysteresis comparator I 1 and the hysteresis comparator I 2 are connected to the reference voltage V ref at the same time. The output terminals of the hysteresis comparator I 1 and the hysteresis comparator I 2 are respectively connected to the two input terminals of the NAND gate I 3 . The output terminal of the NOT gate I 3 is connected to the gates of the NMOS tube M 3 and the PMOS tube M 4 at the same time. The source of the NMOS transistor M 4 is connected to the reference voltage V b . The source of PMOS tube M3 is connected to the power supply. After the drains of the NMOS transistor M 3 and the PMOS transistor M 4 are connected, they are simultaneously connected to the gates of the PMOS transistor M 1 and the PMOS transistor M 2 . The drain of PMOS tube M1 is connected to the inverting input terminal of hysteresis comparator I2 , and the source of PMOS tube M1 is connected to the inverting input terminal of amplifier A3 . The drain of PMOS tube M2 is connected to the inverting input terminal of hysteresis comparator I1 , and the source of PMOS tube M2 is connected to the non-inverting input terminal of amplifier A3 . Both ends of the capacitor C 61 are connected to the inverting input terminal and the non-inverting output terminal of the amplifier A 3 respectively. Both ends of the capacitor C 62 are connected to the non-inverting input terminal and the inverting output terminal of the amplifier A 3 respectively. The non-inverting and inverting outputs of amplifier A 3 form a set of outputs of the low-pass filter.
上述方案中,模拟电极失调抑制环路的衰减器包括斩波器chopping1、chopping2,以及电容C71、C72、C81、C82。斩波器chopping1的2个输入端形成衰减器的一组输入端。斩波器chopping1的一个输出端接电容C71,电容C71的另一端分为2路,一路经由电容C81后接地,另一路接斩波器chopping2的一个输入端。斩波器chopping1的另一个输出端接电容C72,电容C72的另一端分为2路,一路经由电容C82后接地,另一路接斩波器chopping2的另一个输入端。斩波器chopping2的2个输出端形成衰减器的一组输出端。In the above solution, the attenuator of the analog electrode offset suppression loop includes choppers chopping1, chopping2, and capacitors C 71 , C 72 , C 81 , and C 82 . The 2 input terminals of chopper chopping1 form a set of input terminals of the attenuator. One output terminal of the chopper chopping1 is connected to the capacitor C 71 , and the other terminal of the capacitor C 71 is divided into two channels. One channel is connected to the ground after passing through the capacitor C 81 , and the other channel is connected to an input terminal of the chopper chopping2 . The other output terminal of the chopper chopping1 is connected to the capacitor C 72 . The other terminal of the capacitor C 72 is divided into two channels. One channel is connected to the ground through the capacitor C 82 , and the other channel is connected to the other input terminal of the chopper chopping2 . The 2 output terminals of chopper chopping2 form a set of output terminals of the attenuator.
上述方案中,数字电极失调抑制电路包括比较器U1、U2,移位寄存器Shift,恒流源I1,电阻R1~R3,NMOS管M11~M14、M21~M24、M5,以及复位模块Rest。比较器U1和比较器U2的同相输入端形成数字电极失调抑制电路的一组输入端。比较器U1和比较器U2的反相输入端同时接参考电压VCM。比较器U1的输出端接移位寄存器Shift的上升输入端up,比较器U2的输出端接移位寄存器Shift的下降输入端down。移位寄存器Shift的时钟端接外部时钟信号。移位寄存器Shift的复位端rest接复位模块Rest的输出端。移位寄存器的第一组四位输出端A<4:1>分为2路,一路送入复位模块Rest,另一路分别连接NMOS管M21~M24的栅极。移位寄存器的第二组四位输出端B<4:1>分为2路,一路送入复位模块Rest,另一路分别连接NMOS管M11~M14的栅极。电流源I1的一端接电源,电流源I1的另一端接NMOS管M14和NMOS管M24的源极,以及电阻R1的一端。电阻R1的另一端NMOS管M13和NMOS管M23的源极,以及电阻R2的一端。电阻R2的另一端NMOS管M12和NMOS管M22的源极,以及电阻R3的一端。电阻R3的另一端NMOS管M11和NMOS管M12的源极,以及NMOS管M5的栅极和漏极。NMOS管M5的漏极接地。NMOS管M11~M14的漏极相连后,形成数字电极失调抑制电路的一组输出端中的其中一个,NMOS管M21~M24的漏极相连后,形成数字电极失调抑制电路的一组输出端中的另一个。In the above scheme, the digital electrode offset suppression circuit includes comparators U 1 and U 2 , shift register Shift, constant current source I 1 , resistors R 1 ~ R 3 , NMOS tubes M 11 ~ M 14 , M 21 ~ M 24 , M 5 , and reset module Rest. The non-inverting input terminals of comparator U1 and comparator U2 form a set of input terminals of the digital electrode offset suppression circuit. The inverting input terminals of comparator U 1 and comparator U 2 are connected to the reference voltage VCM at the same time. The output terminal of comparator U 1 is connected to the rising input terminal up of the shift register Shift, and the output terminal of the comparator U 2 is connected to the falling input terminal down of the shift register Shift. The clock terminal of the shift register Shift is connected to an external clock signal. The reset terminal rest of the shift register Shift is connected to the output terminal of the reset module Rest. The first group of four-bit output terminals A<4:1> of the shift register is divided into 2 channels, one channel is sent to the reset module Rest, and the other channel is connected to the gates of NMOS tubes M 21 to M 24 respectively. The second group of four-bit output terminals B<4:1> of the shift register is divided into 2 channels, one channel is sent to the reset module Rest, and the other channel is connected to the gates of NMOS tubes M 11 to M 14 respectively. One end of the current source I 1 is connected to the power supply, and the other end of the current source I 1 is connected to the sources of the NMOS transistors M 14 and NMOS transistors M 24 and one end of the resistor R 1 . The other end of the resistor R1 is the source of the NMOS transistor M13 and the NMOS transistor M23 , and one end of the resistor R2 . The other end of the resistor R2 is the source of the NMOS transistor M12 and the NMOS transistor M22 , and one end of the resistor R3 . The other end of the resistor R 3 is the source of the NMOS transistor M 11 and the NMOS transistor M 12 , and the gate and drain of the NMOS transistor M 5 . The drain of NMOS tube M5 is grounded. After the drains of the NMOS tubes M 11 to M 14 are connected, they form one of a set of output terminals of the digital electrode offset suppression circuit. After the drains of the NMOS tubes M 21 to M 24 are connected, they form one of the output terminals of the digital electrode offset suppression circuit. Another one of the group outputs.
与现有技术相比,本发明具有如下特点:Compared with the existing technology, the present invention has the following characteristics:
1、采用数字和模拟混合电极失调抑制电路,不仅使得放大器可以抑制高达±300mV的电极失调,并且不会降低放大器的输入阻抗;而且大大降低了电极失调抑制环路引入的噪声;1. The use of digital and analog hybrid electrode offset suppression circuits not only allows the amplifier to suppress electrode offsets up to ±300mV without reducing the input impedance of the amplifier; it also greatly reduces the noise introduced by the electrode offset suppression loop;
2、采用了新型的电容采样输入结构,在不使用正反馈和辅助放大器的情况下使得放大器的低频等效输入阻抗大于1GΩ,并且不引入额外噪声。2. A new capacitive sampling input structure is adopted, which makes the low-frequency equivalent input impedance of the amplifier greater than 1GΩ without using positive feedback and auxiliary amplifiers, and does not introduce additional noise.
附图说明Description of drawings
图1为应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器的原理图。Figure 1 is a schematic diagram of a low-noise, high-input-impedance amplifier applied to wearable dry electrode ECG monitoring.
图2为采样输入级电路的原理图。Figure 2 is the schematic diagram of the sampling input stage circuit.
图3为低通滤波器的原理图。Figure 3 is the schematic diagram of a low-pass filter.
图4为衰减器的原理图。Figure 4 is the schematic diagram of the attenuator.
图5为数字电极失调抑制电路的原理图。Figure 5 is the schematic diagram of the digital electrode offset suppression circuit.
图6为移位寄存器工作流程图。Figure 6 is a shift register working flow chart.
图7为图1的周期稳态交流(PAC)仿真结果图。Figure 7 is a diagram of the periodic steady-state AC (PAC) simulation results of Figure 1.
图8为图1的周期稳态噪声(PNOISE)仿真结果图。Figure 8 is a diagram of the periodic steady-state noise (PNOISE) simulation results of Figure 1.
图9为图1的输入等效阻抗与输入频率的关系仿真结果图。Figure 9 is a simulation result diagram of the relationship between input equivalent impedance and input frequency in Figure 1.
图10为图1的时域仿真结果图。Figure 10 is the time domain simulation result diagram of Figure 1.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,对本发明进一步详细说明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to specific examples.
参见图1,一种应用于可穿戴干电极心电监测的低噪声高输入阻抗放大器,其主要由采样输入级电路,斩波放大器,纹波抑制环路,增益控制环路,模拟电极失调抑制环路和数字电极失调抑制电路。采样输入级电路包括3组输入端,一组输入端Vinn、Vinp形成整个低噪声高输入阻抗心电放大器的输入端,另一组输入端VADSLn、VADSLp接模拟电极失调抑制环路的输出端,又一组输入端VDDSLn、VDDSLp接数字电极失调抑制电路的输出端。采样输入级电路的输出端Vampn、Vampp接斩波放大器的输入端。斩波放大器的输出端Voutn、Voutp形成整个低噪声高输入阻抗心电放大器的输出端。纹波抑制环路的输入端接斩波放大器的输出端Voutn、Voutp;纹波抑制环路的输出端接斩波放大器内部跨导放大器Gm1的输出端。增益控制环路的输入端接斩波放大器的输出端Voutn、Voutp;增益控制环路的输出端接斩波放大器内部跨导放大器Gm1的输出端。模拟电极失调抑制环路的输入端接斩波放大器的输出端Voutn、Voutp。模拟电极失调抑制环路的输出端接采样输入级电路的输入端VADSLn、VADSLp。数字电极失调抑制电路的输入端接模拟电极失调抑制环路中的低通滤波器的输出端TESTn、TESTp;数字电极失调抑制电路的输出端接采样输入级电路的输入端VDDSLp、VDDSLn。See Figure 1, a low-noise and high-input impedance amplifier used in wearable dry electrode ECG monitoring. It mainly consists of a sampling input stage circuit, a chopper amplifier, a ripple suppression loop, a gain control loop, and analog electrode offset suppression. Loop and digital electrode offset suppression circuits. The sampling input stage circuit includes 3 sets of input terminals. One set of input terminals V inn and V inp form the input terminal of the entire low-noise and high input impedance ECG amplifier. The other set of input terminals V ADSLn and V ADSLp are connected to the analog electrode offset suppression loop. The output terminal, and another set of input terminals V DDSLn and V DDSLp are connected to the output terminal of the digital electrode offset suppression circuit. The output terminals V ampn and V ampp of the sampling input stage circuit are connected to the input terminal of the chopper amplifier. The output terminals V outn and V outp of the chopper amplifier form the output terminal of the entire low-noise high input impedance ECG amplifier. The input terminal of the ripple suppression loop is connected to the output terminals V outn and V outp of the chopper amplifier; the output terminal of the ripple suppression loop is connected to the output terminal of the internal transconductance amplifier G m1 of the chopper amplifier. The input terminal of the gain control loop is connected to the output terminals V outn and V outp of the chopper amplifier; the output terminal of the gain control loop is connected to the output terminal of the transconductance amplifier G m1 inside the chopper amplifier. The input terminal of the analog electrode offset suppression loop is connected to the output terminals V outn and V outp of the chopper amplifier. The output terminal of the analog electrode offset suppression loop is connected to the input terminals V ADSLn and V ADSLp of the sampling input stage circuit. The input terminal of the digital electrode offset suppression circuit is connected to the output terminals TESTn and TESTp of the low-pass filter in the analog electrode offset suppression loop; the output terminal of the digital electrode offset suppression circuit is connected to the input terminals V DDSLp and V DDSLn of the sampling input stage circuit.
采样输入级电路,如图2所示,包括16个开关K11~K18、K21~K28,4个采样电容Cin1~Cin4。由于集成芯片中NMOS的源极和漏极是对称结构,可以构成较理想的开关,因此在本发明的优选实例中,16个开关K11~K18、K21~K28均由NMOS构成。其中采样输入级电路的16个开关分别由一组不交叠时钟φ1和φ2控制,时钟信号φ1控制开关K11~K18,时钟信号φ2控制开关K21~K28。NMOS管K11~K18的栅极与时钟信号φ1连接,NMOS管K21~K28的栅极与时钟信号φ2连接;上述时钟信号φ1与时钟信号φ2为一组不交叠时钟。电容Cin1的一端与NMOS管K11和K21的源极相连,电容Cin1的另一端与NMOS管K12和K22的漏极相连;电容Cin2的一端与NMOS管K13和K23的源极相连,电容Cin2的另一端与NMOS管K14和K24的漏极相连;电容Cin3的一端与NMOS管K15和K25的源极相连,电容Cin3的另一端与NMOS管K16和K26的漏极相连;电容Cin4的一端与NMOS管K17和K27的源极相连,电容Cin4的另一端与NMOS管K18和K28的漏极相连。NMOS管K11和K25的漏极形成采样输入级电路的输入端Vinn;NMOS管K13和K27的漏极形成采样输入级电路的输入端Vinp;NMOS管K15和K21的漏极形成采样输入级电路的输出端Vampn;NMOS管K17和K23的漏极形成采样输入级电路的输出端Vampp;NMOS管K16和K22的源极形成采样输入级电路的输入端VADSLn;NMOS管K18和K24的源极形成采样输入级电路的输入端VADSLp;NMOS管K12和K26的源极形成采样输入级电路的输入端VDDSLn;NMOS管K14和K28的源极形成采样输入级电路的输入端VDDSLp。The sampling input stage circuit, as shown in Figure 2, includes 16 switches K 11 ~ K 18 , K 21 ~ K 28 , and 4 sampling capacitors C in1 ~ C in4 . Since the source and drain of NMOS in the integrated chip have a symmetrical structure, they can constitute an ideal switch. Therefore, in the preferred example of the present invention, the 16 switches K 11 to K 18 and K 21 to K 28 are all composed of NMOS. The 16 switches of the sampling input stage circuit are respectively controlled by a set of non-overlapping clocks φ1 and φ2. The clock signal φ1 controls the switches K 11 ~ K 18 and the clock signal φ2 controls the switches K 21 ~ K 28 . The gates of the NMOS transistors K 11 to K 18 are connected to the clock signal φ1, and the gates of the NMOS transistors K 21 to K 28 are connected to the clock signal φ2; the clock signal φ1 and the clock signal φ2 are a set of non-overlapping clocks. One end of the capacitor C in1 is connected to the sources of the NMOS transistors K 11 and K 21 , the other end of the capacitor C in1 is connected to the drains of the NMOS transistors K 12 and K 22 ; one end of the capacitor C in2 is connected to the NMOS transistors K 13 and K 23 The source is connected, the other end of the capacitor C in2 is connected to the drain of NMOS tubes K 14 and K 24 ; one end of the capacitor C in3 is connected to the sources of NMOS tubes K 15 and K 25 , and the other end of the capacitor C in3 is connected to the NMOS The drains of tubes K 16 and K 26 are connected; one end of capacitor C in4 is connected to the sources of NMOS tubes K 17 and K 27 , and the other end of capacitor C in4 is connected to the drains of NMOS tubes K 18 and K 28 . The drains of NMOS tubes K 11 and K 25 form the input terminal V inn of the sampling input stage circuit; the drains of NMOS tubes K 13 and K 27 form the input terminal V inp of the sampling input stage circuit; the drains of NMOS tubes K 15 and K 21 The drain forms the output terminal V ampn of the sampling input stage circuit; the drains of the NMOS tubes K 17 and K 23 form the output terminal V ampp of the sampling input stage circuit; the sources of the NMOS tubes K 16 and K 22 form the sampling input stage circuit The input terminal V ADSLn ; the sources of NMOS tubes K 18 and K 24 form the input terminal V ADSLp of the sampling input stage circuit; the sources of NMOS tubes K 12 and K 26 form the input terminal V DDSLn of the sampling input stage circuit; the NMOS tube K 14 and the source of K 28 form the input terminal V DDSLp of the sampling input stage circuit.
斩波放大器,包括斩波器MX1、MX2,跨导放大器Gm1、Gm4,以及由放大器A1和电容C31、C32构成的积分器。斩波器MX1的2个输入端形成斩波放大器的一组输入端Vampn、Vampp。斩波器MX1的2个输出端分别连接跨导放大器Gm1的同相和反相输入端,跨导放大器Gm1的同相和反相输出端分别连接跨导放大器Gm4的反相和同相输入端。跨导放大器Gm4的同相和反相分别连接斩波器MX2的2个输入端,斩波器MX2的2个输出端分别连接放大器A1的同相和反相输入端。电容C31的两端分别连接放大器A1的反相输出端和同相输入端。电容C32的两端分别连接放大器A1的同相输出端和反相输入端。放大器A1的同相和反相输出端形成斩波放大器的一组输出端Voutn、Voutp。斩波放大器的输入端Vampp和Vampn接采样输入级电路的输出端,输入端Vampp和Vampn构成的差分输入信号Vamp首先经过斩波器MX1调制到斩波频率,然后通过跨导放大器Gm1、Gm4放大,再经过斩波器MX2解调到基带,最后通过由C31、C32、A1构成的积分器滤波放大输出。The chopper amplifier includes choppers MX1 and MX2, transconductance amplifiers G m1 and G m4 , and an integrator composed of amplifier A 1 and capacitors C 31 and C 32 . The two input terminals of the chopper MX1 form a set of input terminals V ampn and V ampp of the chopper amplifier. The two output terminals of the chopper MX1 are respectively connected to the non-inverting and inverting input terminals of the transconductance amplifier G m1 , and the non-inverting and inverting output terminals of the transconductance amplifier G m1 are respectively connected to the inverting and non-inverting input terminals of the transconductance amplifier G m4 . . The non-inverting and inverting terminals of the transimpedance amplifier G m4 are respectively connected to the two input terminals of the chopper MX2, and the two output terminals of the chopper MX2 are respectively connected to the non-inverting and inverting input terminals of the amplifier A 1 . Both ends of the capacitor C 31 are connected to the inverting output terminal and the non-inverting input terminal of the amplifier A 1 respectively. Both ends of the capacitor C 32 are connected to the non-inverting output terminal and the inverting input terminal of the amplifier A 1 respectively. The non-inverting and inverting output terminals of amplifier A 1 form a set of output terminals V outn , V outp of the chopper amplifier. The input terminals V ampp and V ampn of the chopper amplifier are connected to the output terminal of the sampling input stage circuit. The differential input signal V amp composed of the input terminals V ampp and V ampn is first modulated to the chopping frequency by the chopper MX1, and then passes through the transconductance Amplifiers G m1 and G m4 amplify, then demodulate to baseband through chopper MX2, and finally filter and amplify the output through an integrator composed of C 31 , C 32 , and A 1 .
增益控制环路,包括电容C11、C12、C21、C22,跨导放大器Gm2。电容C11的一端连接斩波放大器的输出端Voutn,另一端分为两路,一路经由电容C21与地连接,另一路连接跨导放大器Gm2的反相输入端。电容C12的一端连接斩波放大器的输出端Voutp,另一端分为两路,一路经由电容C22与地连接,另一路连接跨导放大器Gm2的同相输入端。跨导放大器Gm2的同相和反相输出端分别连接斩波放大器跨导放大器Gm1的同相输出端和反相输出端。通过电容C11、C12、C21、C22对输出电压Voutn、Voutp进行分压,将输出电压的C11/(C11+C21)倍大小的电压反馈到跨导放大器Gm2的输入端,如果Gm2与Gm1的增益相等,就可以控制放大器的增益为C21/C11+1。The gain control loop includes capacitors C 11 , C 12 , C 21 , C 22 and transconductance amplifier G m2 . One end of the capacitor C 11 is connected to the output terminal V outn of the chopper amplifier, and the other end is divided into two circuits, one circuit is connected to the ground via the capacitor C 21 , and the other circuit is connected to the inverting input terminal of the transconductance amplifier G m2 . One end of the capacitor C 12 is connected to the output terminal V outp of the chopper amplifier, and the other end is divided into two circuits, one circuit is connected to the ground via the capacitor C 22 , and the other circuit is connected to the non-inverting input terminal of the transconductance amplifier G m2 . The non-inverting output terminal and the inverting output terminal of the transconductance amplifier G m2 are respectively connected to the non-inverting output terminal and the inverting output terminal of the chopper amplifier transconductance amplifier G m1 . The output voltages V outn and V outp are divided by the capacitors C 11 , C 12 , C 21 , and C 22 , and a voltage that is C 11 /(C 11 + C 21 ) times the output voltage is fed back to the transconductance amplifier G m2 At the input end, if the gains of G m2 and G m1 are equal, the gain of the amplifier can be controlled to be C 21 /C 11 +1.
纹波抑制环路,包括电容C41、C42,斩波器MX3,由电容C51、C52和放大器A2构成的积分器,跨导放大器Gm3。斩波放大器的一组输出端Voutp、Voutn,分别经由电容C41、C42连接斩波器MX3的2个输入端。斩波器MX3的2个输出端分别连接放大器A2的同相输出端和反相输入端。放大器A2的同相输出端和反相输出端连接跨导放大器Gm3的反相输入端和同相输入端。电容C51的两端分别连接放大器A2的同相输出端和反相输入端。电容C52的两端分别连接放大器A2的反相输出端和同相输入端。跨导放大器Gm3的同相输出端和反相输出端连接斩波放大器中跨导放大器Gm1的同相输出端和反相输出端。纹波抑制环路输入端接斩波放大器的输出端Voutn、Voutp,纹波抑制环路的输出端接斩波放大器的反馈节点,即跨导放大器Gm4的输入端。由于跨导放大器Gm1、Gm4的失调电压以及低频噪声会被斩波器MX2调制成频率为斩波频率处的方波,然后通过由放大器A1和电容C31、C32构成的积分器形成频率大小为斩波频率的三角波,为了消除这个三角波,纹波抑制环路首先将Vout上的三角波电压经过电容微分形成频率为斩波频率的方波电流,然后通过斩波器MX3解调为直流电流,通过A2、C51、C52构成的积分器形成直流电压,通过跨导放大器反馈到Gm4抵消掉Gm1和Gm4的失调和低频噪声。The ripple suppression loop includes capacitors C 41 and C 42 , chopper MX3, an integrator composed of capacitors C 51 and C 52 and amplifier A 2 , and transconductance amplifier G m3 . A set of output terminals V outp and V outn of the chopper amplifier are connected to the two input terminals of the chopper MX3 via capacitors C 41 and C 42 respectively. The two output terminals of the chopper MX3 are connected to the non-inverting output terminal and the inverting input terminal of the amplifier A 2 respectively. The non-inverting output terminal and the inverting output terminal of the amplifier A 2 are connected to the inverting input terminal and the non-inverting input terminal of the transconductance amplifier G m3 . Both ends of the capacitor C 51 are connected to the non-inverting output terminal and the inverting input terminal of the amplifier A 2 respectively. The two ends of the capacitor C 52 are respectively connected to the inverting output terminal and the non-inverting input terminal of the amplifier A 2 . The non-inverting output terminal and the inverting output terminal of the transconductance amplifier G m3 are connected to the non-inverting output terminal and the inverting output terminal of the transconductance amplifier G m1 in the chopper amplifier. The input terminal of the ripple suppression loop is connected to the output terminals V outn and V outp of the chopper amplifier, and the output terminal of the ripple suppression loop is connected to the feedback node of the chopper amplifier, that is, the input terminal of the transconductance amplifier G m4 . Since the offset voltage and low-frequency noise of the transconductance amplifiers G m1 and G m4 will be modulated by the chopper MX2 into a square wave at the chopping frequency, it will then pass through the integrator composed of the amplifier A 1 and the capacitors C 31 and C 32 A triangular wave whose frequency is the chopping frequency is formed. In order to eliminate this triangular wave, the ripple suppression loop first differentiates the triangular wave voltage on V out through the capacitor to form a square wave current whose frequency is the chopping frequency, and then demodulates it through the chopper MX3. It is a DC current, and forms a DC voltage through the integrator composed of A 2 , C 51 , and C 52 , and is fed back to G m4 through the transconductance amplifier to offset the offset and low-frequency noise of G m1 and G m4 .
模拟电极失调抑制环路,包括低通滤波器LPF1和衰减器。Analog electrode offset suppression loop, including low-pass filter LPF1 and attenuator.
所述低通滤波器,如图3所示,包括由迟滞比较器I1、I2,与非门I3,PMOS管M3和NMOS管M4组成的快速恢复电路,由PMOS管M1和M2组成的伪电阻P-RES,放大器A3,以及电容C61、C62。迟滞比较器I1和迟滞比较器I2的反相输入端形成低通滤波器的一组输入端。迟滞比较器I1和迟滞比较器I2的同相输入端同时接参考电压Vref。迟滞比较器I1和迟滞比较器I2的输出端分别接与非门I3的2个输入端。与非门I3的输出端同时接NMOS管M3和PMOS管M4的栅极。NMOS管M4的源极接参考电压Vb。PMOS管M3的源极接电源。NMOS管M3和PMOS管M4的漏极相连后,同时与PMOS管M1和PMOS管M2的栅极连接。PMOS管M1的漏极与迟滞比较器I2的反相输入端连接,PMOS管M1的源极连接放大器A3的反相输入端。PMOS管M2的漏极与迟滞比较器I1的反相输入端连接,PMOS管M2的源极连接放大器A3的同相输入端。电容C61的两端分别连接放大器A3的反相输入端和同相输出端。电容C62的两端分别连接放大器A3的同相输入端和反相输出端。放大器A3的同相输出端和反相输出端形成低通滤波器的一组输出端。The low-pass filter, as shown in Figure 3, includes a fast recovery circuit composed of hysteresis comparators I 1 and I 2 , NAND gate I 3 , PMOS tube M 3 and NMOS tube M 4 . The PMOS tube M 1 and M 2 composed of pseudo resistor P-RES, amplifier A 3 , and capacitors C 61 and C 62 . The inverting input terminals of hysteresis comparator I 1 and hysteresis comparator I 2 form a set of input terminals of a low-pass filter. The non-inverting input terminals of the hysteresis comparator I 1 and the hysteresis comparator I 2 are connected to the reference voltage V ref at the same time. The output terminals of the hysteresis comparator I 1 and the hysteresis comparator I 2 are respectively connected to the two input terminals of the NAND gate I 3 . The output terminal of NAND gate I 3 is connected to the gates of NMOS tube M 3 and PMOS tube M 4 at the same time. The source of the NMOS transistor M 4 is connected to the reference voltage V b . The source of PMOS tube M3 is connected to the power supply. After the drains of the NMOS transistor M 3 and the PMOS transistor M 4 are connected, they are simultaneously connected to the gates of the PMOS transistor M 1 and the PMOS transistor M 2 . The drain of PMOS tube M1 is connected to the inverting input terminal of hysteresis comparator I2 , and the source of PMOS tube M1 is connected to the inverting input terminal of amplifier A3 . The drain of PMOS tube M2 is connected to the inverting input terminal of hysteresis comparator I1 , and the source of PMOS tube M2 is connected to the non-inverting input terminal of amplifier A3 . Both ends of the capacitor C 61 are connected to the inverting input terminal and the non-inverting output terminal of the amplifier A 3 respectively. Both ends of the capacitor C 62 are connected to the non-inverting input terminal and the inverting output terminal of the amplifier A 3 respectively. The non-inverting and inverting outputs of amplifier A 3 form a set of outputs of the low-pass filter.
所述衰减器,如图4所示,包括斩波器chopping1、chopping2,以及电容C71、C72、C81、C82。斩波器chopping1的2个输入端形成衰减器的一组输入端。斩波器chopping1的一个输出端接电容C71,电容C71另一端分为2路,一路经由电容C81后接地,另一路接斩波器chopping2的一个输入端。斩波器chopping1的另一个输出端接电容C72,电容C72另一端分为2路,一路经由电容C82后接地,另一路接斩波器chopping2的另一个输入端。斩波器chopping2的2个输出端形成衰减器的一组输出端。The attenuator, as shown in Figure 4, includes choppers chopping1 and chopping2, and capacitors C 71 , C 72 , C 81 , and C 82 . The 2 input terminals of chopper chopping1 form a set of input terminals of the attenuator. One output terminal of the chopper chopping1 is connected to the capacitor C 71 , and the other terminal of the capacitor C 71 is divided into two channels. One channel is connected to the ground through the capacitor C 81 , and the other channel is connected to an input terminal of the chopper chopping2 . The other output terminal of the chopper chopping1 is connected to the capacitor C 72 . The other terminal of the capacitor C 72 is divided into two channels. One channel is connected to the ground through the capacitor C 82 , and the other channel is connected to the other input terminal of the chopper chopping2 . The 2 output terminals of chopper chopping2 form a set of output terminals of the attenuator.
数字电极失调抑制电路,如图5所示,包括比较器U1、U2,移位寄存器Shift,恒流源I1,电阻R1~R3,NMOS管M11~M14、M21~M24、M5,以及复位模块Rest。比较器U1和比较器U2的同相输入端形成数字电极失调抑制电路的一组输入端。比较器U1和比较器U2的反相输入端同时接参考电压VCM。比较器U1的输出端接移位寄存器Shift的上升输入端up,比较器U2的输出端接移位寄存器Shift的下降输入端down。移位寄存器Shift的时钟端接外部时钟信号。移位寄存器Shift的复位端rest接复位模块Rest的输出端。移位寄存器的第一组四位输出端A<4:1>分为2路,一路送入复位模块Rest,另一路分别连接NMOS管M21~M24的栅极。移位寄存器的第二组四位输出端B<4:1>分为2路,一路送入复位模块Rest,另一路分别连接NMOS管M11~M14的栅极。电流源I1的一端接电源,电流源I1的另一端接NMOS管M14和NMOS管M24的源极,以及电阻R1的一端。电阻R1的另一端NMOS管M13和NMOS管M23的源极,以及电阻R2的一端。电阻R2的另一端NMOS管M12和NMOS管M22的源极,以及电阻R3的一端。电阻R3的另一端NMOS管M11和NMOS管M12的源极,以及NMOS管M5的栅极和漏极。NMOS管M5的漏极接地。NMOS管M11~M14的漏极相连后,形成数字电极失调抑制电路的一组输出端中的其中一个,NMOS管M21~M24的漏极相连后,形成数字电极失调抑制电路的一组输出端中的另一个。The digital electrode offset suppression circuit, as shown in Figure 5, includes comparators U 1 and U 2 , shift register Shift, constant current source I 1 , resistors R 1 ~ R 3 , NMOS tubes M 11 ~ M 14 , M 21 ~ M 24 , M 5 , and reset module Rest. The non-inverting input terminals of comparator U1 and comparator U2 form a set of input terminals of the digital electrode offset suppression circuit. The inverting input terminals of comparator U 1 and comparator U 2 are connected to the reference voltage VCM at the same time. The output terminal of comparator U 1 is connected to the rising input terminal up of the shift register Shift, and the output terminal of the comparator U 2 is connected to the falling input terminal down of the shift register Shift. The clock terminal of the shift register Shift is connected to an external clock signal. The reset terminal rest of the shift register Shift is connected to the output terminal of the reset module Rest. The first group of four-bit output terminals A<4:1> of the shift register is divided into 2 channels, one channel is sent to the reset module Rest, and the other channel is connected to the gates of NMOS tubes M 21 to M 24 respectively. The second group of four-bit output terminals B<4:1> of the shift register is divided into 2 channels, one channel is sent to the reset module Rest, and the other channel is connected to the gates of NMOS tubes M 11 to M 14 respectively. One end of the current source I 1 is connected to the power supply, and the other end of the current source I 1 is connected to the sources of the NMOS transistors M 14 and NMOS transistors M 24 and one end of the resistor R 1 . The other end of the resistor R1 is the source of the NMOS transistor M13 and the NMOS transistor M23 , and one end of the resistor R2 . The other end of the resistor R2 is the source of the NMOS transistor M12 and the NMOS transistor M22 , and one end of the resistor R3 . The other end of the resistor R 3 is the source of the NMOS transistor M 11 and the NMOS transistor M 12 , and the gate and drain of the NMOS transistor M 5 . The drain of NMOS tube M5 is grounded. After the drains of the NMOS tubes M 11 to M 14 are connected, they form one of a set of output terminals of the digital electrode offset suppression circuit. After the drains of the NMOS tubes M 21 to M 24 are connected, they form one of the output terminals of the digital electrode offset suppression circuit. Another one of the group outputs.
本发明的工作原理为:The working principle of the present invention is:
心电信号首先经过采样输入级电路,消除电极失调和基线漂移部分,然后将运算后的电压输入到斩波放大器进行放大;其中纹波抑制环路是用来抑制斩波放大器产生的纹波;增益控制环路用来控制整个电路的增益。斩波放大器的输入端Vampp和Vampn接采样输入级电路的输出端,Voutn和Voutp为放大器的输出端。输入端Vampp和Vampn构成的差分输入信号Vamp首先经过斩波器MX1调制到斩波频率处,然后通过跨导放大器Gm1、Gm4放大,再经过斩波器MX2解调到基带频率处,最后通过由C31、C32、A1构成的积分器进行信号滤波;纹波抑制环路的输入端接斩波放大器的输出端Voutn、Voutp,纹波抑制环路的输出端接斩波放大器的反馈节点即跨导放大器Gm4的输入端。由于跨导放大器Gm1、Gm4的失调电压以及低频噪声会被斩波器MX2调制成频率为斩波频率的方波,然后通过由C31、C32、A1构成的积分器形成频率为斩波频率的三角波,为了消除这个三角波,纹波抑制环路首先将Vout上的三角波电压经过电容微分成频率为斩波频率的方波电流,然后通过斩波器MX2解调为直流电流,通过A2、C51、C52构成的积分器形成直流电压,通过跨导放大器反馈到Gm4抵消掉Gm1和Gm4的失调和低频噪声;增益控制环路,通过电容C11、C12、C21、C22对输出电压Voutn、Voutp进行分压,将输出电压的C11/(C11+C21)倍大小的电压反馈到跨导放大器Gm2的输入端,如果Gm2与Gm1的增益相等,就可以控制放大器的增益为C21/C11+1。The ECG signal first passes through the sampling input stage circuit to eliminate the electrode offset and baseline drift, and then the calculated voltage is input to the chopper amplifier for amplification; the ripple suppression loop is used to suppress the ripple generated by the chopper amplifier; The gain control loop is used to control the gain of the entire circuit. The input terminals V ampp and V ampn of the chopper amplifier are connected to the output terminal of the sampling input stage circuit, and V outn and V outp are the output terminals of the amplifier. The differential input signal V amp formed by the input terminals V ampp and V ampn is first modulated to the chopping frequency by the chopper MX1, then amplified by the transconductance amplifiers G m1 and G m4 , and then demodulated to the baseband frequency by the chopper MX2 at , and finally the signal is filtered through the integrator composed of C 31 , C 32 , and A 1 ; the input terminal of the ripple suppression loop is connected to the output terminals V outn and V outp of the chopper amplifier, and the output terminal of the ripple suppression loop The feedback node connected to the chopper amplifier is the input terminal of the transconductance amplifier G m4 . Since the offset voltage and low-frequency noise of the transconductance amplifiers G m1 and G m4 will be modulated by the chopper MX2 into a square wave with a frequency of chopping frequency, and then formed by an integrator composed of C 31 , C 32 and A 1 with a frequency of In order to eliminate the triangular wave at the chopping frequency, the ripple suppression loop first differentiates the triangular wave voltage on V out into a square wave current with a frequency of chopping frequency through the capacitor, and then demodulates it into a DC current through the chopper MX2. The DC voltage is formed through the integrator composed of A 2 , C 51 , and C 52 , and fed back to G m4 through the transconductance amplifier to offset the offset and low-frequency noise of G m1 and G m4 ; the gain control loop passes through the capacitors C 11 and C 12 , C 21 and C 22 divide the output voltages V outn and V outp , and feed back a voltage that is C 11 /(C 11 + C 21 ) times the output voltage to the input end of the transconductance amplifier G m2 . If G m2 Being equal to the gain of G m1 , the gain of the amplifier can be controlled to C 21 /C 11 +1.
采样输入级电路,完成对输入信号的采样和预处理,在输入信号进入斩波放大器前将输入信号中的电极失调和基线漂移成分去除而不降低电路的输入阻抗。全差分乒乓结构电容的采样输入级电路在信号进入放大器前进行信号调理,消除电极失调和基线漂移成分,提高放大器的输入阻抗。该电路由两相不交叠时钟φ1、φ2分别控制开关K11~K14,K21~K24,因为该电路是基于采样技术,为了使得电路的输入信号连续,该电路采用了两个模块block1、block2构成乒乓结构。在φ1为高时K11~K14导通,K21~K24截止,block1处于采样阶段,block2处于输入阶段;相反,在φ2为高时K11~K14截止,K21~K24导通,block1处于输入阶段,block2处于采样阶段;通过block1和block2交替工作使得输入信号连续。接下来重点对block1进行分析,电路分为两个阶段:The sampling input stage circuit completes the sampling and preprocessing of the input signal. Before the input signal enters the chopper amplifier, the electrode offset and baseline drift components in the input signal are removed without reducing the input impedance of the circuit. The sampling input stage circuit of the fully differential ping-pong structure capacitor performs signal conditioning before the signal enters the amplifier, eliminating electrode offset and baseline drift components, and improving the input impedance of the amplifier. This circuit uses two-phase non-overlapping clocks φ1 and φ2 to control the switches K 11 ~ K 14 and K 21 ~ K 24 respectively. Because the circuit is based on sampling technology, in order to make the input signal of the circuit continuous, the circuit uses two modules block1 and block2 form a ping-pong structure. When φ1 is high, K 11 ~ K 14 are turned on, K 21 ~ K 24 are turned off, block1 is in the sampling stage, and block2 is in the input stage; on the contrary, when φ2 is high, K 11 ~ K 14 are turned off, and K 21 ~ K 24 are turned off . Pass, block1 is in the input stage, and block2 is in the sampling stage; the input signal is continuous by working alternately between block1 and block2. Next, we focus on the analysis of block1. The circuit is divided into two stages:
①采样阶段(φ1为高):①Sampling stage (φ1 is high):
开关K11~K14导通,开关K21~K24截止,电容Cin1与Vinn、VDDSLn相连,Cin2与Vinp、VDDSLp相连,此时Cin1、Cin2上的电压分别为:Switches K 11 ~ K 14 are on, switches K 21 ~ K 24 are off, capacitor C in1 is connected to V inn and V DDSLn , and C in2 is connected to V inp and V DDSLp . At this time, the voltages on C in1 and C in2 are respectively :
Vcin1=Vinn-VDDSLn (1)V cin1 =V inn -V DDSLn (1)
Vcin2=Vinp-VDDSLp (2)V cin2 =V inp -V DDSLp (2)
②输入阶段(φ2为高):②Input stage (φ2 is high):
开关K11~K14截止,开关K21~K24导通,电容Cin1与Vampn、VADSLn相连,Cin2与Vampp、VADSLp相连,由于电容上的电压不会变化,保持采样阶段电压,因此输入电压Vampn、Vampp电压分别为:The switches K 11 ~ K 14 are turned off, the switches K 21 ~ K 24 are turned on, the capacitor C in1 is connected to V ampn and V ADSLn , and C in2 is connected to V ampp and V ADSLp . Since the voltage on the capacitor will not change, the sampling phase is maintained. voltage, so the input voltage V ampn and V ampp voltage are respectively:
Vampn=Vcin1+VADSLn= Vinn-VDDSLn+VADSLn (3)V ampn =V cin1 +V ADSLn = V inn -V DDSLn +V ADSLn (3)
Vampp= Vcin2+VADSLp= Vinp-VDDSLp+VADSLp (4)V ampp = V cin2 +V ADSLp = V inp -V DDSLp +V ADSLp (4)
令输入差模电压Vin=Vinp-Vinn;输出差模电压Vamp=Vampp-Vampn,由(3)、(4)得:Let the input differential mode voltage V in =V inp -V inn ; the output differential mode voltage V amp =V ampp -V ampn . From (3) and (4), we can get:
Vamp=Vin-(VDDSLp-VDDSLn)+(VADSLp-VADSLn) (5)V amp =V in -(V DDSLp -V DDSLn )+(V ADSLp -V ADSLn ) (5)
令VDSL=(VDDSLp-VDDSLn)+(VADSLn-VADSLp),由(5)得:Let V DSL = (V DDSLp -V DDSLn ) + (V ADSLn -V ADSLp ), and get from (5):
Vamp=Vin-VDSL (6)V amp =V in -V DSL (6)
当反馈稳定时,VDSL与输入Vin中的电极失调和基线漂移成分相等,因此放大器的差分输入Vamp不包含由Vin的电极失调和基线漂移成分,有效抑制了电极失调和基线漂移。When the feedback is stable, V DSL is equal to the electrode offset and baseline drift components in the input V in , so the differential input V amp of the amplifier does not contain the electrode offset and baseline drift components caused by V in , effectively suppressing the electrode offset and baseline drift.
模拟电极失调抑制环路先利用低通滤波器对斩波放大器输出信号进行低通滤波取出电极失调和基线漂移干扰并进行放大后输出一个模拟反馈信号,再利用衰减器对模拟反馈信号进行衰减后送入到采样输入级电路,以抵消外部输入的电极失调和基线漂移干扰。快速恢复电路为了提高高阻节点的电压恢复速度。当两个迟滞比较器检测到输出电压高于Vref时,将伪电阻管的栅电压下拉到Vb,使得伪电阻电阻下降,加快电容节点的充电。由于低通滤波器的截止频率位于超低频,处于心电信号的带外,在带内电容C61、C62的阻抗远低于伪电阻P-RES的阻抗,放大器A3对带内信号相当于跟随器,因此放大器A3的输出噪声与A3的增益无关,始终等于A3的输入等效噪声。因此衰减器的作用是为了衰减模拟电极失调抑制环路引入的噪声,但是为了不降低对电极失调抑制的能力,设计时增加A3的增益,增加额外的10倍衰减器,保证环路增益不下降的同时,将模拟电极失调抑制环路的噪声贡献降低了10倍。为了不引入额外噪声和功耗,该衰减器先将直流调制到高频通过电容分压后再解调为直流,避免了使用电阻分压导致噪声增加和功耗增加的问题。The analog electrode offset suppression loop first uses a low-pass filter to low-pass filter the chopper amplifier output signal to remove the electrode offset and baseline drift interference and amplify it to output an analog feedback signal. Then it uses an attenuator to attenuate the analog feedback signal. It is sent to the sampling input stage circuit to offset the electrode offset and baseline drift interference of external input. The fast recovery circuit is used to improve the voltage recovery speed of high-resistance nodes. When the two hysteresis comparators detect that the output voltage is higher than V ref , the gate voltage of the pseudo resistor tube is pulled down to V b , causing the pseudo resistor resistance to decrease and speeding up the charging of the capacitor node. Since the cutoff frequency of the low-pass filter is located at ultra-low frequency and is outside the band of the ECG signal, the impedance of the capacitors C 61 and C 62 in the band is much lower than the impedance of the pseudo resistor P-RES. The amplifier A 3 is equivalent to the in-band signal. Because of the follower, the output noise of amplifier A3 has nothing to do with the gain of A3 and is always equal to the input equivalent noise of A3 . Therefore, the function of the attenuator is to attenuate the noise introduced by the analog electrode offset suppression loop. However, in order not to reduce the ability to suppress the electrode offset, the gain of A3 is increased during design and an additional 10 times attenuator is added to ensure that the loop gain is not reduced. At the same time, the noise contribution of the analog electrode offset suppression loop is reduced by 10 times. In order not to introduce additional noise and power consumption, the attenuator first modulates DC to high frequency through capacitor voltage division and then demodulates it into DC, avoiding the problems of increased noise and power consumption caused by the use of resistor voltage division.
数字电极失调抑制电路检测模拟电极失调抑制环路的有源低通滤波器输出的模拟反馈信号的电压,并据此产生一个数字补偿信号送入到采样输入级电路,以防止低通滤波器输出饱和,拓展电极失调抑制范围。TESTn信号从模拟电极失调电路内部A3的反相输出端引出来,TESTp从模拟电极失调抑制环路内部A3的同相输出端引出来,CLK_100Hz为100Hz的时钟信号。模拟电极失调抑制环路上接有一个10倍衰减器,在1.8V供电时,放大器A3的输出摆幅为±1V,经过衰减器的输出摆幅只有±100mV。为了弥补抑制幅度的损失,数字电极失调工作流程如下:The digital electrode offset suppression circuit detects the voltage of the analog feedback signal output by the active low-pass filter of the analog electrode offset suppression loop, and generates a digital compensation signal accordingly and sends it to the sampling input stage circuit to prevent the low-pass filter from outputting Saturation, expanding the electrode imbalance suppression range. The TESTn signal is derived from the inverting output terminal of A 3 inside the analog electrode offset circuit, and TESTp is derived from the non-inverting output terminal of A 3 inside the analog electrode offset suppression loop. CLK_100Hz is a 100Hz clock signal. There is a 10x attenuator connected to the analog electrode offset suppression loop. When powered by 1.8V, the output swing of amplifier A 3 is ±1V, and the output swing after the attenuator is only ±100mV. To compensate for the loss of suppression amplitude, the digital electrode offset workflow is as follows:
移位寄存器的四位输出端A<4:1>和B<4:1>对MOS管M21~M24、M11~M14的控制方式分别如表1、表2所示The four-bit output terminals A<4:1> and B<4:1> of the shift register control the MOS tubes M 21 ~ M 24 and M 11 ~ M 14 as shown in Table 1 and Table 2 respectively.
移位寄存器对MOS管M11~M14、M21~M24的控制关系如下:The control relationship between the shift register and the MOS tubes M 11 ~ M 14 and M 21 ~ M 24 is as follows:
表1四位输出端A<4:1>控制逻辑Table 1 Four-bit output terminal A<4:1> control logic
表2四位输出端B<4:1>控制逻辑Table 2 Four-bit output terminal B<4:1> control logic
由于电路正常工作的情况下,MOS管M21~M24中只会有一个管子导通,同时,MOS管M11~M14中也只会有一个管子导通。因此,为了防止电路出错,数字电极失调抑制电路中加了复位模块Rest,该模块检测A<4:1>、B<4:1>的控制信号,如果M21~M24中有两个MOS管同时导通,则将A<4:1>和B<4:1>同时复位到0001;同样如果M11~M14中有两个MOS管同时导通,则也将A<4:1>和B<4:1>同时复位到0001,增加电路的容错性。Because when the circuit is working normally, only one tube among the MOS tubes M 21 to M 24 will be conducting, and at the same time, only one tube among the MOS tubes M 11 to M 14 will be conducting. Therefore, in order to prevent circuit errors, a reset module Rest is added to the digital electrode offset suppression circuit. This module detects the control signals of A<4:1> and B<4:1>. If there are two MOS in M 21 ~ M 24 If the tubes are turned on at the same time, then A<4:1> and B<4:1> will be reset to 0001 at the same time; similarly, if two MOS tubes in M 11 ~ M 14 are turned on at the same time, then A<4:1 will also be reset. > and B<4:1> are reset to 0001 at the same time to increase the fault tolerance of the circuit.
移位寄存器的工作流程可以通过图6进行阐述:The working flow of the shift register can be illustrated in Figure 6:
①当TESTn检测到放大器A3反相输出端的电压高于阈值VCM时,移位寄存器判断四位输出端B是否为1(0001):① When TESTn detects that the voltage at the inverting output terminal of amplifier A 3 is higher than the threshold VCM, the shift register determines whether the four-bit output terminal B is 1 (0001):
如果不为1,在下一个时钟上升沿将四位输出端B右移一位,通过四位输出端B控制的开关会使得VDDSLn输出电压下降70mV,通过式(5)可以看出,因为Vin的近直流成分由于超低频的特点而在短时间不会突变,即VDSL不变,VDDSLn下降将会使得VADSLn下降即TESTn下降;If it is not 1, the four-bit output terminal B will be shifted to the right by one bit at the next rising edge of the clock. The switch controlled by the four-bit output terminal B will cause the V DDSLn output voltage to drop by 70mV. It can be seen from equation (5) that because V The near-DC component of in will not mutate in a short period of time due to the characteristics of ultra-low frequency, that is, V DSL remains unchanged, and a decrease in V DDSLn will cause V ADSLn to decrease, that is, TESTn to decrease;
如果四位输出端B为1,则在下一个时钟上升沿控制四位输出端A左移一位,使得VDDSLp上升70mV,同样通过式(5)和VDSL不变可以看出VDDSLp上升也会导致VADSLn下降即TESTn下降。If the four-bit output terminal B is 1, the four-bit output terminal A is controlled to shift left by one bit at the next rising edge of the clock, causing V DDSLp to rise by 70mV. Similarly, through equation (5) and V DSL remains unchanged, it can be seen that the rise of V DDSLp is also It will cause V ADSLn to drop, that is, TESTn to drop.
②当TESTp检测到放大器A3同相输出端的电压高于阈值VCM时,移位寄存器判断四位输出端A是否为1(0001):②When TESTp detects that the voltage at the non-inverting output terminal of amplifier A 3 is higher than the threshold VCM, the shift register determines whether the four-bit output terminal A is 1 (0001):
如果不为1,在下一个时钟上升沿将四位输出端A右移一位,使得VDDSLp输出电压下降70mV,通过式(5)和VDSL不变可以看出VDDSLp下降会导致VADSLp下降即TESTp下降;If it is not 1, the four-bit output terminal A will be shifted to the right by one bit at the next rising edge of the clock, causing the V DDSLp output voltage to drop by 70mV. From equation (5) and V DSL remains unchanged, it can be seen that the drop in V DDSLp will cause the drop in V ADSLp That is, TESTp decreases;
如果四位输出端A为1,则在下一个时钟上升沿控制四位输出端B左移一位,使得VDDSLn上升,通过式(5)和VDSL不变可以看出VDDSLn上升也会导致VADSLp下降即TESTp下降。If the four-bit output terminal A is 1, the four-bit output terminal B is controlled to shift one bit to the left at the next rising edge of the clock, causing V DDSLn to rise. From equation (5) and V DSL unchanged, it can be seen that the rise of V DDSLn will also cause A decrease in V ADSLp means a decrease in TESTp.
通过数字电极失调抑制部分提供7种不同差分电压,为模拟电极失调抑制环路提供了±210mV的幅度补偿,加上模拟电极失调抑制环路本身具有±100mV抑制能力,所以总的抑制能力拓展到±310mV。The digital electrode offset suppression part provides 7 different differential voltages, providing an amplitude compensation of ±210mV for the analog electrode offset suppression loop. In addition, the analog electrode offset suppression loop itself has a ±100mV suppression capability, so the total suppression capability is expanded to ±310mV.
图7为本低噪声高输入阻抗放大器的周期稳态交流(PAC)仿真结果,通过仿真结果可以看出电路具有0.6Hz的高通角,能够有效滤除电极失调和基线漂移干扰。Figure 7 shows the periodic steady-state AC (PAC) simulation results of this low-noise high input impedance amplifier. From the simulation results, it can be seen that the circuit has a high pass angle of 0.6Hz, which can effectively filter out electrode offset and baseline drift interference.
图8为本低噪声高输入阻抗放大器的周期稳态噪声(PNOISE)仿真结果,通过仿真结果可以看出,该电路具有的超低噪声,有效解决了在CMOS工艺下电路闪烁噪声较大的问题,满足生物医学的超低频、低噪声应用。Figure 8 shows the periodic steady-state noise (PNOISE) simulation results of this low-noise high input impedance amplifier. From the simulation results, it can be seen that the circuit has The ultra-low noise effectively solves the problem of large flicker noise in circuits under CMOS technology and meets ultra-low frequency and low-noise applications in biomedicine.
图9为本低噪声高输入阻抗放大器的输入阻抗和频率的关系仿真结果,通过仿真结果可以看出该电路具有7GΩ@0.1~250Hz的输入阻抗,满足可穿戴生物医学干电极的应用。Figure 9 shows the simulation results of the relationship between input impedance and frequency of this low-noise high input impedance amplifier. From the simulation results, it can be seen that the circuit has an input impedance of 7GΩ@0.1~250Hz, which meets the application of wearable biomedical dry electrodes.
图10为本低噪声高输入阻抗放大器的时域功能验证,1s时在输入增加一个300mV的电极失调,通过仿真结果可以看出,该电路有效抑制了300mV的电极失调,系统的恢复时间小于100ms。Figure 10 shows the time domain function verification of this low-noise high input impedance amplifier. A 300mV electrode offset is added to the input at 1s. From the simulation results, it can be seen that the circuit effectively suppresses the 300mV electrode offset, and the system recovery time is less than 100ms. .
本发明采用了新颖的电容采样输入级电路和基于电容运算的反馈方式,以及基于电容将数字和模拟两种调节结合在一起的新颖的双环混合调节方式,有效地避免了反馈导致输入阻抗下降的问题。在斩波频率为20KHz的情况下,实现了输入阻抗为7GΩ@0.6~250Hz。The invention adopts a novel capacitance sampling input stage circuit and a feedback method based on capacitance operation, as well as a novel dual-loop hybrid adjustment method that combines digital and analog adjustments based on capacitance, effectively avoiding the feedback that causes the input impedance to drop. question. When the chopping frequency is 20KHz, the input impedance is 7GΩ@0.6~250Hz.
对所提出的可穿戴干电极低噪声高输入阻抗连续心电监测放大器电路在180nmCMOS工艺标准下进行软件仿真,结果表明在1.8V供电条件下,总功耗为18uW,输入阻抗为7GΩ@0.6~250Hz,增益为46dB,具有0.6Hz的高通截止频率,等效输入噪声为0.6~250Hz带内积分噪声有效值为1.9uVrms。The proposed wearable dry electrode low-noise high-input impedance continuous ECG monitoring amplifier circuit was software simulated under the 180nm CMOS process standard. The results showed that under the 1.8V power supply condition, the total power consumption was 18uW and the input impedance was 7GΩ@0.6~ 250Hz, with a gain of 46dB and a high-pass cutoff frequency of 0.6Hz, the equivalent input noise is The effective value of the integrated noise in the 0.6~250Hz band is 1.9uVrms.
本发明适用于生物医学信号采集时的微弱电信号的检测,如心电、脑电监测等,通过对模拟电极失调抑制环路中的低通截止频率的调整还可以实现对其他生物电信号的放大,以满足生物医学领域对生理电信号低噪声、超低频、高阻抗、高精度、低功耗的应用需求。The invention is suitable for the detection of weak electrical signals during biomedical signal collection, such as ECG, EEG monitoring, etc. It can also realize the detection of other bioelectric signals by adjusting the low-pass cutoff frequency in the analog electrode imbalance suppression loop. Amplification to meet the application requirements of low noise, ultra-low frequency, high impedance, high precision and low power consumption of physiological electrical signals in the biomedical field.
实现了在引入斩波稳定技术后依然保持高输入阻抗,而且是通带内到直流都具有高的输入阻抗,并且没有引入额外的噪声。其特征在于,采用了新型的电容采样输入结构和新型的基于电容运算的电极失调抑制电路,解决了传统上将电极失调抑制回路接到输入端导致输入阻抗降低的问题,使得不需要额外的正反馈回路来提升输入阻抗,同时采用数字电极失调抑制电路和模拟电极失调抑制环路混合调节的方式,在保证±300mV电极失调抑制范围的情况下有效降低电极失调抑制电路的噪声。除此之外电路还包含斩波主放大器,用来对微弱的心电信号进行放大;纹波抑制环路,用来抑制被斩波放大器产生的纹波;增益控制环路用来确定放大器的增益。It is achieved that after the introduction of chopper stabilization technology, the input impedance is still maintained high, and the input impedance is high from the passband to DC without introducing additional noise. Its characteristic is that it adopts a new capacitance sampling input structure and a new electrode offset suppression circuit based on capacitance operation, which solves the problem of the traditional input impedance reduction caused by connecting the electrode offset suppression circuit to the input terminal, eliminating the need for additional positive input. A feedback loop is used to improve the input impedance, and a hybrid adjustment method of a digital electrode offset suppression circuit and an analog electrode offset suppression loop is used to effectively reduce the noise of the electrode offset suppression circuit while ensuring a ±300mV electrode offset suppression range. In addition, the circuit also includes a chopper main amplifier, which is used to amplify weak ECG signals; a ripple suppression loop, which is used to suppress the ripple generated by the chopped amplifier; and a gain control loop, which is used to determine the amplifier's gain.
需要说明的是,尽管以上本发明所述的实施例是说明性的,但这并非是对本发明的限制,因此本发明并不局限于上述具体实施方式中。在不脱离本发明原理的情况下,凡是本领域技术人员在本发明的启示下获得的其它实施方式,均视为在本发明的保护之内。It should be noted that although the above embodiments of the present invention are illustrative, they are not limitations of the present invention, and therefore the present invention is not limited to the above specific embodiments. Without departing from the principle of the present invention, any other implementations obtained by those skilled in the art under the inspiration of the present invention will be deemed to be within the protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910620696.0A CN110212873B (en) | 2019-07-10 | 2019-07-10 | Low noise high input impedance amplifier for wearable dry electrode ECG monitoring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910620696.0A CN110212873B (en) | 2019-07-10 | 2019-07-10 | Low noise high input impedance amplifier for wearable dry electrode ECG monitoring |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110212873A CN110212873A (en) | 2019-09-06 |
CN110212873B true CN110212873B (en) | 2023-12-05 |
Family
ID=67797024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910620696.0A Active CN110212873B (en) | 2019-07-10 | 2019-07-10 | Low noise high input impedance amplifier for wearable dry electrode ECG monitoring |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110212873B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110638443A (en) * | 2019-11-07 | 2020-01-03 | 福州大学 | A kind of ECG signal readout circuit |
JP7456284B2 (en) * | 2020-05-25 | 2024-03-27 | セイコーエプソン株式会社 | PHYSICAL QUANTITY DETECTION CIRCUIT, PHYSICAL QUANTITY DETECTION DEV |
CN111697963B (en) * | 2020-06-15 | 2023-03-21 | 电子科技大学 | Integrator suitable for ripple eliminating loop |
CN111839500B (en) * | 2020-07-10 | 2023-01-31 | 中国科学院深圳先进技术研究院 | A fast recovery circuit and fast recovery method |
US11918377B2 (en) | 2021-01-19 | 2024-03-05 | Medtronic, Inc. | Dry electrodes in a wearable garment |
CN114531120A (en) * | 2022-01-04 | 2022-05-24 | 电子科技大学 | High-performance 8-channel bioelectric signal instrument amplifier |
CN115005842B (en) * | 2022-08-09 | 2022-11-15 | 之江实验室 | Frequency-modulated brain-computer interface chip input impedance enhancing method and system |
CN115337021B (en) * | 2022-10-19 | 2023-01-24 | 之江实验室 | Method and system for removing baseline drift applied to electrocardio acquisition |
CN116169967A (en) * | 2022-12-29 | 2023-05-26 | 杭州万高科技股份有限公司 | Control circuit and control method of fully differential capacitive feedback amplifier |
CN116098628A (en) * | 2023-01-16 | 2023-05-12 | 广州大学 | Portable electrocardiosignal detection system based on differential recognition |
WO2024156099A1 (en) * | 2023-01-28 | 2024-08-02 | 中国科学院深圳先进技术研究院 | Nanowire electrode impedance measurement circuit for dedicated chip for retinal prosthesis, and chip |
CN117895909B (en) * | 2024-03-14 | 2024-06-14 | 华南理工大学 | Capacitor chopper instrument amplifier with high input impedance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2846338A1 (en) * | 2011-08-24 | 2013-02-28 | Widex A/S | Eeg monitor with capacitive electrodes and method of monitoring brain waves |
WO2016096030A1 (en) * | 2014-12-19 | 2016-06-23 | T&W Engineering A/S | An active electrode having a closed-loop unit-gain amplifier with chopper modulation |
CN210120536U (en) * | 2019-07-10 | 2020-02-28 | 桂林电子科技大学 | Low-noise and high-input impedance amplifier for wearable dry electrode ECG monitoring |
-
2019
- 2019-07-10 CN CN201910620696.0A patent/CN110212873B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2846338A1 (en) * | 2011-08-24 | 2013-02-28 | Widex A/S | Eeg monitor with capacitive electrodes and method of monitoring brain waves |
WO2016096030A1 (en) * | 2014-12-19 | 2016-06-23 | T&W Engineering A/S | An active electrode having a closed-loop unit-gain amplifier with chopper modulation |
CN210120536U (en) * | 2019-07-10 | 2020-02-28 | 桂林电子科技大学 | Low-noise and high-input impedance amplifier for wearable dry electrode ECG monitoring |
Non-Patent Citations (2)
Title |
---|
一种低功耗低噪声仪表放大器的设计;陈就;王小松;张海英;刘昱;;微电子学(05);全文 * |
一种应用于多阶射频整流器的MPPT技术;李兴旺;韦保林;农茜雯;孔令宝;徐卫林;段吉海;;微电子学(02);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110212873A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110212873B (en) | Low noise high input impedance amplifier for wearable dry electrode ECG monitoring | |
CN104320096B (en) | Microcurrent and current feedback chopper modulation instrument amplifier | |
CN104617889A (en) | Low-power-consumption and low-noise CMOS amplifier for ExG signal collecting system | |
CN210120536U (en) | Low-noise and high-input impedance amplifier for wearable dry electrode ECG monitoring | |
Tran et al. | An ultra-low-power neural signal acquisition analog front-end IC | |
Wu et al. | A low-voltage low-noise CMOS instrumentation amplifier for portable medical monitoring systems | |
Mondal et al. | An ECG chopper amplifier achieving 0.92 NEF and 0.85 PEF with AC-coupled inverter-stacking for noise efficiency enhancement | |
Zhang et al. | An AC-coupled instrumentation amplifier achieving 110-dB CMRR at 50 Hz with chopped pseudoresistors and successive-approximation-based capacitor trimming | |
Wen et al. | A− 64.3 dB THD, 26 nV/√ Hz bio-potential readout analog-front-end amplifier with a gm-C integrator-implanted DC servo loop, and a bulk-driven ripple reduction loop | |
Xu et al. | A 2-electrode ECG amplifier with 0.5% nominal gain shift and 0.13% THD in a 530mV pp input common-mode range | |
Wu et al. | An energy-efficient small-area configurable analog front-end interface for diverse biosignals recording | |
Zhang et al. | A 0.012 mm2, $1.5\mathrm {G}\Omega $ Z IN Intrinsic Feedback Capacitor Instrumentation Amplifier for Bio-Potential Recording and Respiratory Monitoring | |
Huang et al. | Noise analysis and design methodology of chopper amplifiers with analog DC-servo loop for biopotential acquisition applications | |
Zhang et al. | A low-noise fully-differential CMOS preamplifier for neural recording applications | |
Laababid et al. | Design of a low-Power low-Noise ECG amplifier for smart wearable devices using 180nm CMOS technology | |
CN111510080B (en) | An integrated weak electric signal filtering and amplifying circuit | |
Nagulapalli et al. | A low noise amplifier suitable for biomedical recording analog front-end in 65 nm CMOS technology | |
Mohamed et al. | A low power low noise capacitively coupled chopper instrumentation amplifier in 130 nm CMOS for portable biopotential acquisiton systems | |
Kumaravel et al. | A power efficient low noise preamplifier for biomedical applications | |
Han et al. | A programmable analog front-end with independent biasing technique for ECG signal acquisition | |
Eldeeb et al. | Design of low power CMOS subthreshold current mode instrumentation amplifier based on CCII | |
Cheng et al. | A 16-channel CMOS chopper-stabilized analog front-end acquisition circuits for ECoG detection | |
Huang et al. | Design of a low electrode offset and high CMRR instrumentation amplifier for ECG acquisition systems | |
Bin Wan et al. | Comparative study of symmetrical OTA performance in 180 nm, 130 nm and 90 nm CMOS technology | |
Li et al. | Analysis of op-amp power-supply current sensing current-mode instrumentation amplifier for biosignal acquisition system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |