CN110115962A - A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule - Google Patents
A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule Download PDFInfo
- Publication number
- CN110115962A CN110115962A CN201910408419.3A CN201910408419A CN110115962A CN 110115962 A CN110115962 A CN 110115962A CN 201910408419 A CN201910408419 A CN 201910408419A CN 110115962 A CN110115962 A CN 110115962A
- Authority
- CN
- China
- Prior art keywords
- phenolic resin
- silica
- microcapsules
- synthesis
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003094 microcapsule Substances 0.000 claims abstract 12
- 238000002845 discoloration Methods 0.000 claims abstract 11
- 230000002441 reversible effect Effects 0.000 claims abstract 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract 8
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims abstract 7
- 239000005011 phenolic resin Substances 0.000 claims abstract 7
- 229920001568 phenolic resin Polymers 0.000 claims abstract 7
- 239000000463 material Substances 0.000 claims abstract 5
- 238000000034 method Methods 0.000 claims abstract 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract 4
- 238000002360 preparation method Methods 0.000 claims abstract 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract 4
- 239000011248 coating agent Substances 0.000 claims abstract 3
- 238000000576 coating method Methods 0.000 claims abstract 3
- 238000001308 synthesis method Methods 0.000 claims abstract 3
- 230000002194 synthesizing effect Effects 0.000 claims abstract 3
- 239000002131 composite material Substances 0.000 claims abstract 2
- 239000003995 emulsifying agent Substances 0.000 claims abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims 6
- 238000003756 stirring Methods 0.000 claims 5
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims 4
- LIZLYZVAYZQVPG-UHFFFAOYSA-N (3-bromo-2-fluorophenyl)methanol Chemical compound OCC1=CC=CC(Br)=C1F LIZLYZVAYZQVPG-UHFFFAOYSA-N 0.000 claims 2
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 claims 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims 1
- 229960000541 cetyl alcohol Drugs 0.000 claims 1
- 239000011258 core-shell material Substances 0.000 claims 1
- 239000012153 distilled water Substances 0.000 claims 1
- 239000000839 emulsion Substances 0.000 claims 1
- 239000008098 formaldehyde solution Substances 0.000 claims 1
- 239000002736 nonionic surfactant Substances 0.000 claims 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000010189 synthetic method Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract 2
- 239000002775 capsule Substances 0.000 abstract 1
- 238000005265 energy consumption Methods 0.000 abstract 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/20—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
- C08G8/22—Resorcinol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明涉及一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法。本发明合成合成方法步骤如下:(1)复合型乳化剂制备;(2)二氧化硅接枝酚醛树脂包覆材料的合成;(3)可逆变色材料壳心的制备;(4)微胶囊的合成。本发明具体涉及一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法。本发明合成的微胶囊工艺过程耗能比较低,分散性好,粒径较小且不易破损,包覆率高。微胶囊变色温度35.5℃左右,变色时间30s左右,复色温度32℃左右,复色时间35s左右,低温蓝色,高温透明色,明显形成微胶囊结构。微胶囊呈现规整的球形,粒径为纳米级。The invention relates to a method for synthesizing reversible discoloration microcapsules wrapped with silicon dioxide grafted phenolic resin. The steps of the synthetic synthesis method of the present invention are as follows: (1) Preparation of composite emulsifier; (2) Synthesis of silica grafted phenolic resin coating material; (3) Preparation of shell core of reversible discoloration material; (4) Micro Synthesis of capsules. The invention specifically relates to a method for synthesizing reversible discoloration microcapsules wrapped with silica-grafted phenolic resin. The microcapsule synthesized by the invention has relatively low energy consumption in the technical process, good dispersibility, small particle size and is not easy to be damaged, and has high coating rate. The microcapsule discoloration temperature is about 35.5°C, the discoloration time is about 30s, the recoloring temperature is about 32°C, and the recoloring time is about 35s, blue at low temperature and transparent at high temperature, obviously forming a microcapsule structure. The microcapsules are regular and spherical, and the particle size is nanometer.
Description
技术领域technical field
本发明涉及一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法,具体涉及一种基于界面聚合法合成核壳型二氧化硅接枝酚醛树脂包覆可逆有机热敏材料微胶囊的合成方法。The invention relates to a method for synthesizing reversible discoloration microcapsules coated with silica-grafted phenolic resin, in particular to a method for synthesizing core-shell type silica-grafted phenolic resin-coated microcapsules of reversible organic heat-sensitive materials based on interfacial polymerization. Synthesis of capsules.
背景技术Background technique
微胶囊是指一种具有聚合物壁的微型容器或包装物。微胶囊造粒技术就是将固体、液体或气体包埋、封存在一种微型胶囊内成为一种固体微粒产品的技术。近几年来,微囊技术被广泛应用于微生物、动植物细胞、酶和其他多种生物活性物质和化学药物的固定化方面。常用的微囊为海藻酸/聚赖氨酸微囊。由于制备技术比较复杂,成囊过程时间较长,对被包埋物质的生物活性有一定的影响,而且聚赖氨酸的价格比较昂贵,因而限制了这种微囊的使用。Microcapsules are microscopic containers or packages with polymeric walls. Microcapsule granulation technology is to embed and seal solid, liquid or gas in a microcapsule to become a solid particle product. In recent years, microcapsule technology has been widely used in the immobilization of microorganisms, animal and plant cells, enzymes and other biologically active substances and chemical drugs. The commonly used microcapsules are alginic acid/polylysine microcapsules. Due to the complicated preparation technology and the long time of encapsulation process, it has a certain influence on the biological activity of the embedded material, and the price of polylysine is relatively expensive, thus limiting the use of this microcapsule.
制备微囊的基本材料通常具有蛋白质、脂类和糖等聚电解质。壳聚糖是部分脱去乙酰度的甲壳素,后者具有优良的韧性和惰性,且亲水、无毒、多孔、均匀,同时甲壳素在自然界中含量也是十分丰富的。鉴于此,本试验从甲壳素这种天然高分子功能团的特殊性,以及无毒、亲水性等优点出发,用浓碱脱乙酰化得到壳聚糖,然后用上述方法达到球形壳聚糖,并用适当的方法将酵母包埋在球形壳聚糖内,制备出性能较好的微胶囊,并探讨了壳聚糖成球条件、包埋酵母的最适条件,以及壳聚糖作为固定化物质载体的可行性。传统的微胶囊合成方法从原理上大致可分为物理方法、物理化学方法、化学方法三类。常用的物理方法有粉碎法、机械合金法和蒸发冷凝发,物理法包括喷雾干燥法、喷雾冷冻法、空气悬浮法、真空蒸发沉积法、复凝聚法、多空离心法等;物理化学法包括水相分离法、油相分离法、囊心交换法、挤压法、锐孔法、粉末床法;化学法包括界面聚合法、原位聚合法、分子包囊法、辐射包囊法等。The basic materials for preparing microcapsules usually have polyelectrolytes such as proteins, lipids and sugars. Chitosan is partially deacetylated chitin, which has excellent toughness and inertness, and is hydrophilic, non-toxic, porous, and uniform. At the same time, chitin is also very abundant in nature. In view of this, starting from the particularity of chitin, a natural polymer functional group, as well as the advantages of non-toxicity and hydrophilicity, this experiment obtained chitosan by deacetylation with concentrated alkali, and then obtained spherical chitosan by the above method. , and embed the yeast in the spherical chitosan by appropriate method to prepare microcapsules with good performance, and discuss the conditions of chitosan spheroidization, optimal conditions for embedding yeast, and chitosan as an immobilized microcapsule. The feasibility of the material carrier. Traditional microcapsule synthesis methods can be roughly divided into three categories: physical methods, physicochemical methods, and chemical methods. Commonly used physical methods include crushing method, mechanical alloy method and evaporation condensation method. Physical methods include spray drying method, spray freezing method, air suspension method, vacuum evaporation deposition method, complex coacervation method, multi-space centrifugation method, etc.; physical and chemical methods include Water phase separation method, oil phase separation method, capsule core exchange method, extrusion method, orifice method, powder bed method; chemical methods include interfacial polymerization method, in-situ polymerization method, molecular encapsulation method, radiation encapsulation method, etc.
纳米胶囊(nanocapsule)最早是由Narty等人在20世纪70年代末提出来的,一般指粒径在1-1000nm之间的微胶囊。由于纳米胶囊区别于普通微胶囊主要在于粒径大小不同,因此在合成纳米胶囊时,应对影响粒径的各种因素进行分析来确定工艺参数。纳米胶囊的合成方法主要是化学法和物理化学法,其中,朱银燕等人介绍了在不同胶体体系中合成纳米微胶囊的方法,包括界面聚合法,界面沉积法等。最近,以无极金属作为壁材合成纳米微胶囊成为全球热点。然而一般生产微胶囊工艺的明显缺点是工艺复杂,工艺合成步骤多,生产能耗较大,而且易破碎,耐水性及分散性差,粒径普遍较大且不均一。Nanocapsules (nanocapsules) were first proposed by Narty et al. in the late 1970s, and generally refer to microcapsules with a particle size between 1-1000nm. Since nanocapsules are different from ordinary microcapsules mainly in particle size, when synthesizing nanocapsules, various factors affecting particle size should be analyzed to determine process parameters. The synthesis methods of nanocapsules are mainly chemical and physical chemical methods. Among them, Zhu Yinyan and others introduced the methods of synthesizing nanomicrocapsules in different colloidal systems, including interfacial polymerization and interfacial deposition. Recently, the synthesis of nano-microcapsules using electrodeless metals as wall materials has become a global hotspot. However, the obvious disadvantages of the general production of microcapsules are that the process is complex, the process has many synthesis steps, the production energy consumption is large, and it is easy to break, poor water resistance and dispersibility, and the particle size is generally large and uneven.
发明内容Contents of the invention
本发明的目的是合成核壳型二氧化硅接枝酚醛树脂包覆有机可逆变色热敏材料微胶囊的合成方法,界面聚合法可将微粒粒径控制在更小且更集中的范围内。本发明合成的核壳型二氧化硅接枝酚醛树脂包覆有机热敏材料微胶囊的粒径可控50-150nm,粒径较小且分布窄,分散性好,工艺过程耗能比较低,且不易破碎,耐水性好。The purpose of the present invention is to synthesize a method for synthesizing core-shell silica-grafted phenolic resin-coated organic reversible discoloration heat-sensitive material microcapsules. The interfacial polymerization method can control the particle size in a smaller and more concentrated range . The particle size of the core-shell type silicon dioxide grafted phenolic resin coated organic heat-sensitive material microcapsules synthesized by the present invention can be controlled to 50-150nm, the particle size is small and the distribution is narrow, the dispersibility is good, and the energy consumption of the process is relatively low. And not easy to break, good water resistance.
一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法,该合成方法具体包括如下步骤如下:A method for synthesizing reversible discoloration microcapsules coated with silica-grafted phenolic resin, the synthesis method specifically comprising the following steps:
(1)复合型乳化剂制备:常温条件下,取5g正己烷和0.4g Span-80和0.1g OP-10于100ml烧杯,混合后搅拌10-20min得溶液A;(1) Preparation of composite emulsifier: under normal temperature, take 5g of n-hexane, 0.4g of Span-80 and 0.1g of OP-10 in a 100ml beaker, mix and stir for 10-20min to obtain solution A;
(2)二氧化硅接枝酚醛树脂包覆材料的合成:常温条件下,取0.1g氢氧化钠和3.5g间苯二酚加入100ml蒸馏水于200ml烧杯,混合后搅拌10-20min,再加入6ml硅溶胶反应30min,得到溶液B;(2) Synthesis of silica-grafted phenolic resin coating material: at room temperature, take 0.1g sodium hydroxide and 3.5g resorcinol, add 100ml distilled water to a 200ml beaker, mix and stir for 10-20min, then add 6ml The silica sol was reacted for 30 minutes to obtain solution B;
(3)可逆变色材料壳心的制备:温度控制为55℃,将结晶紫内酯,双酚A,十六醇倒入带有搅拌器的四口瓶中加热溶解,搅拌速度设定为600-800r/min,并加入6g甲醛溶液和0.1gOS-10,将溶液A缓慢滴加到四口瓶中,滴加速度为30-40mL/min,搅拌30min后,得到乳化液C并降温至室温;(3) Preparation of reversible discoloration material shell core: the temperature is controlled at 55°C, crystal violet lactone, bisphenol A, and cetyl alcohol are poured into a four-necked bottle with a stirrer and heated to dissolve, and the stirring speed is set 600-800r/min, and add 6g formaldehyde solution and 0.1gOS-10, slowly drop solution A into the four-neck flask, the dropping speed is 30-40mL/min, after stirring for 30min, the emulsion C is obtained and cooled to room temperature;
(4)微胶囊的合成:常温条件下,将溶液B滴加到四口瓶中,滴加速度为3-4mL/min,搅拌速度为600-800r/min,保持5-6h后,得到核壳型二氧化硅接枝酚醛树脂包覆有机可逆变色热敏材料微胶囊。(4) Synthesis of microcapsules: under normal temperature conditions, drop solution B into a four-necked bottle, the dropping rate is 3-4mL/min, the stirring speed is 600-800r/min, and after keeping for 5-6h, the core-shell is obtained Type silica-grafted phenolic resin coated organic reversible discoloration thermosensitive material microcapsules.
本发明的合成方法具有以下优点:Synthetic method of the present invention has the following advantages:
(1)本发明采用热塑性二氧化硅接枝酚醛树脂代替以往热固性树脂及未接枝热塑性树脂合成微胶囊,实现粒径较小均一且不易破损,包覆率高;(1) The present invention adopts thermoplastic silica-grafted phenolic resin to replace conventional thermosetting resin and ungrafted thermoplastic resin to synthesize microcapsules, so that the particle size is small and uniform, not easily damaged, and the coating rate is high;
(2)微胶囊的制备过程基本为室温,便于生产操作,降低了生产能耗。(2) The preparation process of the microcapsules is basically room temperature, which is convenient for production operation and reduces production energy consumption.
附图说明Description of drawings
图1为实施案例一一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法SEM图像。Fig. 1 is the SEM image of a synthetic method of silica-grafted phenolic resin-wrapped reversible discoloration microcapsules in Example 1.
图2为实施案例二一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法SEM图像。Fig. 2 is an SEM image of a synthesis method of silica-grafted phenolic resin-wrapped reversible discoloration microcapsules in Example 2.
图3为实施案例三一种二氧化硅接枝酚醛树脂包裹可逆变色微胶囊的合成方法SEM图像。Fig. 3 is a SEM image of a synthesis method of silica-grafted phenolic resin-wrapped reversible discoloration microcapsules in Example 3.
具体实施方式Detailed ways
以下通过实施例形式的具体实施方式,对本发明的上述内容作进一步的详细说明。The above-mentioned content of the present invention will be further described in detail through specific implementation in the form of examples below.
实施例一:Embodiment one:
(1)复合型乳化剂合成:常温条件下,取5g正己烷和0.4g Span-80和0.1g OP-10于100ml烧杯,混合后搅拌10-20min得溶液A;(1) Synthesis of compound emulsifier: under normal temperature, take 5g of n-hexane, 0.4g of Span-80 and 0.1g of OP-10 in a 100ml beaker, mix and stir for 10-20min to obtain solution A;
(2)二氧化硅接枝酚醛树脂包覆材料的合成:常温条件下,取0.1g氢氧化钠和3.5g间苯二酚加入80ml蒸馏水于200ml烧杯,混合后搅拌10-20min,再加入1ml硅溶胶反应30min,得到溶液B;(2) Synthesis of silica grafted phenolic resin coating material: at room temperature, take 0.1g sodium hydroxide and 3.5g resorcinol, add 80ml distilled water to a 200ml beaker, mix and stir for 10-20min, then add 1ml The silica sol was reacted for 30 minutes to obtain solution B;
(3)可逆变色材料壳心的合成:温度控制为55℃,将结晶紫内酯,双酚A,十六醇倒入带有搅拌器的四口瓶中加热溶解,搅拌速度设定为600-800r/min,并加入6g甲醛溶液,将溶液A缓慢滴加到四口瓶中,滴加速度为30-40mL/min,搅拌30min后,得到乳化液C并降温至室温;(3) Synthesis of reversible discoloration material shell core: the temperature is controlled at 55°C, crystal violet lactone, bisphenol A, and cetyl alcohol are poured into a four-necked bottle with a stirrer and heated to dissolve, and the stirring speed is set 600-800r/min, and 6g of formaldehyde solution was added, and solution A was slowly added dropwise into a four-necked bottle at a rate of 30-40mL/min, and after stirring for 30min, emulsion C was obtained and cooled to room temperature;
(4)微胶囊的合成:常温条件下,将溶液B滴加到四口瓶中,滴加速度为3-4mL/min,搅拌速度为600-800r/min,保持5-6h后,得到核壳型二氧化硅接枝酚醛树脂包覆有机变色热敏材料微胶囊。(4) Synthesis of microcapsules: under normal temperature conditions, drop solution B into a four-necked bottle, the dropping rate is 3-4mL/min, the stirring speed is 600-800r/min, and after keeping for 5-6h, the core-shell is obtained Type silica-grafted phenolic resin coated organic color-changing heat-sensitive material microcapsules.
本实施案例合成的微胶囊微胶囊变色温度35.5℃左右,变色时间30s左右,复色温度32℃左右,复色时间35s左右,低温蓝色,高温透明色,团聚现象严重。The microcapsules synthesized in this implementation case have a discoloration temperature of about 35.5°C, a discoloration time of about 30s, a recoloring temperature of about 32°C, and a recoloring time of about 35s. They are blue at low temperature and transparent at high temperature, with serious agglomeration.
实施例二:Embodiment two:
(1)复合型乳化剂合成:常温条件下,取5g正己烷和0.4g Span-80和0.1g OP-10于100ml烧杯,混合后搅拌10-20min得溶液A;(1) Synthesis of compound emulsifier: under normal temperature, take 5g of n-hexane, 0.4g of Span-80 and 0.1g of OP-10 in a 100ml beaker, mix and stir for 10-20min to obtain solution A;
(2)二氧化硅接枝酚醛树脂包覆材料的合成:常温条件下,取0.1g氢氧化钠和3.5g间苯二酚加入80ml蒸馏水于100ml烧杯,混合后搅拌10-20min,再加入5ml硅溶胶反应30min,得到溶液B;(2) Synthesis of silica grafted phenolic resin coating material: at room temperature, take 0.1g sodium hydroxide and 3.5g resorcinol, add 80ml distilled water to a 100ml beaker, mix and stir for 10-20min, then add 5ml The silica sol was reacted for 30 minutes to obtain solution B;
(3)可逆变色材料壳心的合成:温度控制为55℃,将结晶紫内酯,双酚A,十六醇倒入带有搅拌器的四口瓶中加热溶解,搅拌速度设定为600-800r/min,并加入6g甲醛溶液和0.1gOS-10,将溶液A缓慢滴加到四口瓶中,滴加速度为30-40mL/min,搅拌30min后,得到乳化液C并降温至室温;(3) Synthesis of reversible discoloration material shell core: the temperature is controlled at 55°C, crystal violet lactone, bisphenol A, and cetyl alcohol are poured into a four-necked bottle with a stirrer and heated to dissolve, and the stirring speed is set 600-800r/min, and add 6g formaldehyde solution and 0.1gOS-10, slowly drop solution A into the four-neck flask, the dropping speed is 30-40mL/min, after stirring for 30min, the emulsion C is obtained and cooled to room temperature;
(4)微胶囊的合成:常温条件下,将溶液B滴加到四口瓶中,滴加速度为3-4mL/min,搅拌速度为600-800r/min,保持5-6h后,得到核壳型二氧化硅接枝酚醛树脂包覆有机变色热敏材料微胶囊。(4) Synthesis of microcapsules: under normal temperature conditions, drop solution B into a four-necked bottle, the dropping rate is 3-4mL/min, the stirring speed is 600-800r/min, and after keeping for 5-6h, the core-shell is obtained Type silica-grafted phenolic resin coated organic color-changing heat-sensitive material microcapsules.
本实施案例合成的微胶囊微胶囊变色温度35.5℃左右,变色时间30s左右,复色温度32℃左右,复色时间35s左右,低温蓝色,高温透明色,团聚现象减少。The microcapsules synthesized in this implementation case have a discoloration temperature of about 35.5°C, a discoloration time of about 30s, a recoloring temperature of about 32°C, and a recoloring time of about 35s. They are blue at low temperature and transparent at high temperature, and the phenomenon of agglomeration is reduced.
实施例三:Embodiment three:
(1)复合型乳化剂制备:常温条件下,取5g正己烷和0.4g Span-80和0.1g OP-10于100ml烧杯,混合后搅拌10-20min得溶液A;(1) Preparation of composite emulsifier: under normal temperature, take 5g of n-hexane, 0.4g of Span-80 and 0.1g of OP-10 in a 100ml beaker, mix and stir for 10-20min to obtain solution A;
(2)二氧化硅接枝酚醛树脂包覆材料的合成:常温条件下,取0.1g氢氧化钠和3.5g间苯二酚加入80ml蒸馏水于200ml烧杯,混合后搅拌10-20min,再加入6ml硅溶胶反应30min,得到溶液B;(2) Synthesis of silica grafted phenolic resin coating material: under normal temperature, take 0.1g sodium hydroxide and 3.5g resorcinol, add 80ml distilled water to a 200ml beaker, mix and stir for 10-20min, then add 6ml The silica sol was reacted for 30 minutes to obtain solution B;
(3)可逆变色材料壳心的合成:温度控制为55℃,将结晶紫内酯,双酚A,十六醇倒入带有搅拌器的四口瓶中加热溶解,搅拌速度设定为600-800r/min,并加入6g甲醛溶液和0.1gOS-10,将溶液A缓慢滴加到四口瓶中,滴加速度为30-40mL/min,搅拌30min后,得到乳化液C并降温至室温;(3) Synthesis of reversible discoloration material shell core: the temperature is controlled at 55°C, crystal violet lactone, bisphenol A, and cetyl alcohol are poured into a four-necked bottle with a stirrer and heated to dissolve, and the stirring speed is set 600-800r/min, and add 6g formaldehyde solution and 0.1gOS-10, slowly drop solution A into the four-neck flask, the dropping speed is 30-40mL/min, after stirring for 30min, the emulsion C is obtained and cooled to room temperature;
(4)微胶囊的合成:常温条件下,将溶液B滴加到四口瓶中,滴加速度为3-4mL/min,搅拌速度为600-800r/min,保持5-6h后,得到核壳型二氧化硅接枝酚醛树脂包覆有机变色热敏材料微胶囊。(4) Synthesis of microcapsules: under normal temperature conditions, drop solution B into a four-necked bottle, the dropping rate is 3-4mL/min, the stirring speed is 600-800r/min, and after keeping for 5-6h, the core-shell is obtained Type silica-grafted phenolic resin coated organic color-changing heat-sensitive material microcapsules.
本实施案例合成的微胶囊微胶囊变色温度35.5℃左右,变色时间30s左右,复色温度32℃左右,复色时间35s左右,低温蓝色,高温透明色,明显形成微胶囊结构。The microcapsules synthesized in this implementation case have a discoloration temperature of about 35.5°C, a discoloration time of about 30s, a recoloring temperature of about 32°C, and a recoloring time of about 35s. They are blue at low temperature and transparent at high temperature, obviously forming a microcapsule structure.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910408419.3A CN110115962A (en) | 2019-05-16 | 2019-05-16 | A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910408419.3A CN110115962A (en) | 2019-05-16 | 2019-05-16 | A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110115962A true CN110115962A (en) | 2019-08-13 |
Family
ID=67522674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910408419.3A Pending CN110115962A (en) | 2019-05-16 | 2019-05-16 | A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110115962A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115895317A (en) * | 2022-11-25 | 2023-04-04 | 山东科技大学 | A hierarchical response self-warning anti-corrosion coating and its preparation method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58224038A (en) * | 1982-06-24 | 1983-12-26 | Sumitomo Deyurezu Kk | Composition of coated sand and its production |
CN102827597A (en) * | 2012-06-21 | 2012-12-19 | 天津工业大学 | Thermosensitive discoloring energy-storage material and preparation method thereof |
US20140338852A1 (en) * | 2011-10-28 | 2014-11-20 | E I Du Pont De Nemours And Company | Treated inorganic pigments having improved dispersability and use thereof in paper products |
CN105170041A (en) * | 2015-07-13 | 2015-12-23 | 西安理工大学 | Reversible thermochromic microcapsule pigment preparation method |
CN107224945A (en) * | 2017-06-26 | 2017-10-03 | 西北工业大学 | It is a kind of using phenolic resin be wall material solids as emulsifying agent dicyclopentadiene microcapsule and preparation method |
CN109173947A (en) * | 2018-09-30 | 2019-01-11 | 江南大学 | A kind of magnetic response electrochromism liquid crystal micro-sphere material and preparation method thereof |
-
2019
- 2019-05-16 CN CN201910408419.3A patent/CN110115962A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58224038A (en) * | 1982-06-24 | 1983-12-26 | Sumitomo Deyurezu Kk | Composition of coated sand and its production |
US20140338852A1 (en) * | 2011-10-28 | 2014-11-20 | E I Du Pont De Nemours And Company | Treated inorganic pigments having improved dispersability and use thereof in paper products |
CN102827597A (en) * | 2012-06-21 | 2012-12-19 | 天津工业大学 | Thermosensitive discoloring energy-storage material and preparation method thereof |
CN105170041A (en) * | 2015-07-13 | 2015-12-23 | 西安理工大学 | Reversible thermochromic microcapsule pigment preparation method |
CN107224945A (en) * | 2017-06-26 | 2017-10-03 | 西北工业大学 | It is a kind of using phenolic resin be wall material solids as emulsifying agent dicyclopentadiene microcapsule and preparation method |
CN109173947A (en) * | 2018-09-30 | 2019-01-11 | 江南大学 | A kind of magnetic response electrochromism liquid crystal micro-sphere material and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115895317A (en) * | 2022-11-25 | 2023-04-04 | 山东科技大学 | A hierarchical response self-warning anti-corrosion coating and its preparation method |
CN115895317B (en) * | 2022-11-25 | 2024-03-12 | 山东科技大学 | Graded response self-early warning anti-corrosion coating and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Pickering emulsions: Versatility of colloidal particles and recent applications | |
Jyothi et al. | Microencapsulation: a review | |
JP6831843B2 (en) | A method of encapsulating a substance in a silica-based capsule, and the product obtained thereby. | |
Jyothi et al. | Microencapsulation techniques, factors influencing encapsulation efficiency | |
US6833192B1 (en) | Encapsulation of crystals via multilayer coatings | |
US3691090A (en) | Encapsulation method | |
Agnihotri et al. | Microencapsulation–a novel approach in drug delivery: a review | |
CA1254528A (en) | Process for encapsulation and encapsulated active material system | |
US4744933A (en) | Process for encapsulation and encapsulated active material system | |
US3755190A (en) | Capsule manufacture | |
JP3459634B2 (en) | Method for producing capsules comprising a liquid active substance core surrounded by an inorganic shell | |
JP2002506719A (en) | Fabrication of nanocapsules and microcapsules by layered polyelectrolyte self-assembly | |
JPS6023859B2 (en) | Method for manufacturing microcapsules | |
JPS63146792A (en) | Beads having alginate outer shell of milimeter dimension, production thereof and apparatus for producing said beads | |
US4123382A (en) | Method of microencapsulation | |
CN104288122B (en) | Biodegradable PLGA/PCL composite micro-capsules and preparation method thereof | |
JPH0230736B2 (en) | ||
CN100553756C (en) | A kind of preparation method of core-shell structure nano microcapsule | |
CN101670255B (en) | Method for preparing functional magnetic high molecular microsphere by super-thick emulsion method | |
CN110115962A (en) | A kind of synthetic method of silica grafting phenolic resin package reversible color change microcapsule | |
WO2020048435A1 (en) | Polymer particles preparation method | |
Park et al. | Fabrication of hollow silica microspheres through the self-assembly behavior of polymers in W/O emulsion | |
Yang et al. | A green route to silica nanoparticles with tunable size and structure | |
Mirzataheri | Emulsion polymerization and encapsulation of micro and nanoparticles within polymer droplets | |
CN105776164B (en) | A kind of inorganic hollow particle and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190813 |