CN110212240A - Lithium ion solid electrolyte and preparation method thereof - Google Patents
Lithium ion solid electrolyte and preparation method thereof Download PDFInfo
- Publication number
- CN110212240A CN110212240A CN201910562448.5A CN201910562448A CN110212240A CN 110212240 A CN110212240 A CN 110212240A CN 201910562448 A CN201910562448 A CN 201910562448A CN 110212240 A CN110212240 A CN 110212240A
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- lithium
- lithium ion
- preparation
- ion solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 50
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000002226 superionic conductor Substances 0.000 claims abstract description 22
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims description 7
- 159000000002 lithium salts Chemical class 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 239000012065 filter cake Substances 0.000 claims description 5
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011833 salt mixture Substances 0.000 claims description 4
- 229910020607 Na3Hf2Si2PO12 Inorganic materials 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 2
- 235000019441 ethanol Nutrition 0.000 claims 4
- 229910003246 Na1+xZr2P3−xSixO12 Inorganic materials 0.000 claims 1
- 229910020657 Na3V2(PO4)3 Inorganic materials 0.000 claims 1
- 229910020001 NaZr2(PO4)3 Inorganic materials 0.000 claims 1
- 229910052909 inorganic silicate Inorganic materials 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 9
- 239000007772 electrode material Substances 0.000 abstract description 2
- 238000007086 side reaction Methods 0.000 abstract description 2
- 239000011734 sodium Substances 0.000 description 23
- 239000002228 NASICON Substances 0.000 description 8
- 229910001415 sodium ion Inorganic materials 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000010416 ion conductor Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002608 ionic liquid Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910013553 LiNO Inorganic materials 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002227 LISICON Substances 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
本发明涉及一种锂离子固态电解质及其制备方法,属于固态锂电池领域。本发明制备了一种新型的Li超离子导体Li1+xZr2P3‑xSixO12(0≤x≤3),可适用于固态电池的固态电解质,离子电导率大于10‑3S/cm,电化学稳定性好,没有副反应,同时在空气环境中的稳定性好,固态电池制备过程中加工性能好,同电极材料的机械、化学兼容性好。
The invention relates to a lithium ion solid electrolyte and a preparation method thereof, belonging to the field of solid lithium batteries. The present invention prepares a novel Li superionic conductor Li 1+x Zr 2 P 3‑x Six O 12 (0≤x≤3), which can be applied to the solid electrolyte of solid-state batteries, and the ionic conductivity is greater than 10 ‑3 S/cm, good electrochemical stability, no side reactions, good stability in the air environment, good processing performance during the preparation of solid-state batteries, and good mechanical and chemical compatibility with electrode materials.
Description
技术领域technical field
本发明涉及一种锂离子固态电解质及其制备方法,属于锂离子固态电解质技术领域。The invention relates to a lithium ion solid electrolyte and a preparation method thereof, belonging to the technical field of lithium ion solid electrolytes.
背景技术Background technique
锂离子电池是目前能量密度最高的储能器件,但是能量密度逐渐到达上限,而且能量密度的提高使得锂离子电池的安全性问题日益突出。固态电池有望成为比锂离子电池更高比能量密度、更安全的储能器件。固态电解质的性能是决定固态电池性能的最为关键的因素。Lithium-ion batteries are currently the energy storage devices with the highest energy density, but the energy density gradually reaches the upper limit, and the increase in energy density makes the safety of lithium-ion batteries increasingly prominent. Solid-state batteries are expected to become higher specific energy density and safer energy storage devices than lithium-ion batteries. The performance of solid-state electrolyte is the most critical factor determining the performance of solid-state batteries.
现有技术中,硫系和反钙钛矿结构的固态电解质的电子电导率虽然可以达到10- 2S/cm,但存在如下问题:In the prior art, although the electronic conductivity of solid electrolytes with chalcogenide and antiperovskite structures can reach 10 - 2 S/cm, there are the following problems:
1、化学稳定性差;1. Poor chemical stability;
2、电化学稳定性差;2. Poor electrochemical stability;
3、加工性能差。3. Poor processing performance.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提出一种锂离子固态电解质及其制备方法,该锂离子固态电解质化学稳定性、电化学稳定性和操作性能好,且离子电导率高(大于10-3S/cm)。The technical solution problem of the present invention is: overcome the deficiency of prior art, propose a kind of lithium ion solid electrolyte and preparation method thereof, this lithium ion solid electrolyte has good chemical stability, electrochemical stability and operability, and ion conductivity is high (greater than 10 -3 S/cm).
本发明的技术解决方案是:Technical solution of the present invention is:
一种锂离子固态电解质,该固态电解质为Li超离子导体,化学式Li1+xZr2P3- xSixO12,0≤x≤3,优选Li3Si2Zr2PO12。A lithium ion solid electrolyte, the solid electrolyte is a Li superionic conductor, chemical formula Li 1+x Zr 2 P 3- x Six O 12 , 0≤x≤3, preferably Li 3 Si 2 Zr 2 PO 12 .
一种锂离子固态电解质的制备方法,该方法的步骤包括:A preparation method of a lithium ion solid state electrolyte, the steps of the method comprising:
(1)将Na超离子导体粉体放入到含有Li离子的溶液中,加热,搅拌,在加热搅拌过程中发生Na离子与Li离子的交换反应,得到混合物;(1) Put the Na superionic conductor powder into a solution containing Li ions, heat and stir, and an exchange reaction of Na ions and Li ions occurs during the heating and stirring process to obtain a mixture;
(2)将步骤(1)得到的混合物进行过滤,然后将滤饼进行清洗,得到Li超离子导体粉体,并将Li超离子导体粉体用酒精或蒸馏水反复清洗,得到纯净的Li超离子导体粉体;(2) filter the mixture obtained in step (1), then clean the filter cake to obtain Li superionic conductor powder, and repeatedly wash the Li superionic conductor powder with alcohol or distilled water to obtain pure Li superionic Conductor powder;
(3)对步骤(2)得到的纯净的Li超离子导体粉体进行热处理,得到锂离子固态电解质。(3) heat-treating the pure Li superionic conductor powder obtained in step (2) to obtain a lithium-ion solid electrolyte.
所述的步骤(1)中,Na超离子导体粉体的化学式为Na1+xZr2P3-xSixO12,0≤x≤3,优选Na3Si2Zr2PO12、Na4Zr2(SiO4)3、NaZr2(PO4)3、Na3Hf2Si2PO12、Na3La(PO4)2、Na1.3Ti1.7Al0.3(PO4)3、Na3V2(PO4)3、Na2.96Nb0.04Zr1.96Si2PO12;In the step (1), the chemical formula of the Na superionic conductor powder is Na 1+x Zr 2 P 3-x Six O 12 , 0≤x≤3, preferably Na 3 Si 2 Zr 2 PO 12 , Na 4 Zr 2 (SiO 4 ) 3 , NaZr 2 (PO 4 ) 3 , Na 3 Hf 2 Si 2 PO 12 , Na 3 La(PO 4 ) 2 , Na 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 2.96 Nb 0.04 Zr 1.96 Si 2 PO 12 ;
所述的步骤(1)中,Li离子的溶液中,溶剂为离子液体,离子液体为C6H11BF4N2、C8H20BF4NO、C7H16BF4N、C8H11F6N3O4S2、C8H16F6N2O4S2、C6H11F2N3O4S2或C9H20F2N2O4S2;产生li离子的锂盐为LiClO4、LiPF6、LiNO3、LiCl、LiBF4、LiTFSI、LiBOB、LiDFOB或LiFSI;In the step (1), in the Li ion solution, the solvent is an ionic liquid, and the ionic liquid is C 6 H 11 BF 4 N 2 , C 8 H 20 BF 4 NO, C 7 H 16 BF 4 N, C 8 H 11 F 6 N 3 O 4 S 2 , C 8 H 16 F 6 N 2 O 4 S 2 , C 6 H 11 F 2 N 3 O 4 S 2 or C 9 H 20 F 2 N 2 O 4 S 2 ; The lithium salt that produces li ions is LiClO 4 , LiPF 6 , LiNO 3 , LiCl, LiBF4, LiTFSI, LiBOB, LiDFOB or LiFSI;
所述的步骤(1)中,加热温度为50-400℃,搅拌时间为2-100h;In the step (1), the heating temperature is 50-400°C, and the stirring time is 2-100h;
所述的步骤(2)中,进行清洗时,使用甲醇、乙醇或去离子水进行清洗;In the described step (2), when cleaning, use methanol, ethanol or deionized water to clean;
所述的步骤(3)中,热处理温度为300-900℃,优选300-700℃,热处理时间为2-10h。In the step (3), the heat treatment temperature is 300-900°C, preferably 300-700°C, and the heat treatment time is 2-10h.
一种锂离子固态电解质的制备方法,该方法的步骤包括:A preparation method of a lithium ion solid state electrolyte, the steps of the method comprising:
(1)将Na超离子导体和Li盐进行混合,然后进行加热搅拌至Li盐为熔融状态,在加热搅拌过程中发生Na离子与Li离子的交换反应,降至室温,得到Li超离子导体/锂熔盐混合物;(1) Na superionic conductor and Li salt are mixed, then heated and stirred until the Li salt is in a molten state, Na ion and Li ion exchange reaction occurs in the heating and stirring process, down to room temperature, Li superionic conductor/ Lithium molten salt mixture;
(2)将步骤(1)得到的Li超离子导体/锂熔盐混合物和蒸馏水/酒精进行混合,使蒸馏水/酒精溶解掉锂熔盐,然后过滤,并将滤饼进行清洗,得到Li超离子导体粉体,并将Li超离子导体粉体用酒精或蒸馏水反复清洗,得到纯净的Li超离子导体粉体;(2) Mix the Li superionic conductor/lithium molten salt mixture obtained in step (1) with distilled water/alcohol to dissolve the lithium molten salt in distilled water/alcohol, then filter, and clean the filter cake to obtain Li superion conductor powder, and the Li superionic conductor powder is washed repeatedly with alcohol or distilled water to obtain pure Li superionic conductor powder;
(3)对步骤(2)得到的纯净的Li超离子导体粉体进行热处理,得到锂离子固态电解质。(3) heat-treating the pure Li superionic conductor powder obtained in step (2) to obtain a lithium-ion solid electrolyte.
所述的步骤(1)中,Na超离子导体粉体的化学式为Na1+xZr2P3-xSixO12,0≤x≤3,优选Na3Si2Zr2PO12、Na4Zr2(SiO4)3、NaZr2(PO4)3、Na3Hf2Si2PO12、Na3La(PO4)2、Na1.3Ti1.7Al0.3(PO4)3、Na3V2(PO4)3、Na2.96Nb0.04Zr1.96Si2PO12;In the step (1), the chemical formula of the Na superionic conductor powder is Na 1+x Zr 2 P 3-x Six O 12 , 0≤x≤3, preferably Na 3 Si 2 Zr 2 PO 12 , Na 4 Zr 2 (SiO 4 ) 3 , NaZr 2 (PO 4 ) 3 , Na 3 Hf 2 Si 2 PO 12 , Na 3 La(PO 4 ) 2 , Na 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 2.96 Nb 0.04 Zr 1.96 Si 2 PO 12 ;
所述的步骤(1)中,锂盐为氯化锂、硝酸锂、硫酸锂、氢氧化锂等无机锂盐或这些盐的混合物,只要在一定的高温下能熔融的锂盐都可以选用;In the described step (1), the lithium salt is an inorganic lithium salt such as lithium chloride, lithium nitrate, lithium sulfate, lithium hydroxide or a mixture of these salts, as long as the lithium salt that can melt at a certain high temperature can be selected;
所述的步骤(1)中,加热温度根据选用的锂盐的熔点而定,一般可选在熔点以上50-150度的范围内,搅拌时间根据Li/Na交换程度确定,一般不超过100h,优选2-100h;In the described step (1), the heating temperature is determined according to the melting point of the lithium salt selected, generally in the range of 50-150 degrees above the melting point, and the stirring time is determined according to the degree of Li/Na exchange, generally no more than 100h, Preferably 2-100h;
所述的步骤(2)中,进行清洗时,使用甲醇、乙醇或去离子水进行清洗;In the described step (2), when cleaning, use methanol, ethanol or deionized water to clean;
所述的步骤(3)中,热处理温度为300-900℃,优选300-700℃,热处理时间为2-10h。In the step (3), the heat treatment temperature is 300-900°C, preferably 300-700°C, and the heat treatment time is 2-10h.
有益效果Beneficial effect
(1)本发明的对固态电解质的离子电导率大于10-3S/cm,电化学稳定性要好,没有副反应,同时在固态电池制备过程中加工性能好,同电极材料的机械、化学兼容性好。(1) The ionic conductivity of the solid electrolyte of the present invention is greater than 10 -3 S/cm, the electrochemical stability is better, there is no side reaction, and at the same time, the processability is good in the preparation process of the solid state battery, and it is mechanically and chemically compatible with the electrode material Good sex.
(2)本发明提出了借助钠超离子导体(NASICON)结构用以合成锂超离子导体,通过把NASICON放入含锂离子的溶媒或熔盐中,让其发生钠和锂离子的交换反应,形成类NASICON结构的LISICON锂离子导体;(2) The present invention proposes the use of a sodium superionic conductor (NASICON) structure to synthesize a lithium superionic conductor, by putting NASICON into a solvent or molten salt containing lithium ions, allowing it to undergo an exchange reaction of sodium and lithium ions, LISICON lithium-ion conductors that form a NASICON-like structure;
(3)本发明中首先合成固态钠离子导体(NASICON),然后在锂离子的溶剂或熔盐中进行钠/锂离子的离子交换反应,合成锂离子导体(LISICON)。得到的锂离子导体继承了钠离子导体的结构,显示了等同或高于钠离子导体的离子导电率,该锂离子导体显示了对锂金属良好的稳定性,是优良的锂离子固态电解质。(3) In the present invention, a solid sodium ion conductor (NASICON) is first synthesized, and then an ion exchange reaction of sodium/lithium ions is carried out in a lithium ion solvent or molten salt to synthesize a lithium ion conductor (LISICON). The obtained lithium ion conductor inherits the structure of the sodium ion conductor, and shows an ionic conductivity equal to or higher than that of the sodium ion conductor. The lithium ion conductor shows good stability to lithium metal, and is an excellent lithium ion solid state electrolyte.
附图说明Description of drawings
图1为Na3Si2Zr2PO12和离子液体交换Li3Si2Zr2PO12的XRD图谱。Figure 1 is the XRD patterns of Na 3 Si 2 Zr 2 PO 12 and ionic liquid exchanged Li 3 Si 2 Zr 2 PO 12 .
图2为Na3Si2Zr2PO12和熔盐交换Li3Si2Zr2PO12的XRD图谱。Fig. 2 is the XRD patterns of Na 3 Si 2 Zr 2 PO 12 and molten salt exchanged Li 3 Si 2 Zr 2 PO 12 .
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
实施例1Example 1
一种锂离子固态电解质,该固态电解质为Li3Si2Zr2PO12。A lithium ion solid electrolyte, the solid electrolyte is Li 3 Si 2 Zr 2 PO 12 .
一种锂离子固态电解质的制备方法,该方法的步骤包括:A preparation method of a lithium ion solid state electrolyte, the steps of the method comprising:
(1)将0.71g Na3Si2Zr2PO12放入到含5.74g的离子液体C8H11F6N3O4S2中,其中离子液体为溶剂,然后加热至100℃,搅拌10h,在加热搅拌过程中发生Na离子与Li离子的交换反应,得到混合物;(1) Put 0.71g Na 3 Si 2 Zr 2 PO 12 into 5.74g of ionic liquid C 8 H 11 F 6 N 3 O 4 S 2 , where the ionic liquid is the solvent, then heat to 100°C and stir 10h, the exchange reaction of Na ion and Li ion takes place in heating and stirring process, obtains mixture;
(2)将步骤(1)得到的混合物进行过滤,然后将滤饼用去离子水进行清洗,得到Li超离子导体;(2) the mixture obtained in step (1) is filtered, and then the filter cake is cleaned with deionized water to obtain a Li superionic conductor;
(3)对步骤(2)得到的Li超离子导体进行在300℃下热处理5h,得到锂离子固态电解质Li3Si2Zr2PO12。(3) heat-treating the Li superionic conductor obtained in step (2) at 300° C. for 5 hours to obtain a lithium-ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 .
得到的锂离子固态电解质Li3Si2Zr2PO12的XRD谱图和Na3Si2Zr2PO12的普通如图1所示;The XRD spectrum of the obtained lithium-ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 and the general spectrum of Na 3 Si 2 Zr 2 PO 12 are shown in Figure 1;
得到的锂离子固态电解质Li3Si2Zr2PO12的离子电导率为6.7x10-3S/cm。The ion conductivity of the obtained lithium ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 was 6.7×10 −3 S/cm.
实施例2Example 2
一种锂离子固态电解质,该固态电解质为Li3Si2Zr2PO12。A lithium ion solid electrolyte, the solid electrolyte is Li 3 Si 2 Zr 2 PO 12 .
一种锂离子固态电解质的制备方法,该方法的步骤包括:A preparation method of a lithium ion solid state electrolyte, the steps of the method comprising:
(1)将1g Na3Si2Zr2PO12加入到10g LiNO3中,充分研磨混合,形成均匀混合物;(1) Add 1g Na 3 Si 2 Zr 2 PO 12 into 10g LiNO 3 , grind and mix thoroughly to form a homogeneous mixture;
(2)把步骤(1)的混合物然后加热至350℃,保温20h后冷却至室温;(2) Heating the mixture of step (1) to 350° C., keeping it warm for 20 hours, and cooling to room temperature;
(3)将步骤(2)得到的混合物中加入去离子水,等LiNO3充分溶解后,过滤。得到的滤饼用蒸馏水进行清洗3次,在100度干燥步骤(3)得到的Li超离子导体10小时,得到Li固态电解质;(3) Add deionized water to the mixture obtained in step (2), wait for LiNO 3 to fully dissolve, and then filter. The obtained filter cake was cleaned 3 times with distilled water, and the Li superionic conductor obtained in 100 degree drying step (3) was obtained for 10 hours to obtain Li solid state electrolyte;
(4)将步骤(3)得到Li固态电解质在300℃下热处理5h,得到重晶化的锂离子固态电解质Li3Si2Zr2PO12。(4) heat-treating the Li solid electrolyte obtained in step (3) at 300° C. for 5 h to obtain a recrystallized lithium ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 .
得到的锂离子固态电解质Li3Si2Zr2PO12的XRD谱图和Na3Si2Zr2PO12的普通如图2所示;The XRD spectrum of the obtained lithium-ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 and the general spectrum of Na 3 Si 2 Zr 2 PO 12 are shown in Figure 2;
得到的锂离子固态电解质Li3Si2Zr2PO12的离子电导率为7x10-3S/cm。The ion conductivity of the obtained lithium ion solid electrolyte Li 3 Si 2 Zr 2 PO 12 was 7× 10 −3 S/cm.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910562448.5A CN110212240A (en) | 2019-06-26 | 2019-06-26 | Lithium ion solid electrolyte and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910562448.5A CN110212240A (en) | 2019-06-26 | 2019-06-26 | Lithium ion solid electrolyte and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110212240A true CN110212240A (en) | 2019-09-06 |
Family
ID=67794698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910562448.5A Pending CN110212240A (en) | 2019-06-26 | 2019-06-26 | Lithium ion solid electrolyte and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110212240A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111446494A (en) * | 2020-04-17 | 2020-07-24 | 上海空间电源研究所 | Glass state lithium ion solid electrolyte and preparation method thereof |
WO2020258803A1 (en) * | 2019-06-26 | 2020-12-30 | 上海空间电源研究所 | Lithium-ion solid electrolyte and preparation method therefor |
CN112397774A (en) * | 2020-10-19 | 2021-02-23 | 上海空间电源研究所 | A kind of solid electrolyte membrane, preparation method and solid state battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811828A (en) * | 2009-02-23 | 2010-08-25 | 中国科学院上海硅酸盐研究所 | NASICON structure glass ceramic sodion solid electrolytes and preparation method thereof |
CN103332864A (en) * | 2013-06-07 | 2013-10-02 | 宁波大学 | Superionic-conductor-containing sulfur glass ceramic material and preparation method thereof |
CN104583144A (en) * | 2012-08-31 | 2015-04-29 | 旭硝子株式会社 | Method for manufacturing lithium-ion-conducting glass ceramic |
US20160329598A1 (en) * | 2014-01-22 | 2016-11-10 | Schott Ag | Ion-conducting glass ceramic having garnet-like crystal structure |
CN107305965A (en) * | 2016-04-25 | 2017-10-31 | 松下知识产权经营株式会社 | Battery and cell manufacturing method |
-
2019
- 2019-06-26 CN CN201910562448.5A patent/CN110212240A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101811828A (en) * | 2009-02-23 | 2010-08-25 | 中国科学院上海硅酸盐研究所 | NASICON structure glass ceramic sodion solid electrolytes and preparation method thereof |
CN104583144A (en) * | 2012-08-31 | 2015-04-29 | 旭硝子株式会社 | Method for manufacturing lithium-ion-conducting glass ceramic |
CN103332864A (en) * | 2013-06-07 | 2013-10-02 | 宁波大学 | Superionic-conductor-containing sulfur glass ceramic material and preparation method thereof |
US20160329598A1 (en) * | 2014-01-22 | 2016-11-10 | Schott Ag | Ion-conducting glass ceramic having garnet-like crystal structure |
CN107305965A (en) * | 2016-04-25 | 2017-10-31 | 松下知识产权经营株式会社 | Battery and cell manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020258803A1 (en) * | 2019-06-26 | 2020-12-30 | 上海空间电源研究所 | Lithium-ion solid electrolyte and preparation method therefor |
CN111446494A (en) * | 2020-04-17 | 2020-07-24 | 上海空间电源研究所 | Glass state lithium ion solid electrolyte and preparation method thereof |
CN112397774A (en) * | 2020-10-19 | 2021-02-23 | 上海空间电源研究所 | A kind of solid electrolyte membrane, preparation method and solid state battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110277586B (en) | Lithium ion solid electrolyte and preparation method thereof | |
WO2020119594A1 (en) | Organogel polymer electrolyte, preparation method therefor and application thereof, sodium-based dual-ion battery and preparation method therefor | |
EP3840100A1 (en) | Ion-conductive solid electrolyte compound, method for preparing same, and electrochemical device comprising same | |
CN105830260B (en) | For the active material of all solid lithium secondary battery, manufacturing method and include its all solid lithium secondary battery | |
CN107039634A (en) | Composite lithium ion battery anode and flexible lithium battery, solid state lithium battery preparation method | |
Feng et al. | Progress and perspective of interface design in garnet electrolyte‐based all‐solid‐state batteries | |
CN114789993B (en) | Modified sulfur silver germanium mineral solid electrolyte and preparation method and application thereof | |
CN108767263B (en) | A kind of preparation method and application of modified metal lithium negative electrode copper foil current collector | |
CN103563155A (en) | Lithium-ion electrochemical cells including fluorocarbon electrolyte additives | |
CN109786822A (en) | Lithium-rich anti-perovskite oxide composite electrolyte and preparation method and application thereof | |
CN111463477B (en) | A composite solid electrolyte with enhanced stability of fluorinated additives and preparation method thereof | |
JP5877401B2 (en) | Method for producing sulfide solid electrolyte material, and lithium solid state battery including sulfide solid electrolyte material produced by the method | |
JP6564416B2 (en) | Sulfide-based solid electrolyte having high ionic conductivity in a wide range of crystallization temperature and method for producing the same | |
CN110212240A (en) | Lithium ion solid electrolyte and preparation method thereof | |
CN106299248A (en) | A kind of fluorophosphate quadrangular nano material and preparation method thereof | |
CN112563568A (en) | Preparation method of all-solid-state battery interface layer and all-solid-state battery | |
CN106099180A (en) | The preparation method of composite polymer electrolyte and lithium secondary battery | |
CN110534802A (en) | Solid electrolyte and its preparation method and application | |
JP2014507053A (en) | Rechargeable lithium-ion battery containing glass-based material for target elution of getter substances | |
CN109192933A (en) | A kind of preparation method and applications of titanium phosphate lithium cladding ternary material | |
CN113206292A (en) | Polymer-based composite solid electrolyte and preparation method and application thereof | |
CN107565128B (en) | Application of a kind of Li3Cr(MoO4)3 in the cathode of lithium ion battery | |
CN108808093A (en) | A kind of preparation method of tetrafluoro oxalic acid lithium phosphate | |
CN111446494A (en) | Glass state lithium ion solid electrolyte and preparation method thereof | |
CN106450332A (en) | Method for preparing lithium ion battery material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190906 |
|
RJ01 | Rejection of invention patent application after publication |