[go: up one dir, main page]

CN110098488B - A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory - Google Patents

A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory Download PDF

Info

Publication number
CN110098488B
CN110098488B CN201910410937.9A CN201910410937A CN110098488B CN 110098488 B CN110098488 B CN 110098488B CN 201910410937 A CN201910410937 A CN 201910410937A CN 110098488 B CN110098488 B CN 110098488B
Authority
CN
China
Prior art keywords
mode
metasurface
characteristic
expansion coefficient
subunit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910410937.9A
Other languages
Chinese (zh)
Other versions
CN110098488A (en
Inventor
史琰
郑威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910410937.9A priority Critical patent/CN110098488B/en
Publication of CN110098488A publication Critical patent/CN110098488A/en
Application granted granted Critical
Publication of CN110098488B publication Critical patent/CN110098488B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention belongs to the technical field of electromagnetism, relates to a low radar scattering cross section, and particularly relates to a mode conversion method of a low RCS (radar cross section) super surface based on a characteristic mode theory, which is characterized by comprising the following steps of: at least comprises the following steps: step 1: calculating a characteristic mode curve of the super-surface subunit (3) under the condition of fixed electromagnetic wave incidence according to a characteristic mode theory; step 2: carrying out array arrangement of 4 multiplied by 4 according to the super-surface subunits (3) obtained in the step 1; and 3, symmetrically arranging the super-surface sub-array (4) obtained in the step 2 and the rotary sub-array thereof by 2 x 2 to form a super-surface array (5) with RCS (radar cross section) reduction effect. The method for converting the low-RCS super-surface mode based on the characteristic model theory can realize the design of the low-RCS super-surface array according to the design flow without depending on the experience of designers, thereby greatly accelerating the design process, shortening the design period, and designing the low-RCS super-surface structure more intuitively, simply and efficiently.

Description

一种基于特征模理论的低RCS超表面的模式转化方法A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory

技术领域technical field

本发明属于电磁技术领域,涉及一种低雷达散射截面,具体涉及一种基于特征模理论的低RCS超表面的模式转化方法。The invention belongs to the field of electromagnetic technology, relates to a low radar scattering cross section, and in particular relates to a mode conversion method of a low RCS metasurface based on characteristic mode theory.

背景技术Background technique

雷达散射截面(RCS)是衡量散射体散射能力的重要物理量,它能够定量表征目标物体在电磁波入射情况下向某个固定方向散射电磁波能量的能力,是衡量目标散射强度的重要参数,雷达散射截面越小,目标的隐蔽性能就越好。目前降低目标雷达散射截面的技术通常包括三种:即加载雷达吸波材料技术、外形优化技术、以及有源或无源对消技术。雷达吸波材料可以将电磁能量转化为其他形式的能量,以此来实现目标的RCS减缩。外形优化技术通过优化目标的形状从而将其雷达信号偏离威胁方向或减小雷达的回波信号。无源对消技术是采用特殊外形或材料等无源隐身技术手段产生与来波相干涉的回波,以实现来波与回波间的相互对消;而有源对消技术是利用在目标上装备有源对消电子设备,以产生适合对消的电磁波,通过相消干涉减弱或消除反射波。Radar Cross Section (RCS) is an important physical quantity to measure the scattering ability of scatterers. It can quantitatively characterize the ability of a target object to scatter electromagnetic energy in a fixed direction under the incident of electromagnetic waves. It is an important parameter to measure the scattering intensity of the target. The smaller the target, the better the concealment performance. At present, the technologies for reducing the target radar scattering cross section usually include three types: the technology of loading radar absorbing materials, the technology of shape optimization, and the technology of active or passive cancellation. Radar absorbers can convert electromagnetic energy into other forms of energy to achieve target RCS reduction. Shape optimization techniques optimize the shape of a target to steer its radar signal away from the threat or reduce radar echoes. Passive cancellation technology is to use passive stealth technology such as special shapes or materials to generate echoes that interfere with incoming waves to achieve mutual cancellation between incoming waves and echoes; while active cancellation technology is used in the target. Equipped with active cancellation electronics to generate electromagnetic waves suitable for cancellation, and to weaken or eliminate reflected waves through destructive interference.

人工电磁超表面是指一种厚度小于波长的人工层状材料。通常来说,它是在一层介质基片上采用刻蚀、印制等方式形成具有一定排布方式的阵列。它可以实现对电磁波振幅、相位、极化、传播模式等特性的灵活有效调控。目前针对于低RCS超表面的方法都是基于散射相消的方法实现的,属于无源对消技术。2007年,M.Paquay等人提出了一种将人工磁导体结构和理想导体结构进行棋盘式排布的人工电磁超表面结构,通过利用人工磁导体结构与理想导体结构相位相差180o,以实现目标的RCS减缩。但是人工磁导体结构的同相反射的带宽很窄,从而RCS减缩带宽受限。为了展宽RCS减缩带宽,2016年A.Y.Modi等人提出基于两种人工磁导体的棋盘式结构。通过使两种人工磁导体结构的反射相位差在较宽的频带内保持 180°±37°,从而实现宽频带的低RCS超表面设计。但是这种方法存在的问题是,在超表面子单元的设计过程中很难直观的将反射相位与超表面结构联系起来,无法清晰地反映出超表面结构的工作机理,因此设计过程更多依赖于设计人员的经验,需要通过不断地尝试才能够设计出符合要求的超表面子单元,从而造成整个设计过程时间成本的大幅增加。An artificial electromagnetic metasurface refers to an artificial layered material with a thickness smaller than the wavelength. Generally speaking, it uses etching, printing, etc. to form an array with a certain arrangement on a layer of dielectric substrate. It can realize flexible and effective regulation of electromagnetic wave amplitude, phase, polarization, propagation mode and other characteristics. The current methods for low RCS metasurfaces are all based on the method of scattering cancellation, which belongs to passive cancellation technology. In 2007, M.Paquay et al. proposed an artificial electromagnetic metasurface structure in which the artificial magnetic conductor structure and the ideal conductor structure are arranged in a checkerboard. By using the phase difference between the artificial magnetic conductor structure and the ideal conductor structure by 180o, to achieve the goal. RCS reduction. However, the bandwidth of the in-phase reflection of the artificial magnetic conductor structure is very narrow, so the bandwidth of RCS reduction is limited. In order to widen the reduced bandwidth of RCS, A.Y.Modi et al. proposed a checkerboard structure based on two artificial magnetic conductors in 2016. By keeping the reflection phase difference of the two artificial magnetic conductor structures at 180°±37° in a wide frequency band, a wide-band low-RCS metasurface design is realized. However, the problem with this method is that it is difficult to intuitively associate the reflection phase with the metasurface structure in the design process of the metasurface subunit, and the working mechanism of the metasurface structure cannot be clearly reflected, so the design process is more dependent on Due to the experience of designers, it is necessary to continuously try to design metasurface subunits that meet the requirements, resulting in a substantial increase in the time and cost of the entire design process.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对上述现有技术的不足,提出了一种无需依赖设计人员的经验,按照设计流程即可实现低RCS的超表面阵列的设计,从而大大加快了设计进程,缩短了设计周期的基于特征模理论的低RCS超表面的模式转化方法,它能更加直观、简洁、高效的设计低RCS的超表面结构。The purpose of the present invention is to aim at the above-mentioned deficiencies of the prior art, and propose a design of a metasurface array with low RCS that can be realized according to the design process without relying on the experience of designers, thereby greatly speeding up the design process and shortening the design cycle The mode conversion method of low RCS metasurface based on eigenmode theory can be more intuitive, concise and efficient to design low RCS metasurface structure.

为实现上述目的,本发明的技术方案是:一种基于特征模理论的低 RCS超表面的模式转化方法,其特征是:至少包括以下步骤:To achieve the above object, the technical scheme of the present invention is: a mode conversion method of a low RCS metasurface based on the eigenmode theory, which is characterized in that: at least the following steps are included:

步骤1:依据特征模理论计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,使超表面子单元3的尺寸、形状在工作频带内能够实现模式转化;Step 1: Calculate the characteristic mode curve of a metasurface subunit 3 under the condition of fixed electromagnetic wave incidence according to the characteristic mode theory, so that the size and shape of the metasurface subunit 3 can realize mode conversion within the working frequency band;

步骤2:根据步骤1中得到的超表面子单元3进行4×4的阵列排布,形成超表面子阵列4;依据特征模理论计算超表面子阵列4在固定电磁波入射条件下的特征模曲线,并依据工作频段内的特征模式分析结果对超表面子阵列4的结构尺寸进行优化,在工作频段内实现模式转化;Step 2: According to the metasurface subunits 3 obtained in step 1, perform a 4×4 array arrangement to form a metasurface subarray 4; calculate the characteristic mode curve of the metasurface subarray 4 under the condition of fixed electromagnetic wave incidence according to the characteristic mode theory , and optimize the structure size of the metasurface subarray 4 according to the characteristic mode analysis results in the working frequency band, and realize the mode conversion in the working frequency band;

步骤3,将步骤2得到的超表面子阵列4与其旋转子阵列进行2×2 的对称排布,形成具有RCS减缩效果的超表面阵列5。In step 3, the metasurface sub-array 4 obtained in step 2 and its rotating sub-array are arranged symmetrically by 2×2 to form a meta-surface array 5 with RCS reduction effect.

所述的步骤1包括如下具体步骤:Described step 1 includes the following specific steps:

1a)计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,根据模式展开系数的幅度曲线来判定超表面子单元3的主要激励模式;1a) calculate the characteristic mode curve of a metasurface subunit 3 under fixed electromagnetic wave incident conditions, and determine the main excitation mode of the metasurface subunit 3 according to the amplitude curve of the mode expansion coefficient;

2a)提取上述超表面子单元3的特征电流,生成特征电流矢量分布图;2a) extract the characteristic current of above-mentioned metasurface subunit 3, generate characteristic current vector distribution diagram;

3a)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流矢量分布,调整超表面子单元 3的结构尺寸使其在工作频段内实现模式转化。3a) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current vector distribution of the main excitation mode, and adjust the structure size of the metasurface subunit 3 to achieve mode conversion in the working frequency band.

所述的固定电磁波入射条件是指在强度、极化等已知的电磁场垂直入射。The fixed electromagnetic wave incident condition refers to the normal incidence of the electromagnetic field with known intensity, polarization, etc.

所述的主要激励模式是依据模式展开系数的大小进行判定,在同一工作频点上若有一个模式对应的模式展开系数远大于其它模式所对应的模式展开系数,则该模式为主要激励模式。The main excitation mode is determined according to the size of the mode expansion coefficient. If the mode expansion coefficient corresponding to one mode is much larger than the mode expansion coefficient corresponding to other modes at the same operating frequency, the mode is the main excitation mode.

所述的合成模式电流矢量分布是由主要激励模式的模式电流分布和对应的模式展开系数相位确定,当主要激励模式的模式展开系数相位在 -90o~90o区间时,对应的模式电流分布保持不变,而当主要激励模式的模式展开系数相位在90°~180°或者-180°~-90°区间时,对应的模式电流方向反向,将所有考虑相位后的主要激励模式叠加合成,从而得到合成模式电流矢量分布。The composite mode current vector distribution is determined by the mode current distribution of the main excitation mode and the phase of the corresponding mode expansion coefficient. When the mode expansion coefficient phase of the main excitation mode is in the range of -90o to 90o, the corresponding mode current distribution remains unchanged. When the phase of the mode expansion coefficient of the main excitation mode is in the range of 90°~180° or -180°~-90°, the corresponding mode current direction is reversed, and all the main excitation modes after considering the phase are superimposed and synthesized, thus Obtain the composite mode current vector distribution.

所述的模式转化是指主要激励模式的合成模式电流产生的散射场的极化方向与入射电磁场的极化方向正交,也即散射模式与入射模式实现了模式旋转。The mode conversion refers to that the polarization direction of the scattered field generated by the combined mode current of the main excitation mode is orthogonal to the polarization direction of the incident electromagnetic field, that is, the scattering mode and the incident mode realize mode rotation.

所述的步骤2包括:The step 2 includes:

2a)根据步骤1得到的超表面子单元3对其进行阵列排布形成超表面子阵列4,并对超表面子阵列4进行特征模式分析;2a) performing an array arrangement on the metasurface subunits 3 obtained in step 1 to form a metasurface subarray 4, and performing characteristic pattern analysis on the metasurface subarray 4;

2b)根据2a)中特征模式分析后得到的模式展开系数幅度曲线判断工作频段内的主要激励模式;2b) According to the mode expansion coefficient amplitude curve obtained after the characteristic mode analysis in 2a), determine the main excitation mode in the working frequency band;

2c)提取主要激励模式对应的特征电流,生成特征电流矢量分布图;2c) Extract the characteristic current corresponding to the main excitation mode, and generate the characteristic current vector distribution map;

2d)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流分布,优化超表面子单元3 的结构尺寸形成超表面子阵列4,使超表面子阵列4在工作频段内能够实现模式转化。2d) Combining the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient, the synthesized mode current distribution of the main excitation mode is obtained, and the structure size of the metasurface subunit 3 is optimized to form a metasurface subarray 4, so that the metasurface subunit 3 is formed. The array 4 can realize mode conversion in the working frequency band.

所述的步骤3包括:将超表面子阵列4以其中心按照90°,180°,270°的角度进行顺时针旋转,所得到旋转后的3个超表面子阵列与超表面子阵列4一起以中心对称方式排布成2×2的阵列,得到具有RCS减缩效果的超表面阵列5,具有RCS减缩效果的超表面阵列5能够在上述的模式转化频段内实现低RCS特性。The step 3 includes: rotating the metasurface subarray 4 clockwise with its center at angles of 90°, 180°, and 270°, and the obtained three metasurface subarrays after the rotation are together with the metasurface subarray 4 The metasurface array 5 with the RCS reduction effect is obtained by arranging it into a 2×2 array in a center-symmetric manner. The metasurface array 5 with the RCS reduction effect can achieve low RCS characteristics in the above-mentioned mode conversion frequency band.

本发明具有以下有益效果:The present invention has the following beneficial effects:

1.本发明是基于特征模理论实现低RCS的超表面阵列的设计方法,通过特征模式的分析,能够给出超表面结构上主要激励模式的合成模式电流分布,从而清晰地揭示所设计超表面阵列的工作模式与机理。1. The present invention is a design method for realizing a low RCS metasurface array based on the characteristic mode theory. Through the analysis of the characteristic mode, the synthetic mode current distribution of the main excitation modes on the metasurface structure can be given, thereby clearly revealing the designed metasurface. The working mode and mechanism of the array.

2.与现有的技术相比,本发明给出了一个通用的低RCS的超表面阵列的设计流程,无需依赖设计人员的经验,按照设计流程即可实现低RCS 的超表面阵列的设计,从而大大加快了设计进程,缩短了设计周期。2. Compared with the prior art, the present invention provides a general low-RCS metasurface array design process, without relying on the designer's experience, the design of the low-RCS metasurface array can be realized according to the design process, This greatly speeds up the design process and shortens the design cycle.

附图说明Description of drawings

图1为本发明实施例流程图;1 is a flowchart of an embodiment of the present invention;

图2为本发明中超表面子单元3的模式展开系数幅度曲线;Fig. 2 is the mode expansion coefficient amplitude curve of metasurface subunit 3 in the present invention;

图3为本发明中超表面子单元3的模式展开系数相位曲线;Fig. 3 is the mode expansion coefficient phase curve of metasurface subunit 3 in the present invention;

图4(a)是超表面子单元3在9GHz处模式1的模式电流分布情况;Fig. 4(a) is the mode current distribution of mode 1 of metasurface subunit 3 at 9 GHz;

图4(b)是超表面子单元3在9GHz处模式2的模式电流分布情况;Figure 4(b) is the mode current distribution of mode 2 of metasurface subunit 3 at 9 GHz;

图5(a)是超表面子单元3在11GHz处模式1的模式电流分布情况;Fig. 5(a) is the mode current distribution of mode 1 of metasurface subunit 3 at 11 GHz;

图5(b)是超表面子单元3在11GHz处模式2的模式电流分布情况;Fig. 5(b) is the mode current distribution of mode 2 of metasurface subunit 3 at 11 GHz;

图6(a)是超表面子单元3在17GHz处模式1的模式电流分布情况;Fig. 6(a) is the mode current distribution of mode 1 of metasurface subunit 3 at 17 GHz;

图6(b)是超表面子单元3在17GHz处模式2的模式电流分布情况;Fig. 6(b) is the mode current distribution of mode 2 of metasurface subunit 3 at 17 GHz;

图7(a)是超表面子单元3在21GHz处模式1的模式电流分布情况;Fig. 7(a) is the mode current distribution of mode 1 of metasurface subunit 3 at 21 GHz;

图7(b)是超表面子单元3在21GHz处模式2的模式电流分布情况;Fig. 7(b) is the mode current distribution of mode 2 of metasurface subunit 3 at 21 GHz;

图8(a)是超表面子单元3在23GHz处模式1的模式电流分布情况;Fig. 8(a) is the mode current distribution of mode 1 of metasurface subunit 3 at 23 GHz;

图8(b)是超表面子单元3在23GHz处模式2的模式电流分布情况;Fig. 8(b) is the mode current distribution of mode 2 of metasurface subunit 3 at 23 GHz;

图9为本发明中超表面子阵列4的模式展开系数幅度曲线;Fig. 9 is the mode expansion coefficient amplitude curve of the metasurface subarray 4 in the present invention;

图10为本发明中超表面子阵列4的模式展开系数相位曲线;Fig. 10 is the mode expansion coefficient phase curve of the metasurface subarray 4 in the present invention;

图11(a)是超表面子阵列4在7GHz处模式2的模式电流分布情况;Fig. 11(a) is the mode current distribution of mode 2 of metasurface subarray 4 at 7 GHz;

图11(b)是超表面子阵列4在7GHz处模式6的模式电流分布情况;Fig. 11(b) is the mode current distribution of mode 6 of metasurface subarray 4 at 7 GHz;

图12(a)是超表面子阵列4在9GHz处模式2的模式电流分布情况;Fig. 12(a) is the mode current distribution of mode 2 of metasurface subarray 4 at 9 GHz;

图12(b)是超表面子阵列4在9GHz处模式6的模式电流分布情况;Fig. 12(b) is the mode current distribution of mode 6 of metasurface subarray 4 at 9 GHz;

图13(a)是超表面子阵列4在13GHz处模式2的模式电流分布情况;Fig. 13(a) is the mode current distribution of mode 2 of metasurface subarray 4 at 13 GHz;

图13(b)是超表面子阵列4在13GHz处模式6的模式电流分布情况;Fig. 13(b) is the mode current distribution of mode 6 of metasurface subarray 4 at 13 GHz;

图14(a)是超表面子阵列4在21GHz处模式2的模式电流分布情况;Fig. 14(a) is the mode current distribution of mode 2 of metasurface subarray 4 at 21 GHz;

图14(b)是超表面子阵列4在21GHz处模式6的模式电流分布情况;Fig. 14(b) is the mode current distribution of mode 6 of metasurface subarray 4 at 21 GHz;

图15(a)是超表面子阵列4在23GHz处模式2的模式电流分布情况;Fig. 15(a) is the mode current distribution of mode 2 of metasurface subarray 4 at 23 GHz;

图15(b)是超表面子阵列4在23GHz处模式6的模式电流分布情况;Fig. 15(b) is the mode current distribution of mode 6 of metasurface subarray 4 at 23 GHz;

图16(a)是超表面子单元3布局结构示意图俯视图;Figure 16 (a) is a schematic top view of the layout structure of the metasurface subunit 3;

图16(b)是超表面子单元3布局结构示意图侧视图;Figure 16(b) is a schematic side view of the layout structure of the metasurface subunit 3;

图17(a)是超表面子阵列4布局结构图俯视图;Figure 17 (a) is a top view of the layout structure of the metasurface sub-array 4;

图17(b)是超表面子阵列4布局结构图侧视图;Fig. 17(b) is a side view of the layout structure diagram of metasurface sub-array 4;

图18(a)是模式转化超表面阵列5的布局结构俯视图;Figure 18 (a) is a top view of the layout structure of the mode conversion metasurface array 5;

图18(b)是模式转化超表面阵列5的布局结构侧视图;FIG. 18(b) is a side view of the layout structure of the mode conversion metasurface array 5;

图19为参考金属地板7的结构示意图;FIG. 19 is a schematic structural diagram of the reference metal floor 7;

图20为具有RCS减缩效果的超表面阵列5与参考金属地板7的单站 RCS随频率变化对比曲线图。FIG. 20 is a graph showing the comparison of the single-station RCS of the metasurface array 5 with the RCS reduction effect and the reference metal floor 7 as a function of frequency.

图中,1.金属贴片单元;2.Rogers5880介质基板;3.超表面子单元;4. 超表面子阵列;5.具有RCS减缩效果的超表面阵列;6.金属地板;7.参考金属地板。In the figure, 1. Metal patch unit; 2. Rogers5880 dielectric substrate; 3. Metasurface subunit; 4. Metasurface subarray; 5. Metasurface array with RCS reduction effect; 6. Metal floor; 7. Reference metal floor.

具体实施方式Detailed ways

为了使本发明的目的、技术方案和优点更加清晰,下面将结合附图和具体实施例对本发明作进一步地详细描述:In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments:

为了充分说明本发明思想,需要说明:本发明中的特征模理论见指哈林登于1971年在文献‘Theory of Characteristic Modes for Conducting Bodies’中介绍。In order to fully illustrate the idea of the present invention, it should be noted that the characteristic mode theory in the present invention can be found in the document 'Theory of Characteristic Modes for Conducting Bodies' introduced by Harrington in 1971.

如图1所示,一种基于特征模理论的低RCS超表面的模式转化方法,至少包括以下步骤:As shown in Figure 1, a mode conversion method for low RCS metasurfaces based on eigenmode theory, at least includes the following steps:

步骤1:依据特征模理论计算一块超表面子单元在固定电磁波入射条件下的特征模曲线,使超表面子单元的尺寸、形状在工作频带内能够实现模式转化;Step 1: Calculate the characteristic mode curve of a metasurface subunit under the condition of fixed electromagnetic wave incidence according to the characteristic mode theory, so that the size and shape of the metasurface subunit can realize mode conversion within the working frequency band;

所述的步骤1包括:The step 1 includes:

1a)计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,根据模式展开系数的幅度曲线来判定超表面子单元3的主要激励模式;1a) calculate the characteristic mode curve of a metasurface subunit 3 under fixed electromagnetic wave incident conditions, and determine the main excitation mode of the metasurface subunit 3 according to the amplitude curve of the mode expansion coefficient;

2a)提取上述超表面子单元3的特征电流,生成特征电流矢量分布图;2a) extract the characteristic current of above-mentioned metasurface subunit 3, generate characteristic current vector distribution diagram;

3a)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流矢量分布,调整超表面子单元 3的结构尺寸使其在工作频段内实现模式转化。3a) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current vector distribution of the main excitation mode, and adjust the structure size of the metasurface subunit 3 to achieve mode conversion in the working frequency band.

最终确定超表面子单元的结构尺寸,如图16所示,与水平方向成45°夹角的长轴为5.2mm,短轴为1.4mm的椭圆形金属贴片单元1印制在 10mm×10mm×3.2mm大小的Rogers5880介质基板2上,Rogers5880介质基板2的下方为金属地板6。The structure size of the metasurface subunit is finally determined. As shown in Figure 16, the long axis with an angle of 45° to the horizontal direction is 5.2mm, and the short axis is 1.4mm. The elliptical metal patch unit 1 is printed on 10mm × 10mm On the Rogers5880 dielectric substrate 2 with a size of ×3.2 mm, a metal floor 6 is located below the Rogers5880 dielectric substrate 2 .

通过特征模理论计算超表面子单元在x极化电磁波入射条件下的特征模曲线,依据模式展开系数的幅度曲线判断工作频段内的主要激励模式。超表面子单元3的模式展开系数幅度曲线如图2所示,在7-23GHz的工作频段内,模式1和模式2的模式展开系数幅度远大于其它模式,因而模式 1和模式2是超表面子单元在x极化电磁波入射条件下的主要激励模式。提取在9GHz、11GHz、17GHz、21GHz和23GHz五个频点处模式1和模式2 的特征电流如图4-图8所示,(图4(a)超表面子单元3在9GHz处模式1 的模式电流分布情况;图4(b)超表面子单元3在9GHz处模式2的模式电流分布情况;图5(a)是超表面子单元3在11GHz处模式1的模式电流分布情况;图5(b)是超表面子单元3在11GHz处模式2的模式电流分布情况;图6(a)是超表面子单元3在17GHz处模式1的模式电流分布情况;图6(b)是超表面子单元3在17GHz处模式2的模式电流分布情况;图7(a) 是超表面子单元3在21GHz处模式1的模式电流分布情况;图7(b)是超表面子单元3在21GHz处模式2的模式电流分布情况;图8(a)是超表面子单元3在23GHz处模式1的模式电流分布情况;图8(b)是超表面子单元3在23GHz处模式2的模式电流分布情况。)并结合模式展开系数的相位曲线如图3,得到这五个频点处的合成模式电流分布。可以看出,在9GHz 频点处,模式1的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向。模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变。将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。在11GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向。模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变。将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在17GHz频点处,模式1的模式展开系数相位在 90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在 -90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式1和模式 2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在21GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向,将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在23GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。总的来说,在9GHz和23GHz频点处,合成模式电流方向与入射波一致,未发生模式转化;在11GHz、17GHz和21GHz的频点处,合成模式电流方向与入射波正交,发生模式转化。可以判断出超表面子单元模式转化的频率范围为11GHz-21GHz。The characteristic mode curve of the metasurface subunit under the condition of x-polarized electromagnetic wave incidence is calculated by the characteristic mode theory, and the main excitation mode in the working frequency band is determined according to the amplitude curve of the mode expansion coefficient. The mode expansion coefficient amplitude curve of metasurface subunit 3 is shown in Figure 2. In the operating frequency band of 7-23 GHz, the mode expansion coefficient amplitudes of mode 1 and mode 2 are much larger than other modes, so mode 1 and mode 2 are metasurfaces The main excitation mode of the subunit under x-polarized electromagnetic wave incidence. The characteristic currents of mode 1 and mode 2 extracted at five frequency points of 9GHz, 11GHz, 17GHz, 21GHz and 23GHz are shown in Fig. 4-Fig. 8. Mode current distribution; Fig. 4(b) Mode current distribution of metasurface subunit 3 at 9 GHz; Fig. 5(a) Mode current distribution of metasurface subunit 3 at 11 GHz; Fig. 5 (b) is the mode current distribution of the metasurface subunit 3 at 11 GHz; Fig. 6(a) is the mode current distribution of the metasurface subunit 3 at 17 GHz; Fig. 6(b) is the metasurface Mode current distribution of subunit 3 at 17 GHz; Fig. 7(a) is the mode current distribution of metasurface subunit 3 at 21 GHz; Fig. 7(b) is metasurface subunit 3 at 21 GHz Mode current distribution of mode 2; Fig. 8(a) is the mode current distribution of metasurface subunit 3 at 23 GHz in mode 1; Fig. 8(b) is the mode current distribution of metasurface subunit 3 at 23 GHz case.) and combined with the phase curve of the mode expansion coefficient as shown in Figure 3, the synthesized mode current distribution at these five frequency points is obtained. It can be seen that at the frequency point of 9 GHz, the phase of the mode expansion coefficient of mode 1 is in the range of -180° to -90°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of mode 2 is in the range of -90° to 90°, and the corresponding mode current direction remains unchanged. The composite mode current vector distribution is obtained by superimposing mode 1 and mode 2 after considering the phase. The current direction is along the x direction, which is consistent with the polarization direction of the incident wave, and no mode conversion occurs at this frequency. At the frequency of 11 GHz, the phase of the mode expansion coefficient of mode 1 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of mode 2 is in the range of -90° to 90°, and the corresponding mode current direction remains unchanged. The composite mode current vector distribution is obtained by superimposing the mode 1 and mode 2 after considering the phase. The current direction is along the y direction, which is orthogonal to the polarization direction of the incident wave, and the mode conversion occurs at this frequency point. At the frequency of 17GHz, the phase of the mode expansion coefficient of Mode 1 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of Mode 2 is in the range of -90° to 90°, and the corresponding mode current direction Unchanged, the composite mode current vector distribution is obtained by superimposing mode 1 and mode 2 after considering the phase. The current direction is along the y direction, which is orthogonal to the polarization direction of the incident wave, and mode conversion occurs at this frequency point. At the frequency of 21GHz, the phase of the mode expansion coefficient of Mode 1 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of Mode 2 is in the range of -180° to -90°, and the corresponding mode current If the direction is reversed, the composite mode current vector distribution is obtained by superposing Mode 1 and Mode 2 after considering the phase. The current direction is along the y direction, which is orthogonal to the polarization direction of the incident wave, and mode conversion occurs at this frequency. At the frequency of 23GHz, the phase of the mode expansion coefficient of Mode 1 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of Mode 2 is in the range of -90° to 90°, and the corresponding mode current direction Unchanged, the composite mode current vector distribution is obtained by superimposing mode 1 and mode 2 after considering the phase. The current direction is along the x direction, which is consistent with the polarization direction of the incident wave, and no mode conversion occurs at this frequency. In general, at the frequencies of 9GHz and 23GHz, the combined mode current direction is consistent with the incident wave, and no mode conversion occurs; at the frequencies of 11GHz, 17GHz, and 21GHz, the combined mode current direction is orthogonal to the incident wave, and mode conversion occurs. transform. It can be judged that the frequency range of metasurface subunit mode transformation is 11GHz-21GHz.

步骤2:根据步骤1中得到的超表面子单元3进行4×4的阵列排布形成超表面子阵列4,依据特征模理论计算超表面子阵列4在固定电磁波入射条件下的特征模曲线,并依据工作频段内的特征模分析结果对超表面子阵列4的结构尺寸进行优化,得到能够在工作频段内实现模式转化的超表面子阵列。Step 2: According to the metasurface subunits 3 obtained in step 1, a 4×4 array is arranged to form a metasurface subarray 4, and the characteristic mode curve of the metasurface subarray 4 under a fixed electromagnetic wave incidence condition is calculated according to the characteristic mode theory, And according to the characteristic mode analysis results in the working frequency band, the structure size of the metasurface subarray 4 is optimized, and a metasurface subarray that can realize mode conversion in the working frequency band is obtained.

具体包括如下步骤:Specifically include the following steps:

2a)根据步骤1得到的超表面子单元3对其进行4×4的阵列排布形成超表面子阵列4,并对第超表面子阵列4进行特征模式分析;2a) performing a 4×4 array arrangement on the metasurface subunits 3 obtained in step 1 to form a metasurface subarray 4, and performing characteristic mode analysis on the first metasurface subarray 4;

2b)根据2a)中特征模式分析后得到的模式展开系数幅度曲线判断工作频段内的主要激励模式;2b) According to the mode expansion coefficient amplitude curve obtained after the characteristic mode analysis in 2a), determine the main excitation mode in the working frequency band;

2c)提取主要激励模式对应的特征电流,生成特征电流矢量分布图;2c) Extract the characteristic current corresponding to the main excitation mode, and generate the characteristic current vector distribution map;

2d)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流分布,优化超表面子阵列4 的结构尺寸,使超表面子阵列4在工作频段内能够实现模式转化。2d) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current distribution of the main excitation mode, and optimize the structure size of the metasurface subarray 4, so that the metasurface subarray 4 is within the working frequency band. Mode conversion can be achieved.

将超表面子单元3进行4×4的阵列排布得到超表面子阵列4,优化超标面子阵列4的结构尺寸,使超表面子阵列4在工作频段内能够实现模式转化。最后确定超表面子阵列4的优化结构如图17所示,与水平方向成 45°夹角的长轴为5.2mm、短轴为1.2mm的椭圆形金属贴片单元1印制在 40mm×40mm×3.2mm大小的Rogers5880介质基板2上。Metasurface sub-units 3 are arranged in a 4×4 array to obtain meta-surface sub-array 4, and the structural size of meta-surface sub-array 4 is optimized, so that meta-surface sub-array 4 can realize mode conversion in the working frequency band. Finally, the optimized structure of the metasurface sub-array 4 is determined as shown in Figure 17. The elliptical metal patch unit 1 with a long axis of 5.2mm and a short axis of 1.2mm forming an angle of 45° with the horizontal direction is printed on 40mm×40mm × 3.2mm size Rogers5880 dielectric substrate 2.

超表面子阵列4的模式展开系数幅度曲线如图9所示,在7-23GHz的工作频段内,模式2和模式6的模式展开系数幅度远大于其它模式,是超表面子阵列4在x极化电磁波入射条件下的主要激励模式。之后,提取在 7GHz、9GHz、13GHz、21GHz和23GHz五个频点处模式2和模式6的特征电流得到特征电流矢量分布如图11-15所示(图11(a)是超表面子阵列4 在7GHz处模式2的模式电流分布情况;图11(b)是超表面子阵列4在7GHz 处模式6的模式电流分布情况;图12(a)是超表面子阵列4在9GHz处模式2的模式电流分布情况;图12(b)是超表面子阵列4在9GHz处模式6 的模式电流分布情况;图13(a)是超表面子阵列4在13GHz处模式2的模式电流分布情况;图13(b)是超表面子阵列4在13GHz处模式6的模式电流分布情况;图14(a)是超表面子阵列4在21GHz处模式2的模式电流分布情况;图14(b)是超表面子阵列4在21GHz处模式6的模式电流分布情况;图15(a)是超表面子阵列4在23GHz处模式2的模式电流分布情况;图15(b)是超表面子阵列4在23GHz处模式2的模式电流分布情况);并结合模式展开系数的相位曲线如图10所示,得到合成模式电流分布。可以看出,在7GHz频点处,模式2的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式6的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。在9GHz频点处,模式2的模式展开系数相位在 90°~180°区间,对应的模式电流方向反向,模式6的模式展开系数相位在 -90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式 6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在13GHz频点处,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,模式6的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在21GHz频点处,模式 2的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式 6的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在23GHz 频点处,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,模式6的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。总的来说,在7GHz和23GHz频点处,合成模式电流方向与入射波一致,未发生模式转化;在9GHz、13GHz和21GHz的频点处,合成模式电流方向与入射波正交,发生模式转化。所以,可以判断出超表面子阵列4 实现模式转化的频率范围为9GHz-21GHz。The amplitude curve of the mode expansion coefficient of metasurface subarray 4 is shown in Fig. 9. In the operating frequency band of 7-23 GHz, the mode expansion coefficient amplitudes of mode 2 and mode 6 are much larger than those of other modes. The main excitation mode under the condition of electromagnetic wave incidence. After that, extract the characteristic currents of mode 2 and mode 6 at five frequency points of 7GHz, 9GHz, 13GHz, 21GHz and 23GHz to obtain the characteristic current vector distribution as shown in Fig. 11-15 (Fig. 11(a) is the metasurface subarray 4 The mode current distribution of mode 2 at 7 GHz; Fig. 11(b) is the mode current distribution of metasurface subarray 4 at 7 GHz in mode 6; Fig. 12(a) is the mode 2 distribution of metasurface subarray 4 at 9 GHz Mode current distribution; Fig. 12(b) is the mode current distribution of metasurface subarray 4 at 9 GHz in mode 6; Fig. 13(a) is the mode current distribution in metasurface subarray 4 at 13 GHz in mode 2; Fig. 13(b) is the mode current distribution of the metasurface subarray 4 at 13 GHz in mode 6; Fig. 14(a) is the mode current distribution of the metasurface subarray 4 at 21 GHz in mode 2; Fig. 14(b) is the metasurface subarray 4 mode 2 distribution Mode current distribution of surface sub-array 4 at 21 GHz; Fig. 15(a) is the mode current distribution of meta-surface sub-array 4 at 23 GHz; Fig. 15 (b) is meta-surface sub-array 4 at 23 GHz mode current distribution in mode 2); and combined with the phase curve of the mode expansion coefficient as shown in Figure 10, the combined mode current distribution is obtained. It can be seen that at the frequency of 7GHz, the phase of the mode expansion coefficient of Mode 2 is in the range of 90° to 180°, the corresponding mode current direction is reversed, and the phase of the mode expansion coefficient of Mode 6 is in the range of 90° to 180°. The corresponding The mode current direction is reversed. The composite mode current vector distribution is obtained by superimposing mode 2 and mode 6 after considering the phase. The current direction is along the x direction, which is consistent with the polarization direction of the incident wave. No mode conversion occurs at this frequency. At the frequency of 9GHz, the phase of the mode expansion coefficient of Mode 2 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of Mode 6 is in the range of -90° to 90°, and the corresponding mode current direction Unchanged, the composite mode current vector distribution is obtained by superimposing mode 2 and mode 6 after considering the phase. The current direction is along the y direction, which is orthogonal to the polarization direction of the incident wave, and mode conversion occurs at this frequency point. At the frequency of 13 GHz, the phase of the mode expansion coefficient of Mode 2 is in the range of -90° to 90°, and the corresponding mode current direction remains unchanged. The phase of the mode expansion coefficient of Mode 6 is in the range of -90° to 90°, and the corresponding mode current When the direction remains unchanged, the composite mode current vector distribution is obtained by superimposing Mode 2 and Mode 6 after considering the phase. At the frequency of 21GHz, the phase of the mode expansion coefficient of Mode 2 is in the range of 90° to 180°, and the corresponding mode current direction is reversed. The phase of the mode expansion coefficient of Mode 6 is in the range of -180° to -90°, and the corresponding mode current If the direction is reversed, the combined mode current vector distribution is obtained by superposing Mode 2 and Mode 6 after considering the phase. The current direction is along the y direction, which is orthogonal to the polarization direction of the incident wave, and mode conversion occurs at this frequency. At the frequency of 23GHz, the phase of the mode expansion coefficient of Mode 2 is in the range of -90° to 90°, and the corresponding mode current direction is unchanged. The phase of the mode expansion coefficient of Mode 6 is in the range of -90° to 90°, and the corresponding mode current With the direction unchanged, the composite mode current vector distribution is obtained by superimposing Mode 2 and Mode 6 after considering the phase. In general, at the frequencies of 7GHz and 23GHz, the direction of the combined mode current is consistent with the incident wave, and no mode conversion occurs; at the frequencies of 9GHz, 13GHz, and 21GHz, the direction of the combined mode current is orthogonal to the incident wave, and a mode occurs. transform. Therefore, it can be determined that the frequency range in which the metasurface sub-array 4 realizes mode conversion is 9 GHz-21 GHz.

步骤3,将步骤2得到的超表面子阵列4与其旋转子阵列进行2×2的对称排布,形成具有RCS减缩效果的超表面阵列5。In step 3, the metasurface sub-array 4 obtained in step 2 and its rotating sub-array are arranged symmetrically by 2×2 to form a meta-surface array 5 with an RCS reduction effect.

将超表面子阵列4以其中心按照90°,180°,270°的角度进行顺时针旋转,所得到旋转后的3个超表面子阵列与超表面子阵列4一起以中心对称方式排布成2×2的阵列,得到具有RCS减缩效果的超表面阵列5,如图18。对比所设计的超表面子阵列5和图19所示的参考金属地板7的RCS曲线,如图20所示,可以看出,在7-21GHz频段内(模式转化频段)实现了超过10dB的RCS减缩效果。Rotate the center of the metasurface subarray 4 clockwise at an angle of 90°, 180°, and 270°, and the obtained three rotated metasurface subarrays are arranged together with the metasurface subarray 4 in a centrosymmetric manner. A 2×2 array is used to obtain a metasurface array 5 with RCS reduction effect, as shown in Figure 18. Comparing the RCS curves of the designed metasurface subarray 5 and the reference metal floor 7 shown in Fig. 19, as shown in Fig. 20, it can be seen that an RCS exceeding 10 dB is achieved in the 7-21 GHz frequency band (mode conversion frequency band). reduction effect.

Claims (4)

1.一种基于特征模理论的低RCS超表面的模式转化方法,其特征是:至少包括以下步骤:1. a mode conversion method based on the low RCS metasurface of eigenmode theory, is characterized in that: comprise the following steps at least: 步骤1:依据特征模理论计算一块超表面子单元(3)在固定电磁波入射条件下的特征模曲线,使超表面子单元(3)的尺寸、形状在工作频带内能够实现模式转化;所述的模式转化是指主要激励模式的合成模式电流产生的散射场的极化方向与入射电磁场的极化方向正交,也即散射模式与入射模式实现了模式旋转;Step 1: Calculate the characteristic mode curve of a metasurface subunit (3) under the condition of fixed electromagnetic wave incidence according to the characteristic mode theory, so that the size and shape of the metasurface subunit (3) can realize mode conversion within the working frequency band; The mode conversion refers to that the polarization direction of the scattered field generated by the combined mode current of the main excitation mode is orthogonal to the polarization direction of the incident electromagnetic field, that is, the scattering mode and the incident mode realize mode rotation; 步骤2:根据步骤1中得到的超表面子单元(3)进行4×4的阵列排布,形成超表面子阵列(4);依据特征模理论计算超表面子阵列(4)在固定电磁波入射条件下的特征模曲线,并依据工作频段内的特征模式分析结果对超表面子阵列(4)的结构尺寸进行优化,在工作频段内实现模式转化;Step 2: According to the metasurface subunits (3) obtained in step 1, a 4×4 array is arranged to form a metasurface subarray (4); The characteristic mode curve under the condition, and according to the characteristic mode analysis results in the working frequency band, the structure size of the metasurface subarray (4) is optimized, and the mode conversion is realized in the working frequency band; 步骤3,将步骤2得到的超表面子阵列(4) 以其中心按照90°,180°,270°的角度进行顺时针旋转得到旋转子阵列,将超表面子阵列(4)与旋转子阵列进行2×2的对称排布,形成具有RCS减缩效果的超表面阵列(5);Step 3: Rotate the metasurface subarray (4) obtained in step 2 clockwise with its center at angles of 90°, 180°, and 270° to obtain a rotation subarray, and combine the metasurface subarray (4) with the rotation subarray. A 2×2 symmetrical arrangement is performed to form a metasurface array with RCS reduction effect (5); 所述的步骤1包括如下具体步骤:Described step 1 includes the following specific steps: 1a)计算一块超表面子单元(3)在固定电磁波入射条件下的特征模曲线,根据模式展开系数的幅度曲线来判定超表面子单元(3)的主要激励模式;1a) Calculate the characteristic mode curve of a metasurface subunit (3) under a fixed electromagnetic wave incident condition, and determine the main excitation mode of the metasurface subunit (3) according to the amplitude curve of the mode expansion coefficient; 2a)提取上述超表面子单元(3)的特征电流,生成特征电流矢量分布图;2a) extracting the characteristic current of the above-mentioned metasurface subunit (3), and generating a characteristic current vector distribution diagram; 3a)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流矢量分布,调整超表面子单元(3)的结构尺寸使其在工作频段内实现模式转化;3a) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current vector distribution of the main excitation mode, and adjust the structure size of the metasurface subunit (3) to realize the mode in the working frequency band transform; 所述的步骤2包括:The step 2 includes: 2a)根据步骤1得到的超表面子单元(3)对其进行阵列排布形成超表面子阵列(4),并对超表面子阵列(4)进行特征模式分析;2a) performing an array arrangement on the metasurface subunit (3) obtained in step 1 to form a metasurface subarray (4), and performing characteristic mode analysis on the metasurface subarray (4); 2b)根据2a)中特征模式分析后得到的模式展开系数幅度曲线判断工作频段内的主要激励模式;2b) According to the mode expansion coefficient amplitude curve obtained after the characteristic mode analysis in 2a), determine the main excitation mode in the working frequency band; 2c)提取主要激励模式对应的特征电流,生成特征电流矢量分布图;2c) Extract the characteristic current corresponding to the main excitation mode, and generate the characteristic current vector distribution map; 2d)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流分布,优化超表面子单元(3)的结构尺寸形成超表面子阵列(4),使超表面子阵列(4)在工作频段内能够实现模式转化。2d) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current distribution of the main excitation mode, and optimize the structure size of the metasurface subunit (3) to form a metasurface subarray (4), The metasurface sub-array (4) can realize mode conversion in the working frequency band. 2.根据权利要求1所述的一种基于特征模理论的低RCS超表面的模式转化方法,其特征是:所述的固定电磁波入射条件是指在强度、极化已知的电磁场垂直入射。2 . The mode conversion method of a low RCS metasurface based on the eigenmode theory according to claim 1 , wherein the fixed electromagnetic wave incident condition refers to the vertical incidence of the electromagnetic field with known intensity and polarization. 3 . 3.根据权利要求1所述的一种基于特征模理论的低RCS超表面的模式转化方法,其特征是:所述的主要激励模式是依据模式展开系数的大小进行判定,在同一工作频点上若有一个模式对应的模式展开系数远大于其它模式所对应的模式展开系数,则该模式为主要激励模式。3. a kind of mode conversion method based on the low RCS metasurface of eigenmode theory according to claim 1, it is characterized in that: described main excitation mode is to judge according to the size of mode expansion coefficient, at the same operating frequency point If the mode expansion coefficient corresponding to one mode is much larger than the mode expansion coefficient corresponding to other modes, the mode is the main excitation mode. 4.根据权利要求1所述的一种基于特征模理论的低RCS超表面的模式转化方法,其特征是:所述的合成模式电流矢量分布是由主要激励模式的模式电流分布和对应的模式展开系数相位确定,当主要激励模式的模式展开系数相位在-90°~90°区间时,对应的模式电流分布保持不变,而当主要激励模式的模式展开系数相位在90 °~180 °或者-180 °~-90 °区间时,对应的模式电流方向反向,将所有考虑相位后的主要激励模式叠加合成,从而得到合成模式电流矢量分布。4. The mode conversion method of a low RCS metasurface based on eigenmode theory according to claim 1, wherein the composite mode current vector distribution is composed of the mode current distribution of the main excitation mode and the corresponding mode The phase of the expansion coefficient is determined. When the phase of the mode expansion coefficient of the main excitation mode is in the range of -90° to 90°, the corresponding mode current distribution remains unchanged, and when the mode expansion coefficient phase of the main excitation mode is between 90° and 180° or In the range of -180°~-90°, the corresponding mode current direction is reversed, and all the main excitation modes after considering the phase are superimposed and synthesized to obtain the composite mode current vector distribution.
CN201910410937.9A 2019-05-17 2019-05-17 A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory Active CN110098488B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910410937.9A CN110098488B (en) 2019-05-17 2019-05-17 A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910410937.9A CN110098488B (en) 2019-05-17 2019-05-17 A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory

Publications (2)

Publication Number Publication Date
CN110098488A CN110098488A (en) 2019-08-06
CN110098488B true CN110098488B (en) 2020-11-24

Family

ID=67448451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910410937.9A Active CN110098488B (en) 2019-05-17 2019-05-17 A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory

Country Status (1)

Country Link
CN (1) CN110098488B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665282B (en) * 2022-03-11 2023-06-27 中国人民解放军空军工程大学 Design method of broadband high-gain low-RCS super-structure surface antenna based on characteristic mode theory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327489A1 (en) * 2013-03-15 2018-05-30 Johnson & Johnson Vision Care Inc. Ophthalmic devices incorporating metasurface elements
CN108959772A (en) * 2018-07-02 2018-12-07 安徽大学 Large-scale finite period array structure characteristic pattern analysis method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2060874U (en) * 1989-07-31 1990-08-22 郝志毅 Filling-in type measuring implement
NO319858B1 (en) * 2003-09-26 2005-09-26 Tandberg Telecom As Identification procedure
CN108172999B (en) * 2017-12-27 2020-12-01 西安电子科技大学 Design Method of Pattern Reconfigurable 2-Port MIMO Antenna Based on Eigenmode Theory
CN108365338A (en) * 2018-02-08 2018-08-03 中国电子科技集团公司第三十八研究所 A kind of wideband multi-mode ground suitable for ultra-wideband antenna
CN108415017B (en) * 2018-05-10 2021-07-30 北京航空航天大学 A 1D Augmented State Space Method for Sparse Representation of Radar Scattering Characteristics of Complex Targets
CN109449545B (en) * 2018-12-19 2024-02-13 桂林电子科技大学 Terahertz converter capable of realizing switching between wave-absorbing mode and polarization conversion mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327489A1 (en) * 2013-03-15 2018-05-30 Johnson & Johnson Vision Care Inc. Ophthalmic devices incorporating metasurface elements
CN108959772A (en) * 2018-07-02 2018-12-07 安徽大学 Large-scale finite period array structure characteristic pattern analysis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"基于支节容性加载的小型化低剖面超表面天线";隽月 等;《南京信息工程大学学报(自然科学版)》;20190131;全文 *
"基于特征模理论的十字贴片单元超表面分析";邱丽娜 等;《2018年全国微波毫米波会议论文集(下册)》;20190131;摘要,第1-4部分,图1-5 *
"天线雷达截面减缩与极化旋转反射面的设计应用研究";贾永涛;《中国博士学位论文全文数据库》;20190115;正文下标第55-73页,图6.1-6.40 *

Also Published As

Publication number Publication date
CN110098488A (en) 2019-08-06

Similar Documents

Publication Publication Date Title
Yang et al. Full‐polarization 3D metasurface cloak with preserved amplitude and phase
Hao et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials
Manteghi et al. Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations
CN110957581B (en) Three-functional metasurface integrated device based on geometric Bell phase and its design method
Goussetis et al. Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate
Liu et al. Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator
Ruppin Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder
Ge et al. Broadband and high‐gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover
CN106374232A (en) Ultra-broadband Microwave Vortex Metasurface and Its Broadband Design Method
CN103367926B (en) Multi-beam antenna design method based on holographic impedance surface
Li et al. Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi‐fractal tree
CN109950704B (en) In-band RCS control method for strong coupling broadband phased array antenna
Guo et al. High resolution 2-D electromagnetic vortex imaging using uniform circular arrays
CN110098488B (en) A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory
Oraizi et al. Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials
Li et al. Wideband radar cross‐section reduction of microstrip patch antenna using coding metasurface
Wang et al. Hybrid geometrical optics and uniform asymptotic physical optics for rapid and accurate practical grin lens design
Yang et al. Robust adaptive beamformer using interpolation technique for conformal antenna array
Zhong et al. Generation of broadband high-modal and high-purity OAM using PB phase metasurface
Yan et al. Z-transform-based FDTD analysis of perfectly conducting cylinder covered with unmagnetized plasma
Alyahya et al. Physical optics modeling of scattering by checkerboard structure for RCS reduction
Khan et al. Design of a metasurface with wide RCS reduction bandwidth
Han et al. RCS reduction and gain enhancement for patch antenna by using low profile EBG
Zhang et al. An efficient technique for wide band RCS reduction of patch antenna array using rectangular cavity walls and phase cancellation principle
Wang et al. Checkerboard AMC Surface for Ultra-wideband Radar Cross Section Reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant