CN110193289A - The method that one pot a kind of, in-situ method prepares bielement nano material codope mixed substrate membrane containing nano-grade molecular sieve - Google Patents
The method that one pot a kind of, in-situ method prepares bielement nano material codope mixed substrate membrane containing nano-grade molecular sieve Download PDFInfo
- Publication number
- CN110193289A CN110193289A CN201910329661.1A CN201910329661A CN110193289A CN 110193289 A CN110193289 A CN 110193289A CN 201910329661 A CN201910329661 A CN 201910329661A CN 110193289 A CN110193289 A CN 110193289A
- Authority
- CN
- China
- Prior art keywords
- nanomaterial
- mixed matrix
- doped
- binary
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 49
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000012528 membrane Substances 0.000 title claims description 31
- 238000005580 one pot reaction Methods 0.000 title abstract description 10
- 239000002808 molecular sieve Substances 0.000 title 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title 1
- 239000000758 substrate Substances 0.000 title 1
- 239000004941 mixed matrix membrane Substances 0.000 claims abstract description 41
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 26
- 238000002360 preparation method Methods 0.000 claims abstract description 19
- 239000004816 latex Substances 0.000 claims abstract description 15
- 229920000126 latex Polymers 0.000 claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000004094 surface-active agent Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 239000002243 precursor Substances 0.000 claims abstract description 6
- 239000003999 initiator Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 62
- 229910052799 carbon Inorganic materials 0.000 claims description 25
- 229910021389 graphene Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- -1 transition metal salt Chemical class 0.000 claims description 12
- 239000002041 carbon nanotube Substances 0.000 claims description 11
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 11
- 238000000108 ultra-filtration Methods 0.000 claims description 9
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 150000001868 cobalt Chemical class 0.000 claims description 2
- 150000001879 copper Chemical class 0.000 claims description 2
- 150000002696 manganese Chemical class 0.000 claims description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 2
- 150000003608 titanium Chemical class 0.000 claims description 2
- 150000003751 zinc Chemical class 0.000 claims description 2
- 150000001263 acyl chlorides Chemical class 0.000 claims 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 1
- 229910002090 carbon oxide Inorganic materials 0.000 claims 1
- 239000002071 nanotube Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 16
- 238000005373 pervaporation Methods 0.000 abstract description 9
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 24
- 239000002105 nanoparticle Substances 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 13
- 229910021524 transition metal nanoparticle Inorganic materials 0.000 description 11
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 10
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 9
- 230000035699 permeability Effects 0.000 description 8
- 239000004696 Poly ether ether ketone Substances 0.000 description 7
- 229920002530 polyetherether ketone Polymers 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000002082 metal nanoparticle Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- GSJNYZKWOQXVEJ-UHFFFAOYSA-N [Cl-].C(CCCCCCCCCCC)[NH+](C)C.C=CC1=CC=CC=C1 Chemical group [Cl-].C(CCCCCCCCCCC)[NH+](C)C.C=CC1=CC=CC=C1 GSJNYZKWOQXVEJ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 238000005325 percolation Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- WZVXLJYENHHFPD-UHFFFAOYSA-N methylaminomethanol;hydrochloride Chemical compound Cl.CNCO WZVXLJYENHHFPD-UHFFFAOYSA-N 0.000 description 1
- 238000012703 microemulsion polymerization Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000003361 porogen Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/44—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供一种一锅、原位法制备二元纳米材料共掺杂混合基质膜的方法,包括如下步骤:(1)将可聚合的油相介质、可聚合的表面活性剂和水混合,构建反胶束微乳液;然后投加纳米材料‑Ⅰ,搅拌分散后再投加纳米材料‑Ⅱ的前驱体,搅拌,得包含有纳米材料‑Ⅰ、纳米材料‑Ⅱ的反胶束微乳液;(2)加入引发剂,进行原位聚合反应,得共掺杂聚合物乳胶;(3)调节粘度后静置得制膜液;(4)将制膜液均匀涂覆在支撑膜上,经热处理即得。本发明所述的“一锅”、原位二元纳米材料共掺杂混合基质膜制备方法简便、经济、环境友好。本发明所提供的混合基质膜由于纳米材料‑Ⅰ、纳米材料‑Ⅱ的协同作用,气体分离性能、或渗透汽化性能显著提高。The invention provides a method for preparing a binary nanomaterial co-doped mixed matrix film by an in-situ method, comprising the following steps: (1) mixing a polymerizable oil phase medium, a polymerizable surfactant and water, Build a reverse micellar microemulsion; then add nanomaterial-I, stir and disperse, then add the precursor of nanomaterial-II, stir, and obtain a reverse micellar microemulsion containing nanomaterial-I and nanomaterial-II; (2) adding an initiator to carry out in-situ polymerization reaction to obtain co-doped polymer latex; (3) adjusting the viscosity to obtain a film-making liquid; (4) coating the film-making liquid evenly on the supporting film, and Heat treatment can be obtained. The "one pot", in-situ binary nanomaterial co-doped mixed matrix membrane preparation method of the invention is simple, economical and environmentally friendly. The gas separation performance or pervaporation performance of the mixed matrix membrane provided by the present invention is significantly improved due to the synergistic effect of nanomaterial-I and nanomaterial-II.
Description
技术领域technical field
本发明涉及膜分离技术领域,具体涉及“一锅”、原位法制备二元纳米材料共掺杂混合基质膜及应用。The invention relates to the technical field of membrane separation, in particular to the preparation and application of a binary nanomaterial co-doped mixed matrix membrane by a "one-pot" and in-situ method.
背景技术Background technique
混合基质膜是将无机纳米材料作为分散相掺杂到聚合物连续相中而制备的杂化膜,该膜结合了有机和无机材料各自的优异性能,且在传统聚合物膜的基础上通过调控无机纳米材料结构和性质来强化混合基质膜的性能。目前混合基质膜的制备方法主要有物理共混法和原位聚合法,常用的无机纳米材料有金属纳米粒子(包括金属单质、金属氧化物、金属卤化物、金属硫化物等纳米粒子)、低维碳纳米材料(石墨烯、碳纳米管)等。Mixed matrix membrane is a hybrid membrane prepared by doping inorganic nanomaterials as a dispersed phase into a polymer continuous phase. This membrane combines the excellent properties of organic and inorganic materials, and is based on traditional polymer membranes. Inorganic nanomaterial structure and properties to enhance the performance of mixed matrix membranes. At present, the preparation methods of mixed matrix membrane mainly include physical blending method and in-situ polymerization method. Commonly used inorganic nanomaterials include metal nanoparticles (including metal element, metal oxide, metal halide, metal sulfide and other nanoparticles), low Dimensional carbon nanomaterials (graphene, carbon nanotubes), etc.
中国申请专利CN201410301851.X公开了一种磺化聚醚醚酮-氨基酸修饰氧化石墨烯杂化膜,该杂化膜是由磺化聚醚醚酮与氨基酸修饰氧化石墨烯所构成。其制备过程包括:首先将石墨片氧化制备氧化石墨烯,然后将氧化石墨烯加入含有多巴胺的羟甲基氨基甲烷-HCl溶液中,经螯合反应得到多巴胺改性的氧化石墨烯;将多巴胺改性的氧化石墨烯加入半胱氨酸溶液中接枝反应得到氨基酸修饰氧化石墨烯;继而将氨基酸修饰氧化石墨烯与磺化聚醚醚酮溶液共混得到铸膜液,经制膜得到该杂化膜。该发明磺化聚醚醚酮/氨基酸修饰氧化石墨烯杂化膜用于CO2/CH4混合气体的分离,具有较高的选择性和渗透性。Chinese patent application CN201410301851.X discloses a sulfonated polyether ether ketone-amino acid modified graphene oxide hybrid membrane, which is composed of sulfonated polyether ether ketone and amino acid modified graphene oxide. The preparation process includes: first oxidizing graphite flakes to prepare graphene oxide, then adding graphene oxide into hydroxymethylaminomethane-HCl solution containing dopamine, and obtaining dopamine-modified graphene oxide through chelation reaction; Amino acid-modified graphene oxide was obtained by grafting reaction of graphene oxide into cysteine solution; then amino acid-modified graphene oxide was blended with sulfonated polyetheretherketone solution to obtain a casting solution, and the hetero film. The sulfonated polyether ether ketone/amino acid modified graphene oxide hybrid membrane of the invention is used for the separation of CO 2 /CH 4 mixed gas, and has high selectivity and permeability.
中国申请专利CN201510726253.1公开了一种含三氟甲基聚酰亚胺/羧基多壁碳纳米管气体分离混合基质膜及其制备方法。该发明通过将含三氟甲基的聚酰亚胺加入羧基多壁碳纳米管而形成混合基质膜,利用二者中极性基团的相互作用使碳纳米管在混合基质膜中能够均匀地分散,同时使两相界面具有很好的粘合力,从而使混合基质膜的气体渗透性和选择性得到了提高。Chinese patent application CN201510726253.1 discloses a mixed matrix membrane containing trifluoromethyl polyimide/carboxyl multi-walled carbon nanotubes for gas separation and a preparation method thereof. The invention forms a mixed matrix membrane by adding trifluoromethyl-containing polyimide to carboxyl multi-walled carbon nanotubes, and utilizes the interaction of polar groups in the two to enable the carbon nanotubes to be uniformly distributed in the mixed matrix membrane. At the same time, the two-phase interface has good adhesion, so that the gas permeability and selectivity of the mixed matrix membrane are improved.
中国申请专利CN201810589354.2公开了一种原位掺杂碳量子点的磺化聚醚醚酮混合基质膜及其制备方法和应用。以聚乙烯醇、聚醚醚酮为原料,加入到浓硫酸中,反应后,制得原位掺杂了碳量子点的磺化聚醚醚酮复合材料;将该复合材料溶解在去离子水中,配制成铸膜液,通过涂覆法在微孔滤膜表面制备功能层,形成原位掺杂碳量子点的磺化聚醚醚酮混合基质膜。所制备的功能膜可应用于CO2/N2气体分离,具有较高CO2渗透性和分离因子。Chinese patent application CN201810589354.2 discloses a sulfonated polyether ether ketone mixed matrix membrane doped with carbon quantum dots in situ and its preparation method and application. Using polyvinyl alcohol and polyether ether ketone as raw materials, adding them to concentrated sulfuric acid, after the reaction, a sulfonated polyether ether ketone composite material doped with carbon quantum dots in situ is obtained; the composite material is dissolved in deionized water , prepared as a casting solution, and a functional layer is prepared on the surface of the microporous membrane by a coating method to form a sulfonated polyether ether ketone mixed matrix membrane doped with carbon quantum dots in situ. The prepared functional membrane can be applied to CO 2 /N 2 gas separation with high CO 2 permeability and separation factor.
中国申请专利CN201710326631.6公开了一种碳纳米球-聚酰亚胺二元气体分离混合基质膜及其制备方法,包括如下步骤:(1)在超声作用下,将碳纳米球均匀分散于N,N’-二甲基乙酰胺中,之后加入4,4’-二氨基二苯醚,待其完全溶解后缓慢加入3,3’,4,4’-联苯四甲酸二酐,全部加入后封口搅拌至体系黏度达到100~300mPa·s,得到铸膜液;(2)将铸膜液在玻璃板上刮膜,将负载有膜片的玻璃板热处理后冷却至室温,经脱膜处理后即得碳纳米球-聚酰亚胺二元气体分离混合基质膜。该发明得到具有优异分离性能稳定的碳纳米球-聚酰亚胺二元气体分离混合基质膜。Chinese patent application CN201710326631.6 discloses a carbon nanosphere-polyimide binary gas separation mixed matrix membrane and its preparation method, including the following steps: (1) under the action of ultrasound, uniformly disperse carbon nanospheres in N , N'-dimethylacetamide, then add 4,4'-diaminodiphenyl ether, after it is completely dissolved, slowly add 3,3',4,4'-biphenyltetracarboxylic dianhydride, add all Finally, seal and stir until the viscosity of the system reaches 100-300mPa·s to obtain the casting solution; (2) scrape the casting solution on the glass plate, heat-treat the glass plate loaded with the membrane, cool it to room temperature, and remove the film After that, the carbon nanosphere-polyimide binary gas separation mixed matrix membrane is obtained. The invention obtains a carbon nanosphere-polyimide binary gas separation mixed matrix membrane with excellent separation performance and stability.
中国申请专利CN201710096026.4公开了一种基于掺杂纳米Cu2O的可见光催化中空纤维超滤膜及制备方法。将聚砜或聚醚砜、致孔剂、表面活性剂、掺杂纳米Cu2O和溶剂按照一定的顺序加入到溶解罐中,搅拌至完全溶解,静置脱泡,制成铸膜液;采用传统的干-湿法纺丝工艺制备可见光催化中空纤维超滤膜。该发明所制备超滤膜具有良好的抗污染性能和可见光催化性能。Chinese patent application CN201710096026.4 discloses a visible light-catalyzed hollow fiber ultrafiltration membrane based on doped nano-Cu 2 O and its preparation method. Add polysulfone or polyethersulfone, porogen, surfactant, doped nano-Cu 2 O and solvent into the dissolution tank in a certain order, stir until completely dissolved, stand for defoaming, and make a casting solution; Visible light-catalyzed hollow fiber ultrafiltration membranes were prepared by traditional dry-wet spinning process. The ultrafiltration membrane prepared by the invention has good anti-pollution performance and visible light catalytic performance.
发明内容Contents of the invention
本发明提供一种二元纳米材料共掺杂混合基质膜的新制备方法,采用“一锅”、原位法制备。The invention provides a new preparation method of a binary nanomaterial co-doped mixed matrix membrane, which is prepared by a "one pot" and in-situ method.
一种二元纳米材料共掺杂混合基质膜的制备方法,包括如下步骤:A method for preparing a binary nanomaterial co-doped mixed matrix film, comprising the steps of:
(1)将可聚合的油相介质和可聚合的表面活性剂混合,构建反胶束微乳液;向所得反胶束微乳液中投加纳米材料-Ⅰ,搅拌分散后再投加纳米材料-Ⅱ的前驱体,搅拌;得包含有纳米材料-Ⅰ、纳米材料-Ⅱ的反胶束微乳液;(1) Mix the polymerizable oil phase medium and the polymerizable surfactant to construct reverse micellar microemulsion; add nanomaterial-I to the obtained reverse micellar microemulsion, stir and disperse, and then add nanomaterial- The precursor of II is stirred; the reverse micellar microemulsion containing nanomaterial-I and nanomaterial-II is obtained;
所述纳米材料-Ⅰ为低维碳纳米材料;所述纳米材料-Ⅱ为水溶性的过渡金属盐;The nanomaterial-I is a low-dimensional carbon nanomaterial; the nanomaterial-II is a water-soluble transition metal salt;
(2)向包含有纳米材料-Ⅰ、纳米材料-Ⅱ的反胶束微乳液中加入引发剂,进行原位聚合反应,得纳米材料-Ⅰ、纳米材料-Ⅱ共掺杂聚合物乳胶;(2) adding an initiator to the reverse micellar microemulsion containing nanomaterial-I and nanomaterial-II, and performing in-situ polymerization to obtain nanomaterial-I and nanomaterial-II co-doped polymer latex;
(3)调节纳米材料-Ⅰ、纳米材料-Ⅱ共掺杂聚合物乳胶的粘度并静置后得二元纳米材料共掺杂聚合物制膜液;(3) adjusting the viscosity of the nanomaterial-I and nanomaterial-II co-doped polymer latex and leaving it to stand to obtain a binary nanomaterial co-doped polymer film-making solution;
(4)将二元纳米材料共掺杂聚合物制膜液均匀涂覆在支撑膜上,经热处理得二元纳米材料共掺杂混合基质膜。(4) Uniformly coating the binary nanomaterial co-doped polymer film-making liquid on the support membrane, and heat-treating to obtain the binary nanomaterial co-doped mixed matrix membrane.
利用金属纳米粒子、低维碳纳米材料掺杂制备混合基质膜时,金属纳米粒子、低维碳纳米材料结构是决定混合基质膜性能的关键因素之一。而通过在低维碳纳米材料上原位生长金属纳米粒子,可得到具有三维结构的金属纳米粒子/碳纳米材料复合物,这是一类新型的无机纳米复合材料,在分离膜领域具有广阔的应用前景。When using metal nanoparticles and low-dimensional carbon nanomaterials to prepare mixed matrix membranes, the structure of metal nanoparticles and low-dimensional carbon nanomaterials is one of the key factors that determine the performance of mixed matrix membranes. By growing metal nanoparticles in situ on low-dimensional carbon nanomaterials, metal nanoparticles/carbon nanomaterial composites with a three-dimensional structure can be obtained. This is a new type of inorganic nanocomposite material that has broad applications in the field of separation membranes. Application prospects.
本发明选择可聚合型油相介质和可聚合型表面活性剂构建反胶束微乳液,利用反胶束微乳液在纳米材料-Ⅰ上原位生长纳米材料-Ⅱ。然后再通过微乳液聚合获得包含有纳米材料-Ⅰ、纳米材料-Ⅱ的二元纳米材料共掺杂聚合物制膜液。最后采用涂覆、热处理方法,得到二元纳米材料共掺杂混合基质膜,应用于CO2/N2等的气体混合物的分离,或苯/环己烷等芳烃/环烷烃、烯烃/烷烃等有机混合物的渗透汽化。The invention selects a polymerizable oil phase medium and a polymerizable surfactant to construct a reverse micellar microemulsion, and uses the reverse micellar microemulsion to in-situ grow nanomaterial-II on nanomaterial-I. Then, a binary nanomaterial co-doped polymer film-making liquid containing nanomaterial-I and nanomaterial-II is obtained through microemulsion polymerization. Finally, coating and heat treatment methods are used to obtain binary nanomaterial co-doped mixed matrix membranes, which are applied to the separation of gas mixtures such as CO 2 /N 2 , or aromatics/cycloalkanes such as benzene/cyclohexane, olefins/alkanes, etc. Pervaporation of organic mixtures.
本发明步骤(1)~(3)的制膜液的形成过程均在同一个反应器(“一锅”)中进行,中间没有产物的分离、纯化,也没有副产物的产生和排出,即混合基质膜制膜液是在“一锅”中形成。The formation process of the film-forming liquid in steps (1) to (3) of the present invention is all carried out in the same reactor ("one pot"), and there is no separation and purification of products in the middle, and there is no generation and discharge of by-products, that is, The mixed matrix membrane film-making solution is formed in "one pot".
混合基质膜中包括纳米材料-Ⅰ、纳米材料-Ⅱ、聚合物3种材料。纳米材料-Ⅰ直接投加到反应器中,纳米材料-Ⅱ通过投加到反应器中的前驱体混合物原位合成产生,聚合物通过可油相介质和表面活性剂的原位聚合产生,即混合基质膜材料是在“一锅”中原位形成的。The mixed matrix membrane includes three materials: nanomaterial-I, nanomaterial-II and polymer. The nanomaterial-I is directly fed into the reactor, the nanomaterial-II is produced by in-situ synthesis of the precursor mixture fed into the reactor, and the polymer is produced by the in-situ polymerization of the oilable medium and the surfactant, namely The mixed matrix membrane material is formed in situ in a "one pot".
优选地,所述可聚合的油相介质为苯乙烯类或苯乙烯类和丙烯酸酯的混合物;所述可聚合的表面活性剂为苯乙烯十二烷基二甲基氯化铵、苯乙烯十四烷基二甲基氯化铵、苯乙烯十六烷基二甲基氯化铵或苯乙烯十八烷基二甲基氯化铵。油相介质和可聚合表面活性剂均采用市售商品。Preferably, the polymerizable oil phase medium is styrene or a mixture of styrene and acrylate; the polymerizable surfactant is styrene lauryl dimethyl ammonium chloride, styrene deca Tetraalkyldimethylammonium chloride, styrene cetyldimethylammonium chloride, or styreneoctadecyldimethylammonium chloride. Both the oil phase medium and the polymerizable surfactant are commercially available.
优选地,可聚合的表面活性剂、可聚合的油相介质、水三者之间的质量比为1g:10~15g:0.01~0.05g。进一步优选为1g:11.5~12.5g:0.02~0.03g。Preferably, the mass ratio among the polymerizable surfactant, the polymerizable oil phase medium and water is 1g: 10-15g: 0.01-0.05g. More preferably, it is 1 g: 11.5-12.5 g: 0.02-0.03 g.
优选地,纳米材料-Ⅰ的投加量与反胶束微乳液的质量比为1mg:6.0~8.5g。进一步优选为1mg:7.0~7.5g。Preferably, the mass ratio of the dosage of the nanomaterial-I to the reverse micellar microemulsion is 1 mg: 6.0-8.5 g. More preferably, it is 1 mg: 7.0 to 7.5 g.
优选地,纳米材料-Ⅱ的前驱体投加量与反胶束微乳液的质量比为 1mg:1~6g。进一步优选为1mg:2.5~4.5g。Preferably, the mass ratio of the dosage of the precursor of the nanomaterial-II to the reverse micellar microemulsion is 1mg: 1-6g. More preferably, it is 1 mg: 2.5 to 4.5 g.
优选地,所述低维碳纳米材料为氧化石墨烯、胺化石墨烯、酰氯化石墨烯、氧化碳纳米管、胺化碳纳米管或酰氯化碳纳米管。Preferably, the low-dimensional carbon nanomaterial is graphene oxide, aminated graphene, acyl chlorided graphene, oxidized carbon nanotubes, aminated carbon nanotubes or acyl chlorided carbon nanotubes.
优选地,所述水溶性的过渡金属盐为水溶性的钴盐、锌盐、铜盐、钛盐、银盐或锰盐。Preferably, the water-soluble transition metal salt is a water-soluble cobalt salt, zinc salt, copper salt, titanium salt, silver salt or manganese salt.
优选地,所述引发剂为偶氮二异丁腈。投加量是油相介质和表面活性剂总质量的0.3%。Preferably, the initiator is azobisisobutyronitrile. The dosage is 0.3% of the total mass of oil phase medium and surfactant.
优选地,原位聚合反应时间为2~4小时。Preferably, the in-situ polymerization reaction time is 2-4 hours.
优选地,调节纳米材料-Ⅰ、纳米材料-Ⅱ共掺杂聚合物乳胶的粘度为 250~350mPa·s;静置时间为4~6小时。Preferably, the viscosity of the nanomaterial-I and nanomaterial-II co-doped polymer latex is adjusted to be 250-350 mPa·s; the standing time is 4-6 hours.
优选地,所述支撑膜为截留分子量2~4万的聚砜超滤膜;热处理温度为60~80℃,热处理时间为8~12小时。Preferably, the support membrane is a polysulfone ultrafiltration membrane with a molecular weight cut-off of 20,000 to 40,000; the heat treatment temperature is 60-80° C., and the heat treatment time is 8-12 hours.
本发明还提供一种所述制备方法制备得到的二元纳米材料共掺杂混合基质膜。The invention also provides a binary nanomaterial co-doped mixed matrix membrane prepared by the preparation method.
本发明还提供一种所述二元纳米材料共掺杂混合基质膜的应用。The invention also provides an application of the binary nanomaterial co-doped mixed matrix film.
本发明通过“一锅”、原位法制备低维碳纳米材料、过渡金属纳米粒子掺杂混合基质膜。具体表现为在一反应器(“一锅”)中,利用反胶束微乳液在低维碳纳米材料上原位生长过渡金属纳米粒子,再通过微乳液原位聚合获得二元纳米材料共掺杂聚合物制膜液。最后采用涂覆和热处理工艺,得到低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜。The invention prepares low-dimensional carbon nanomaterials and transition metal nanoparticle-doped mixed matrix membranes through a "one-pot" and in-situ method. The specific performance is that in a reactor ("one pot"), transition metal nanoparticles are grown in situ on low-dimensional carbon nanomaterials by using reverse micellar microemulsions, and then binary nanomaterials are co-doped by in situ polymerization of microemulsions. Heteropolymer film-making fluid. Finally, coating and heat treatment processes are adopted to obtain a mixed matrix film co-doped with low-dimensional carbon nanomaterials and transition metal nanoparticle binary nanomaterials.
与现有技术相比,本发明具有如下优势和特点:Compared with the prior art, the present invention has the following advantages and characteristics:
低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜“一锅”法制备,方法简便、经济、环境友好。Low-dimensional carbon nanomaterials, transition metal nanoparticles binary nanomaterials co-doped mixed matrix film "one pot" preparation method, the method is simple, economical and environmentally friendly.
本发明提供的低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜,由于低维碳纳米材料和过渡金属纳米粒子的协同作用,混合基质膜在CO2/N2等的气体混合物的分离或苯/环己烷等芳烃/环烷烃、烯烃/烷烃等有机混合物的分离纯化应用中,表现出优异的渗透性和渗透选择性。The low-dimensional carbon nanomaterial and transition metal nanoparticle binary nanomaterial co-doped mixed matrix film provided by the present invention, due to the synergistic effect of the low-dimensional carbon nanomaterial and transition metal nanoparticle, the mixed matrix film can withstand CO 2 /N 2 etc. In the separation and purification of gas mixtures such as benzene/cyclohexane and other aromatics/cycloalkanes, olefins/alkanes and other organic mixtures, it shows excellent permeability and permeation selectivity.
具体实施方式Detailed ways
以下通过具体实施例来进一步说明利用本发明如何制备低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜,及其所制备膜的CO2、N2渗透及渗透选择性,或苯/环己烷混合物的渗透汽化分离性能。The following specific examples are used to further illustrate how to use the present invention to prepare low-dimensional carbon nanomaterials, transition metal nanoparticles binary nanomaterials co-doped mixed matrix membranes, and the CO 2 , N 2 permeation and permeation selectivity of the prepared membranes , or the pervaporation separation performance of benzene/cyclohexane mixtures.
低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜的气体渗透性能评价:将混合基质膜放入气体渗透测试装置的渗滤池中,膜的有效面积为19.6cm2,膜上游侧气体(CO2或N2)压力为0.15Mpa,膜下游侧压力为0.1Mpa。气体透过膜的通量由透过膜的气体流量计算测得。单位时间内透过单位膜面积的气体渗透体积(标准状态下)来评价低维碳纳米材料、过渡金属纳米粒子共掺杂混合基质膜的气体渗透性能。Gas permeability evaluation of low-dimensional carbon nanomaterials, transition metal nanoparticles binary nanomaterials co-doped mixed matrix membrane: the mixed matrix membrane is placed in the percolation cell of the gas permeation test device, and the effective area of the membrane is 19.6cm 2 , the gas (CO 2 or N 2 ) pressure on the upstream side of the membrane is 0.15Mpa, and the pressure on the downstream side of the membrane is 0.1Mpa. The flux of gas passing through the membrane is calculated and measured from the gas flow through the membrane. The gas permeation performance of low-dimensional carbon nanomaterials and transition metal nanoparticles co-doped mixed matrix membranes is evaluated by the gas permeation volume per unit membrane area per unit time (under standard conditions).
低维碳纳米材料、过渡金属纳米粒子二元纳米材料共掺杂混合基质膜的苯/环已烷混合物体系的渗透汽化性能评价:将混合基质膜放入透汽化性能测试装置的渗滤池中,膜的有效面积为19.6cm2,使用30℃、50wt%的苯/环乙烷混合物体系来评价混合基质膜渗透汽化性能(渗透通量J,分离因子α苯/环己烷),膜下游侧压力控制在100±10Pa。Evaluation of pervaporation performance of benzene/cyclohexane mixture system of low-dimensional carbon nanomaterials, transition metal nanoparticles binary nanomaterials co-doped mixed matrix membrane: the mixed matrix membrane was placed in the percolation tank of the pervaporation performance test device , the effective area of the membrane is 19.6cm 2 , using a 30°C, 50wt% benzene/cyclohexane mixture system to evaluate the pervaporation performance of the mixed matrix membrane (permeation flux J, separation factor αbenzene/cyclohexane ), the membrane downstream Side pressure is controlled at 100±10Pa.
实施例1Example 1
30℃水浴中,将3g苯乙烯十二烷基二甲基氯化铵、36.4g苯乙烯、 0.08g水混合、搅拌溶解,然后投加5mg的氧化石墨烯,搅拌分散,再缓慢投加10mg的氯化锌,搅拌,形成包含有石墨烯、锌纳米粒子的反胶束微乳液。In a water bath at 30°C, mix 3g of styrene dodecyldimethylammonium chloride, 36.4g of styrene, and 0.08g of water, stir to dissolve, then add 5mg of graphene oxide, stir to disperse, and then slowly add 10mg The zinc chloride is stirred to form a reverse micellar microemulsion comprising graphene and zinc nanoparticles.
向形成的反胶束微乳液中投加1.2g偶氮二异丁腈,常温常压下进行聚合反应3小时,获得包含有石墨烯、锌纳米粒子的乳胶。将获得的乳胶粘度调至250mPa.s左右,静置后涂覆在超滤支撑膜上,涂覆厚度80μm 左右,然后在温度为80℃条件下干燥12小时,得到厚度17μm的石墨烯、锌纳米粒子共掺杂混合基质膜。1.2 g of azobisisobutyronitrile was added to the formed reverse micellar microemulsion, and the polymerization reaction was carried out at normal temperature and pressure for 3 hours to obtain latex containing graphene and zinc nanoparticles. Adjust the viscosity of the obtained latex to about 250mPa.s, and coat it on the ultrafiltration support membrane after standing still, with a coating thickness of about 80μm, and then dry it for 12 hours at a temperature of 80°C to obtain graphene and zinc with a thickness of 17μm. Nanoparticle co-doped mixed matrix membranes.
本实施例所制备的石墨烯、锌纳米粒子共掺杂混合基质膜的CO2、 N2渗透性能见表1。The CO 2 and N 2 permeability properties of the graphene and zinc nanoparticles co-doped mixed matrix membrane prepared in this example are shown in Table 1.
实施例2Example 2
30℃水浴中,将3g苯乙烯十二烷基二甲基氯化铵、21.8g(40mL)苯乙烯、15.1g(16mL)甲基丙烯酸甲酯、0.08g水混合、搅拌溶解,然后投加 5mg的胺化碳纳米管,搅拌分散,再缓慢投加14.7mg的醋酸铜,搅拌,形成包含有碳纳米管、铜纳米粒子的反胶束微乳液。In a water bath at 30°C, mix 3g of styrene dodecyldimethylammonium chloride, 21.8g (40mL) of styrene, 15.1g (16mL) of methyl methacrylate, and 0.08g of water, stir to dissolve, and then add 5 mg of aminated carbon nanotubes were stirred and dispersed, and then 14.7 mg of copper acetate was slowly added and stirred to form a reverse micellar microemulsion containing carbon nanotubes and copper nanoparticles.
向形成的反胶束微乳液中投加1.2g偶氮二异丁腈,常温常压下进行聚合反应,获得包含有石墨烯、铜纳米粒子复合物的乳胶。将获得的乳胶粘度调至250mPa.s左右,静置后涂覆在超滤支撑膜上,涂覆厚度80μm 左右,然后在温度为80℃条件下干燥12小时,得到厚度17μm的碳纳米管、铜纳米粒子共掺杂混合基质膜。1.2 g of azobisisobutyronitrile was added to the formed reverse micellar microemulsion, and polymerization was carried out at normal temperature and pressure to obtain latex containing graphene and copper nanoparticle composites. The viscosity of the obtained latex was adjusted to about 250mPa.s, and after standing, it was coated on the ultrafiltration support membrane with a thickness of about 80 μm, and then dried at a temperature of 80°C for 12 hours to obtain carbon nanotubes with a thickness of 17 μm, Copper nanoparticles co-doped mixed matrix films.
本实施例所制备的碳纳米管、铜纳米粒子共掺杂混合基质膜的CO2、 N2渗透性能见表1。The CO 2 and N 2 permeability of the carbon nanotube and copper nanoparticle co-doped mixed matrix membrane prepared in this example are shown in Table 1.
实施例3Example 3
30℃水浴中,将3g苯乙烯十四烷基二甲基氯化铵、21.8g(24mL)苯乙烯、15.1g(16mL)甲基丙烯酸甲酯、0.08g水混合、搅拌溶解,然后投加 5mg的胺化石墨烯,搅拌分散,再缓慢投加12.4mg的硝酸银,搅拌,形成包含有石墨烯、银纳米粒子的反胶束微乳液。In a water bath at 30°C, mix 3g of styrene tetradecyldimethylammonium chloride, 21.8g (24mL) of styrene, 15.1g (16mL) of methyl methacrylate, and 0.08g of water, stir to dissolve, and then add 5 mg of aminated graphene was stirred and dispersed, and then 12.4 mg of silver nitrate was slowly added and stirred to form a reverse micellar microemulsion containing graphene and silver nanoparticles.
向形成的反胶束微乳液中投加1.2g偶氮二异丁腈,进行聚合反应,获得包含有石墨烯、银纳米粒子的乳胶。将获得的乳胶粘度调至250mPa.s 左右,静置后涂覆在超滤支撑膜上,涂覆厚度80μm左右,然后在温度为 80℃条件下干燥12小时,得到厚度17μm的石墨烯、银纳米粒子共掺杂混合基质膜。Add 1.2 g of azobisisobutyronitrile to the formed reverse micellar microemulsion for polymerization to obtain latex containing graphene and silver nanoparticles. Adjust the viscosity of the obtained latex to about 250mPa.s, and coat it on the ultrafiltration support membrane after standing still. Nanoparticle co-doped mixed matrix membranes.
本实施例所制备的石墨烯、银纳米粒子共掺杂混合基质膜的苯/环已烷混合物渗透汽化性能见表2。The pervaporation performance of the benzene/cyclohexane mixture of the graphene and silver nanoparticles co-doped mixed matrix membrane prepared in this example is shown in Table 2.
实施例4Example 4
30℃水浴中,将3g苯乙烯十四烷基二甲基氯化铵、21.8g苯乙烯、 15.1g甲基丙烯酸甲酯、0.08g水混合、搅拌溶解,然后投加5mg的酰氯化碳纳米管,搅拌分散,再缓慢投加13.4mg的硝酸钴,搅拌,形成包含有碳纳米管、钴纳米粒子的反胶束微乳液。In a water bath at 30°C, mix 3g of styrene tetradecyl dimethyl ammonium chloride, 21.8g of styrene, 15.1g of methyl methacrylate, and 0.08g of water, stir to dissolve, and then add 5mg of carbonyl chloride tube, stirred and dispersed, then slowly added 13.4 mg of cobalt nitrate, stirred, and formed a reverse micellar microemulsion containing carbon nanotubes and cobalt nanoparticles.
向形成的反胶束微乳液中投加1.2g偶氮二异丁腈,进行聚合反应,获得包含有石墨烯、钴纳米粒子的乳胶。将获得的乳胶粘度调至250mPa.s 左右,静置后涂覆在超滤支撑膜上,涂覆厚度80μm左右,然后在温度为 80℃条件下干燥12小时,得到厚度17μm的碳纳米管、钴纳米粒子共掺杂混合基质膜。Add 1.2 g of azobisisobutyronitrile to the formed reverse micellar microemulsion for polymerization to obtain latex containing graphene and cobalt nanoparticles. The viscosity of the obtained latex was adjusted to about 250mPa.s, and after standing still, it was coated on the ultrafiltration support membrane with a thickness of about 80 μm, and then dried at a temperature of 80°C for 12 hours to obtain carbon nanotubes with a thickness of 17 μm, Co-doped mixed matrix films with cobalt nanoparticles.
本实施例所制备的碳纳米管、钴纳米粒子共掺杂混合基质膜的苯/环已烷混合物渗透汽化性能见表2。The pervaporation performance of the benzene/cyclohexane mixture of the carbon nanotubes and cobalt nanoparticles co-doped mixed matrix membrane prepared in this example is shown in Table 2.
表1.本发明实施例所制备的低维碳纳米材料、过渡金属纳米粒子共掺杂混合基质膜的CO2、N2渗透性能。Table 1. CO 2 and N 2 permeability of low-dimensional carbon nanomaterials and transition metal nanoparticles co-doped mixed matrix membranes prepared in the examples of the present invention.
表2.本发明实施例所制备的低维碳纳米材料、过渡金属纳米粒子共掺杂混合基质膜的苯/环已烷混合物渗透汽化性能Table 2. Benzene/cyclohexane mixture pervaporation performance of low-dimensional carbon nanomaterials and transition metal nanoparticles co-doped mixed matrix membranes prepared in the examples of the present invention
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。The above is only a specific implementation case of the patent of the present invention, but the technical characteristics of the patent of the present invention are not limited thereto. Any changes or modifications made by those skilled in the relevant field within the scope of the present invention are covered by the patent of the present invention. within the scope of the patent.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910329661.1A CN110193289B (en) | 2019-04-23 | 2019-04-23 | A one-pot, in-situ method for preparing binary nanomaterial co-doped mixed matrix membranes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910329661.1A CN110193289B (en) | 2019-04-23 | 2019-04-23 | A one-pot, in-situ method for preparing binary nanomaterial co-doped mixed matrix membranes |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110193289A true CN110193289A (en) | 2019-09-03 |
CN110193289B CN110193289B (en) | 2021-08-24 |
Family
ID=67752016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910329661.1A Active CN110193289B (en) | 2019-04-23 | 2019-04-23 | A one-pot, in-situ method for preparing binary nanomaterial co-doped mixed matrix membranes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110193289B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021091485A1 (en) * | 2019-11-08 | 2021-05-14 | National University Of Singapore | Low temperature separation method using 2d material-based nanocomposite coating |
CN113813801A (en) * | 2021-09-28 | 2021-12-21 | 浙江工商大学 | Mixed matrix ultrafiltration membrane doped with ZIFs @ polyion liquid compound and preparation method thereof |
CN113813798A (en) * | 2021-09-28 | 2021-12-21 | 浙江工商大学 | A cobalt@iron double metal hydroxide nanoparticle doped mixed matrix ultrafiltration membrane and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070022877A1 (en) * | 2002-04-10 | 2007-02-01 | Eva Marand | Ordered mesopore silica mixed matrix membranes, and production methods for making ordered mesopore silica mixed matric membranes |
CN102580570A (en) * | 2012-02-27 | 2012-07-18 | 浙江工商大学 | A kind of immobilized Ag+ facilitated transfer film and its preparation method and application |
CN105214502A (en) * | 2015-09-18 | 2016-01-06 | 浙江工商大学 | A kind of Nano Silver/Graphene/polyvinyl alcohol mixing matrix membrane and preparation method thereof |
CN106807255A (en) * | 2016-12-22 | 2017-06-09 | 浙江工商大学 | Three-dimensional structure TiO2Stannic oxide/graphene nano composite in-situ polymerization doped polyimide film and its preparation |
KR20180055619A (en) * | 2016-11-17 | 2018-05-25 | 한남대학교 산학협력단 | a carbon porous membrane and a method manufacturing the same |
CN109294234A (en) * | 2018-09-26 | 2019-02-01 | 北京市政建设集团有限责任公司 | It is a kind of reusable based on graphene-noble metal nano particles compound hybrid film and preparation method thereof |
-
2019
- 2019-04-23 CN CN201910329661.1A patent/CN110193289B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070022877A1 (en) * | 2002-04-10 | 2007-02-01 | Eva Marand | Ordered mesopore silica mixed matrix membranes, and production methods for making ordered mesopore silica mixed matric membranes |
CN102580570A (en) * | 2012-02-27 | 2012-07-18 | 浙江工商大学 | A kind of immobilized Ag+ facilitated transfer film and its preparation method and application |
CN105214502A (en) * | 2015-09-18 | 2016-01-06 | 浙江工商大学 | A kind of Nano Silver/Graphene/polyvinyl alcohol mixing matrix membrane and preparation method thereof |
KR20180055619A (en) * | 2016-11-17 | 2018-05-25 | 한남대학교 산학협력단 | a carbon porous membrane and a method manufacturing the same |
CN106807255A (en) * | 2016-12-22 | 2017-06-09 | 浙江工商大学 | Three-dimensional structure TiO2Stannic oxide/graphene nano composite in-situ polymerization doped polyimide film and its preparation |
CN109294234A (en) * | 2018-09-26 | 2019-02-01 | 北京市政建设集团有限责任公司 | It is a kind of reusable based on graphene-noble metal nano particles compound hybrid film and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
蒋漾漾等: "氧化石墨烯-Ag纳米粒子/聚酰亚胺混合基质膜及其渗透汽化性能", 《无机化学学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021091485A1 (en) * | 2019-11-08 | 2021-05-14 | National University Of Singapore | Low temperature separation method using 2d material-based nanocomposite coating |
CN113813801A (en) * | 2021-09-28 | 2021-12-21 | 浙江工商大学 | Mixed matrix ultrafiltration membrane doped with ZIFs @ polyion liquid compound and preparation method thereof |
CN113813798A (en) * | 2021-09-28 | 2021-12-21 | 浙江工商大学 | A cobalt@iron double metal hydroxide nanoparticle doped mixed matrix ultrafiltration membrane and preparation method thereof |
CN113813801B (en) * | 2021-09-28 | 2023-06-06 | 浙江工商大学 | A mixed matrix ultrafiltration membrane doped with ZIFs@polyionic liquid composite and its preparation method |
CN113813798B (en) * | 2021-09-28 | 2023-11-14 | 浙江工商大学 | A mixed matrix ultrafiltration membrane doped with cobalt@iron double metal hydroxide nanoparticles and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN110193289B (en) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108587585B (en) | Profile control and water shutoff agent and application thereof, profile control and water shutoff system and preparation method and application thereof | |
Wang et al. | Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane | |
CN103265714B (en) | Polyvinyl alcohol/graphene oxide composite film preparation method | |
CN104548974B (en) | A kind of preparation method of zinc-oxide nano composite hyperfiltration membrane | |
CN110193289A (en) | The method that one pot a kind of, in-situ method prepares bielement nano material codope mixed substrate membrane containing nano-grade molecular sieve | |
CN105617882B (en) | A kind of compound forward osmosis membrane of chitosan-modified stannic oxide/graphene nano and preparation method thereof | |
CN108722198B (en) | Preparation method of all-carbon composite membrane and product thereof | |
CN101293185A (en) | A kind of method for preparing polyvinylidene fluoride porous film | |
CN108554206A (en) | A kind of high-throughput composite filter membrane and preparation method based on porous in carbon nanotube | |
CN105254336B (en) | A kind of method and product that orientation CNT is prepared in substrate surface | |
CN102500250B (en) | Macromolecular-inorganic hybrid membrane, and preparation method and application thereof | |
CN102784567B (en) | Single-wall carbon nanotube coated modified polyvinylidene fluoride film and preparation method thereof | |
JPWO2015182058A1 (en) | Method for producing carbon nanotube dispersion, carbon nanotube dispersion, method for producing composition for composite material and method for producing composite material, and composite material and molded article of composite material | |
CN111617645A (en) | A kind of preparation method of low-resistance and high-selectivity mixed matrix membrane based on hollow MOFs material | |
JP2015227411A (en) | Composite material manufacturing method, composite material, and composite material molded body | |
CN113069933B (en) | A kind of organic/inorganic composite membrane for separating N,N-dimethylformamide/water mixture and preparation method thereof | |
CN115245759A (en) | A kind of self-supporting covalent organic framework film and preparation method thereof | |
CN108329689A (en) | A kind of low dielectric coefficient polyimide porous membrane and preparation method thereof | |
Han et al. | Multi-tunable self-assembled morphologies of stimuli-responsive diblock polyampholyte films on solid substrates | |
CN102886212A (en) | Method for preparing CO2 separation membrane with polyaniline nanomaterial and polyvinylamine | |
CN103421188B (en) | A kind of preparation method of sheet polypyrrole with high conductivity | |
CN108975725A (en) | A kind of preparation method of the derivative graphene-carbon nano tube composite porous film of bubble | |
CN103406031A (en) | Low-resistance high-flux soiling resistant type water treatment membrane and preparation method thereof | |
CN109647233B (en) | A kind of preparation method and application of polyvinylamine/interpenetrating network structure carbon composite material mixed matrix film | |
TW201634119A (en) | Ion exchange membrane bearing preferential oriented morphological texture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |