[go: up one dir, main page]

CN110186522B - Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics - Google Patents

Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics Download PDF

Info

Publication number
CN110186522B
CN110186522B CN201910474178.2A CN201910474178A CN110186522B CN 110186522 B CN110186522 B CN 110186522B CN 201910474178 A CN201910474178 A CN 201910474178A CN 110186522 B CN110186522 B CN 110186522B
Authority
CN
China
Prior art keywords
gas
volume flow
vortex street
calculating
calculate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910474178.2A
Other languages
Chinese (zh)
Other versions
CN110186522A (en
Inventor
王超
李金霞
丁红兵
孙宏军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910474178.2A priority Critical patent/CN110186522B/en
Publication of CN110186522A publication Critical patent/CN110186522A/en
Application granted granted Critical
Publication of CN110186522B publication Critical patent/CN110186522B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明涉及一种结合涡街幅值特性的湿气过读补偿与流量测量方法,步骤如下:采集压力p、温度T和压电传感器输出的涡街时序信号s(t);计算气体密度ρg和液体密度ρp;提取涡街信号的频率fVS和幅值AVS;计算未进行过读修正的表观气相体积流量Qg,apparent作为气相体积流量Qg迭代初值;迭代计算直至收敛:计算气相体积流量Qg对应的表观气相速度Usg、计算单相气时的信号幅值、计算液滴加载量φp、计算过读因子OR、计算过读补偿后的湿气气相体积流量。得到最终的湿气中气相体积流量Qg和液滴加载量φp

Figure 201910474178

The invention relates to a moisture over-reading compensation and flow measurement method combined with vortex street amplitude characteristics. The steps are as follows: collecting pressure p, temperature T and vortex street time series signal s(t) output by a piezoelectric sensor; calculating gas density ρ g and liquid density ρ p ; extract the frequency f VS and amplitude A VS of the vortex street signal; calculate the apparent gas volume flow rate Q g without reading correction, apparent as the initial iterative value of the gas volume flow rate Q g ; iteratively calculate until Convergence: Calculate the apparent gas phase velocity U sg corresponding to the gas volume flow rate Q g , calculate the signal amplitude when calculating the single-phase gas, calculate the droplet loading φ p , calculate the over-read factor OR, and calculate the wet gas phase after over-read compensation. volume flow. The final wet gas phase volume flow Q g and droplet loading φ p are obtained.

Figure 201910474178

Description

结合涡街幅值特性的湿气过读补偿与流量测量方法Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics

技术领域technical field

本发明属于气液两相流量测量领域,涉及一种结合涡街幅值特性的湿气过读补偿与流量测量方法。The invention belongs to the field of gas-liquid two-phase flow measurement, and relates to a wet gas over-read compensation and flow measurement method combined with vortex street amplitude characteristics.

背景技术Background technique

湿气流动广泛存在于天然气行业,对其进行准确计量对于管道输运、贸易结算有重要影响,直接关系到环境保护、能源管理及其充分利用[1]。当气速较高时,环雾状流是最主要的湿气流型,其中液相以夹带液滴和壁面液膜的形式存在[2]。涡街流量计因其稳健、经济、量程比高、压损小而被广泛应用于湿气的在线测量。然而,当传统的单相涡街流量计应用到湿气测量时,湿气中的少量液相会影响涡街仪表系数,使测得的气相流量偏高(过读,overreading,OR),最大可引起20%的测量误差[3]。为提高涡街流量计在湿气中的测量精度,需对过读现象进行精确建模与合理修正。Wet gas flow widely exists in the natural gas industry, and its accurate measurement has an important impact on pipeline transportation and trade settlement, and is directly related to environmental protection, energy management and its full utilization [1]. When the gas velocity is high, the annular mist flow is the main wet gas flow pattern, in which the liquid phase exists in the form of entrained droplets and wall liquid film [2]. Vortex flowmeters are widely used in online measurement of wet gas because of their robustness, economy, high turndown ratio and small pressure loss. However, when the traditional single-phase vortex flowmeter is applied to wet gas measurement, a small amount of liquid phase in the wet gas will affect the vortex meter coefficient, making the measured gas phase flow rate on the high side (overreading, overreading, OR), the maximum Can cause 20% measurement error [3]. In order to improve the measurement accuracy of the vortex flowmeter in wet gas, it is necessary to accurately model and reasonably correct the over-reading phenomenon.

文献[4]针对不同压力和介质工况下过读关联式不统一的问题,通过理论计算,指出液相中的液滴质量加载量是影响涡街过读的主要因素。然而,过读的修正需要已知湿气中的液滴质量流量或液滴质量分数,一般通过微波法、射线法和等速采样法测得[5]。这些方法操作复杂、成本高且难以实现连续的准确测量。目前仅通过一台涡街流量计还难以实现湿气流量的准确计量。Reference [4] pointed out that the droplet mass loading in the liquid phase is the main factor affecting the vortex street overreading through theoretical calculation, aiming at the problem of non-uniform overreading correlations under different pressures and medium working conditions. However, correction of over-reading requires known droplet mass flow or droplet mass fraction in moisture, which is generally measured by microwave method, ray method and isokinetic sampling method [5]. These methods are complicated to operate, costly and difficult to achieve continuous accurate measurements. At present, it is still difficult to achieve accurate measurement of wet gas flow only through a vortex flowmeter.

专利201810644726.7设计了一种多参数可调的雾状流实验系统,专利201810226454.9给出了一种环状流液膜收集与计量装置,专利201810232606.6提供了一种环状流液膜分离与质量计量方法。Patent 201810644726.7 designs a multi-parameter adjustable mist flow experimental system, patent 201810226454.9 provides an annular flow liquid film collection and metering device, patent 201810232606.6 provides an annular flow liquid film separation and mass measurement method .

参考文献references

[1]Mehdizadeh P,Marrelli J,Ting V C,“Wet gas metering:trends inapplications and technical developments,”in Proc.SPE Annu.Tech.Conf,SanAntordo,TX,USA,2002,pp.1–14.[1] Mehdizadeh P, Marrelli J, Ting V C, "Wet gas metering: trends in applications and technical developments," in Proc.SPE Annu.Tech.Conf, SanAntordo, TX, USA, 2002, pp.1–14.

[2]T.Oshinowo and M.E.Charles,“Vertical two-phase flow part I.Flowpattern correlations,”Can.J.Chem.Eng.,vol.52,no.1,pp.25–35,1974.[2] T.Oshinowo and M.E.Charles, "Vertical two-phase flow part I.Flowpattern correlations," Can.J.Chem.Eng.,vol.52,no.1,pp.25–35,1974.

[3]R.Steven,“Wet gas metering,”Ph.D.dissertation,Dept.Mech.Eng.Univ.Strathclyde,Scotland U.K.,2001.[3] R.Steven, "Wet gas metering," Ph.D.dissertation, Dept.Mech.Eng.Univ.Strathclyde, Scotland U.K., 2001.

[4]J.X.Li,C.Wang,H.B.Ding,Z.X,Zhang and H.J.Sun,“EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics inannular mist flow of wet gas”,IEEE Trans.Instrum.Meas.,vol.37,no.5,pp.1150–1160,May 2018.[4] J.X.Li, C.Wang, H.B.Ding, Z.X, Zhang and H.J.Sun, “EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics inannular mist flow of wet gas”, IEEE Trans.Instrum.Meas. , vol.37, no.5, pp.1150–1160, May 2018.

[5]ASME,ASME MFC-19G-2008,Wet gas flowmetering guideline.AmericanSociety of Mechanical Engineers,USA,2008.[5] ASME, ASME MFC-19G-2008, Wet gas flowmetering guideline. American Society of Mechanical Engineers, USA, 2008.

发明内容SUMMARY OF THE INVENTION

本发明的目的是基于涡街压电传感器在湿气中的频率和幅值特性,提供一种只使用一台涡街流量计就可消除液相引起的测量过读问题的湿气流量测量方法。本发明的技术方案如下:The purpose of the present invention is to provide a wet gas flow measurement method that can eliminate the measurement over-reading problem caused by the liquid phase by using only one vortex flowmeter based on the frequency and amplitude characteristics of the vortex piezoelectric sensor in wet gas . The technical scheme of the present invention is as follows:

一种结合涡街幅值特性的湿气过读补偿与流量测量方法,该方法利用涡街压电传感器在湿气中的频率和幅值特性进行湿气过读补偿与流量测量,方法如下:A moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics, the method utilizes the frequency and amplitude characteristics of a vortex street piezoelectric sensor in wet gas to perform moisture over-read compensation and flow measurement, and the method is as follows:

1)采集压力p、温度T和压电传感器输出的涡街时序信号s(t)。1) Collect pressure p, temperature T and the vortex street time series signal s(t) output by the piezoelectric sensor.

2)通过p和T分别计算气体密度ρg和液体密度ρp;提取涡街信号的频率fVS和幅值AVS2) Calculate the gas density ρ g and the liquid density ρ p through p and T respectively; extract the frequency f VS and amplitude A VS of the vortex signal.

3)根据式(1)计算未进行过读修正的表观气相体积流量Qg,apparent作为气相体积流量Qg迭代初值3) Calculate the apparent gas volume flow rate Q g without reading correction according to formula (1), and apparent as the initial value of the gas phase volume flow Q g iteration

Qg,apparent=3600fVS/Kv (1)Q g,apparent =3600f VS /K v (1)

其中,Kv为涡街流量计在单相气中的仪表系数(m-3)。Among them, K v is the meter coefficient (m -3 ) of the vortex flowmeter in single-phase gas.

4)根据式(2)计算气相体积流量Qg对应的表观气相速度Usg 4) Calculate the apparent gas phase velocity U sg corresponding to the gas volume flow rate Q g according to formula (2)

Usg=4Qg/πD2 (2)U sg =4Q g /πD 2 (2)

其中,D为管道公称直径。Among them, D is the nominal diameter of the pipe.

5)根据式(3)计算单相气时的信号幅值A0(单位:mV)5) Calculate the signal amplitude A 0 (unit: mV) of single-phase gas according to formula (3)

Figure BDA0002080725160000021
Figure BDA0002080725160000021

6)根据式(4)中的涡街信号特征幅值AVS与液滴加载量φp的关系,计算液滴加载量φp 6) According to the relationship between the characteristic amplitude A VS of the vortex street signal and the droplet loading amount φ p in Eq. (4), calculate the droplet loading amount φ p

Figure BDA0002080725160000022
Figure BDA0002080725160000022

7)根据式(5)计算过读因子OR7) Calculate the over-read factor OR according to formula (5)

OR=1+271.08φpρgp (5)OR=1+271.08φ p ρ gp (5)

8)根据式(6)计算过读补偿后的湿气气相体积流量8) Calculate the wet gas gas phase volume flow rate after over-read compensation according to formula (6)

Qg=Qg,apparent/OR (6)Q g =Q g,apparent /OR (6)

9)如果|Qg-Qg,last|≤δ,δ是足够小的正实数,则迭代结束,否则,将计算出的气相体积流量Qg作为下一次迭代的初值重新执行4~8步的计算,直至收敛为止。9) If |Q g -Q g,last |≤δ, and δ is a small enough positive real number, the iteration ends; otherwise, the calculated gas volume flow rate Q g is used as the initial value of the next iteration to re-execute 4 to 8 step by step until convergence.

10)得到最终的湿气中气相体积流量Qg和液滴加载量φp10) Obtain the final wet gas phase volume flow Q g and droplet loading φ p .

附图说明Description of drawings

图1:信号采集流程图Figure 1: Signal Acquisition Flowchart

图2:环雾状流型示意图Figure 2: Schematic diagram of annular mist flow pattern

图3:过读-液滴加载量关系图Figure 3: Overread-Droplet Loading Graph

图4:单相中涡街信号幅值与表观气速和气相密度的关系图Figure 4: The relationship between the amplitude of the vortex street signal and the apparent gas velocity and gas density in a single phase

图5:湿气中无量纲涡街信号幅值-液滴加载量关系图Figure 5: Dimensionless Vortex Signal Amplitude-Droplet Loading Relationship Diagram in Wet Gas

图6:迭代算法流程图Figure 6: Flowchart of iterative algorithm

图7:湿气中气相体积流量预测值与真实值对比图Figure 7: Comparison of predicted and actual gas phase volume flow rates in wet gas

图8:湿气中气相体积流量预测误差分布图Figure 8: Distribution of prediction error of gas phase volume flow in wet gas

具体实施方式Detailed ways

现结合附图和实施对本发明做进一步说明。The present invention will now be further described with reference to the accompanying drawings and implementation.

本实例是结合涡街幅值特性的湿气过读补偿与流量测量方法的具体实施。湿气工况压力p=270~440kPa,气相体积流量Qg=9~17m3/h,液相质量流量ml=1.7~17kg/h。This example is the specific implementation of the moisture over-read compensation and flow measurement method combined with the vortex street amplitude characteristic. The wet gas working condition pressure p=270~440kPa, the gas phase volume flow rate Q g =9~17m 3 /h, the liquid phase mass flow rate m l =1.7~17kg/h.

信号采集流程图如附图1所示:采集工况压力p、工况温度T以及涡街时序序号s(t),其中s(t)由压电传感器采集得到:压电探头将流动信号转化为电信号,由硬件电路将原始信号进行电荷放大和电压放大,并进行带通滤波(f=200~2500 Hz)后,由NI-USB采集卡进行数据采集,采样频率为20kHz,采样点数为131072,并由Labview软件进行显示和存储,从而得到涡街时序信号s(t)。The signal acquisition flow chart is shown in Figure 1: the working condition pressure p, the working condition temperature T and the vortex street sequence number s(t) are collected, where s(t) is collected by the piezoelectric sensor: the piezoelectric probe converts the flow signal into For the electrical signal, the original signal is amplified by charge and voltage by the hardware circuit, and after band-pass filtering (f=200 ~ 2500 Hz), the data is collected by the NI-USB acquisition card, the sampling frequency is 20 kHz, and the number of sampling points is 131072, and is displayed and stored by Labview software, so as to obtain the vortex time series signal s(t).

涡街流量计是一种速度式流量计,通过测量旋涡脱落频率fVS即可得到流体体积流量The vortex flowmeter is a kind of velocity flowmeter, which can obtain the fluid volume flow by measuring the vortex shedding frequency f VS

Figure BDA0002080725160000031
Figure BDA0002080725160000031

其中,Kv(=4St0/πD2d)为涡街流量计在单相气中的仪表系数(m-3)。D为管道公称直径,d为发生体的迎流面宽度,St0为单相气工况下的斯特劳哈尔数,在一定雷诺数范围内为常数。本例中,St0=0.251,d=4.2mm,D=15mm,Kv=338182.4m-3Wherein, K v (=4St 0 /πD 2 d) is the meter coefficient (m -3 ) of the vortex flowmeter in single-phase gas. D is the nominal diameter of the pipeline, d is the width of the upstream surface of the generating body, and St 0 is the Strouhal number under the single-phase gas condition, which is a constant within a certain range of Reynolds number. In this example, St 0 =0.251, d = 4.2 mm, D = 15 mm, K v =338182.4 m -3 .

在湿气流动中,少量液相的存在使得在应用涡街流量计测量湿气的过程中,测得的气相体积流量Qg,apparent高于实际气体的流量Qg,称为“过读”现象。为对涡街过读进行修正,引入量纲为1的修正系数OR,表示为In the wet gas flow, the existence of a small amount of liquid phase makes the measured gas volume flow Q g,apparently higher than the actual gas flow Q g in the process of applying the vortex flowmeter to measure the wet gas, which is called "overreading" Phenomenon. In order to correct the vortex street over-reading, a correction coefficient OR whose dimension is 1 is introduced, which is expressed as

Figure BDA0002080725160000032
Figure BDA0002080725160000032

其中,St为湿气中的涡街斯特劳哈儿数,St=fVS·d/Usg,Usg为气相表观流速,Usg=4Qg/πD2Wherein, St is the Strouhal number of the vortex street in the wet gas, St=f VS ·d/U sg , U sg is the apparent flow velocity of the gas phase, and U sg =4Q g /πD 2 .

根据文献[4]的研究结论,液滴加载量φp是影响过读OR的主要因素。湿气环雾状流型如附图2所示:液相一部分以液膜形式在管壁低速流动,一部分以离散液滴形式被气流夹带。According to the research conclusion of the literature [4], the droplet loading φ p is the main factor affecting the over-reading OR. The mist flow pattern of the wet gas ring is shown in Figure 2: a part of the liquid phase flows at a low speed on the tube wall in the form of a liquid film, and a part is entrained by the airflow in the form of discrete droplets.

定义液滴质量加载量参数φp Define the droplet mass loading parameter φ p

Figure BDA0002080725160000033
Figure BDA0002080725160000033

其中,mp和mLF分别代表液滴和液膜的质量流量,ml和mg分别代表液相和气相的质量流量。where m p and m LF represent the mass flow rates of the droplet and liquid film, respectively, and m l and m g represent the mass flow rates of the liquid and gas phases, respectively.

为准确测量湿气两相流中的气相流量,必须对过读OR进行准确建模并进行合理修正。本专利提出一种结合涡街幅值特性的湿气过读补偿与流量测量方法。In order to accurately measure the gas-phase flow in a wet-gas two-phase flow, the over-read OR must be accurately modeled and properly corrected. This patent proposes a moisture over-read compensation and flow measurement method combined with the vortex street amplitude characteristic.

首先对涡街传感器在湿气中的过读和幅值特性进行建模。利用专利201810644726.7中的多参数可调的雾状流实验系统,以及专利201810226454.9和201810232606.6提供的环状流液膜收集装置与质量计量方法,测得不同液相质量加载量φ和不同压力p下的液滴加载量φpFirstly, the over-read and amplitude characteristics of the vortex sensor in moisture are modeled. Using the multi-parameter adjustable mist flow experimental system in patent 201810644726.7, and the annular flow liquid film collection device and mass measurement method provided in patents 201810226454.9 and 201810232606.6, the liquid phase mass loading φ and different pressure p were used to measure the Droplet loading φ p .

然后进行模型关联式中相关系数的标定。过读OR随φp的变化如附图3所示,可得到过读关联式Then the calibration of the correlation coefficient in the model correlation is carried out. The change of over-read OR with φ p is shown in Figure 3, and the over-read correlation can be obtained

Figure BDA0002080725160000034
Figure BDA0002080725160000034

在单相气工况下,信号幅值A0(单位:mV)与表观气速Usg和气相密度ρg的变化如附图4所示,有Under the single-phase gas condition, the changes of the signal amplitude A 0 (unit: mV), the apparent gas velocity U sg and the gas phase density ρ g are shown in Fig. 4 , there are

Figure BDA0002080725160000041
Figure BDA0002080725160000041

无量纲涡街信号幅值A*=AVS/A0的变化如附图5所示,有The variation of the dimensionless vortex signal amplitude A * =A VS /A 0 is shown in Fig. 5, there are

Figure BDA0002080725160000042
Figure BDA0002080725160000042

基于上述关于涡街频率和幅值特性在湿气中的建模与标定结果,可得到湿气测量模型,总结如下:Based on the above modeling and calibration results of vortex street frequency and amplitude characteristics in wet gas, the wet gas measurement model can be obtained, which is summarized as follows:

Figure BDA0002080725160000043
Figure BDA0002080725160000043

Figure BDA0002080725160000044
Figure BDA0002080725160000044

Figure BDA0002080725160000045
Figure BDA0002080725160000045

Figure BDA0002080725160000046
Figure BDA0002080725160000046

Figure BDA0002080725160000047
Figure BDA0002080725160000047

下面基于上述建模和标定结果,进行结合涡街幅值特性的湿气过读补偿与流量测量,如附图6所示,方法如下:Based on the above modeling and calibration results, the moisture over-read compensation and flow measurement combined with the vortex street amplitude characteristics are carried out, as shown in Figure 6, and the method is as follows:

1)采集压力p、温度T和压电传感器输出的涡街时序信号s(t)。1) Collect pressure p, temperature T and the vortex street time series signal s(t) output by the piezoelectric sensor.

2)通过p和T分别计算气体密度ρg和液体密度ρp;提取涡街信号的频率fVS和幅值AVS2) Calculate the gas density ρ g and the liquid density ρ p through p and T respectively; extract the frequency f VS and amplitude A VS of the vortex signal.

3)根据式(1)计算未进行过读修正的表观气相体积流量Qg,apparent作为气相体积流量Qg迭代初值3) Calculate the apparent gas volume flow rate Q g without reading correction according to formula (1), and apparent as the initial value of the gas phase volume flow Q g iteration

Qg,apparent=3600fVS/Kv (7)Q g,apparent =3600f VS /K v (7)

其中,Kv为涡街流量计在单相气中的仪表系数(m-3)。Among them, K v is the meter coefficient (m -3 ) of the vortex flowmeter in single-phase gas.

4)根据式(2)计算气相体积流量Qg对应的表观气相速度Usg 4) Calculate the apparent gas phase velocity U sg corresponding to the gas volume flow rate Q g according to formula (2)

Usg=4Qg/πD2 (8)U sg =4Q g /πD 2 (8)

其中,D为管道公称直径。Among them, D is the nominal diameter of the pipe.

5)根据式(3)计算单相气时的信号幅值A0(单位:mV)5) Calculate the signal amplitude A 0 (unit: mV) of single-phase gas according to formula (3)

Figure BDA0002080725160000051
Figure BDA0002080725160000051

6)根据式(4)中的涡街信号特征幅值AVS与液滴加载量φp的关系,计算液滴加载量φp 6) According to the relationship between the characteristic amplitude A VS of the vortex street signal and the droplet loading amount φ p in Eq. (4), calculate the droplet loading amount φ p

Figure BDA0002080725160000052
Figure BDA0002080725160000052

7)根据式(5)计算过读因子OR7) Calculate the over-read factor OR according to formula (5)

OR=1+271.08φpρgp (11)OR=1+271.08φ p ρ gp (11)

8)根据式(6)计算过读补偿后的湿气气相体积流量8) Calculate the wet gas gas phase volume flow rate after over-read compensation according to formula (6)

Qg=Qg,apparent/OR (12)Q g =Q g,apparent /OR (12)

9)如果|Qg-Qg,last|≤δ,δ是足够小的正实数,则迭代结束,否则,将计算出的气相体积流量Qg作为下一次迭代的初值重新执行4~8步的计算,直至收敛为止。9) If |Q g -Q g,last |≤δ, and δ is a small enough positive real number, the iteration ends; otherwise, the calculated gas volume flow rate Q g is used as the initial value of the next iteration to re-execute 4 to 8 step by step until convergence.

10)得到最终的湿气中气相体积流量Qg和液滴加载量φp10) Obtain the final wet gas phase volume flow Q g and droplet loading φ p .

为验证上述提出的结合涡街幅值特性的湿气过读补偿与流量测量方法,不同条件下的气相体积流量的真实值和预测值对比如附图7所示。预测值与真实值的误差分布如附图8所示,其中误差PE(%)=(预测值-真实值)/真实值×100。在湿气测量中,气相体积流量的预测误差均在±1.5%以内,平均绝对误差为0.37%,表明模型预测精度较高。In order to verify the above-mentioned moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics, the comparison between the actual and predicted gas volume flow under different conditions is shown in Figure 7. The error distribution between the predicted value and the actual value is shown in FIG. 8 , where the error PE(%)=(predicted value−true value)/true value×100. In the wet gas measurement, the prediction errors of the gas volume flow rate are all within ±1.5%, and the average absolute error is 0.37%, indicating that the model prediction accuracy is high.

本发明通过对涡街流量计在湿气中的频率特性和幅值特性进行建模,提出了一种结合涡街幅值特性的湿气过读补偿与流量测量方法。本发明无需其他复杂、昂贵的液相流量测量装置和测量方法,提供了一种仅通过一台涡街流量计即可实现湿气流量准确计量的测量方法,简单、经济且预测精度高。By modeling the frequency characteristics and amplitude characteristics of the vortex flowmeter in wet gas, the invention proposes a wet gas over-read compensation and flow measurement method combined with the vortex street amplitude characteristics. The invention does not need other complicated and expensive liquid phase flow measuring devices and measuring methods, and provides a measuring method that can realize accurate measurement of wet gas flow only through one vortex flowmeter, which is simple, economical and has high prediction accuracy.

Claims (1)

1. A moisture overreading compensation and flow measurement method combining vortex street amplitude characteristics utilizes frequency and amplitude characteristics of a vortex street sensor in moisture to perform moisture overreading compensation and flow measurement, and comprises the following steps:
1) pressure acquisitionpTemperature ofTAnd vortex street time sequence signal output by piezoelectric sensors(t);
2) By passingpAndTseparately calculating gas density
Figure DEST_PATH_IMAGE002
And density of liquid
Figure DEST_PATH_IMAGE004
(ii) a Extracting frequency of vortex street signalf VS Sum amplitudeA VS
3) Calculating the apparent gas phase volume flow without reading correction according to the formula (1)Q g,apparentAnd as the gas phase volume flowQ g Initial value of iteration of, i.e.Q g = Q g,apparent
Figure DEST_PATH_IMAGE008
(1)
Wherein,K v meter coefficient (m) for vortex shedding flowmeter in single phase gas-3);
4) Calculating the gas phase volume flow according to equation (2)Q g Corresponding superficial gas phase velocityU sg
Figure DEST_PATH_IMAGE011
(2)
Wherein,Dis the nominal diameter of the pipeline;
5) calculating the signal amplitude of single-phase gas according to the formula (3)A 0
Figure DEST_PATH_IMAGE014
(3)
6) Calculating the liquid drop loading amount according to the relation between the vortex street signal characteristic amplitude and the liquid drop loading amount in the formula (4)
Figure DEST_PATH_IMAGE016
Figure DEST_PATH_IMAGE019
(4)
7) Calculating the over-reading factor OR according to equation (5)
Figure DEST_PATH_IMAGE022
(5)
8) Calculating the overreading compensated moisture gas phase volume flow according to the formula (6)Q g
Figure DEST_PATH_IMAGE025
(6)
9) If it is not
Figure DEST_PATH_IMAGE027
If the real number is small enough, the iteration is ended, otherwise, the calculated gas phase volume flow is calculatedQ g Performing the calculation of the steps 4) -8) again as an initial value of the next iteration until convergence;
the final gas phase volume flow in the wet gas is obtained from the last iteration calculation resultQ g And droplet loading
Figure 333035DEST_PATH_IMAGE016
CN201910474178.2A 2019-05-31 2019-05-31 Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics Expired - Fee Related CN110186522B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910474178.2A CN110186522B (en) 2019-05-31 2019-05-31 Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910474178.2A CN110186522B (en) 2019-05-31 2019-05-31 Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics

Publications (2)

Publication Number Publication Date
CN110186522A CN110186522A (en) 2019-08-30
CN110186522B true CN110186522B (en) 2020-12-11

Family

ID=67719661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910474178.2A Expired - Fee Related CN110186522B (en) 2019-05-31 2019-05-31 Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics

Country Status (1)

Country Link
CN (1) CN110186522B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649789B (en) * 2020-04-16 2022-03-29 天津大学 Wet air flow measuring method integrating vortex street frequency and convection characteristic
CN112926767A (en) * 2021-01-27 2021-06-08 天津大学 Annular fog flow gas phase apparent flow velocity prediction method based on particle swarm BP neural network
CN113049047B (en) * 2021-01-29 2022-12-02 天津大学 Vortex Street Moisture Phase Flow Measurement Method Based on Newton Iteration
CN112945318B (en) * 2021-01-29 2022-12-06 天津大学 Moisture split-phase flow measuring method based on liquid film thickness measurement and vortex shedding flowmeter
CN112857481B (en) * 2021-01-29 2024-04-05 中国民航大学 Vortex street moisture split-phase flow measurement method based on liquid film thickness modeling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967159A (en) * 2006-11-13 2007-05-23 浙江大学 Method for measuring flux and volume air rate of gas-liquid two-phase bubble flow
CN101578503A (en) * 2006-08-28 2009-11-11 因万西斯系统股份有限公司 Wet gas measurement
US9188471B2 (en) * 2014-04-22 2015-11-17 King Fahd University Of Petroleum And Minerals Two-phase flow sensor using cross-flow-induced vibrations
US9424674B2 (en) * 2014-04-01 2016-08-23 Saudi Arabian Oil Company Tomographic imaging of multiphase flows
CN106768117A (en) * 2017-02-20 2017-05-31 天津大学 A kind of dryness of wet steam flow double parameter measuring method
CN108469281A (en) * 2018-01-18 2018-08-31 天津大学 Two-phase Research on vortex signal processing based on EMD and Spectrum Correction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578503A (en) * 2006-08-28 2009-11-11 因万西斯系统股份有限公司 Wet gas measurement
CN1967159A (en) * 2006-11-13 2007-05-23 浙江大学 Method for measuring flux and volume air rate of gas-liquid two-phase bubble flow
US9424674B2 (en) * 2014-04-01 2016-08-23 Saudi Arabian Oil Company Tomographic imaging of multiphase flows
US9188471B2 (en) * 2014-04-22 2015-11-17 King Fahd University Of Petroleum And Minerals Two-phase flow sensor using cross-flow-induced vibrations
CN106768117A (en) * 2017-02-20 2017-05-31 天津大学 A kind of dryness of wet steam flow double parameter measuring method
CN108469281A (en) * 2018-01-18 2018-08-31 天津大学 Two-phase Research on vortex signal processing based on EMD and Spectrum Correction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Flow rate measurement of low GVF gas-liquid two-phase flow with a V-Cone meter;Xuebo Zheng,et al.;《Experimental Thermal and Fluid Science》;20180228;第91卷;全文 *
Operational range of a Gas-Solid Vortex Unit;Maximilian Friedle,et al;《Powder Technology》;20181031;第338卷;全文 *
基于涡街流量传感器的湿气测量方法研究;张磊;《中国优秀硕士学位论文全文数据库 信息科技辑》;20110415;全文 *

Also Published As

Publication number Publication date
CN110186522A (en) 2019-08-30

Similar Documents

Publication Publication Date Title
CN110186522B (en) Moisture over-read compensation and flow measurement method combined with vortex street amplitude characteristics
CN112945318B (en) Moisture split-phase flow measuring method based on liquid film thickness measurement and vortex shedding flowmeter
CN114777855B (en) Vortex wet gas phase flow measurement method based on acceleration detection
CN110514257B (en) Venturi-based low liquid content moisture two-phase flow measuring device and method
CN100430696C (en) Diagnostic apparatus and methods for a Coriolis flow meter
CN110186521B (en) Vortex street moisture over-reading compensation and flow measurement method based on wavelet ridge feature extraction
CN113049047B (en) Vortex Street Moisture Phase Flow Measurement Method Based on Newton Iteration
CN101900589B (en) Air-entrainment liquid flow measuring method based on mass flowmeter
CN107655533A (en) A kind of Ultrasonic Wave Flowmeter signal processing method and system based on backward energy integration
CN113375737A (en) Flow velocity metering method of time difference type ultrasonic gas flowmeter
CN114993392B (en) Vortex wet gas flow measurement method based on acceleration amplitude modeling
CN102928026B (en) Method of obtaining integrated transient void fraction by utilizing local transient void fraction
CN112580183A (en) Method for accurately controlling real-time flow of online learning water pump model
CN114459674B (en) Dynamic calibration method and system for amplitude-frequency characteristics of high-frequency pressure sensor
WO2020206733A1 (en) Wet gas flow meter based on resonance and differential pressure measurement
CN112857481B (en) Vortex street moisture split-phase flow measurement method based on liquid film thickness modeling
CN117824762A (en) Pulsating flow measurement method, device and storage medium of ultrasonic flowmeter
CN112146718B (en) A Mass Flow Measurement Method Based on Vortex Sensor
CN110793585A (en) Wet air flow online measurement method and device based on V cone pressure loss ratio segmentation characteristic
CN114547892A (en) Vortex wet gas phase flow measurement method based on liquid film flow parameter modeling
CN102360024A (en) Paper pulp flow velocity and flow measuring method
CN209470741U (en) Moisture gas flow meter based on resonance and differential pressure measurement
CN106996811A (en) A kind of metering method of the intelligent liquid ultrasonic low of high accuracy
Wang et al. Gain control method for echo signal processing in wide-range UGFM systems based on flow forecasting
CN111649789B (en) Wet air flow measuring method integrating vortex street frequency and convection characteristic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201211

Termination date: 20210531