CN110197497A - A kind of field biology tracing system and method based on deep learning - Google Patents
A kind of field biology tracing system and method based on deep learning Download PDFInfo
- Publication number
- CN110197497A CN110197497A CN201910474800.XA CN201910474800A CN110197497A CN 110197497 A CN110197497 A CN 110197497A CN 201910474800 A CN201910474800 A CN 201910474800A CN 110197497 A CN110197497 A CN 110197497A
- Authority
- CN
- China
- Prior art keywords
- module
- deep learning
- deployed
- tracing
- target detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013135 deep learning Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 19
- 241001465754 Metazoa Species 0.000 claims abstract description 28
- 238000007781 pre-processing Methods 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 238000011084 recovery Methods 0.000 claims description 22
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims 4
- 230000005540 biological transmission Effects 0.000 abstract description 26
- 230000007774 longterm Effects 0.000 abstract description 8
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于深度学习的野外生物追踪系统及方法,属于智能计算技术领域。本发明的基于深度学习的野外生物追踪系统,包含视频采集模块、视频预处理模块、太阳能充电模块、目标检测模块、无线数据传输模块和若干GPS模块,采用数据集利用caffe框架训练mobilenetv2‑ssd模型,将训练好的mobilenetv2‑ssd模型转换成适用于NCNN的模型,将目标检测模块的打框和目标检测模块部署到带有ARM核的FPGA的PS端,将计算密集型任务卷积实现部署到PL端。该发明的基于深度学习的野外生物追踪系统可以适应长时间的野外工作和数据传输工作,并且稳定性和准确率都较高,具有很好的推广应用价值。
The invention discloses a system and method for tracking wild creatures based on deep learning, belonging to the technical field of intelligent computing. The field biological tracking system based on deep learning of the present invention includes a video acquisition module, a video preprocessing module, a solar charging module, a target detection module, a wireless data transmission module and several GPS modules, and uses a data set to train a mobilenetv2-ssd model using a caffe framework , convert the trained mobilenetv2-ssd model into a model suitable for NCNN, deploy the frame-making and target detection modules of the target detection module to the PS side of the FPGA with the ARM core, and deploy the computationally intensive task convolution to the PL end. The deep learning-based wild animal tracking system of the invention can adapt to long-term field work and data transmission work, and has high stability and accuracy, and has good promotion and application value.
Description
技术领域technical field
本发明涉及智能计算技术领域,具体提供一种基于深度学习的野外生物追踪系统及方法。The present invention relates to the technical field of intelligent computing, and specifically provides a deep learning-based wild creature tracking system and method.
背景技术Background technique
FPGA(Field Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。FPGA (Field Programmable Gate Array), that is, Field Programmable Gate Array, is a product of further development on the basis of programmable devices such as PAL, GAL, and CPLD. It emerged as a semi-custom circuit in the field of application-specific integrated circuits (ASIC), which not only solves the shortcomings of custom circuits, but also overcomes the shortcomings of the limited number of original programmable device gates.
采用CPU+FPGA的可重构架构的异构计算具有很多优势,例如:较高的性能、较大的灵活性、较低的功耗特性、天生的容错特性以及能够大大缩减产品开发周期等。采用FPGA来替代GPU作为未来高性能计算的加速器,应该是现阶段的FPGA异构智能计算发展的主旋律。Heterogeneous computing with a reconfigurable architecture of CPU+FPGA has many advantages, such as: higher performance, greater flexibility, lower power consumption, inherent fault tolerance, and greatly shortened product development cycles. Using FPGA to replace GPU as the accelerator for future high-performance computing should be the main theme of the development of FPGA heterogeneous intelligent computing at this stage.
深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合,采用深度学习的图像识别算法相比于传统的算法准确率大大提高。Deep learning refers to a collection of algorithms that use various machine learning algorithms to solve various problems such as images and texts on a multi-layer neural network. Compared with traditional algorithms, the accuracy of image recognition algorithms using deep learning is greatly improved.
发明内容Contents of the invention
本发明的技术任务是针对上述存在的问题,提供一种可以适应长时间的野外工作和数据传输工作,并且稳定性和准确率都较高的基于深度学习的野外生物追踪系统。The technical task of the present invention is to address the above existing problems and provide a deep learning-based wild animal tracking system that can adapt to long-term field work and data transmission work, and has high stability and accuracy.
本发明进一步的技术任务是提供一种基于深度学习的野外生物追踪方法。The further technical task of the present invention is to provide a method for tracking wild animals based on deep learning.
为实现上述目的,本发明提供了如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于深度学习的野外生物追踪系统,该系统包含视频采集模块、视频预处理模块、太阳能充电模块、目标检测模块、无线数据传输模块和若干GPS模块,采用数据集利用caffe框架训练mobilenetv2-ssd模型,将训练好的mobilenetv2-ssd模型按照嵌入式框架NCNN的要求转换成适用于NCNN的模型,将目标检测模块的打框和目标检测模块部署到带有ARM核的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时视频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、若干GPS模块均部署到PS端。A wild animal tracking system based on deep learning, the system includes a video acquisition module, a video preprocessing module, a solar charging module, a target detection module, a wireless data transmission module and several GPS modules, using the data set to train mobilenetv2-ssd using the caffe framework model, convert the trained mobilenetv2-ssd model into a model suitable for NCNN according to the requirements of the embedded framework NCNN, deploy the frame-making and target detection modules of the target detection module to the PS end of the FPGA with an ARM core, and calculate Intensive task convolution is deployed to the PL side, while the video acquisition module, video preprocessing module, solar charging module, wireless data transmission module, and several GPS modules are deployed to the PS side.
作为优选,该基于深度学习的野外生物追踪系统还包括系统错误恢复模块和系统告警模块,系统错误恢复模块和系统告警模块部署到PS端。Preferably, the wild creature tracking system based on deep learning also includes a system error recovery module and a system alarm module, and the system error recovery module and the system alarm module are deployed on the PS side.
作为优选,所述视频采集模块和视频预处理模块将摄像头采集到的图像进行前端预处理,完成图像增强和图像压缩。Preferably, the video collection module and the video preprocessing module perform front-end preprocessing on the images collected by the camera to complete image enhancement and image compression.
作为优选,所述无线传输模块将目标采集模块的结果传送到云端,在没有检测到目标时,无线传输模块的时钟为关闭状态。Preferably, the wireless transmission module transmits the results of the target acquisition module to the cloud, and when no target is detected, the clock of the wireless transmission module is turned off.
作为优选,所述太阳能充电模块为系统提供额外的电力供应,太阳能充电模块始终处于开启状态。Preferably, the solar charging module provides additional power supply for the system, and the solar charging module is always on.
一种基于深度学习的野外生物追踪方法,针对具体野生动物,采集并标注野生动物数据,获取带有标签的该野生动物的数据集,利用caffe框架训练mobilenetv2-ssd模型,利用mobilenetv2-ssd模型转化工具转换到定点的推理框架NCNN上,然后将其中的打框和目标检测模块编译部署到带有多核ARM的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、GPS模块也部署到PS端。A method for tracking wild animals based on deep learning. For specific wild animals, collect and label wild animal data, obtain the dataset with the tagged wild animals, use the caffe framework to train the mobilenetv2-ssd model, and use the mobilenetv2-ssd model to convert The tool is converted to the fixed-point reasoning framework NCNN, and then the frame-making and target detection modules are compiled and deployed to the PS side of the FPGA with multi-core ARM, and the calculation-intensive task convolution is deployed to the PL side, and the frequency acquisition module , video preprocessing module, solar charging module, wireless data transmission module, and GPS module are also deployed on the PS side.
该基于深度学习的野外生物追踪方法通过本发明中所述的基于深度学习的野外生物追踪系统实现。基于深度学习的野外生物追踪系统,包含视频采集模块、视频预处理模块、太阳能充电模块、目标检测模块、无线数据传输模块、若干GPS模块、系统错误恢复模块和系统告警模块,采用数据集利用caffe框架训练mobilenetv2-ssd模型,将训练好的mobilenetv2-ssd模型按照嵌入式框架NCNN的要求转换成适用于NCNN的模型,将目标检测模块部署到带有ARM核的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时视频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、若干GPS模块、系统错误恢复模块和系统告警模块均部署到PS端。The method for tracking wild creatures based on deep learning is realized by the system for tracking wild creatures based on deep learning described in the present invention. A wild animal tracking system based on deep learning, including a video acquisition module, a video preprocessing module, a solar charging module, a target detection module, a wireless data transmission module, several GPS modules, a system error recovery module and a system alarm module, using data sets using caffe The framework trains the mobilenetv2-ssd model, converts the trained mobilenetv2-ssd model into a model suitable for NCNN according to the requirements of the embedded framework NCNN, deploys the target detection module to the PS side of the FPGA with an ARM core, and converts the computationally intensive The task convolution is deployed to the PL side, and the video acquisition module, video preprocessing module, solar charging module, wireless data transmission module, several GPS modules, system error recovery module and system alarm module are all deployed to the PS side.
作为优选,该方法中还采用系统错误恢复模块和系统告警模块,系统错误恢复模块和系统告警模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制,系统错误恢复模块和系统告警模块部署到PS端。As a preference, a system error recovery module and a system alarm module are also used in the method, and the system error recovery module and the system alarm module are used to improve the stability of the system and are convenient to work in the field for a long time, and the system can be restarted through the cloud. Control, the system The error recovery module and system alarm module are deployed to the PS side.
作为优选,视频采集模块和视频预处理模块将摄像头采集到的图像进行前端预处理,完成图像增强和图像压缩。Preferably, the video acquisition module and the video preprocessing module perform front-end preprocessing on the images collected by the camera to complete image enhancement and image compression.
作为优选,所述无线传输模块将目标采集模块的结果传送到云端,在没有检测到目标时,无线传输模块的时钟为关闭状态;所述太阳能充电模块为系统提供额外的电力供应,延长系统的工作时间,太阳能充电模块始终处于开启状态。Preferably, the wireless transmission module transmits the results of the target acquisition module to the cloud, and when no target is detected, the clock of the wireless transmission module is off; the solar charging module provides additional power supply for the system, prolonging the system. During working hours, the solar charging module is always on.
该基于深度学习的野外生物追踪方法,首先将训练好的模型参数放到系统SD卡内,系统上电后视频采集模块和预处理模块对采集到的图像进行前端预处理,完成图像增强图像压缩等一系列功能,同时将图像压缩到适合mobilenetv2-ssd算法的大小,系统处理器的PS端将从SD卡内读出模型参数并通过DMA和数据并行的送入到PL端进行算法加速完成计算密集型任务,同时开启ARM中的多核多线程并采用neon加速器来加速打框任务来完成最终的对于目标野生动物的目标检测,为了降低功耗只将带有目标野生动物的数据通过无线传输模块传输到云端,在没有检测到目标时,无线传输模块的时钟处于关闭状态,同时为了延长系统的工作时间,太阳能充电模块要始终开启。系统告警模块和系统错误恢复模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制。The deep learning-based wild animal tracking method first puts the trained model parameters into the system SD card. After the system is powered on, the video acquisition module and preprocessing module perform front-end preprocessing on the collected images to complete image enhancement and image compression. And a series of functions, at the same time compress the image to a size suitable for the mobilenetv2-ssd algorithm, the PS side of the system processor will read the model parameters from the SD card and send them to the PL side through DMA and data in parallel for algorithm acceleration to complete the calculation For intensive tasks, turn on the multi-core and multi-threading in ARM at the same time and use the neon accelerator to accelerate the frame-making task to complete the final target detection of the target wild animal. In order to reduce power consumption, only the data with the target wild animal will be transmitted through the wireless transmission module When transmitting to the cloud, when no target is detected, the clock of the wireless transmission module is turned off, and at the same time, in order to prolong the working time of the system, the solar charging module should always be turned on. The system alarm module and system error recovery module are used to improve the stability of the system to facilitate long-term field work, and at the same time, the system can be restarted and controlled through the cloud.
与现有技术相比,本发明的基于深度学习的野外生物追踪系统具有以下突出的有益效果:所述基于深度学习的野外生物追踪系统可以适应长时间的野外工作和数据传输工作,并且稳定性和准确率都较高,通过系统告警模块和系统错误恢复模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制,具有良好的推广应用价值。Compared with the prior art, the deep learning-based wild animal tracking system of the present invention has the following outstanding beneficial effects: the deep learning-based wild animal tracking system can adapt to long-term field work and data transmission work, and the stability The accuracy and accuracy are high. The system alarm module and system error recovery module are used to improve the stability of the system to facilitate long-term field work. At the same time, the system can be restarted and controlled through the cloud, which has good promotion and application value.
附图说明Description of drawings
图1是本发明所述基于深度学习的野外生物追踪系统的拓扑图。Fig. 1 is a topological diagram of the deep learning-based wild animal tracking system of the present invention.
具体实施方式Detailed ways
下面将结合附图和实施例,对本发明的基于深度学习的野外生物追踪系统及方法作进一步详细说明。The deep learning-based wild animal tracking system and method of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例Example
如图1所示,本发明的基于深度学习的野外生物追踪系统,包含视频采集模块、视频预处理模块、太阳能充电模块、目标检测模块、无线数据传输模块、两个GPS模块、系统错误恢复模块和系统告警模块。As shown in Figure 1, the deep learning-based field biological tracking system of the present invention includes a video acquisition module, a video preprocessing module, a solar charging module, a target detection module, a wireless data transmission module, two GPS modules, and a system error recovery module and system alarm module.
该基于深度学习的野外生物追踪系统采用数据集利用caffe框架训练mobilenetv2-ssd模型,将训练好的mobilenetv2-ssd模型按照嵌入式框架NCNN的要求转换成适用于NCNN的模型,将目标检测模块的打框和目标检测模块部署到带有ARM核的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时视频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、两个GPS模块、系统错误恢复模块和系统告警模块均部署到PS端。The deep learning-based wild animal tracking system uses the data set to train the mobilenetv2-ssd model with the caffe framework, converts the trained mobilenetv2-ssd model into a model suitable for NCNN according to the requirements of the embedded framework NCNN, and converts the target detection module into a model The frame and object detection module is deployed to the PS side of the FPGA with ARM core, and the calculation-intensive task convolution is deployed to the PL side. At the same time, the video acquisition module, video preprocessing module, solar charging module, wireless data transmission module, two A GPS module, a system error recovery module and a system alarm module are deployed to the PS side.
视频采集模块和视频预处理模块将摄像头采集到的图像进行前端预处理,完成图像增强和图像压缩。The video acquisition module and the video preprocessing module perform front-end preprocessing on the images collected by the camera to complete image enhancement and image compression.
无线传输模块将目标采集模块的结果传送到云端,在没有检测到目标时,无线传输模块的时钟为关闭状态。The wireless transmission module transmits the result of the target acquisition module to the cloud, and when no target is detected, the clock of the wireless transmission module is turned off.
太阳能充电模块为系统提供额外的电力供应,太阳能充电模块始终处于开启状态。The solar charging module provides additional power supply for the system, and the solar charging module is always on.
系统告警模块和系统错误恢复模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制。The system alarm module and system error recovery module are used to improve the stability of the system to facilitate long-term field work, and at the same time, the system can be restarted and controlled through the cloud.
该基于深度学习的野外生物追踪系统工作过程如下:首先,将训练好的模型参数放到系统SD卡内,系统上电后视频采集模块和预处理模块对采集到的图像进行前端预处理,完成图像增强图像压缩等一系列功能,同时将图像压缩到适合mobilenetv2-ssd算法的大小,系统处理器的PS端将从SD卡内读出模型参数并通过DMA和数据并行的送入到PL端进行算法加速完成计算密集型任务,同时开启ARM中的多核多线程并采用neon加速器来加速打框任务来完成最终的对于目标野生动物的目标检测,为了降低功耗只将带有目标野生动物的数据通过无线传输模块传输到云端,在没有检测到目标时,无线传输模块的时钟处于关闭状态,同时为了延长系统的工作时间,太阳能充电模块要始终开启。系统告警模块和系统错误恢复模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制。The working process of the wild animal tracking system based on deep learning is as follows: First, put the trained model parameters into the system SD card, and after the system is powered on, the video acquisition module and preprocessing module perform front-end preprocessing on the collected images to complete A series of functions such as image enhancement and image compression, while compressing the image to a size suitable for the mobilenetv2-ssd algorithm, the PS end of the system processor will read the model parameters from the SD card and send them to the PL end in parallel through DMA and data. The algorithm accelerates the completion of computationally intensive tasks. At the same time, the multi-core and multi-threading in ARM is turned on and the neon accelerator is used to accelerate the frame-making task to complete the final target detection of the target wild animal. In order to reduce power consumption, only the data with the target wild animal It is transmitted to the cloud through the wireless transmission module. When no target is detected, the clock of the wireless transmission module is turned off. At the same time, in order to prolong the working time of the system, the solar charging module should always be turned on. The system alarm module and system error recovery module are used to improve the stability of the system to facilitate long-term field work, and at the same time, the system can be restarted and controlled through the cloud.
本发明的基于深度学习的野外生物追踪方法,针对具体野生动物,采集并标注野生动物数据,获取带有标签的该野生动物的数据集,利用caffe框架训练mobilenetv2-ssd模型,利用mobilenetv2-ssd模型转化工具转换到定点的推理框架NCNN上,然后将其中的打框和目标检测模块编译部署到带有多核ARM的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、GPS模块也部署到PS端。The wild animal tracking method based on deep learning of the present invention collects and labels wild animal data for specific wild animals, obtains the data set of the wild animal with labels, uses the caffe framework to train the mobilenetv2-ssd model, and uses the mobilenetv2-ssd model The conversion tool is converted to the fixed-point reasoning framework NCNN, and then the frame-making and target detection modules are compiled and deployed to the PS side of the FPGA with multi-core ARM, and the calculation-intensive task convolution is deployed to the PL side, and the frequency acquisition Modules, video preprocessing modules, solar charging modules, wireless data transmission modules, and GPS modules are also deployed on the PS side.
该基于深度学习的野外生物追踪方法通过本发明中所述的基于深度学习的野外生物追踪系统实现。基于深度学习的野外生物追踪系统,包含视频采集模块、视频预处理模块、太阳能充电模块、目标检测模块、无线数据传输模块、若干GPS模块、系统错误恢复模块和系统告警模块,采用数据集利用caffe框架训练mobilenetv2-ssd模型,将训练好的mobilenetv2-ssd模型按照嵌入式框架NCNN的要求转换成适用于NCNN的模型,将目标检测模块的打框和目标检测模块部署到带有ARM核的FPGA的PS端,将计算密集型任务卷积实现部署到PL端,同时视频采集模块、视频预处理模块、太阳能充电模块、无线数据传输模块、若干GPS模块、系统错误恢复模块和系统告警模块均部署到PS端。The method for tracking wild creatures based on deep learning is realized by the system for tracking wild creatures based on deep learning described in the present invention. A wild animal tracking system based on deep learning, including a video acquisition module, a video preprocessing module, a solar charging module, a target detection module, a wireless data transmission module, several GPS modules, a system error recovery module and a system alarm module, using data sets using caffe The framework trains the mobilenetv2-ssd model, converts the trained mobilenetv2-ssd model into a model suitable for NCNN according to the requirements of the embedded framework NCNN, and deploys the framing and target detection modules of the target detection module to the FPGA with the ARM core On the PS side, the calculation-intensive task convolution is deployed to the PL side. At the same time, the video acquisition module, video preprocessing module, solar charging module, wireless data transmission module, several GPS modules, system error recovery module and system alarm module are deployed to the PL side. PS side.
系统错误恢复模块和系统告警模块用来提高系统的稳定性便于长时间在野外工作,同时可以通过云端对系统进行重启控制,系统错误恢复模块和系统告警模块部署到PS端。The system error recovery module and system alarm module are used to improve the stability of the system and facilitate long-term field work. At the same time, the system can be restarted and controlled through the cloud. The system error recovery module and system alarm module are deployed to the PS side.
视频采集模块和视频预处理模块将摄像头采集到的图像进行前端预处理,完成图像增强和图像压缩。The video acquisition module and the video preprocessing module perform front-end preprocessing on the images collected by the camera to complete image enhancement and image compression.
无线传输模块将目标采集模块的结果传送到云端,在没有检测到目标时,无线传输模块的时钟为关闭状态;所述太阳能充电模块为系统提供额外的电力供应,延长系统的工作时间,太阳能充电模块始终处于开启状态。The wireless transmission module transmits the result of the target acquisition module to the cloud. When no target is detected, the clock of the wireless transmission module is off; The module is always on.
太阳能充电模块为系统提供额外的电力供应,太阳能充电模块始终处于开启状态。The solar charging module provides additional power supply for the system, and the solar charging module is always on.
以上所述的实施例,只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。The above-described embodiments are only preferred specific implementations of the present invention, and ordinary changes and replacements performed by those skilled in the art within the scope of the technical solution of the present invention should be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910474800.XA CN110197497A (en) | 2019-06-03 | 2019-06-03 | A kind of field biology tracing system and method based on deep learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910474800.XA CN110197497A (en) | 2019-06-03 | 2019-06-03 | A kind of field biology tracing system and method based on deep learning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110197497A true CN110197497A (en) | 2019-09-03 |
Family
ID=67753830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910474800.XA Pending CN110197497A (en) | 2019-06-03 | 2019-06-03 | A kind of field biology tracing system and method based on deep learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110197497A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048071A (en) * | 2019-11-11 | 2020-04-21 | 北京海益同展信息科技有限公司 | Voice data processing method and device, computer equipment and storage medium |
CN111917974A (en) * | 2020-06-24 | 2020-11-10 | 济南浪潮高新科技投资发展有限公司 | FPGA-based video processing system, method, device and medium |
CN113504967A (en) * | 2021-06-28 | 2021-10-15 | 浪潮云信息技术股份公司 | Face recognition method based on container platform |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108924483A (en) * | 2018-06-27 | 2018-11-30 | 南京朴厚生态科技有限公司 | A kind of automatic monitoring system and method for the field animal based on depth learning technology |
CN109389120A (en) * | 2018-10-29 | 2019-02-26 | 济南浪潮高新科技投资发展有限公司 | A kind of object detecting device based on zynqMP |
CN109460729A (en) * | 2018-11-01 | 2019-03-12 | 浩云科技股份有限公司 | A kind of embedded plurality of human faces detection method and system |
CN109657564A (en) * | 2018-11-28 | 2019-04-19 | 深圳市中电数通智慧安全科技股份有限公司 | A kind of personnel detection method, device, storage medium and terminal device on duty |
-
2019
- 2019-06-03 CN CN201910474800.XA patent/CN110197497A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108924483A (en) * | 2018-06-27 | 2018-11-30 | 南京朴厚生态科技有限公司 | A kind of automatic monitoring system and method for the field animal based on depth learning technology |
CN109389120A (en) * | 2018-10-29 | 2019-02-26 | 济南浪潮高新科技投资发展有限公司 | A kind of object detecting device based on zynqMP |
CN109460729A (en) * | 2018-11-01 | 2019-03-12 | 浩云科技股份有限公司 | A kind of embedded plurality of human faces detection method and system |
CN109657564A (en) * | 2018-11-28 | 2019-04-19 | 深圳市中电数通智慧安全科技股份有限公司 | A kind of personnel detection method, device, storage medium and terminal device on duty |
Non-Patent Citations (3)
Title |
---|
YINGJIE ZHANG ET AL.: "The implementation of CNN-based object detector on ARM embedded platforms", 《2018 IEEE 16TH INTI CONF ON DEPENDABLE》 * |
周建军等: "《海战场侦查技术概论》", 31 January 2013 * |
毕盛: "嵌入式人工智能技术开发及应用", 《电子产品世界》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048071A (en) * | 2019-11-11 | 2020-04-21 | 北京海益同展信息科技有限公司 | Voice data processing method and device, computer equipment and storage medium |
CN111917974A (en) * | 2020-06-24 | 2020-11-10 | 济南浪潮高新科技投资发展有限公司 | FPGA-based video processing system, method, device and medium |
CN111917974B (en) * | 2020-06-24 | 2022-04-15 | 山东浪潮科学研究院有限公司 | FPGA-based video processing system, method, device and medium |
CN113504967A (en) * | 2021-06-28 | 2021-10-15 | 浪潮云信息技术股份公司 | Face recognition method based on container platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105631798B (en) | Low Power Consumption Portable realtime graphic object detecting and tracking system and method | |
CN110197497A (en) | A kind of field biology tracing system and method based on deep learning | |
CN106845415B (en) | A method and device for refined pedestrian recognition based on deep learning | |
Wang et al. | Beyond physical connections: Tree models in human pose estimation | |
CN110457999B (en) | A method for animal pose behavior estimation and mood recognition based on deep learning and SVM | |
CN205486304U (en) | Portable realtime graphic object detection of low -power consumption and tracking means | |
CN103473568A (en) | Separation device for coal and waste rocks and separation method thereof | |
CN110347134A (en) | A kind of AI intelligence aquaculture specimen discerning method and cultivating system | |
CN111954250A (en) | A Lightweight Wi-Fi Behavior Awareness Method and System | |
CN104537273B (en) | A kind of drowned pattern intelligent inference system and method | |
CN103914071B (en) | A kind of vision guided navigation path identifying system for grain combine | |
CN110263874A (en) | A kind of image classification method and device based on the study of attention relational graph | |
CN203599095U (en) | Automatic garbage sorting control system | |
CN114550212A (en) | Goat face detection and identification method based on lightweight model | |
CN209822068U (en) | But intelligent digital media art design is with remote control platform | |
CN101893894B (en) | Reconfigurable miniature mobile robot cluster locating and tracking system | |
CN202093543U (en) | Active electronic tag using three-axis acceleration transducer chip | |
CN208656938U (en) | A vehicle image recognition system | |
CN204480252U (en) | A kind of drowned pattern intelligent inference system | |
CN110047145A (en) | Metaplasia simulation system and method based on deep learning and finite element modeling | |
CN110008847A (en) | A kind of stroke recognition methods based on convolutional neural networks | |
CN116978099B (en) | Construction method and recognition model of lightweight sheep identity recognition model based on sheep face | |
Xiaolin et al. | Detecting and counting silkworms using improved YOLOv8n | |
CN204761566U (en) | Image processing accelerating system based on FPGA | |
CN101879365A (en) | Treadmill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190903 |
|
RJ01 | Rejection of invention patent application after publication |