CN110148440B - A medical information query method - Google Patents
A medical information query method Download PDFInfo
- Publication number
- CN110148440B CN110148440B CN201910249835.3A CN201910249835A CN110148440B CN 110148440 B CN110148440 B CN 110148440B CN 201910249835 A CN201910249835 A CN 201910249835A CN 110148440 B CN110148440 B CN 110148440B
- Authority
- CN
- China
- Prior art keywords
- data
- model
- information
- medical
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000007418 data mining Methods 0.000 claims abstract description 76
- 238000007405 data analysis Methods 0.000 claims abstract description 37
- 238000013499 data model Methods 0.000 claims abstract description 30
- 238000012360 testing method Methods 0.000 claims abstract description 30
- 238000012549 training Methods 0.000 claims abstract description 22
- 238000011068 loading method Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000013075 data extraction Methods 0.000 claims abstract description 5
- 238000004458 analytical method Methods 0.000 claims description 73
- 238000007726 management method Methods 0.000 claims description 23
- 201000010099 disease Diseases 0.000 claims description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 20
- 238000003745 diagnosis Methods 0.000 claims description 15
- 238000011160 research Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000009412 basement excavation Methods 0.000 claims 3
- 230000006870 function Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 230000036541 health Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 206010002091 Anaesthesia Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000037005 anaesthesia Effects 0.000 description 3
- 238000004141 dimensional analysis Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000012098 association analyses Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000890 drug combination Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/067—Enterprise or organisation modelling
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/20—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Educational Administration (AREA)
- Biomedical Technology (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据处理领域,尤其涉及一种医疗信息查询方法。The invention relates to the field of data processing, in particular to a medical information query method.
背景技术Background technique
近几年来,随着医疗技术的不断发展,医疗数据迅速增长,基于医疗大数据的分析及决策支持也开始流行起来。传统的医院医疗业务主要由HIS、LIS、PACS等各个管理系统进行支撑与运作,同时这些管理系统能对医院的医疗业务数据进行简单的查询统计。但是随着医院的规模不断增大,医疗的数据量不断增加,这些简单的业务查询分析已经不能满足医院对自身管理和发展的需求。In recent years, with the continuous development of medical technology and the rapid growth of medical data, analysis and decision support based on medical big data have also become popular. Traditional hospital medical services are mainly supported and operated by various management systems such as HIS, LIS, and PACS. At the same time, these management systems can perform simple query and statistics on the hospital's medical service data. However, as the scale of the hospital continues to increase and the amount of medical data continues to increase, these simple business query and analysis can no longer meet the needs of the hospital for its own management and development.
发明内容Contents of the invention
本发明的目的是针对现有技术的缺陷,提供一种医疗信息查询方法,能够实现用户对医疗数据的多维查询,实现分析和预测功能,具体实现对医疗数据的不同角度的多维分析,有助于卫生管理与医药工作者从不同的视角进行分析问题,并且,能够从已有的数据中找出新的有价值的信息,如预测,描述,聚类,分类,影响因素分析、相关因素分析等,实现对医疗数据的多属性综合分析预测。The purpose of the present invention is to provide a kind of medical information inquiry method for the defective of prior art, can realize the multi-dimensional inquiry of medical data of user, realize analysis and prediction function, concretely realize the multi-dimensional analysis of different angles to medical data, help For health management and medical workers to analyze problems from different perspectives, and to find out new valuable information from existing data, such as prediction, description, clustering, classification, analysis of influencing factors, and analysis of related factors etc., to realize the multi-attribute comprehensive analysis and prediction of medical data.
有鉴于此,本发明实施例提供了一种医疗信息查询方法,包括:In view of this, an embodiment of the present invention provides a medical information query method, including:
分别获取多个医疗平台的医院信息系统数据库、实验室信息系统数据库、影像归档和通信系统数据库中的医疗数据;Obtain the medical data in the hospital information system database, laboratory information system database, image archiving and communication system database of multiple medical platforms respectively;
根据数据库的类型获取相对应的预设规则,根据所述预设规则对相对应的医疗数据进行数据整合,根据所述整合后的医疗数据建立平台数据仓库;Obtain corresponding preset rules according to the type of database, perform data integration on corresponding medical data according to the preset rules, and establish a platform data warehouse according to the integrated medical data;
对所述平台数据仓库中的医疗数据进行数据抽取、转换和加载,得到商业智能数据库;Perform data extraction, conversion and loading on the medical data in the platform data warehouse to obtain a business intelligence database;
根据所述医疗平台的第一业务维度和第一指标维度建立多维度的数据分析模型,并且,根据所述医疗平台的第二业务维度和第二指标维度建立多维度的数据挖掘模型;Establishing a multi-dimensional data analysis model according to the first business dimension and the first index dimension of the medical platform, and establishing a multi-dimensional data mining model according to the second business dimension and the second index dimension of the medical platform;
对多维度的数据模型进行多次训练、测试与评估;所述数据模型包括所述数据分析模型和所述数据挖掘模型;Perform multiple training, testing and evaluation on the multi-dimensional data model; the data model includes the data analysis model and the data mining model;
建立所述数据模型和模型信息之间的关联关系,并根据数据分析模型的模型信息生成分析模型列表,根据所述数据挖掘模型的模型信息生成挖掘模型列表,并储存;Establishing an association relationship between the data model and model information, generating an analysis model list according to the model information of the data analysis model, generating a mining model list according to the model information of the data mining model, and storing it;
接收用户输入的医疗信息的查询条件信息;Receive the query condition information of the medical information input by the user;
对所述查询条件进行解析,得到关键词信息;其中,所述关键词信息包括模型种类信息、查询项目信息和相对应的查询范围信息;Analyzing the query conditions to obtain keyword information; wherein the keyword information includes model type information, query item information and corresponding query range information;
根据所述模型种类信息获取相对应的模型列表;Acquiring a corresponding model list according to the model type information;
根据所述查询项目信息在所述获取到的模型列表中获取相匹配的模型信息;Obtain matching model information from the acquired model list according to the query item information;
根据相匹配的模型信息调用相对应的数据模型;Call the corresponding data model according to the matching model information;
根据所述查询项目信息和相对应的查询范围信息在商业智能数据库中调用相对应的医疗数据;calling the corresponding medical data in the business intelligence database according to the query item information and the corresponding query range information;
将所述医疗数据输入所述数据模型,所述数据模型对所述医疗数据进行数据分析,从而得到输出结果;inputting the medical data into the data model, and the data model performs data analysis on the medical data to obtain an output result;
根据预设表现形式对所述输出结果进行展示。The output result is displayed according to a preset expression form.
优选的,所述模型信息包括模型名称信息、功能描述信息、输入项目和输出项目。Preferably, the model information includes model name information, function description information, input items and output items.
优选的,在所述根据所述查询项目信息在所述获取到的模型列表中获取相匹配的模型信息之后,所述方法还包括:Preferably, after obtaining the matching model information in the obtained model list according to the query item information, the method further includes:
根据所述相匹配的模型信息生成模型选择列表;generating a model selection list according to the matched model information;
接收所述用户根据所述模型选择列表选择的模型信息。receiving model information selected by the user according to the model selection list.
优选的,在所述对所述平台数据仓库中的医疗数据进行数据抽取、转换和加载,得到商业智能数据库之后,所述方法还包括:Preferably, after extracting, converting and loading the medical data in the platform data warehouse to obtain the business intelligence database, the method further includes:
对医疗管理决策、医疗诊断和科研需求进行分析,得到所述第一业务维度、第一指标维度和第二业务维度、第二指标维度。The medical management decision-making, medical diagnosis and scientific research needs are analyzed to obtain the first business dimension, the first index dimension, the second business dimension, and the second index dimension.
优选的,所述对多维度的数据模型进行多次训练、测试与评估具体包括:Preferably, the multiple training, testing and evaluation of the multi-dimensional data model specifically includes:
根据所述第一业务维度和第一指标维度在所述商业智能数据库中获取相应的医疗数据;Obtain corresponding medical data in the business intelligence database according to the first business dimension and the first index dimension;
根据所述医疗数据对所述数据分析模型进行多次训练、测试与评估;performing multiple trainings, tests and evaluations on the data analysis model according to the medical data;
对所述多维度的数据挖掘模型进行多次训练、测试与评估。The multi-dimensional data mining model is trained, tested and evaluated multiple times.
进一步优选的,所述对所述多维度的数据挖掘模型进行多次训练、测试与评估具体包括:Further preferably, the multiple training, testing and evaluation of the multi-dimensional data mining model specifically includes:
根据所述数据挖掘模型设定输入项目和输出项目;所述输入项目包括第一时间周期,所述输出项目包括第二时间周期;Setting input items and output items according to the data mining model; the input items include a first time period, and the output items include a second time period;
根据所述输入项目和所述第一时间周期在所述商业智能数据库中获取相对应的医疗数据;Obtain corresponding medical data from the business intelligence database according to the input item and the first time period;
将所述获取到的医疗数据输入所述数据挖掘模型,所述数据挖掘模型对所述医疗数据进行处理后得到预测输出数据;所述预测输出数据包括置信区间;Inputting the acquired medical data into the data mining model, the data mining model processes the medical data to obtain predicted output data; the predicted output data includes a confidence interval;
根据所述输出项目和第二时间周期获取相对应的医疗数据,并进行汇总分析,得到实际输出数据;Obtaining corresponding medical data according to the output items and the second time period, and performing summary analysis to obtain actual output data;
将所述预测输出数据与所述实际输出数据进行对比,得到误差数据;Comparing the predicted output data with the actual output data to obtain error data;
根据多次训练、测试得到的多个误差对所述数据挖掘模型进行评估。The data mining model is evaluated according to multiple errors obtained from multiple training and testing.
进一步优选的,所述对所述多维度的数据挖掘模型进行多次训练、测试与评估具体包括:Further preferably, the multiple training, testing and evaluation of the multi-dimensional data mining model specifically includes:
根据所述数据挖掘模型设定输入项目和输出项目;所述输入项目包括患者信息、检查信息、诊断信息和医疗费用信息;所述输出项目包括疾病影响因子列表、患病分析列表、疾病特征列表或费用影响因素列表,所述列表中包括项目信息和相对应的概率信息;Set input items and output items according to the data mining model; the input items include patient information, inspection information, diagnosis information and medical expense information; the output items include a list of disease influencing factors, a disease analysis list, and a list of disease characteristics or a list of cost-influencing factors, which includes project information and corresponding probability information;
根据所述输入项目和预设数量所述商业智能数据库中获取相对应的医疗数据;Obtain corresponding medical data from the business intelligence database according to the input items and the preset quantity;
将所述获取到的医疗数据输入所述数据挖掘模型,所述数据挖掘模型对所述医疗数据进行处理后,根据所述输出项目输出输出数据;input the acquired medical data into the data mining model, and the data mining model outputs the output data according to the output items after processing the medical data;
增加所述预设数量,对所述数据挖掘模型进行多次训练和测试,得到多个输出数据;increasing the preset number, performing multiple training and testing on the data mining model to obtain multiple output data;
将所述多个输出数据进行对比分析,根据所述分析结果对所述数据挖掘模型进行评估。The plurality of output data are comparatively analyzed, and the data mining model is evaluated according to the analysis results.
优选的,所述方法还包括:Preferably, the method also includes:
更新所述医疗平台的医院信息系统数据库、实验室信息系统数据库和影像归档和通信系统数据库中的医疗数据;updating the medical data in the hospital information system database, laboratory information system database and image archiving and communication system database of the medical platform;
根据所述更新后的医疗数据对所述数据分析模型和所述数据挖掘模型进行训练、测试与评估。The data analysis model and the data mining model are trained, tested and evaluated according to the updated medical data.
优选的,所述预设表现形式为折线图、条形图、扇形图、散点图、仪表盘、雷达图以及表格中的一种或多种。Preferably, the preset presentation form is one or more of a line chart, a bar chart, a fan chart, a scatter chart, a dashboard, a radar chart and a table.
本发明实施例提供的一种医疗信息查询方法,能够实现用户对医疗数据的多维查询,实现分析和预测功能,具体实现对医疗数据的不同角度的多维分析,有助于卫生管理与医药工作者从不同的视角进行分析问题,并且,能够从已有的数据中找出新的有价值的信息,如预测,描述,聚类,分类,影响因素分析、相关因素分析等,实现对医疗数据的多属性综合分析预测。A medical information query method provided by the embodiment of the present invention can realize multi-dimensional query of medical data by users, realize analysis and prediction functions, and specifically realize multi-dimensional analysis of medical data from different angles, which is helpful for health management and medical workers Analyze problems from different perspectives, and be able to find new valuable information from existing data, such as prediction, description, clustering, classification, analysis of influencing factors, analysis of related factors, etc., to realize the analysis of medical data Multi-attribute comprehensive analysis and prediction.
附图说明Description of drawings
图1为本发明实施例提供的一种医疗信息查询方法流程图。Fig. 1 is a flowchart of a medical information query method provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
为本发明实施例提供的医疗信息查询方法应用于医疗平台系统,能够实现对多个医院的医疗平台医疗信息的查询和分析。图1为本发明实施例提供的一种医疗信息查询方法流程图,如图1所示,包括:The medical information query method provided by the embodiment of the present invention is applied to the medical platform system, and can realize the query and analysis of the medical information of the medical platform of multiple hospitals. Fig. 1 is a flow chart of a medical information query method provided by an embodiment of the present invention, as shown in Fig. 1 , including:
步骤101,分别获取多个医疗平台的医院信息系统数据库、实验室信息系统数据库、影像归档和通信系统数据库中的医疗数据;
医院信息系统数据库(Hospital Information System,HIS),是覆盖医院所有业务和业务全过程的信息管理系统,是利用电子计算机和通讯设备,为医院所属各部门提供病人诊疗信息和行政管理信息的收集、存储、处理、提取和数据交换的能力并满足授权用户的功能需求的平台。The hospital information system database (Hospital Information System, HIS) is an information management system covering all the business and the whole process of the hospital. It uses computers and communication equipment to provide the departments of the hospital with the collection of patient diagnosis and treatment information and administrative management information. A platform capable of storing, processing, extracting and exchanging data and meeting the functional requirements of authorized users.
实验室信息系统数据库(Laboratory Information Management System,LIS),通过门诊医生和住院工作站提出的检验申请,生成相应患者的化验条码标签,在生成化验单的同时将患者的基本信息与检验仪器相对应;当检验仪器生成结果后,系统会根据相应的关系,通过数据接口和结果核准将检验数据自动与患者信息相对应,从而实现检验信息电子化、检验信息管理自动化的网络系统。The Laboratory Information Management System (LIS) database generates the test barcode label of the corresponding patient through the test application submitted by the outpatient doctor and the inpatient workstation, and corresponds the basic information of the patient to the test instrument while generating the test sheet; After the test instrument generates the result, the system will automatically correspond the test data with the patient information through the data interface and result approval according to the corresponding relationship, so as to realize the network system of electronic test information and automatic test information management.
通信系统数据库(Picture Archiving and Communication Systems,PACS),应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种接口(模拟,DICOM,网络)以数字化的方式海量保存起来。Communication system database (Picture Archiving and Communication Systems, PACS), the system applied in the imaging department of the hospital, the main task is to store all kinds of medical images (including MRI, CT, ultrasound, various X-ray machines, various infrared The images produced by equipment such as instruments, microscopes, etc.) are stored digitally in large quantities through various interfaces (analog, DICOM, network).
具体的,通过区域内各个医院的数据接口分别获取各个医院的医院信息系统数据库、实验室信息系统数据库和影像归档和通信系统数据库中的医疗数据,需要说明的是,在医疗数据的获取数据库包括但不限于上述医院信息系统数据库、实验室信息系统数据库、影像归档和通信系统数据库三种数据库。本领域的技术人员可以根据需要对所述区域以及医院的数量进行设定。Specifically, the medical data in the hospital information system database, laboratory information system database, and image archiving and communication system database of each hospital are respectively obtained through the data interface of each hospital in the area. It should be noted that the medical data acquisition database includes But not limited to the above three databases of hospital information system database, laboratory information system database, image archiving and communication system database. Those skilled in the art can set the area and the number of hospitals according to needs.
步骤102,根据数据库的类型获取相对应的预设规则,根据预设规则对相对应的医疗数据进行数据整合,根据整合后的医疗数据建立平台数据仓库;
每个类型的数据库对应不同的预设规则,预设规则中包括对数据的储存格式、结构和类型的要求等,也就是说,对于医院信息系统数据库、实验室信息系统数据库、影像归档和通信系统数据库中的医疗数据分别采用相对应的预设规则进行数据整合,并根据整合后的医疗数据建立平台数据仓库。Each type of database corresponds to different preset rules, which include requirements for data storage format, structure and type, etc., that is, for hospital information system databases, laboratory information system databases, image archiving and communication The medical data in the system database adopts corresponding preset rules for data integration, and a platform data warehouse is established based on the integrated medical data.
步骤103,对平台数据仓库中的医疗数据进行数据抽取、转换和加载,得到商业智能数据库;
数据抽取是指从平台数据仓库抽取目的数据源系统需要的数据;数据转换是指将从源数据源获取的数据按照业务需求,转换成目的数据源要求的形式,并对错误、不一致的数据进行清洗和加工;数据加载是指将转换后的数据装载到目的数据源。Data extraction refers to extracting the data required by the target data source system from the platform data warehouse; data conversion refers to converting the data obtained from the source data source into the form required by the target data source according to business requirements, and correcting errors and inconsistent data. Cleaning and processing; data loading refers to loading the transformed data to the target data source.
该过程的目的是负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市,即商业智能数据库中,成为联机分析处理、数据挖掘的基础。The purpose of this process is to be responsible for extracting data from distributed and heterogeneous data sources such as relational data and flat data files to the temporary intermediate layer for cleaning, conversion, integration, and finally loading to the data warehouse or data mart, that is, business In the intelligent database, it becomes the basis of online analytical processing and data mining.
在此之后,所述对医疗管理决策、医疗诊断和科研需求进行分析,得到第一业务维度、第一指标维度和第二业务维度、第二指标维度。After that, the medical management decision-making, medical diagnosis and scientific research needs are analyzed to obtain the first business dimension, the first index dimension, the second business dimension, and the second index dimension.
其中,第一业务维度、第一指标维度用于数据分析,第二业务维度、第二指标维度用于数据挖掘,第一业务维度和第二业务维度可以相同也可以不同,本领域技术人员可以根据需要对第一业务维度、第一指标维度和第二业务维度、第二指标维度进行设定。Wherein, the first business dimension and the first index dimension are used for data analysis, and the second business dimension and the second index dimension are used for data mining. The first business dimension and the second business dimension can be the same or different, and those skilled in the art can Set the first business dimension, the first index dimension, the second business dimension, and the second index dimension as required.
第一业务维度是指决策分析主题,具体可以包括医疗数质量运营管理决策、人力资源决策、财务决策、物资管理决策、服务决策、实时临床决策、临床路径和科学研究决策,第一指标维度是指基于第一业务维度的分析指标,比如医疗数质量运营管理决策对应的分析指标可以为住院收治主题、手术主题、麻醉主题;人力资源决策的分析指标可以为绩效主题、业务信息、基本信息主题;财务决策的分析指标可以为医疗收入主题、医疗成本主题;物资管理决策的分析指标可以为医用耗材主题、医疗设备主题、后勤物资主题;服务决策的分析指标可以为住院收治预测主题、平均住院日预测主题;实时临床决策的分析指标可以为实时临床决策、临床诊疗主题、医疗质量控制主题;临床路径的分析指标可以为临床路径、通用指标监控主题、临床路径与非临床路径对比主题、单病种关键实施路径监控主题;科学研究决策的分析指标可以为询证医学主题、临床科研主题。The first business dimension refers to the topic of decision analysis, which can specifically include medical quantity and quality operation management decisions, human resource decisions, financial decisions, material management decisions, service decisions, real-time clinical decisions, clinical pathways, and scientific research decisions. The first indicator dimension is Refers to the analysis indicators based on the first business dimension. For example, the analysis indicators corresponding to the decision-making of medical quantity and quality operation management can be the theme of hospital admission, surgery, and anesthesia; the analysis indicators of human resource decision-making can be the theme of performance, business information, and basic information. ; The analysis indicators of financial decision-making can be the theme of medical income and medical cost; the analysis indicators of material management decision-making can be the theme of medical consumables, medical equipment, and logistics supplies; the analysis indicators of service decision-making can be the theme of hospital admission prediction, average hospitalization Daily prediction topics; the analysis indicators of real-time clinical decision-making can be real-time clinical decision-making, clinical diagnosis and treatment topics, and medical quality control topics; the analysis indicators of clinical pathways can be clinical pathways, general indicator monitoring The key implementation path monitoring theme of diseases; the analysis indicators of scientific research decision-making can be the theme of evidence-based medicine and the theme of clinical scientific research.
第二业务维度具体可以包括服务决策类、医疗诊断与科研类和财务管理类,第二指标是指基于第二业务维度的分析指标,比如服务决策类对应的第二指标可以为挂号情况预测、就诊情况预测、出诊情况预测、诊断情况预测、出院情况预测、出院日情况预测、危重率情况预测、有创手术情况预测、无创手术情况预测、床位使用率情况预测、床位周转天数情况预测、就诊时间分析;医疗诊断与科研类对应的第二指标可以为疾病病因分析、病种预测分析、患者模式识别、并发病种关联分析、智能处方推荐、用药组合分析、疫情监测分析、麻醉分析、药物异常反应分析、病情演化分析;医疗诊断与科研类的第二指标可以为疾病病因分析、病种预测分析、患者模式识别、并发病种关联分析、智能处方推荐、用药组合分析、疫情监测分析、麻醉分析、药物异常反应分析、病情演化分析;财务管理类的第二指标可以为成本预警分析、科室成本预测分析、项目成本预测分析、病种成本预测分析、院级成本预测分析、科室收入预测分析、项目收入预测分析、病种收入预测分析、院级收入预测分析、医保收入预测分析、医疗费用异常分析、住院费用影响因素分析。The second business dimension can specifically include service decision-making, medical diagnosis and scientific research, and financial management. The second index refers to the analysis index based on the second business dimension. For example, the second index corresponding to the service decision-making class can be registration situation prediction, Prediction of visits, visits, diagnosis, discharge, discharge day, critical rate, invasive surgery, non-invasive surgery, bed utilization, bed turnover days, visits Time analysis; the second index corresponding to medical diagnosis and scientific research can be disease etiology analysis, disease prediction analysis, patient pattern recognition, concurrent disease association analysis, intelligent prescription recommendation, drug combination analysis, epidemic monitoring analysis, anesthesia analysis, drug Abnormal reaction analysis, disease evolution analysis; the second index of medical diagnosis and scientific research can be disease etiology analysis, disease prediction analysis, patient pattern recognition, concurrent disease association analysis, intelligent prescription recommendation, drug combination analysis, epidemic monitoring analysis, Anesthesia analysis, abnormal drug reaction analysis, and disease evolution analysis; the second indicator of financial management can be cost early warning analysis, department cost forecast analysis, project cost forecast analysis, disease cost forecast analysis, hospital-level cost forecast analysis, and department income forecast Analysis, project income forecast analysis, disease income forecast analysis, hospital-level income forecast analysis, medical insurance income forecast analysis, abnormal medical expense analysis, and hospitalization expense influencing factor analysis.
需要说明的是,本领域技术人员可以根据需要对第一业务维度、第一指标维度和第二业务维度、第二指标维度进行设定。It should be noted that those skilled in the art can set the first business dimension, the first index dimension, the second business dimension, and the second index dimension as required.
步骤104,根据医疗平台的第一业务维度和第一指标维度建立多维度的数据分析模型,并且,根据医疗平台的第二业务维度和第二指标维度建立多维度的数据挖掘模型;
具体的,每一个第一指标维度均可建立一个维度的数据分析模型,从而根据医疗平台的第一业务维度和第一指标维度建立多维度的OLAP数据分析模型,OLAP数据分析主要功能是对数据进行汇总统计与计算,不同于常见的静态报表外,基于OLAP技术的动态报表,实现多角度的数据分析查询,便于卫生管理与医药工作者等医疗数据的管理人员从不同的视角进行查询和分析问题。Specifically, a dimensional data analysis model can be established for each first index dimension, so as to establish a multi-dimensional OLAP data analysis model based on the first business dimension and the first index dimension of the medical platform. The main function of OLAP data analysis is to analyze data Summary statistics and calculations are different from common static reports. Dynamic reports based on OLAP technology realize multi-angle data analysis and query, which is convenient for health management and medical workers and other medical data managers to query and analyze from different perspectives. question.
每一个第二指标维度均可建立一个维度的数据挖掘模型,从而根据医疗平台的第二业务维度和第二指标维度建立多维度的数据挖掘模型,数据挖掘模型主要功能是针对特定分析主题,采用先进的数据挖掘与统计技术,从已有的数据中找出新的有价值的信息,如预测,描述,聚类,分类,影响因素分析、相关因素分析等,数据挖掘提供了一种多属性的综合分析方法。A dimensional data mining model can be established for each second index dimension, so as to establish a multi-dimensional data mining model based on the second business dimension and the second index dimension of the medical platform. The main function of the data mining model is to target specific analysis topics, using Advanced data mining and statistical techniques can find new and valuable information from existing data, such as prediction, description, clustering, classification, analysis of influencing factors, analysis of related factors, etc. Data mining provides a multi-attribute comprehensive analysis method.
步骤105,对多维度的数据模型进行多次训练、测试与评估;
这里的数据模型包括数据分析模型和数据挖掘模型两种类型数据模型,为描述方便将数据分析模型和数据挖掘模型统称为数据模型。The data model here includes two types of data models, the data analysis model and the data mining model. For the convenience of description, the data analysis model and the data mining model are collectively referred to as the data model.
在数据分析模型建立之后,需要用大量的数据对多维度的模型进行训练,即根据第一业务维度和第一指标维度在商业智能数据库中获取相应的医疗数据;根据医疗数据对相对应的数据分析模型进行多次训练、测试与评估,并根据训练、测试与评估结果不断对模型进行优化,进而得到优化后的多个多维度的数据分析模型。After the data analysis model is established, it is necessary to use a large amount of data to train the multi-dimensional model, that is, obtain the corresponding medical data in the business intelligence database according to the first business dimension and the first index dimension; The analysis model is trained, tested and evaluated multiple times, and the model is continuously optimized according to the results of training, testing and evaluation, and then multiple optimized multi-dimensional data analysis models are obtained.
在数据挖掘模型建立后,需要用大量的数据对多维度的数据挖掘模型进行多次训练、测试与评估。After the data mining model is established, it is necessary to use a large amount of data to conduct multiple training, testing and evaluation of the multi-dimensional data mining model.
数据挖掘模型具有设定的输入项目和输出项目,根据输入项目和输出项目的不同,不同数据挖掘模型有不同的训练测试方法,下面具体介绍两种训练测试评估方法:Data mining models have set input items and output items. According to different input items and output items, different data mining models have different training and testing methods. The following two training, testing and evaluation methods are introduced in detail:
第一种是,根据数据挖掘模型设定输入项目和输出项目;输入项目中包括第一时间周期,输出项目中包括第二时间周期。在一个具体的例子中,根据第二业务维度服务决策类对应的第二指标维度为挂号情况预测建立的数据挖掘模型为挂号情况预测模型,功能为预测未来Y期各科室的挂号情况,则设定的输入项目为历史X期的各科室的挂号人数,X为第一时间周期,输出项目为未来Y期各科室的挂号人数,Y为第二时间周期;根据输入项目和第一时间周期在商业智能数据库中获取相对应的医疗数据;将获取到的医疗数据输入数据挖掘模型,数据挖掘模型对医疗数据进行处理后得到预测输出数据,所述预测输出数据中还包括置信区间。The first is to set input items and output items according to the data mining model; the input items include the first time period, and the output items include the second time period. In a specific example, according to the second index dimension corresponding to the service decision class of the second business dimension, the data mining model established for the registration situation prediction is the registration situation prediction model, and the function is to predict the registration situation of each department in the future Y period, then set The specified input item is the number of registered persons in each department in the historical X period, X is the first time period, the output item is the number of registered persons in each department in the future Y period, and Y is the second time period; according to the input items and the first time period in The corresponding medical data is obtained from the business intelligence database; the obtained medical data is input into the data mining model, and the data mining model processes the medical data to obtain prediction output data, and the prediction output data also includes a confidence interval.
在得到预测输出数据之后,根据输出项目和第二时间周期获取相对应的医疗数据,并进行汇总分析,得到实际输出数据;将预测输出数据与实际输出数据进行对比,得到误差数据;根据多次训练、测试得到的多个误差对数据挖掘模型进行评估和优化。After obtaining the predicted output data, obtain the corresponding medical data according to the output items and the second time period, and perform summary analysis to obtain the actual output data; compare the predicted output data with the actual output data to obtain error data; Multiple errors obtained from training and testing are used to evaluate and optimize the data mining model.
这种方法适用于服务决策类数据挖掘模型,服务决策类数据挖掘模型具体如下表1所示。This method is suitable for service decision-making data mining models, which are shown in Table 1 below.
表1服务决策类数据挖掘模型Table 1 Service decision-making data mining model
第二种是,根据数据挖掘模型设定输入项目和输出项目;输入项目包括患者信息、检查信息、诊断信息和医疗费用信息;输出项目包括疾病影响因子列表、患病分析列表、疾病特征列表或费用影响因素列表,列表中包括项目信息和相对应的概率信息;根据输入项目和预设数量商业智能数据库中获取相对应的医疗数据;将获取到的医疗数据输入数据挖掘模型,数据挖掘模型对医疗数据进行处理后,根据输出项目输出输出数据;增加预设数量,对数据挖掘模型进行多次训练和测试,得到多个输出数据;将多个输出数据进行对比分析,根据分析结果对数据挖掘模型进行评估。这种方法适用于医疗诊断与科研类数据挖掘模型,医疗诊断与科研类数据挖掘模型具体如下表2所示。The second is to set input items and output items according to the data mining model; input items include patient information, examination information, diagnosis information and medical expense information; output items include a list of disease influencing factors, a list of disease analysis, a list of disease characteristics or A list of cost-influencing factors, including project information and corresponding probability information; obtain corresponding medical data from the business intelligence database according to the input project and preset quantity; input the obtained medical data into the data mining model, and the data mining model will After the medical data is processed, the output data is output according to the output items; the preset number is increased, and the data mining model is trained and tested multiple times to obtain multiple output data; multiple output data are compared and analyzed, and data mining is performed according to the analysis results. The model is evaluated. This method is suitable for medical diagnosis and scientific research data mining models, and the details of the medical diagnosis and scientific research data mining models are shown in Table 2 below.
表2医疗诊断与科研类数据挖掘模型Table 2 Data Mining Models for Medical Diagnosis and Scientific Research
此外,对于财务管理类数据挖掘模型,有些采用第一种方法,有些采用第二种方法,财务管理类数据挖掘模型具体如表3所示。In addition, for financial management data mining models, some use the first method, and some use the second method. The details of financial management data mining models are shown in Table 3.
表3医疗诊断与科研类数据挖掘模型Table 3 Data Mining Models for Medical Diagnosis and Scientific Research
步骤106,建立数据模型和模型信息之间的关联关系,并根据数据分析模型的模型信息生成分析模型列表,根据数据挖掘模型的模型信息生成挖掘模型列表,并储存;
其中,模型信息包括模型名称信息、功能描述信息、输入项目和输出项目。Wherein, the model information includes model name information, function description information, input items and output items.
数据分析模型和数据挖掘模型分别生成各自的模型列表,即根据数据分析模型的模型信息生成分析模型列表,根据数据挖掘模型的模型信息生成挖掘模型列表,并储存。The data analysis model and the data mining model respectively generate their respective model lists, that is, generate the analysis model list according to the model information of the data analysis model, and generate the mining model list according to the model information of the data mining model, and store them.
步骤107,接收用户输入的医疗信息的查询条件信息,对查询条件进行解析,得到关键词信息;
这里的用户可以是市卫生局和业务管理部门、辖市(区)卫生局、社区卫生服务中心、各个医院的管理人员,不同用户有不同的操作权限,本领域技术人员可以根据实际情况对用户的权限进行设定。The users here can be municipal health bureaus and business management departments, municipal (district) health bureaus, community health service centers, managers of various hospitals, and different users have different operating authority. permissions are set.
用户可以通过用户终端输入要查询的医疗信息的查询条件,并发送给医疗平台,医疗平台根据用户信息获取用户相对应的权限信息,查看权限是否与查询条件相匹配,当匹配时,对查询条件进行解析得到关键词信息,关键词信息包括模型种类信息、查询项目信息和相对应的查询范围信息,这里的模型种类信息包括数据分析模型和数据挖掘模型,The user can enter the query conditions of the medical information to be queried through the user terminal, and send it to the medical platform. The medical platform obtains the corresponding authority information of the user according to the user information, and checks whether the authority matches the query conditions. Perform analysis to obtain keyword information. Keyword information includes model type information, query item information, and corresponding query range information. The model type information here includes data analysis models and data mining models.
查询项目信息是指要查询的内容,查询范围信息是指查询内容的范围,可以是时间范围、区域范围等。在一个具体的例子中,用户输入的查询条件可以为“甲区域所有医院设备的的统计情况”、“预测未来X期A医院的挂号人数”,则可以确定“甲区域所有医院设备的统计情况”对应的数据模型为数据分析模型,查询项目为医院设备的统计,查询范围为甲区域所有医院;“预测未来X期A医院的挂号人数”对应的数据模型为数据挖掘模型,查询项目为挂号人数,查询范围为A医院未来X期。The query item information refers to the content to be queried, and the query range information refers to the range of the query content, which may be a time range, a region range, and the like. In a specific example, the query conditions entered by the user can be "statistics of all hospital equipment in region A" and "predict the number of registered patients of hospital A in X period in the future", then "statistics of all hospital equipment in region A" can be determined The data model corresponding to "is a data analysis model, and the query item is the statistics of hospital equipment, and the query range is all hospitals in area A; the data model corresponding to "forecasting the number of registered patients of hospital A in X period in the future" is a data mining model, and the query item is registration The number of people, the query scope is the future X period of Hospital A.
步骤108,根据模型种类信息获取相对应的模型列表,根据查询项目信息在获取到的模型列表中获取相匹配的模型信息;
具体的,根据模型种类信息获取相对应的模型列表,根据查询项目信息与模型列表中模型名称、功能描述、输入项目和输出项目相对应的信息进行匹配,从而得到相匹配的模型信息。Specifically, the corresponding model list is obtained according to the model type information, and the information corresponding to the model name, function description, input item and output item in the model list is matched according to the query item information, so as to obtain the matched model information.
步骤109,根据相匹配的模型信息调用相对应的数据模型;
当匹配到的模型为一个时,根据相匹配的模型信息调用相对应的数据模型,当匹配到的模型为多个时,根据相匹配的模型信息生成模型选择列表,并接收用户根据模型选择列表选择的模型信息,根据用户选择的模型信息调用相对应的数据模型。When there is only one matched model, call the corresponding data model according to the matched model information; when there are multiple matched models, generate a model selection list according to the matched model information, and receive the user's selection list based on the model The selected model information calls the corresponding data model according to the model information selected by the user.
步骤110,根据查询项目信息和相对应的查询范围信息在商业智能数据库中调用相对应的医疗数据;
步骤111,将医疗数据输入数据模型,数据模型对医疗数据进行数据分析,从而得到输出结果;
在使用大量的数据训练优化模型得到多个多维度的数据分析、挖掘模型之后,区域管理人员可以根据需要选择数据分析、挖掘模型,并在商业智能数据库中选择要分析、挖掘的数据分析、挖掘范围,根据数据范围选择医疗数据,并输入所选择的数据分析、挖掘模型,从而得到数据输出结果。After using a large amount of data to train and optimize the model to obtain multiple multi-dimensional data analysis and mining models, regional managers can select data analysis and mining models as needed, and select the data analysis and mining to be analyzed and mined in the business intelligence database Scope, select medical data according to the data scope, and input the selected data analysis and mining model, so as to obtain the data output result.
步骤112,根据预设表现形式对输出结果进行展示。
多维数据分析结果和多维数据挖掘结果可以通过趋势折线图、条形图、扇形图、散点图、仪表盘、雷达图以及表格中的一种或多种进行展示,直观与易于理解。Multidimensional data analysis results and multidimensional data mining results can be displayed through one or more of trend line charts, bar charts, sector charts, scatter charts, dashboards, radar charts and tables, which are intuitive and easy to understand.
随着时间的推移,医疗平台会产生新的医疗数据,从而更新医疗平台的医院信息系统数据库、实验室信息系统数据库和影像归档和通信系统数据库中的医疗数据,进而根据更新后的医疗数据对数据分析模型和数据挖掘模型进行训练、测试与评估,由此提高优化数据分析模型和数据挖掘模型,得到更准确的数据。As time goes by, the medical platform will generate new medical data, thereby updating the medical data in the hospital information system database, laboratory information system database and image archiving and communication system database of the medical platform, and then according to the updated medical data. The data analysis model and data mining model are trained, tested and evaluated, thereby improving and optimizing the data analysis model and data mining model, and obtaining more accurate data.
本发明实施例提供的一种医疗信息查询方法,能够实现用户对医疗数据的多维查询,实现分析和预测功能,具体实现对医疗数据的不同角度的多维分析,有助于卫生管理与医药工作者从不同的视角进行分析问题,并且,能够从已有的数据中找出新的有价值的信息,如预测,描述,聚类,分类,影响因素分析、相关因素分析等,实现对医疗数据的多属性综合分析预测。A medical information query method provided by the embodiment of the present invention can realize multi-dimensional query of medical data by users, realize analysis and prediction functions, and specifically realize multi-dimensional analysis of medical data from different angles, which is helpful for health management and medical workers Analyze problems from different perspectives, and be able to find new valuable information from existing data, such as prediction, description, clustering, classification, analysis of influencing factors, analysis of related factors, etc., to realize the analysis of medical data Multi-attribute comprehensive analysis and prediction.
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals should further realize that the units and algorithm steps described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination of the two. In order to clearly illustrate the relationship between hardware and software Interchangeability. In the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RA医疗信息查询方法)、内存、只读存储器(RO医疗信息查询方法)、电可编程RO医疗信息查询方法、电可擦除可编程RO医疗信息查询方法、寄存器、硬盘、可移动磁盘、CD-RO医疗信息查询方法、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be implemented by hardware, software modules executed by a processor, or a combination of both. The software module can be placed in random access memory (RA medical information query method), internal memory, read-only memory (RO medical information query method), electrically programmable RO medical information query method, electrically erasable programmable RO medical information query method, register , hard disk, removable disk, CD-RO medical information query method, or any other form of storage medium known in the technical field.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910249835.3A CN110148440B (en) | 2019-03-29 | 2019-03-29 | A medical information query method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910249835.3A CN110148440B (en) | 2019-03-29 | 2019-03-29 | A medical information query method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110148440A CN110148440A (en) | 2019-08-20 |
CN110148440B true CN110148440B (en) | 2023-06-30 |
Family
ID=67588722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910249835.3A Active CN110148440B (en) | 2019-03-29 | 2019-03-29 | A medical information query method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110148440B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114334111B (en) * | 2019-01-21 | 2023-08-18 | 四川大学华西医院 | Medical information management method, device, server and readable storage medium |
CN111223534B (en) * | 2020-01-03 | 2023-08-18 | 首都医科大学附属北京儿童医院 | Industry and financial fusion fine management system |
CN111899822B (en) * | 2020-06-28 | 2024-01-30 | 广州万孚生物技术股份有限公司 | Medical institution database construction method, query method, device, equipment and medium |
CN111914011B (en) * | 2020-08-06 | 2024-07-05 | 上海智众医疗科技有限公司 | Cross-platform data conversion method and system |
CN111933241B (en) * | 2020-08-31 | 2023-06-20 | 深圳平安智慧医健科技有限公司 | Medical data analysis method, device, electronic equipment and storage medium |
DE102020212411B4 (en) * | 2020-09-30 | 2024-07-04 | Siemens Healthineers Ag | System and procedure for processing medical data |
CN114694777A (en) * | 2020-12-28 | 2022-07-01 | 太瑟株式会社 | Method and system for providing medical data collection and analysis services based on machine learning |
CN112786126B (en) * | 2020-12-31 | 2023-11-03 | 天津开心生活科技有限公司 | Time sequence analysis method and device for clinical test data, electronic equipment and medium |
CN114334092B (en) * | 2021-12-22 | 2023-04-07 | 四川大学华西医院 | Medical image AI model management method and equipment |
CN116126976B (en) * | 2023-04-06 | 2023-07-04 | 之江实验室 | A data synchronization method, device, storage medium and electronic equipment |
CN116798590B (en) * | 2023-08-17 | 2024-09-10 | 北京大学第三医院(北京大学第三临床医学院) | Processing method, device, equipment and medium for constructing medicine management prediction model |
CN117370426B (en) * | 2023-12-04 | 2024-03-26 | 畅捷通信息技术股份有限公司 | Report data generation method, system and storage medium based on artificial intelligence |
CN118193759B (en) * | 2024-04-16 | 2024-10-25 | 中南大学湘雅医院 | Medical scientific research data interactive guiding index method and system based on large model |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682118A (en) * | 2012-05-15 | 2012-09-19 | 北京久其软件股份有限公司 | Multidimensional data model access method and device |
CN107122464A (en) * | 2017-04-27 | 2017-09-01 | 国信优易数据有限公司 | A kind of aid decision-making system and method |
CN107169070A (en) * | 2017-05-08 | 2017-09-15 | 山大地纬软件股份有限公司 | The constructing system and its method in a kind of social security index warehouse based on big data |
CN107766574A (en) * | 2017-11-13 | 2018-03-06 | 天津开心生活科技有限公司 | Data query method and device, date storage method and device |
CN108536826A (en) * | 2018-04-10 | 2018-09-14 | 口口相传(北京)网络技术有限公司 | Data analysing method and device |
CN108615560A (en) * | 2018-03-19 | 2018-10-02 | 安徽锐欧赛智能科技有限公司 | A kind of clinical medical data analysis method based on data mining |
CN208207819U (en) * | 2018-07-17 | 2018-12-07 | 于果鑫 | A kind of big data analysis processing system based on extended node cluster |
CN109086354A (en) * | 2018-07-17 | 2018-12-25 | 于果鑫 | A kind of big data analysis processing system based on extended node cluster |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7493309B2 (en) * | 2003-01-16 | 2009-02-17 | International Business Machines Corporation | Framework for dynamic analysis of varying structured data using multiple analysis techniques |
US7734661B2 (en) * | 2003-08-11 | 2010-06-08 | Descisys Limited | Method and apparatus for accessing multidimensional data |
US7707045B2 (en) * | 2003-08-28 | 2010-04-27 | Cerner Innovation, Inc. | System and method for multi-dimensional extension of database information |
US7792856B2 (en) * | 2007-06-29 | 2010-09-07 | International Business Machines Corporation | Entity-based business intelligence |
WO2014026152A2 (en) * | 2012-08-10 | 2014-02-13 | Assurerx Health, Inc. | Systems and methods for pharmacogenomic decision support in psychiatry |
US10628456B2 (en) * | 2015-10-30 | 2020-04-21 | Hartford Fire Insurance Company | Universal analytical data mart and data structure for same |
-
2019
- 2019-03-29 CN CN201910249835.3A patent/CN110148440B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682118A (en) * | 2012-05-15 | 2012-09-19 | 北京久其软件股份有限公司 | Multidimensional data model access method and device |
CN107122464A (en) * | 2017-04-27 | 2017-09-01 | 国信优易数据有限公司 | A kind of aid decision-making system and method |
CN107169070A (en) * | 2017-05-08 | 2017-09-15 | 山大地纬软件股份有限公司 | The constructing system and its method in a kind of social security index warehouse based on big data |
CN107766574A (en) * | 2017-11-13 | 2018-03-06 | 天津开心生活科技有限公司 | Data query method and device, date storage method and device |
CN108615560A (en) * | 2018-03-19 | 2018-10-02 | 安徽锐欧赛智能科技有限公司 | A kind of clinical medical data analysis method based on data mining |
CN108536826A (en) * | 2018-04-10 | 2018-09-14 | 口口相传(北京)网络技术有限公司 | Data analysing method and device |
CN208207819U (en) * | 2018-07-17 | 2018-12-07 | 于果鑫 | A kind of big data analysis processing system based on extended node cluster |
CN109086354A (en) * | 2018-07-17 | 2018-12-25 | 于果鑫 | A kind of big data analysis processing system based on extended node cluster |
Non-Patent Citations (6)
Title |
---|
住院病人医疗信息商业智能系统开发应用;李晓华;张晓祥;;医学信息学杂志(第09期);全文 * |
商业智能在医院辅助决策系统中的应用;宁维塞;CNKI优秀硕士学位论文全文库(第8期);全文 * |
基于openEHR的临床医疗数据仓库构建方法;王冬冬;叶枫;吕旭东;闵令通;王利;;中国生物医学工程学报(第02期);全文 * |
基于商业智能技术的医院经营决策分析平台的开发与应用;陈晓明;刘海林;;中国医学教育技术(第04期);全文 * |
数据仓库与数据挖掘在医院信息系统中的应用;王徐冬;杨希武;;医疗卫生装备(第08期);全文 * |
数据仓库技术在医院系统集成中的应用;贝乾;CNKI优秀硕士学位论文全文库(第11期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110148440A (en) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110148440B (en) | A medical information query method | |
CN110119432B (en) | Data processing method for medical platform | |
CN110136837B (en) | Medical data processing platform | |
US7917377B2 (en) | Patient data mining for automated compliance | |
US8301461B2 (en) | Method and apparatus for generating a radiologist quality assurance scorecard | |
Pine et al. | Enhancement of claims data to improve risk adjustment of hospital mortality | |
CA2053553C (en) | Method for evaluation of health care quality | |
US8595028B2 (en) | System and method for performing medical research across a vast patient population | |
CN109754886A (en) | Therapeutic scheme intelligent generating system, method and readable storage medium storing program for executing, electronic equipment | |
US20110231422A1 (en) | Analyzing administrative healthcare claims data and other data sources | |
CA2594181A1 (en) | Methods, systems, and computer program products for developing and using predictive models for predicting a plurality of medical outcomes, for evaluating intervention strategies, and for simultaneously validating biomarker causality | |
CN115565670A (en) | Method for medical diagnosis | |
CN117409913A (en) | Medical service method and platform based on cloud technology | |
US7505867B2 (en) | System and method for predicting medical condition | |
Reiner | Uncovering and improving upon the inherent deficiencies of radiology reporting through data mining | |
Harrington | Future model for nursing documentation: extinction | |
US20160162650A1 (en) | Method for automating medical billing | |
Gao et al. | A pipeline for harmonising NHS Scotland laboratory data to enable national-level analyses | |
Alghamdi | Health data warehouses: reviewing advanced solutions for medical knowledge discovery | |
CN118866284B (en) | Organ transplantation management system and method | |
Holubkov et al. | Analysis, assessment, and presentation of risk-adjusted statewide obstetrical care data: the StORQS II study in Washington State. Statewide Obstetrics Review and Quality System | |
Carus | Transforming cancer registry data into an ontology-driven common data model: evaluation of the implementation and integrability of the Observational Medical Outcomes Partnership Model in Clinical Cancer Registry | |
Gonçalves et al. | The Development of an ICT framework for Business Intelligence at the Brazilian national Cancer Institute: a Case study of organizational learning and Innovation | |
Wyatt et al. | Health Information and Information Technology | |
de Matos | Satisfação do Paciente e Perceção da Qualidade de Serviço em Hospitais: Uma Revisão Sistemática da Literatura |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |