CN110161414B - A method and system for online prediction of power battery thermal runaway - Google Patents
A method and system for online prediction of power battery thermal runaway Download PDFInfo
- Publication number
- CN110161414B CN110161414B CN201910509963.7A CN201910509963A CN110161414B CN 110161414 B CN110161414 B CN 110161414B CN 201910509963 A CN201910509963 A CN 201910509963A CN 110161414 B CN110161414 B CN 110161414B
- Authority
- CN
- China
- Prior art keywords
- voltage
- matrix
- battery
- thermal runaway
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 155
- 239000000523 sample Substances 0.000 claims abstract description 29
- 239000000178 monomer Substances 0.000 claims description 44
- 238000004364 calculation method Methods 0.000 claims description 35
- 238000012544 monitoring process Methods 0.000 claims description 14
- 238000012423 maintenance Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明公开了一种动力电池热失控在线预测方法及系统。该方法包括:依据动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵;电压值包括电池单体从T‑M时刻到当前时刻T的电压数据;依据电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵;依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵;将当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果。本发明实现了在实车环境中对动力电池热失控的在线预测,提高了预测精度。
The invention discloses an on-line prediction method and system for thermal runaway of a power battery. The method includes: calculating a voltage deviation matrix at each time according to the voltage value of each battery cell in the power battery; the voltage value includes the voltage data of the battery cell from the time T-M to the current time T; according to the voltage deviation matrix, the battery cell The rated voltage of the battery and the voltage offset increment matrix of the previous moment corresponding to each moment are calculated, and the voltage offset increment matrix at each moment is calculated; the voltage at the current moment T is calculated according to the voltage offset increment matrix at each moment. Offset growth rate matrix; input the voltage offset growth rate of each cell corresponding to the current vehicle mileage, the current temperature average temperature probe, and the voltage offset growth rate matrix at the current time T into the thermal runaway cell prediction In the model, the thermal runaway prediction result of the power battery is obtained. The invention realizes the online prediction of the thermal runaway of the power battery in the real vehicle environment, and improves the prediction accuracy.
Description
技术领域technical field
本发明涉及电池热失控预测技术领域,特别是涉及一种动力电池热失控在线预测方法及系统。The invention relates to the technical field of battery thermal runaway prediction, in particular to a power battery thermal runaway online prediction method and system.
背景技术Background technique
锂离子电池凭借其比能量高、比功率大和使用寿命长等优点被电动汽车广泛使用,但是随着动力电池比能量的提高和三元锂离子电池的广泛应用,锂离子电池的安全问题日益凸显,2018年新能源汽车安全事故达50起,其中电池热失控是事故的主要原因。电池热失控事故涉及到大量人员的伤亡和财产损失,因此电池热失控的是电动汽车发展过程中需要解决的核心问题。Lithium-ion batteries are widely used in electric vehicles due to their high specific energy, high specific power and long service life. However, with the improvement of specific energy of power batteries and the wide application of ternary lithium-ion batteries, the safety issues of lithium-ion batteries have become increasingly prominent. In 2018, there were 50 new energy vehicle safety accidents, of which thermal runaway of the battery was the main cause of the accident. The battery thermal runaway accident involves a large number of casualties and property losses. Therefore, the battery thermal runaway is the core problem that needs to be solved in the development of electric vehicles.
目前,对电池热失控的研究主要是:通过试验探究发生热失控时电池的内部反应机理和外部特征,进而提出预防热失控的措施。现有的方法通过实验室测得的电池电压、温度等表征参数对电池的异常状态进行精准的诊断,但是实车环境中,电池的特性受多方面因素影响,是一个多因素耦合的复杂工况,因而现有的方法很难应用于真实的电动汽车。At present, the research on battery thermal runaway is mainly to explore the internal reaction mechanism and external characteristics of the battery when thermal runaway occurs through experiments, and then propose measures to prevent thermal runaway. Existing methods can accurately diagnose the abnormal state of the battery through the battery voltage, temperature and other characterization parameters measured in the laboratory. However, in the real vehicle environment, the characteristics of the battery are affected by many factors, which is a complex process coupled with multiple factors. Therefore, the existing methods are difficult to apply to real electric vehicles.
为了确保驾驶安全并避免电动车辆的潜在故障,近年来有一些学者提出了电池故障预测和健康状态评估的方法,这些方法多基于SOH进行一维的评估,SOH是指电池健康状态,一般用当前最大可用用量与额定容量的比值来计算,使用SOH进行预测可以很好地反映电池的健康状态、老化程度和剩余寿命,但是无法诊断和预测电池热失控、过充电、过放电、电池短路等短期的故障。In order to ensure driving safety and avoid potential failures of electric vehicles, in recent years, some scholars have proposed methods for battery failure prediction and state of health assessment. These methods are mostly based on SOH for one-dimensional evaluation. SOH refers to the state of health of the battery. Calculated by the ratio of the maximum available usage to the rated capacity, using SOH for prediction can well reflect the battery's health status, aging degree and remaining life, but cannot diagnose and predict short-term battery thermal runaway, overcharge, overdischarge, battery short circuit, etc. failure.
发明内容SUMMARY OF THE INVENTION
基于此,有必要提供一种动力电池热失控在线预测方法及系统,以实现在实车环境中对动力电池热失控的在线预测,提高预测精度。Based on this, it is necessary to provide an online prediction method and system for the thermal runaway of the power battery, so as to realize the online prediction of the thermal runaway of the power battery in the real vehicle environment and improve the prediction accuracy.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种动力电池热失控在线预测方法,包括:An online prediction method for thermal runaway of a power battery, comprising:
获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;所述电压值包括电池单体从T-M时刻到当前时刻T的电压数据;一个时刻对应一帧数据;Obtain the current mileage of the car, the temperature average value of the current temperature probe, and the voltage value of each battery cell in the power battery; the voltage value includes the voltage data of the battery cell from time T-M to the current time T; one time corresponds to one frame data;
依据所述动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵;所述电压偏差矩阵由多个电压偏差值构成;一个电池单体对应一个电压偏差值;Calculate the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery; the voltage deviation matrix is composed of a plurality of voltage deviation values; one battery cell corresponds to one voltage deviation value;
依据所述电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵;所述电压偏移增量矩阵由多个电压偏移增量构成;一个电池单体对应一个电压偏移增量;Calculate the voltage offset increment matrix at each moment according to the voltage offset matrix, the rated voltage of the battery cell and the voltage offset increment matrix at the previous moment corresponding to each moment; the voltage offset increment matrix It consists of multiple voltage offset increments; one battery cell corresponds to one voltage offset increment;
依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵;所述电压偏移增长率矩阵由多个电压偏移增长率构成;一个电池单体对应一个电压偏移增长率;Calculate the voltage offset growth rate matrix at the current time T according to the voltage offset increment matrix at each moment; the voltage offset growth rate matrix is composed of multiple voltage offset growth rates; one battery cell corresponds to one voltage offset growth rate;
将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果。Input the current vehicle mileage, the temperature average value of the current temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway cell prediction model to obtain Prediction results of power battery thermal runaway.
可选的,所述将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果,具体包括:Optionally, the current mileage of the vehicle, the temperature average value of the current temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T are input into the thermal runaway list. In the volume prediction model, the thermal runaway prediction results of the power battery are obtained, including:
将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,输出当前时刻T的热失控预测矩阵;Input the current mileage of the car, the temperature average value of the current temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway cell prediction model, and output The thermal runaway prediction matrix at the current time T;
依据所述当前时刻T的热失控预测矩阵判断是否存在潜在的热失控电池单体;Judging whether there is a potential thermal runaway battery cell according to the thermal runaway prediction matrix at the current time T;
若存在潜在的热失控电池单体,则将潜在的热失控电池单体的序号传输至汽车的仪表盘、新能源汽车大数据监控平台和车辆维护平台,以实现监测和预警;If there is a potential thermal runaway battery cell, transmit the serial number of the potential thermal runaway battery cell to the dashboard of the car, the big data monitoring platform for new energy vehicles and the vehicle maintenance platform for monitoring and early warning;
若不存在潜在的热失控电池单体,则判断是否产生新的数据;If there is no potential thermal runaway battery cell, determine whether to generate new data;
若产生新的数据,则令T=T+1,并返回所述获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;If new data is generated, set T=T+1, and return the obtained current vehicle mileage, the temperature average value of the current temperature probe, and the voltage value of each battery cell in the power battery;
若没有产生新的数据,则结束。If no new data is generated, it ends.
可选的,所述依据所述动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵,具体包括:Optionally, calculating the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery specifically includes:
依据所述动力电池中各电池单体的电压值计算每个时刻电池单体的电压中位数值;Calculate the median value of the voltage of each battery cell at each moment according to the voltage value of each battery cell in the power battery;
依据所述动力电池中各电池单体的电压值和所述每个时刻电池单体的电压中位数值,计算每个时刻的电压偏差矩阵Calculate the voltage deviation matrix at each time according to the voltage value of each battery cell in the power battery and the median voltage value of the battery cell at each time
其中,Mt表示t时刻的电压偏差矩阵,t∈[T-M,T],ΔV1,t表示第一个电池单体在t时刻的电压偏差值,ΔVn,t表示第n个电池单体在t时刻的电压偏差值,V1,t表示第一个电池单体在t时刻的电压值,Vn,t表示第n个电池单体在t时刻的电压值,n表示电池单体的总数量,Vm,t表示t时刻电池单体的电压中位数值。Among them, M t represents the voltage deviation matrix at time t, t∈[TM,T], ΔV 1,t represents the voltage deviation value of the first battery cell at time t, ΔV n,t represents the nth battery cell The voltage deviation value at time t, V 1,t represents the voltage value of the first battery cell at time t, V n,t represents the voltage value of the nth battery cell at time t, and n represents the voltage value of the battery cell The total number, V m,t represents the median value of the cell voltage at time t.
可选的,所述依据所述电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵,具体为:Optionally, according to the voltage deviation matrix, the rated voltage of the battery cell, and the voltage offset increment matrix at the previous moment corresponding to each moment, the voltage offset increment matrix at each moment is calculated, specifically: :
其中,Nt表示t时刻的电压偏移增量矩阵,F1,t表示第一个电池单体在t时刻的电压偏移增量,Fn,t表示第n个电池单体在t时刻的电压偏移增量,F1,t-1表示第一个电池单体在t-1时刻的电压偏移增量,Fn,t-1表示第n个电池单体在t-1时刻的电压偏移增量,V0表示电池单体的额定电压。Among them, N t represents the voltage offset increment matrix at time t, F 1,t represents the voltage offset increment of the first battery cell at time t, and F n, t represents the nth battery cell at time t The voltage offset increment of , F 1,t-1 represents the voltage offset increment of the first battery cell at time t-1, F n,t-1 represents the nth battery cell at time t-1 The voltage offset increment, V 0 represents the rated voltage of the battery cell.
可选的,所述依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵,具体为:Optionally, calculating the voltage offset growth rate matrix at the current moment T according to the voltage offset increment matrix at each moment, specifically:
KT=(k1,T,…,kn,T),K T =(k 1,T ,...,k n,T ),
其中,KT表示当前时刻T的电压偏移增长率矩阵,k1,T表示第一个电池单体在当前时刻T的电压偏移增长率,kn,T表示第n个电池单体在当前时刻T的电压偏移增长率,第i个电池单体在t时刻的电压偏移增长率Among them, K T represents the voltage offset growth rate matrix at the current time T, k 1, T represents the voltage offset growth rate of the first battery cell at the current time T, and k n, T represents the nth battery cell at the current time T. The voltage offset growth rate of the current time T, the voltage offset growth rate of the i-th battery cell at time t
本发明还提供了一种动力电池热失控在线预测系统,包括:The present invention also provides an online prediction system for thermal runaway of a power battery, including:
数据获取模块,用于获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;所述电压值包括电池单体从T-M时刻到当前时刻T的电压数据;一个时刻对应一帧数据;The data acquisition module is used to acquire the current mileage of the car, the temperature average value of the current temperature probe and the voltage value of each battery cell in the power battery; the voltage value includes the voltage of the battery cell from the time T-M to the current time T data; one moment corresponds to one frame of data;
第一矩阵计算模块,用于依据所述动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵;所述电压偏差矩阵由多个电压偏差值构成;一个电池单体对应一个电压偏差值;The first matrix calculation module is used to calculate the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery; the voltage deviation matrix is composed of a plurality of voltage deviation values; one battery cell corresponds to one voltage Deviation;
第二矩阵计算模块,用于依据所述电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵;所述电压偏移增量矩阵由多个电压偏移增量构成;一个电池单体对应一个电压偏移增量;The second matrix calculation module is configured to calculate the voltage offset increment matrix at each moment according to the voltage deviation matrix, the rated voltage of the battery cell, and the voltage offset increment matrix at the previous moment corresponding to each moment; The voltage offset increment matrix is composed of a plurality of voltage offset increments; one battery cell corresponds to one voltage offset increment;
第三矩阵计算模块,用于依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵;所述电压偏移增长率矩阵由多个电压偏移增长率构成;一个电池单体对应一个电压偏移增长率;The third matrix calculation module is used to calculate the voltage offset growth rate matrix at the current time T according to the voltage offset increment matrix at each moment; the voltage offset growth rate matrix is composed of a plurality of voltage offset growth rates; a The battery cell corresponds to a voltage offset growth rate;
预测模块,用于将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果。The prediction module is used to input the voltage offset growth rate of each cell corresponding to the current vehicle mileage, the temperature average value of the current temperature probe and the voltage offset growth rate matrix at the current time T into the thermal runaway cell In the prediction model, the thermal runaway prediction result of the power battery is obtained.
可选的,所述预测模块,具体包括:Optionally, the prediction module specifically includes:
预测矩阵获取单元,用于将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,输出当前时刻T的热失控预测矩阵;The prediction matrix acquisition unit is used to input the current vehicle mileage, the current temperature average value of the temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway In the single prediction model, the thermal runaway prediction matrix at the current time T is output;
第一判断单元,用于依据所述当前时刻T的热失控预测矩阵判断是否存在潜在的热失控电池单体;a first judging unit, configured to judge whether there is a potential thermal runaway battery cell according to the thermal runaway prediction matrix at the current time T;
序号传输单元,用于若存在潜在的热失控电池单体,则将潜在的热失控电池单体的序号传输至汽车的仪表盘、新能源汽车大数据监控平台和车辆维护平台,以实现监测和预警;The serial number transmission unit is used to transmit the serial number of the potential thermal runaway battery cell to the dashboard of the car, the new energy vehicle big data monitoring platform and the vehicle maintenance platform if there is a potential thermal runaway battery cell, so as to realize monitoring and early warning;
第二判断单元,用于若不存在潜在的热失控电池单体,则判断是否产生新的数据;a second judging unit for judging whether to generate new data if there is no potential thermal runaway battery cell;
返回单元,用于若产生新的数据,则令T=T+1,并返回所述数据获取模块;A return unit is used to make T=T+1 if new data is generated, and return to the data acquisition module;
结束单元,用于若没有产生新的数据,则结束。The end unit is used to end if no new data is generated.
可选的,所述第一矩阵计算模块,具体包括:Optionally, the first matrix calculation module specifically includes:
中位数计算单元,用于依据所述动力电池中各电池单体的电压值计算每个时刻电池单体的电压中位数值;a median calculation unit, configured to calculate the median value of the voltage of each battery cell at each moment according to the voltage value of each battery cell in the power battery;
第一矩阵计算单元,用于依据所述动力电池中各电池单体的电压值和所述每个时刻电池单体的电压中位数值,计算每个时刻的电压偏差矩阵The first matrix calculation unit is used to calculate the voltage deviation matrix at each time according to the voltage value of each battery cell in the power battery and the voltage median value of the battery cell at each time
其中,Mt表示t时刻的电压偏差矩阵,t∈[T-M,T],ΔV1,t表示第一个电池单体在t时刻的电压偏差值,ΔVn,t表示第n个电池单体在t时刻的电压偏差值,V1,t表示第一个电池单体在t时刻的电压值,Vn,t表示第n个电池单体在t时刻的电压值,n表示电池单体的总数量,Vm,t表示t时刻电池单体的电压中位数值。Among them, M t represents the voltage deviation matrix at time t, t∈[TM,T], ΔV 1,t represents the voltage deviation value of the first battery cell at time t, ΔV n,t represents the nth battery cell The voltage deviation value at time t, V 1,t represents the voltage value of the first battery cell at time t, V n,t represents the voltage value of the nth battery cell at time t, and n represents the voltage value of the battery cell The total number, V m,t represents the median value of the cell voltage at time t.
可选的,所述第二矩阵计算模块,具体为:Optionally, the second matrix calculation module is specifically:
其中,Nt表示t时刻的电压偏移增量矩阵,F1,t表示第一个电池单体在t时刻的电压偏移增量,Fn,t表示第n个电池单体在t时刻的电压偏移增量,F1,t-1表示第一个电池单体在t-1时刻的电压偏移增量,Fn,t-1表示第n个电池单体在t-1时刻的电压偏移增量,V0表示电池单体的额定电压。Among them, N t represents the voltage offset increment matrix at time t, F 1,t represents the voltage offset increment of the first battery cell at time t, and F n, t represents the nth battery cell at time t The voltage offset increment of , F 1,t-1 represents the voltage offset increment of the first battery cell at time t-1, F n,t-1 represents the nth battery cell at time t-1 The voltage offset increment, V 0 represents the rated voltage of the battery cell.
可选的,所述第三矩阵计算模块,具体为:Optionally, the third matrix calculation module is specifically:
KT=(k1,T,…,kn,T),K T =(k 1,T ,...,k n,T ),
其中,KT表示当前时刻T的电压偏移增长率矩阵,k1,T表示第一个电池单体在当前时刻T的电压偏移增长率,kn,T表示第n个电池单体在当前时刻T的电压偏移增长率,第i个电池单体在t时刻的电压偏移增长率Among them, K T represents the voltage offset growth rate matrix at the current time T, k 1, T represents the voltage offset growth rate of the first battery cell at the current time T, and k n, T represents the nth battery cell at the current time T. The voltage offset growth rate of the current time T, the voltage offset growth rate of the i-th battery cell at time t
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提出了一种动力电池热失控在线预测方法及系统。该方法基于时间序列分析了热失控潜在单体与正常单体电压曲线的差别,然后通过电压偏差绝对值累加的方法将历史数据与在线数据进行耦合,之后采用热失控单体预测模型,对潜在热失控单体进行预测。相比于实验室研究方法,采用实车运行的数据进行分析后再对实车的状态进行预测,更接近实际的工程应用。采用本发明的方法或系统能够实现在实车环境中对动力电池热失控的在线预测,能够在发生热失控的前几天准确地对热失控潜在单体进行实时在线预测,且预测精度高。The invention provides an online prediction method and system for thermal runaway of a power battery. This method analyzes the difference between the voltage curve of a potential thermal runaway cell and a normal cell based on a time series, and then couples the historical data with the online data by accumulating the absolute value of the voltage deviation. Thermal runaway monomers are predicted. Compared with the laboratory research method, the state of the real vehicle is predicted after analyzing the data of the actual vehicle operation, which is closer to the actual engineering application. The method or system of the present invention can realize the online prediction of the thermal runaway of the power battery in the real vehicle environment, and can accurately perform the real-time online prediction of the thermal runaway potential cells a few days before the thermal runaway occurs, and the prediction accuracy is high.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明实施例1一种动力电池热失控在线预测方法的流程图;FIG. 1 is a flowchart of an online prediction method for thermal runaway of a power battery according to
图2为本发明实施例2某个时刻各个单体的电压偏移增长率分布图;2 is a distribution diagram of the voltage offset growth rate of each cell at a certain moment in Embodiment 2 of the present invention;
图3为本发明实施例2不同电压偏移增长率区间内的单体数量频次分布图;3 is a frequency distribution diagram of the number of cells in different voltage offset growth rate intervals in Embodiment 2 of the present invention;
图4为本发明实施例2热失控单体预测模型的示意图;4 is a schematic diagram of a thermal runaway monomer prediction model in Example 2 of the present invention;
图5为本发明实施例2在M≥3800时不同M取值的预测结果图。FIG. 5 is a graph of prediction results of different values of M when M≥3800 according to Embodiment 2 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
图1为本发明实施例1一种动力电池热失控在线预测方法的流程图。FIG. 1 is a flowchart of an online prediction method for thermal runaway of a power battery according to
实施例的力电池热失控在线预测方法,包括:The power battery thermal runaway online prediction method of the embodiment includes:
步骤S1:获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;所述电压值包括电池单体从T-M时刻到当前时刻T的电压数据。Step S1: Acquire the current mileage of the car, the average temperature of the current temperature probe, and the voltage value of each battery cell in the power battery; the voltage value includes the voltage data of the battery cell from time T-M to the current time T.
其中,一个时刻对应一帧数据。Among them, one time corresponds to one frame of data.
步骤S2:依据所述动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵。Step S2: Calculate the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery.
所述电压偏差矩阵由多个电压偏差值构成;一个电池单体对应一个电压偏差值。The voltage deviation matrix is composed of a plurality of voltage deviation values; one battery cell corresponds to one voltage deviation value.
所述步骤S2,具体包括:The step S2 specifically includes:
21:依据所述动力电池中各电池单体的电压值计算每个时刻电池单体的电压中位数值。21: Calculate the median value of the voltage of each battery cell at each moment according to the voltage value of each battery cell in the power battery.
22:依据所述动力电池中各电池单体的电压值和所述每个时刻电池单体的电压中位数值,计算每个时刻的电压偏差矩阵22: Calculate the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery and the voltage median value of the battery cell at each moment
其中,Mt表示t时刻的电压偏差矩阵,t∈[T-M,T],ΔV1,t表示第一个电池单体在t时刻的电压偏差值,ΔVn,t表示第n个电池单体在t时刻的电压偏差值,V1,t表示第一个电池单体在t时刻的电压值,Vn,t表示第n个电池单体在t时刻的电压值,n表示电池单体的总数量,Vm,t表示t时刻电池单体的电压中位数值。Among them, M t represents the voltage deviation matrix at time t, t∈[TM,T], ΔV 1,t represents the voltage deviation value of the first battery cell at time t, ΔV n,t represents the nth battery cell The voltage deviation value at time t, V 1,t represents the voltage value of the first battery cell at time t, V n,t represents the voltage value of the nth battery cell at time t, and n represents the voltage value of the battery cell The total number, V m,t represents the median value of the cell voltage at time t.
步骤S3:依据所述电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵。Step S3: Calculate the voltage offset increment matrix at each moment according to the voltage deviation matrix, the rated voltage of the battery cell, and the voltage offset increment matrix at the previous moment corresponding to each moment.
所述电压偏移增量矩阵由多个电压偏移增量构成;一个电池单体对应一个电压偏移增量。The voltage offset increment matrix is composed of a plurality of voltage offset increments; one battery cell corresponds to one voltage offset increment.
所述步骤S3,具体为:The step S3 is specifically:
其中,Nt表示t时刻的电压偏移增量矩阵,F1,t表示第一个电池单体在t时刻的电压偏移增量,Fn,t表示第n个电池单体在t时刻的电压偏移增量,F1,t-1表示第一个电池单体在t-1时刻的电压偏移增量,Fn,t-1表示第n个电池单体在t-1时刻的电压偏移增量,V0表示电池单体的额定电压。Among them, N t represents the voltage offset increment matrix at time t, F 1,t represents the voltage offset increment of the first battery cell at time t, and F n, t represents the nth battery cell at time t The voltage offset increment of , F 1,t-1 represents the voltage offset increment of the first battery cell at time t-1, F n,t-1 represents the nth battery cell at time t-1 The voltage offset increment, V 0 represents the rated voltage of the battery cell.
步骤S4:依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵。Step S4: Calculate the voltage offset growth rate matrix at the current moment T according to the voltage offset increment matrix at each moment.
所述电压偏移增长率矩阵由多个电压偏移增长率构成;一个电池单体对应一个电压偏移增长率。The voltage offset growth rate matrix is composed of a plurality of voltage offset growth rates; one battery cell corresponds to one voltage offset growth rate.
所述步骤S4,具体为:The step S4 is specifically:
KT=(k1,T,…,kn,T),K T =(k 1,T ,...,k n,T ),
其中,KT表示当前时刻T的电压偏移增长率矩阵,k1,T表示第一个电池单体在当前时刻T的电压偏移增长率,kn,T表示第n个电池单体在当前时刻T的电压偏移增长率,第i个电池单体在t时刻的电压偏移增长率Among them, K T represents the voltage offset growth rate matrix at the current time T, k 1, T represents the voltage offset growth rate of the first battery cell at the current time T, and k n, T represents the nth battery cell at the current time T. The voltage offset growth rate of the current time T, the voltage offset growth rate of the i-th battery cell at time t
步骤S5:将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果。Step S5: Input the current vehicle mileage, the temperature average value of the current temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway cell prediction model , the thermal runaway prediction results of the power battery are obtained.
所述步骤S5,具体包括:The step S5 specifically includes:
51:将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,输出当前时刻T的热失控预测矩阵。51: Input the current vehicle mileage, the current temperature average value of the temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway cell prediction model , output the thermal runaway prediction matrix at the current time T.
52:依据所述当前时刻T的热失控预测矩阵判断是否存在潜在的热失控电池单体。52: Determine whether there is a potential thermal runaway battery cell according to the thermal runaway prediction matrix at the current time T.
若存在潜在的热失控电池单体,则将潜在的热失控电池单体的序号传输至汽车的仪表盘、新能源汽车大数据监控平台和车辆维护平台,以实现监测和预警。If there is a potential thermal runaway battery cell, the serial number of the potential thermal runaway battery cell is transmitted to the dashboard of the car, the new energy vehicle big data monitoring platform and the vehicle maintenance platform to realize monitoring and early warning.
若不存在潜在的热失控电池单体,则判断是否产生新的数据;若产生新的数据,则令T=T+1,并返回所述获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;若没有产生新的数据,则结束。If there is no potential thermal runaway battery cell, then judge whether to generate new data; if new data is generated, set T=T+1, and return to the method of obtaining the current mileage of the car and the temperature of the current temperature probe The average value and the voltage value of each battery cell in the power battery; if no new data is generated, it ends.
本实施例中的动力电池热失控在线预测方法,能够实现在实车环境中对动力电池热失控的在线预测,能够在发生热失控的前几天准确地对热失控潜在单体进行实时在线预测,且预测精度高。The online prediction method for power battery thermal runaway in this embodiment can realize online prediction of power battery thermal runaway in a real vehicle environment, and can accurately predict thermal runaway potential cells in real time a few days before thermal runaway occurs. , and the prediction accuracy is high.
下面提供了一个更为详细的实施例。A more detailed example is provided below.
实施例2Example 2
1、数据的选取1. Data selection
本实施例的数据来自新能源汽车国家大数据平台,该平台可以采集和储存新能源汽车运行时的各项数据,包括在线数据和离线数据。该平台中的数据涵盖车辆位置、速度以及电池系统状态的方面。平台中电动汽车的数据包括车辆行驶状态数据、车辆位置数据、车辆电池系统状态数据、车辆电机系统状态数据、车辆故障报警数据等。本实施例对新能源汽车国家大数据平台上多辆发生过热失控的汽车和正常汽车的数据进行分析。每两帧数据之间的时间间隔为10s。The data in this embodiment comes from the national big data platform for new energy vehicles, which can collect and store various data during the operation of new energy vehicles, including online data and offline data. The data in the platform covers aspects of vehicle location, speed, and battery system status. The data of electric vehicles in the platform includes vehicle driving status data, vehicle position data, vehicle battery system status data, vehicle motor system status data, vehicle fault alarm data, etc. This embodiment analyzes the data of a number of vehicles that are overheating and out of control and normal vehicles on the national big data platform for new energy vehicles. The time interval between each two frames of data is 10s.
数据预处理步骤为:(1)从平台中调取热失控汽车发生热失控前一个月的数据以及正常汽车一个月的数据。(2)将数据进行转码和分割,得到可读的表格文件。(3)根据GB/T32960中的实时信息采集项,提取与热失控预测相关的维度,包括电池单体电压、探针温度、当前汽车行驶里程,得到按时间序列分布的各项数据。(4)通过阈值法去除异常值和空值,得到汽车的有效数据。The data preprocessing steps are: (1) The data of one month before the thermal runaway of the thermal runaway car and the data of one month of the normal car are retrieved from the platform. (2) Transcode and segment the data to obtain a readable table file. (3) According to the real-time information collection items in GB/T32960, the dimensions related to thermal runaway prediction are extracted, including battery cell voltage, probe temperature, and current vehicle mileage, and various data distributed in time series are obtained. (4) The outliers and null values are removed by the threshold method, and the valid data of the car is obtained.
2、热失控单体预测模型2. Thermal runaway monomer prediction model
造成汽车电池热失控的原因有很多,主要以机械滥用和电气滥用为主,其中机械滥用包括电池碰撞,挤压,穿刺等,而电气滥用主要包括内部短路、外部短路、过充电、过放电等。大多数热失控是从某个或某几个单体开始,逐渐扩散,电池管理系统BMS可以通过监测电池的温度、电压等参数对热失控现象进行报警,但是由于热失控发生时电池温度和电压急速上升,目前BMS实时在线监测也很难避免事故的发生,因此对潜在热失控单体的识别与预测是至关重要的。幸运的是,基于大数据的方法可以对电池发生热失控前一段时间的数据进行分析,从而可以预测电池潜在的热失控单体,在热失控发生的前就可以对其进行预测,避免了事故的发生。There are many reasons for thermal runaway of car batteries, mainly mechanical abuse and electrical abuse. Mechanical abuse includes battery collision, extrusion, puncture, etc., while electrical abuse mainly includes internal short circuit, external short circuit, overcharge, overdischarge, etc. . Most thermal runaway starts from one or several cells and gradually spreads. The battery management system BMS can alarm the thermal runaway phenomenon by monitoring the temperature, voltage and other parameters of the battery. However, due to the temperature and voltage of the battery when thermal runaway occurs With the rapid rise, it is difficult to avoid accidents in real-time online monitoring of BMS. Therefore, the identification and prediction of potential thermal runaway monomers is crucial. Fortunately, the method based on big data can analyze the data for a period of time before the thermal runaway of the battery occurs, so that the potential thermal runaway cell of the battery can be predicted, and the thermal runaway can be predicted before the occurrence of thermal runaway, avoiding accidents. happened.
1)热失控单体预测模型构建1) Construction of thermal runaway monomer prediction model
电池的热失控受多个方面的因素影响,而电池单体电压是故障的综合体现。为了研究电池潜在热失控故障,对发生热失控前一个月各个电池单体电压进行统计分析,通过分析可知,在发生热失控的前一个月,热失控潜在故障单体电压的波动比正常的电池单体更大,且多次出现电压过低的情况,在放电的末期,热失控潜在故障单体电压多次低于3.3V,而端电压可以反映电池SOC的大小,因此该热失控潜在单体在放电的末期产生了过放电。此外,在充电的末期,热失控潜在单体电压比正常单体电压略高,说明该热失控潜在单体在充电的末期产生了轻微的过充电,随着充放电循环次数的增加,该电池电化学性质逐渐变差。The thermal runaway of the battery is affected by many factors, and the battery cell voltage is a comprehensive manifestation of the failure. In order to study the potential thermal runaway fault of the battery, a statistical analysis was carried out on the voltage of each battery cell one month before the occurrence of thermal runaway. It can be seen from the analysis that in the month before the thermal runaway occurs, the fluctuation of the cell voltage of the thermal runaway potential fault is higher than that of the normal battery. The cell is larger, and the voltage is too low for many times. At the end of the discharge, the voltage of the thermal runaway potential fault cell is lower than 3.3V many times, and the terminal voltage can reflect the size of the battery SOC, so the thermal runaway potential single The body produces an overdischarge at the end of the discharge. In addition, at the end of charging, the potential cell voltage for thermal runaway is slightly higher than the normal cell voltage, indicating that the potential cell for thermal runaway has a slight overcharge at the end of charging. The electrochemical properties gradually deteriorated.
为了定量描述电池单体电压的波动程度,计算每帧数据中电池单体电压偏差,计算公式为:In order to quantitatively describe the fluctuation degree of the battery cell voltage, the voltage deviation of the battery cell in each frame of data is calculated, and the calculation formula is as follows:
ΔVi,t=Vi,t-Vmedian,t ΔV i,t =V i,t -V median,t
式中,ΔVi,t为第i个单体第t帧数据的电压偏差,单位为V;Vi,t为第i个单体第t帧数据的电压,单位为V,Vmedian,t为t帧数据中所有单体电压的中位数,单位为V。In the formula, ΔV i,t is the voltage deviation of the data of the t-th frame of the i-th cell, the unit is V; V i,t is the voltage of the t-th frame of the i-th cell, the unit is V, V median,t is the median of all cell voltages in the t-frame data, in V.
对热失控单体和正常单体一个月内的电压偏差进行统计,由统计数据可知,在发生热失控的前一个月,正常单体的电压偏差一般保持在-0.1V—+0.1V之间,具有较好的一致性,而热失控潜在单体的电压偏差多次超出-0.1V—+0.1V区间,明显比其他正常单体偏差更大,单体的电压偏差甚至多次超出-0.5V,且电压偏差呈现忽正忽负的现象。The voltage deviation of the thermal runaway cell and the normal cell within one month is counted. According to the statistical data, the voltage deviation of the normal cell is generally kept between -0.1V and +0.1V in the month before the thermal runaway occurs. , has a good consistency, and the voltage deviation of the potential thermal runaway cell exceeds the range of -0.1V—+0.1V many times, which is obviously larger than that of other normal cells, and the voltage deviation of the cell even exceeds -0.5 many times. V, and the voltage deviation shows a phenomenon of sudden positive and negative.
从上述对电池单体电压的分析可以推断出,电池单体的热失控可以通过电压的偏差来反映,并且有一个逐渐恶化的积累过程。将当前时刻与历史时刻各电池单体电压偏差绝对值累加起来作为该单体当前电压偏移增量,从而将汽车当前数据与历史数据耦合,对潜在热失控单体进行识别。设当前时刻数据为第T帧,各电池单体电压偏移增量定义如下:From the above analysis of the cell voltage, it can be inferred that the thermal runaway of the cell can be reflected by the deviation of the voltage, and there is a gradually deteriorating accumulation process. The absolute value of the voltage deviation of each battery cell at the current moment and the historical moment is accumulated as the current voltage offset increment of the cell, so as to couple the current data of the car with the historical data, and identify the potential thermal runaway cell. Assuming that the current moment data is the T-th frame, the voltage offset increment of each battery cell is defined as follows:
式中,Fi,T为第i个单体第T帧数据的电压偏移增量,V0为电池单体额定电压,单位为V。In the formula, F i, T is the voltage offset increment of the data of the i-th cell in the T-th frame, V 0 is the rated voltage of the battery cell, and the unit is V.
由上述公式可以得出T-1帧数据对应时刻各电池单体电压偏移增量:From the above formula, the voltage offset increment of each battery cell at the time corresponding to the T-1 frame data can be obtained:
式中,Fi,T-1为第i个单体的T-1帧数据的电压偏移增量In the formula, F i, T-1 is the voltage offset increment of the T-1 frame data of the i-th cell
由上面两个公式可以最终得到:From the above two formulas, we can finally get:
汽车每产生一帧新的数据时,可以通过上述公式中的Fi,T与Fi,T-1的关系直接算出Fi,T,而不需采用再将所有单体偏差绝对值进行累加的方式,因此不会因为汽车数据量的增加而增加计算量。Every time the car generates a new frame of data, F i,T can be directly calculated by the relationship between F i ,T and F i,T-1 in the above formula, instead of accumulating the absolute values of all individual deviations way, so there will be no increase in the amount of computation due to the increase in the amount of car data.
根据上述公式计算出各个时刻每个电池单体的电压偏移增量,通过分析可知,各电池单体各时刻的电压偏移增量与随时间大致呈线性变化,且热失控潜在单体比正常单体电压偏移增量增加更快。According to the above formula, the voltage offset increment of each battery cell at each moment is calculated. It can be seen from the analysis that the voltage offset increment of each battery cell at each moment varies roughly linearly with time, and the potential thermal runaway cell ratio The normal cell voltage offset increment increases faster.
根据上述分析可知,可以对电池单体的电压偏移增量曲线进行最小二乘直线拟合,用拟合所得直线的斜率来识别潜在热失控单体。但是随着汽车数据量不断增加,最小二乘直线拟合计算时间也不断增加,因此定义计算步长M来限制参与拟合的历史数据的数量。According to the above analysis, the least squares line fitting can be performed on the voltage shift increment curve of the battery cell, and the potential thermal runaway cell can be identified by the slope of the fitted line. However, with the continuous increase of the amount of car data, the calculation time of the least squares line fitting is also increasing, so the calculation step M is defined to limit the amount of historical data involved in the fitting.
计算步长M表示车辆每产生一帧新数据时,参与电压偏移增量拟合的历史数据的帧数。计算步长是一个常数,可以在设计BMS控制策略时根据大数据平台和BMS的计算能力确定,保证数据拟合计算时间小于汽车每两帧数据之间的时间间隔,从而实现在线实时预测。The calculation step size M represents the number of historical data frames involved in the voltage offset incremental fitting each time the vehicle generates a new frame of data. The calculation step size is a constant, which can be determined according to the computing power of the big data platform and BMS when designing the BMS control strategy, to ensure that the calculation time of data fitting is less than the time interval between every two frames of data of the car, so as to realize online real-time prediction.
汽车每产生一帧新数据时,对当前时刻数据和前M帧数据的电压偏移增量进行最小二乘法直线拟合,计算出各个单体的电压偏移增量曲线的斜率Ki,定义为电压偏移增长率,其计算公式如下:Every time a new frame of data is generated by the car, the least-squares linear fitting is performed on the voltage offset increments of the current moment data and the previous M frames of data, and the slope K i of the voltage offset increment curve of each cell is calculated, which is defined as is the voltage offset growth rate, and its calculation formula is as follows:
式中,Ki为第i个单体的电压偏移增长率,t为数据帧数,Fi,t为第t帧数据中第i个单体电压偏移增量。In the formula, Ki is the voltage offset growth rate of the ith cell, t is the number of data frames, and F i,t is the voltage offset increment of the ith cell in the t-th frame of data.
图2为本发明实施例2某个时刻各个单体的电压偏移增长率分布图,图3为本发明实施例2不同电压偏移增长率区间内的单体数量频次分布图。由图可见,125号热失控单体的电压偏移增长率大于其他单体,且大多数单体的电压偏移增长率在0.375*10(-5)以下,因此通过在线计算各单体的电压偏移增长率可以对热失控潜在单体进行识别。FIG. 2 is a distribution diagram of the voltage offset growth rate of each cell at a certain time in Embodiment 2 of the present invention, and FIG. 3 is a frequency distribution diagram of the number of cells in different voltage offset growth rate intervals in Embodiment 2 of the present invention. It can be seen from the figure that the voltage excursion growth rate of No. 125 thermal runaway cell is larger than that of other cells, and the voltage excursion growth rate of most cells is below 0.375*10(-5). The voltage excursion growth rate can identify potential cells for thermal runaway.
虽然电池单体电压是故障的综合体现,但是电池热失控等故障与电池的老化程度也有关系,电池老化程度用当前已行驶里程表示,此外,温度是热失控最明显的表征参数,因此将各个探针温度也作为潜在热失控单体的判断依据之一。将各个单体的电压偏移增长率、当前行驶里程、当前温度探针温度平均值作为神经网络的输入。Although the battery cell voltage is a comprehensive manifestation of the fault, the battery thermal runaway and other faults are also related to the aging degree of the battery. The aging degree of the battery is represented by the current mileage. In addition, the temperature is the most obvious characterization parameter of thermal runaway, so each The probe temperature is also used as one of the criteria for judging potential thermal runaway monomers. The voltage excursion growth rate of each cell, the current mileage, and the average temperature of the current temperature probe are used as the input of the neural network.
由于本模型是基于已发生热失控汽车的实车数据建立模型,与汽车的实际情况较为符合,有理由相信根据模型判断出的潜在热失控单体在之后一段时间内大概率会发生热失控故障,应及时予以维护。因此本模型只预测某单体是否为热失控潜在单体,而不对其发生热失控的概率进行预测。将是否为潜在热失控单体作为神经网络的输出,训练潜在热失控单体预测模型。神经网络训练模型如图4。Since this model is based on the actual vehicle data of the vehicle that has occurred thermal runaway, it is more in line with the actual situation of the vehicle. , should be maintained in time. Therefore, this model only predicts whether a certain monomer is a potential monomer of thermal runaway, but does not predict the probability of thermal runaway. Whether it is a potential thermal runaway cell is used as the output of the neural network to train a potential thermal runaway cell prediction model. The neural network training model is shown in Figure 4.
2)热失控单体预测算法流程2) Thermal runaway monomer prediction algorithm flow
根据上述对电池单体建立的热失控预测模型,提出一种基于数据驱动的电池热失控预测方法,其核心思想是将汽车当前数据与历史数据结合起来,实时在线识别潜在热失控单体。设汽车当前时刻为第T帧数据,步骤为:According to the thermal runaway prediction model established for battery cells, a data-driven battery thermal runaway prediction method is proposed. Let the current moment of the car be the T-th frame data, the steps are:
(1)设定在线拟合数据帧数M。(1) Set the number M of online fitting data frames.
(2)提取汽车的第T帧数据(当前时刻数据),计算第T帧数据中所有电池单体电压的中位数。(2) Extract the T-th frame data (data at the current moment) of the car, and calculate the median of all battery cell voltages in the T-th frame data.
(3)求各单体电压与电压中位数的差值的绝对值,作为当前时刻电压偏差矩阵:(3) Find the absolute value of the difference between the voltage of each cell and the median of the voltage, as the voltage deviation matrix at the current moment:
MT=(|V1,T-Vm,T|,…,|Vn,T-Vm,T|)M T =(|V 1,T -V m,T |,...,|V n,T -V m,T |)
式中,MT为当前时刻电压偏差矩阵,Vm,T为当前时刻所有电池单体电压的中位数,V1,T,V2,T,…,Vi,T,…,Vn,T为各个电池单体电压。In the formula, M T is the voltage deviation matrix at the current moment, V m,T is the median of all battery cell voltages at the current moment, V 1,T ,V 2,T ,…,V i,T ,…,V n , T is the voltage of each battery cell.
(4)根据公式计算当前时刻电压偏移增量矩阵:(4) Calculate the voltage offset increment matrix at the current moment according to the formula:
式中,NT为当前时刻电压偏移增量矩阵。In the formula, N T is the voltage offset increment matrix at the current moment.
(5)将电压偏移增量矩阵中(T-M)到T帧数据进行最小二乘法直线拟合,得到各个单体的当前时刻电压偏移增长率矩阵。(5) Perform a least-squares linear fitting on the data from (T-M) to T frames in the voltage offset increment matrix to obtain the voltage offset growth rate matrix of each cell at the current moment.
KT=(k1,T,…,kn,T)K T =(k 1,T ,...,k n,T )
式中,KT为当前时刻电压偏移增长率矩阵,k1,T,k2,T,…,ki,T,…,kn,T为各个单体的电压偏移增长率。In the formula, K T is the voltage offset growth rate matrix at the current moment, and k 1,T ,k 2,T ,…,ki ,T ,…,k n,T is the voltage offset growth rate of each cell.
(6)将各个单体的电压偏移增长率,当前行驶里程,当前温度探针温度平均值,输入到热失控预测模型中,判断潜在热失控单体。(6) Input the voltage offset growth rate of each cell, the current mileage, and the average temperature of the current temperature probe into the thermal runaway prediction model to determine the potential thermal runaway cell.
(7)汽车每产生一帧新数据时,重复执行(1)-(6),不断循环。(7) Every time the car generates a new frame of data, it repeats (1)-(6), and loops continuously.
3、实车数据验证3. Real vehicle data verification
实车验证选用的总样本数据、训练数据和检验数据如表1所示。The total sample data, training data and test data selected for real vehicle verification are shown in Table 1.
表1实车验证数据Table 1 Real vehicle verification data
设置预测矩阵P来记录电池热失控的预测情况:Set the prediction matrix P to record the prediction of battery thermal runaway:
式中,pij(i=1,2,…,t)(j=1,2,…,n)表示i时刻j电池单体根据模型计算出来的单体热失控的预测值,如果满足热失控预警的条件,则将pij记为1,否则记为0。In the formula, p ij (i=1,2,...,t)(j=1,2,...,n) represents the predicted value of the thermal runaway of the battery cell j at time i calculated according to the model. If the thermal runaway is satisfied, For the condition of out-of-control warning, p ij is recorded as 1, otherwise it is recorded as 0.
本车发生热失控的电池单体为125号单体,将计算步长M设置为5000,由仿真验证结果可知,125号潜在热失控单体第一次发生预警时的数据为第49111帧,之后一直为预警状态,即可以在7天以前对热失控故障进行预警;而其余单体均没有预警记录。验证了算法的准确性。The thermal runaway battery cell of this vehicle is No. 125 cell, and the calculation step M is set to 5000. From the simulation verification results, it can be seen that the data of the first warning of No. 125 potential thermal runaway cell is the 49111th frame. After that, it has been in the early warning state, that is, the thermal runaway fault can be warned before 7 days; and the other monomers have no early warning records. The accuracy of the algorithm is verified.
为了研究计算步长M对预测结果的影响,对M=100,200,300,…,9900,10000情况下热失控潜在单体的预测结果进行比较。通过对M=100,100,4000,10000时对应的预测结果的分析,可知,对于该车辆,当M<3800时,不能准确地进行预测,数据量过少导致拟合的电压偏移增长率受电压波动影响较大,一些正常单体被错误地判断为热失控潜在单体;M≥3800时,可以准确地对热失控潜在单体进行预测。In order to study the influence of the calculation step size M on the prediction results, the prediction results of the thermal runaway potential monomers in the case of M=100, 200, 300, ..., 9900, 10000 were compared. Through the analysis of the corresponding prediction results when M=100, 100, 4000, and 10000, it can be seen that for this vehicle, when M<3800, the prediction cannot be accurately performed, and the amount of data is too small, which leads to the fitted voltage offset growth rate Affected by voltage fluctuations, some normal cells are wrongly judged as potential cells for thermal runaway; when M≥3800, the potential cells for thermal runaway can be accurately predicted.
图5为本发明实施例2在M≥3800时不同M取值的预测结果图,其中纵坐标表示第一次预测出潜在热失控单体的帧数n,n越小,表明预测越及时。由图可见,n随着M的增大而增大,且增长趋势越来越慢,这是因为随着M的增大,参与拟合的数据中新产生的数据占比减小,导致预测出热失控潜在单体的时间较为滞后。此外,M从3800增长到10000过程中,n从48135增长到了51031,而相邻两帧数据之间的间隔为10s,因此滞后了8个小时,相比于可以提前7天预测潜在热失控单体,增大M导致的预测滞后性不是很明显。但是由于增大M会增加模型的计算时间,M不应选取过大,由电压偏移增长率的公式可知,乘法运算的计算量为2M+2,加法运算的计算量为5M+5。5 is a graph of prediction results for different values of M when M ≥ 3800 in Example 2 of the present invention, where the ordinate represents the number of frames n where the potential thermal runaway monomer is predicted for the first time, and the smaller n is, the more timely the prediction is. It can be seen from the figure that n increases with the increase of M, and the growth trend becomes slower and slower. This is because with the increase of M, the proportion of newly generated data in the data participating in the fitting decreases, resulting in the prediction of The time for the potential monomer to be released from thermal runaway is relatively delayed. In addition, in the process of M increasing from 3800 to 10000, n increased from 48135 to 51031, and the interval between two adjacent frames of data is 10s, so the lag is 8 hours, compared with 7 days in advance to predict potential thermal runaway orders However, the prediction lag caused by increasing M is not very obvious. However, since increasing M will increase the calculation time of the model, M should not be selected too large. From the formula of the voltage offset growth rate, it can be seen that the calculation amount of the multiplication operation is 2M+2, and the calculation amount of the addition operation is 5M+5.
本实施例的动力电池热失控在线预测方法,对发生热失控的汽车前一个月的动力电池单体数据进行分析,首先基于时间序列分析了热失控潜在单体与正常单体电压曲线的差别,进而分析电压的偏差对电池过充电过放电的影响,然后通过电压偏差绝对值累加的方法将历史数据与当前数据进行耦合,并基于神经网络的方法建立热失控单体预测模型,对潜在热失控单体进行预测,最后采用实车数据对模型进行验证。经验证,本实施例的动力电池热失控在线预测方法可以准确地对热失控潜在单体进行实时在线预测,为动力电池的在线热失控诊断提供一定的设计思路和参考依据。The on-line prediction method for thermal runaway of a power battery in this embodiment analyzes the data of the power battery cells in the previous month of the car that has thermal runaway. First, based on the time series, the difference between the voltage curves of the potential cells of thermal runaway and the normal cells is analyzed. Then, the influence of voltage deviation on battery overcharge and overdischarge is analyzed, and then the historical data and current data are coupled by the method of accumulating the absolute value of voltage deviation, and a thermal runaway cell prediction model is established based on the neural network method to prevent potential thermal runaway. The single unit is predicted, and finally the model is verified with real vehicle data. It has been verified that the power battery thermal runaway online prediction method of this embodiment can accurately perform real-time online prediction on potential thermal runaway cells, and provide certain design ideas and reference for the power battery online thermal runaway diagnosis.
本实施例的动力电池热失控在线预测方法,具有以下特点:The online prediction method for thermal runaway of a power battery in this embodiment has the following characteristics:
(1)将汽车当前数据与历史数据耦合,预测电池组中潜在热失控单体。(1) Coupling current vehicle data with historical data to predict potential thermal runaway cells in the battery pack.
(2)实时在线故障预测,随汽车数据的更新不断迭代,随着数据量的增加,潜在热失控单体的电压偏移增量与其他正常单体的电压偏移增量的差别越来越大,因此预测准确度越来越高。(2) Real-time online fault prediction, iterative with the update of automobile data, as the amount of data increases, the difference between the voltage offset increment of the potential thermal runaway cell and the voltage offset increment of other normal cells becomes more and more Therefore, the prediction accuracy is getting higher and higher.
(3)由于本实施例只需考虑各单体电压的偏差,因此不需要识别汽车当前状态,也可以避免数据丢帧对预测结果的影响,提高了预测的准确度。(3) Since this embodiment only needs to consider the deviation of the voltage of each cell, it is not necessary to identify the current state of the vehicle, and the influence of data frame loss on the prediction result can also be avoided, thereby improving the prediction accuracy.
(4)通过电压偏移增长率的大小能同时定量判断一致性较好和较差的电池单体,为电池一致性的评估提供方法。(4) The battery cells with good and poor consistency can be quantitatively judged at the same time by the magnitude of the voltage offset growth rate, which provides a method for the evaluation of battery consistency.
(5)本实施例预测某单体是否为热失控潜在单体,没有对其发生热失控的概率进行预测。(5) This embodiment predicts whether a certain monomer is a potential monomer of thermal runaway, and does not predict the probability of thermal runaway.
(6)本实施例对电池不一致性引起的电池过充过放等热失控故障能较准确地进行预测。(6) This embodiment can more accurately predict thermal runaway faults such as battery overcharge and overdischarge caused by battery inconsistency.
本发明还提供了一种动力电池热失控在线预测系统,包括:The present invention also provides an online prediction system for thermal runaway of a power battery, including:
数据获取模块,用于获取当前汽车的行驶里程、当前温度探针的温度平均值和动力电池中各电池单体的电压值;所述电压值包括电池单体从T-M时刻到当前时刻T的电压数据;一个时刻对应一帧数据。The data acquisition module is used to acquire the current mileage of the car, the temperature average value of the current temperature probe and the voltage value of each battery cell in the power battery; the voltage value includes the voltage of the battery cell from the time T-M to the current time T Data; a moment corresponds to a frame of data.
第一矩阵计算模块,用于依据所述动力电池中各电池单体的电压值计算每个时刻的电压偏差矩阵;所述电压偏差矩阵由多个电压偏差值构成;一个电池单体对应一个电压偏差值。The first matrix calculation module is used to calculate the voltage deviation matrix at each moment according to the voltage value of each battery cell in the power battery; the voltage deviation matrix is composed of a plurality of voltage deviation values; one battery cell corresponds to one voltage Deviation.
第二矩阵计算模块,用于依据所述电压偏差矩阵、电池单体的额定电压和每个时刻对应的上一时刻的电压偏移增量矩阵,计算每个时刻的电压偏移增量矩阵;所述电压偏移增量矩阵由多个电压偏移增量构成;一个电池单体对应一个电压偏移增量。The second matrix calculation module is configured to calculate the voltage offset increment matrix at each moment according to the voltage deviation matrix, the rated voltage of the battery cell, and the voltage offset increment matrix at the previous moment corresponding to each moment; The voltage offset increment matrix is composed of a plurality of voltage offset increments; one battery cell corresponds to one voltage offset increment.
第三矩阵计算模块,用于依据每个时刻的电压偏移增量矩阵计算当前时刻T的电压偏移增长率矩阵;所述电压偏移增长率矩阵由多个电压偏移增长率构成;一个电池单体对应一个电压偏移增长率。The third matrix calculation module is used to calculate the voltage offset growth rate matrix at the current time T according to the voltage offset increment matrix at each moment; the voltage offset growth rate matrix is composed of a plurality of voltage offset growth rates; a A battery cell corresponds to a voltage offset growth rate.
预测模块,用于将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,得到动力电池热失控预测结果。The prediction module is used to input the voltage offset growth rate of each cell corresponding to the current vehicle mileage, the temperature average value of the current temperature probe and the voltage offset growth rate matrix at the current time T into the thermal runaway cell In the prediction model, the thermal runaway prediction result of the power battery is obtained.
作为一种可选的实施方式,所述预测模块,具体包括:As an optional implementation manner, the prediction module specifically includes:
预测矩阵获取单元,用于将所述当前汽车的行驶里程、当前温度探针的温度平均值和当前时刻T的电压偏移增长率矩阵对应的各个单体的电压偏移增长率输入至热失控单体预测模型中,输出当前时刻T的热失控预测矩阵;The prediction matrix acquisition unit is used to input the current vehicle mileage, the current temperature average value of the temperature probe, and the voltage offset growth rate of each cell corresponding to the voltage offset growth rate matrix at the current time T into the thermal runaway In the single prediction model, the thermal runaway prediction matrix at the current time T is output;
第一判断单元,用于依据所述当前时刻T的热失控预测矩阵判断是否存在潜在的热失控电池单体;a first judging unit, configured to judge whether there is a potential thermal runaway battery cell according to the thermal runaway prediction matrix at the current time T;
序号传输单元,用于若存在潜在的热失控电池单体,则将潜在的热失控电池单体的序号传输至汽车的仪表盘、新能源汽车大数据监控平台和车辆维护平台,以实现监测和预警;The serial number transmission unit is used to transmit the serial number of the potential thermal runaway battery cell to the dashboard of the car, the new energy vehicle big data monitoring platform and the vehicle maintenance platform if there is a potential thermal runaway battery cell, so as to realize monitoring and early warning;
第二判断单元,用于若不存在潜在的热失控电池单体,则判断是否产生新的数据;a second judging unit for judging whether to generate new data if there is no potential thermal runaway battery cell;
返回单元,用于若产生新的数据,则令T=T+1,并返回所述数据获取模块;A return unit is used to make T=T+1 if new data is generated, and return to the data acquisition module;
结束单元,用于若没有产生新的数据,则结束。The end unit is used to end if no new data is generated.
作为一种可选的实施方式,所述第一矩阵计算模块,具体包括:As an optional implementation manner, the first matrix calculation module specifically includes:
中位数计算单元,用于依据所述动力电池中各电池单体的电压值计算每个时刻电池单体的电压中位数值;a median calculation unit, configured to calculate the median value of the voltage of each battery cell at each moment according to the voltage value of each battery cell in the power battery;
第一矩阵计算单元,用于依据所述动力电池中各电池单体的电压值和所述每个时刻电池单体的电压中位数值,计算每个时刻的电压偏差矩阵The first matrix calculation unit is used to calculate the voltage deviation matrix at each time according to the voltage value of each battery cell in the power battery and the voltage median value of the battery cell at each time
其中,Mt表示t时刻的电压偏差矩阵,t∈[T-M,T],ΔV1,t表示第一个电池单体在t时刻的电压偏差值,ΔVn,t表示第n个电池单体在t时刻的电压偏差值,V1,t表示第一个电池单体在t时刻的电压值,Vn,t表示第n个电池单体在t时刻的电压值,n表示电池单体的总数量,Vm,t表示t时刻电池单体的电压中位数值。Among them, M t represents the voltage deviation matrix at time t, t∈[TM,T], ΔV 1,t represents the voltage deviation value of the first battery cell at time t, ΔV n,t represents the nth battery cell The voltage deviation value at time t, V 1,t represents the voltage value of the first battery cell at time t, V n,t represents the voltage value of the nth battery cell at time t, and n represents the voltage value of the battery cell The total number, V m,t represents the median value of the cell voltage at time t.
作为一种可选的实施方式,所述第二矩阵计算模块,具体为:As an optional implementation manner, the second matrix calculation module is specifically:
其中,Nt表示t时刻的电压偏移增量矩阵,F1,t表示第一个电池单体在t时刻的电压偏移增量,Fn,t表示第n个电池单体在t时刻的电压偏移增量,F1,t-1表示第一个电池单体在t-1时刻的电压偏移增量,Fn,t-1表示第n个电池单体在t-1时刻的电压偏移增量,V0表示电池单体的额定电压。Among them, N t represents the voltage offset increment matrix at time t, F 1,t represents the voltage offset increment of the first battery cell at time t, and F n, t represents the nth battery cell at time t F 1,t-1 represents the voltage offset increment of the first battery cell at time t-1, F n,t-1 represents the nth battery cell at time t-1 The voltage offset increment, V 0 represents the rated voltage of the battery cell.
作为一种可选的实施方式,所述第三矩阵计算模块,具体为:As an optional implementation manner, the third matrix calculation module is specifically:
KT=(k1,T,…,kn,T),K T =(k 1,T ,...,k n,T ),
其中,KT表示当前时刻T的电压偏移增长率矩阵,k1,T表示第一个电池单体在当前时刻T的电压偏移增长率,kn,T表示第n个电池单体在当前时刻T的电压偏移增长率,第i个电池单体在t时刻的电压偏移增长率Among them, K T represents the voltage offset growth rate matrix at the current time T, k 1, T represents the voltage offset growth rate of the first battery cell at the current time T, and k n, T represents the nth battery cell at the current time T. The voltage offset growth rate of the current time T, the voltage offset growth rate of the i-th battery cell at time t
本实施例中的动力电池热失控在线预测系统,能够实现在实车环境中对动力电池热失控的在线预测,能够在发生热失控的前几天准确地对热失控潜在单体进行实时在线预测,且预测精度高。The power battery thermal runaway online prediction system in this embodiment can realize the online prediction of the power battery thermal runaway in the real vehicle environment, and can accurately perform real-time online prediction on the potential cells of thermal runaway a few days before the occurrence of thermal runaway. , and the prediction accuracy is high.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910509963.7A CN110161414B (en) | 2019-06-13 | 2019-06-13 | A method and system for online prediction of power battery thermal runaway |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910509963.7A CN110161414B (en) | 2019-06-13 | 2019-06-13 | A method and system for online prediction of power battery thermal runaway |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110161414A CN110161414A (en) | 2019-08-23 |
CN110161414B true CN110161414B (en) | 2020-11-06 |
Family
ID=67628993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910509963.7A Active CN110161414B (en) | 2019-06-13 | 2019-06-13 | A method and system for online prediction of power battery thermal runaway |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110161414B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110531195B (en) * | 2019-09-09 | 2021-06-01 | 河南理工大学 | Method for identifying magnetizing inrush current and internal fault of transformer |
CN112644336B (en) * | 2019-10-11 | 2022-11-04 | 北京车和家信息技术有限公司 | Power battery thermal runaway prediction method and device |
CN110794305B (en) * | 2019-10-14 | 2021-03-16 | 北京理工大学 | A power battery fault diagnosis method and system |
CN110907833B (en) * | 2019-10-16 | 2021-01-29 | 北京理工大学 | A power battery fault diagnosis method based on sliding window |
CN111913113A (en) * | 2020-07-14 | 2020-11-10 | 蜂巢能源科技有限公司 | Method and device for identifying short circuit in electric core, storage medium and electronic equipment |
CN111766531B (en) * | 2020-07-31 | 2021-07-16 | 中国汽车工程研究院股份有限公司 | A cumulative risk modeling method for judging battery pack voltage consistency |
CN111948541A (en) * | 2020-08-13 | 2020-11-17 | 中国第一汽车股份有限公司 | Vehicle battery overvoltage prediction method and device, server and storage medium |
CN112092675B (en) * | 2020-08-31 | 2022-03-25 | 长城汽车股份有限公司 | Battery thermal runaway early warning method, system and server |
CN112363061A (en) * | 2020-11-11 | 2021-02-12 | 上海电享信息科技有限公司 | Thermal runaway risk assessment method based on big data |
CN112784482B (en) * | 2021-01-15 | 2025-02-25 | 东软睿驰汽车技术(沈阳)有限公司 | A thermal runaway prediction method and device |
US20220352737A1 (en) * | 2021-04-29 | 2022-11-03 | GM Global Technology Operations LLC | Thermal runaway prognosis by detecting abnormal cell voltage and soc degeneration |
CN113533992B (en) * | 2021-07-26 | 2022-04-08 | 北京理工大学 | An early warning method for thermal runaway of lithium-ion battery based on ultrasonic guided wave sensor |
CN114966427B (en) * | 2021-08-03 | 2024-12-03 | 长城汽车股份有限公司 | A performance detection method, device and system for a battery thermal management system |
CN116068441B (en) * | 2021-10-29 | 2024-11-05 | 北汽福田汽车股份有限公司 | Power battery internal short circuit warning method, device and vehicle |
CN114509678B (en) * | 2022-02-10 | 2024-06-18 | 北京理工大学重庆创新中心 | Power battery thermal runaway prediction method based on big data |
CN115221798B (en) * | 2022-09-19 | 2022-12-30 | 中南大学 | Battery thermal process space-time modeling prediction method, system, equipment and medium |
CN115267589B (en) * | 2022-09-26 | 2023-01-06 | 陕西汽车集团股份有限公司 | Multi-parameter joint diagnosis method for battery faults of electric vehicle |
CN116106757B (en) * | 2022-12-06 | 2024-10-01 | 北汽福田汽车股份有限公司 | Battery cell detection method and device, storage medium and electronic equipment |
CN115863795B (en) * | 2022-12-06 | 2023-09-12 | 北汽福田汽车股份有限公司 | Data processing method, data processing device, vehicle, and storage medium |
CN117339913A (en) * | 2023-10-31 | 2024-01-05 | 科立鑫(珠海)新能源有限公司 | Waste battery recovery system |
CN117761542A (en) * | 2023-12-27 | 2024-03-26 | 江苏讯汇科技股份有限公司 | Battery cabinet thermal runaway early warning method based on battery internal temperature estimation |
CN118795351B (en) * | 2024-07-02 | 2025-01-28 | 中科科凌(北京)科技有限公司 | A battery explosion-proof prediction method and device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033759A (en) * | 2012-12-11 | 2013-04-10 | 上海市电力公司 | Storage battery thermal runway intelligent judgment method |
CN105589046A (en) * | 2016-01-29 | 2016-05-18 | 金龙联合汽车工业(苏州)有限公司 | Detection and alarm method of power battery pack thermal runaway diffusion |
CN106066457A (en) * | 2016-05-25 | 2016-11-02 | 烟台创为新能源科技有限公司 | A kind of battery thermal runaway detecting system and detection method thereof |
CN107702801A (en) * | 2017-11-16 | 2018-02-16 | 南京工业大学 | Temperature detection-based thermal runaway early warning device and method for lithium ion battery |
CN107861065A (en) * | 2017-09-30 | 2018-03-30 | 中国汽车技术研究中心 | Thermal runaway test method for power battery test |
CN108446434A (en) * | 2018-02-07 | 2018-08-24 | 清华大学 | Prediction technique, device and the computer readable storage medium of power battery thermal runaway safety |
CN108711893A (en) * | 2018-04-08 | 2018-10-26 | 江西优特汽车技术有限公司 | A kind of power battery thermal runaway early warning system and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9577443B2 (en) * | 2010-06-03 | 2017-02-21 | C&C Power, Inc. | Battery system and management method |
-
2019
- 2019-06-13 CN CN201910509963.7A patent/CN110161414B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033759A (en) * | 2012-12-11 | 2013-04-10 | 上海市电力公司 | Storage battery thermal runway intelligent judgment method |
CN105589046A (en) * | 2016-01-29 | 2016-05-18 | 金龙联合汽车工业(苏州)有限公司 | Detection and alarm method of power battery pack thermal runaway diffusion |
CN106066457A (en) * | 2016-05-25 | 2016-11-02 | 烟台创为新能源科技有限公司 | A kind of battery thermal runaway detecting system and detection method thereof |
CN107861065A (en) * | 2017-09-30 | 2018-03-30 | 中国汽车技术研究中心 | Thermal runaway test method for power battery test |
CN107702801A (en) * | 2017-11-16 | 2018-02-16 | 南京工业大学 | Temperature detection-based thermal runaway early warning device and method for lithium ion battery |
CN108446434A (en) * | 2018-02-07 | 2018-08-24 | 清华大学 | Prediction technique, device and the computer readable storage medium of power battery thermal runaway safety |
CN108711893A (en) * | 2018-04-08 | 2018-10-26 | 江西优特汽车技术有限公司 | A kind of power battery thermal runaway early warning system and method |
Non-Patent Citations (2)
Title |
---|
18650型锂离子电池火灾爆炸预警装置研究;杨赟 等;《消防科学与技术》;20180715;第37卷(第7期);第939-942页 * |
Study of Effect Batteries Capacity on Probability of Thermal Runaway Occurrence;Nataliya N. Yazvinskaya 等;《International Journal of ELECTROCHEMICAL SCIENCE》;20160906;第8163-8168页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110161414A (en) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110161414B (en) | A method and system for online prediction of power battery thermal runaway | |
CN110794305B (en) | A power battery fault diagnosis method and system | |
KR102684286B1 (en) | Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle including the same | |
Zhao et al. | Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training | |
WO2021169486A1 (en) | Method, system and apparatus for monitoring battery impedance abnormality on basis of charging process | |
CN102749589B (en) | Recession-mode predicting method of power battery of electric automobile | |
EP4040174A1 (en) | Device and method for diagnosing battery | |
CN109604186A (en) | Power battery performance flexibility assesses method for separating | |
CN114036647A (en) | Power battery safety risk assessment method based on real vehicle data | |
CN115219932A (en) | Method and device for evaluating the relative aging state of a battery of a device | |
CN117341476B (en) | Battery differential pressure fault early warning method and system | |
CN117630672A (en) | Method and device for predicting a device battery of a diagnostic technology device by means of a converter model | |
US20240393406A1 (en) | Battery Cell Diagnosing Apparatus and Method | |
CN112965001A (en) | Power battery pack fault diagnosis method based on real vehicle data | |
CN113687251B (en) | Double-model-based lithium ion battery pack voltage abnormality fault diagnosis method | |
DE102022120962A1 (en) | BATTERY ERROR DETECTION | |
US11513164B2 (en) | Method and system for estimating battery pack balance state of new energy vehicle | |
KR20230161377A (en) | Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle including the same | |
US20230324463A1 (en) | Method and Apparatus for Operating a System for Detecting an Anomaly of an Electrical Energy Store for a Device by Means of Machine Learning Methods | |
CN117367830A (en) | New energy vehicle health state business inspection platform and method | |
CN117805671A (en) | Method and system for detecting micro short circuit of battery in energy storage power station container | |
CN115372838A (en) | A new energy vehicle BMS fault detection method | |
CN115856640A (en) | A service life detection method of automotive battery system based on online feature extraction | |
CN115424443A (en) | Vehicle abnormity monitoring method based on driving data | |
CN114919413A (en) | A method and system for abnormal diagnosis of electric vehicle battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |