CN110098488B - A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory - Google Patents
A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory Download PDFInfo
- Publication number
- CN110098488B CN110098488B CN201910410937.9A CN201910410937A CN110098488B CN 110098488 B CN110098488 B CN 110098488B CN 201910410937 A CN201910410937 A CN 201910410937A CN 110098488 B CN110098488 B CN 110098488B
- Authority
- CN
- China
- Prior art keywords
- mode
- metasurface
- characteristic
- expansion coefficient
- subunit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000009467 reduction Effects 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 10
- 230000005284 excitation Effects 0.000 claims description 39
- 239000002131 composite material Substances 0.000 claims description 18
- 230000010287 polarization Effects 0.000 claims description 15
- 238000010586 diagram Methods 0.000 claims description 11
- 230000005672 electromagnetic field Effects 0.000 claims description 4
- 238000012938 design process Methods 0.000 abstract description 9
- 238000004904 shortening Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 238000002592 echocardiography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于电磁技术领域,涉及一种低雷达散射截面,具体涉及一种基于特征模理论的低RCS超表面的模式转化方法。The invention belongs to the field of electromagnetic technology, relates to a low radar scattering cross section, and in particular relates to a mode conversion method of a low RCS metasurface based on characteristic mode theory.
背景技术Background technique
雷达散射截面(RCS)是衡量散射体散射能力的重要物理量,它能够定量表征目标物体在电磁波入射情况下向某个固定方向散射电磁波能量的能力,是衡量目标散射强度的重要参数,雷达散射截面越小,目标的隐蔽性能就越好。目前降低目标雷达散射截面的技术通常包括三种:即加载雷达吸波材料技术、外形优化技术、以及有源或无源对消技术。雷达吸波材料可以将电磁能量转化为其他形式的能量,以此来实现目标的RCS减缩。外形优化技术通过优化目标的形状从而将其雷达信号偏离威胁方向或减小雷达的回波信号。无源对消技术是采用特殊外形或材料等无源隐身技术手段产生与来波相干涉的回波,以实现来波与回波间的相互对消;而有源对消技术是利用在目标上装备有源对消电子设备,以产生适合对消的电磁波,通过相消干涉减弱或消除反射波。Radar Cross Section (RCS) is an important physical quantity to measure the scattering ability of scatterers. It can quantitatively characterize the ability of a target object to scatter electromagnetic energy in a fixed direction under the incident of electromagnetic waves. It is an important parameter to measure the scattering intensity of the target. The smaller the target, the better the concealment performance. At present, the technologies for reducing the target radar scattering cross section usually include three types: the technology of loading radar absorbing materials, the technology of shape optimization, and the technology of active or passive cancellation. Radar absorbers can convert electromagnetic energy into other forms of energy to achieve target RCS reduction. Shape optimization techniques optimize the shape of a target to steer its radar signal away from the threat or reduce radar echoes. Passive cancellation technology is to use passive stealth technology such as special shapes or materials to generate echoes that interfere with incoming waves to achieve mutual cancellation between incoming waves and echoes; while active cancellation technology is used in the target. Equipped with active cancellation electronics to generate electromagnetic waves suitable for cancellation, and to weaken or eliminate reflected waves through destructive interference.
人工电磁超表面是指一种厚度小于波长的人工层状材料。通常来说,它是在一层介质基片上采用刻蚀、印制等方式形成具有一定排布方式的阵列。它可以实现对电磁波振幅、相位、极化、传播模式等特性的灵活有效调控。目前针对于低RCS超表面的方法都是基于散射相消的方法实现的,属于无源对消技术。2007年,M.Paquay等人提出了一种将人工磁导体结构和理想导体结构进行棋盘式排布的人工电磁超表面结构,通过利用人工磁导体结构与理想导体结构相位相差180o,以实现目标的RCS减缩。但是人工磁导体结构的同相反射的带宽很窄,从而RCS减缩带宽受限。为了展宽RCS减缩带宽,2016年A.Y.Modi等人提出基于两种人工磁导体的棋盘式结构。通过使两种人工磁导体结构的反射相位差在较宽的频带内保持 180°±37°,从而实现宽频带的低RCS超表面设计。但是这种方法存在的问题是,在超表面子单元的设计过程中很难直观的将反射相位与超表面结构联系起来,无法清晰地反映出超表面结构的工作机理,因此设计过程更多依赖于设计人员的经验,需要通过不断地尝试才能够设计出符合要求的超表面子单元,从而造成整个设计过程时间成本的大幅增加。An artificial electromagnetic metasurface refers to an artificial layered material with a thickness smaller than the wavelength. Generally speaking, it uses etching, printing, etc. to form an array with a certain arrangement on a layer of dielectric substrate. It can realize flexible and effective regulation of electromagnetic wave amplitude, phase, polarization, propagation mode and other characteristics. The current methods for low RCS metasurfaces are all based on the method of scattering cancellation, which belongs to passive cancellation technology. In 2007, M.Paquay et al. proposed an artificial electromagnetic metasurface structure in which the artificial magnetic conductor structure and the ideal conductor structure are arranged in a checkerboard. By using the phase difference between the artificial magnetic conductor structure and the ideal conductor structure by 180o, to achieve the goal. RCS reduction. However, the bandwidth of the in-phase reflection of the artificial magnetic conductor structure is very narrow, so the bandwidth of RCS reduction is limited. In order to widen the reduced bandwidth of RCS, A.Y.Modi et al. proposed a checkerboard structure based on two artificial magnetic conductors in 2016. By keeping the reflection phase difference of the two artificial magnetic conductor structures at 180°±37° in a wide frequency band, a wide-band low-RCS metasurface design is realized. However, the problem with this method is that it is difficult to intuitively associate the reflection phase with the metasurface structure in the design process of the metasurface subunit, and the working mechanism of the metasurface structure cannot be clearly reflected, so the design process is more dependent on Due to the experience of designers, it is necessary to continuously try to design metasurface subunits that meet the requirements, resulting in a substantial increase in the time and cost of the entire design process.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术的不足,提出了一种无需依赖设计人员的经验,按照设计流程即可实现低RCS的超表面阵列的设计,从而大大加快了设计进程,缩短了设计周期的基于特征模理论的低RCS超表面的模式转化方法,它能更加直观、简洁、高效的设计低RCS的超表面结构。The purpose of the present invention is to aim at the above-mentioned deficiencies of the prior art, and propose a design of a metasurface array with low RCS that can be realized according to the design process without relying on the experience of designers, thereby greatly speeding up the design process and shortening the design cycle The mode conversion method of low RCS metasurface based on eigenmode theory can be more intuitive, concise and efficient to design low RCS metasurface structure.
为实现上述目的,本发明的技术方案是:一种基于特征模理论的低 RCS超表面的模式转化方法,其特征是:至少包括以下步骤:To achieve the above object, the technical scheme of the present invention is: a mode conversion method of a low RCS metasurface based on the eigenmode theory, which is characterized in that: at least the following steps are included:
步骤1:依据特征模理论计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,使超表面子单元3的尺寸、形状在工作频带内能够实现模式转化;Step 1: Calculate the characteristic mode curve of a
步骤2:根据步骤1中得到的超表面子单元3进行4×4的阵列排布,形成超表面子阵列4;依据特征模理论计算超表面子阵列4在固定电磁波入射条件下的特征模曲线,并依据工作频段内的特征模式分析结果对超表面子阵列4的结构尺寸进行优化,在工作频段内实现模式转化;Step 2: According to the
步骤3,将步骤2得到的超表面子阵列4与其旋转子阵列进行2×2 的对称排布,形成具有RCS减缩效果的超表面阵列5。In
所述的步骤1包括如下具体步骤:Described
1a)计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,根据模式展开系数的幅度曲线来判定超表面子单元3的主要激励模式;1a) calculate the characteristic mode curve of a
2a)提取上述超表面子单元3的特征电流,生成特征电流矢量分布图;2a) extract the characteristic current of above-mentioned
3a)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流矢量分布,调整超表面子单元 3的结构尺寸使其在工作频段内实现模式转化。3a) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current vector distribution of the main excitation mode, and adjust the structure size of the
所述的固定电磁波入射条件是指在强度、极化等已知的电磁场垂直入射。The fixed electromagnetic wave incident condition refers to the normal incidence of the electromagnetic field with known intensity, polarization, etc.
所述的主要激励模式是依据模式展开系数的大小进行判定,在同一工作频点上若有一个模式对应的模式展开系数远大于其它模式所对应的模式展开系数,则该模式为主要激励模式。The main excitation mode is determined according to the size of the mode expansion coefficient. If the mode expansion coefficient corresponding to one mode is much larger than the mode expansion coefficient corresponding to other modes at the same operating frequency, the mode is the main excitation mode.
所述的合成模式电流矢量分布是由主要激励模式的模式电流分布和对应的模式展开系数相位确定,当主要激励模式的模式展开系数相位在 -90o~90o区间时,对应的模式电流分布保持不变,而当主要激励模式的模式展开系数相位在90°~180°或者-180°~-90°区间时,对应的模式电流方向反向,将所有考虑相位后的主要激励模式叠加合成,从而得到合成模式电流矢量分布。The composite mode current vector distribution is determined by the mode current distribution of the main excitation mode and the phase of the corresponding mode expansion coefficient. When the mode expansion coefficient phase of the main excitation mode is in the range of -90o to 90o, the corresponding mode current distribution remains unchanged. When the phase of the mode expansion coefficient of the main excitation mode is in the range of 90°~180° or -180°~-90°, the corresponding mode current direction is reversed, and all the main excitation modes after considering the phase are superimposed and synthesized, thus Obtain the composite mode current vector distribution.
所述的模式转化是指主要激励模式的合成模式电流产生的散射场的极化方向与入射电磁场的极化方向正交,也即散射模式与入射模式实现了模式旋转。The mode conversion refers to that the polarization direction of the scattered field generated by the combined mode current of the main excitation mode is orthogonal to the polarization direction of the incident electromagnetic field, that is, the scattering mode and the incident mode realize mode rotation.
所述的步骤2包括:The
2a)根据步骤1得到的超表面子单元3对其进行阵列排布形成超表面子阵列4,并对超表面子阵列4进行特征模式分析;2a) performing an array arrangement on the
2b)根据2a)中特征模式分析后得到的模式展开系数幅度曲线判断工作频段内的主要激励模式;2b) According to the mode expansion coefficient amplitude curve obtained after the characteristic mode analysis in 2a), determine the main excitation mode in the working frequency band;
2c)提取主要激励模式对应的特征电流,生成特征电流矢量分布图;2c) Extract the characteristic current corresponding to the main excitation mode, and generate the characteristic current vector distribution map;
2d)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流分布,优化超表面子单元3 的结构尺寸形成超表面子阵列4,使超表面子阵列4在工作频段内能够实现模式转化。2d) Combining the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient, the synthesized mode current distribution of the main excitation mode is obtained, and the structure size of the
所述的步骤3包括:将超表面子阵列4以其中心按照90°,180°,270°的角度进行顺时针旋转,所得到旋转后的3个超表面子阵列与超表面子阵列4一起以中心对称方式排布成2×2的阵列,得到具有RCS减缩效果的超表面阵列5,具有RCS减缩效果的超表面阵列5能够在上述的模式转化频段内实现低RCS特性。The
本发明具有以下有益效果:The present invention has the following beneficial effects:
1.本发明是基于特征模理论实现低RCS的超表面阵列的设计方法,通过特征模式的分析,能够给出超表面结构上主要激励模式的合成模式电流分布,从而清晰地揭示所设计超表面阵列的工作模式与机理。1. The present invention is a design method for realizing a low RCS metasurface array based on the characteristic mode theory. Through the analysis of the characteristic mode, the synthetic mode current distribution of the main excitation modes on the metasurface structure can be given, thereby clearly revealing the designed metasurface. The working mode and mechanism of the array.
2.与现有的技术相比,本发明给出了一个通用的低RCS的超表面阵列的设计流程,无需依赖设计人员的经验,按照设计流程即可实现低RCS 的超表面阵列的设计,从而大大加快了设计进程,缩短了设计周期。2. Compared with the prior art, the present invention provides a general low-RCS metasurface array design process, without relying on the designer's experience, the design of the low-RCS metasurface array can be realized according to the design process, This greatly speeds up the design process and shortens the design cycle.
附图说明Description of drawings
图1为本发明实施例流程图;1 is a flowchart of an embodiment of the present invention;
图2为本发明中超表面子单元3的模式展开系数幅度曲线;Fig. 2 is the mode expansion coefficient amplitude curve of
图3为本发明中超表面子单元3的模式展开系数相位曲线;Fig. 3 is the mode expansion coefficient phase curve of
图4(a)是超表面子单元3在9GHz处模式1的模式电流分布情况;Fig. 4(a) is the mode current distribution of
图4(b)是超表面子单元3在9GHz处模式2的模式电流分布情况;Figure 4(b) is the mode current distribution of
图5(a)是超表面子单元3在11GHz处模式1的模式电流分布情况;Fig. 5(a) is the mode current distribution of
图5(b)是超表面子单元3在11GHz处模式2的模式电流分布情况;Fig. 5(b) is the mode current distribution of
图6(a)是超表面子单元3在17GHz处模式1的模式电流分布情况;Fig. 6(a) is the mode current distribution of
图6(b)是超表面子单元3在17GHz处模式2的模式电流分布情况;Fig. 6(b) is the mode current distribution of
图7(a)是超表面子单元3在21GHz处模式1的模式电流分布情况;Fig. 7(a) is the mode current distribution of
图7(b)是超表面子单元3在21GHz处模式2的模式电流分布情况;Fig. 7(b) is the mode current distribution of
图8(a)是超表面子单元3在23GHz处模式1的模式电流分布情况;Fig. 8(a) is the mode current distribution of
图8(b)是超表面子单元3在23GHz处模式2的模式电流分布情况;Fig. 8(b) is the mode current distribution of
图9为本发明中超表面子阵列4的模式展开系数幅度曲线;Fig. 9 is the mode expansion coefficient amplitude curve of the
图10为本发明中超表面子阵列4的模式展开系数相位曲线;Fig. 10 is the mode expansion coefficient phase curve of the
图11(a)是超表面子阵列4在7GHz处模式2的模式电流分布情况;Fig. 11(a) is the mode current distribution of
图11(b)是超表面子阵列4在7GHz处模式6的模式电流分布情况;Fig. 11(b) is the mode current distribution of
图12(a)是超表面子阵列4在9GHz处模式2的模式电流分布情况;Fig. 12(a) is the mode current distribution of
图12(b)是超表面子阵列4在9GHz处模式6的模式电流分布情况;Fig. 12(b) is the mode current distribution of
图13(a)是超表面子阵列4在13GHz处模式2的模式电流分布情况;Fig. 13(a) is the mode current distribution of
图13(b)是超表面子阵列4在13GHz处模式6的模式电流分布情况;Fig. 13(b) is the mode current distribution of
图14(a)是超表面子阵列4在21GHz处模式2的模式电流分布情况;Fig. 14(a) is the mode current distribution of
图14(b)是超表面子阵列4在21GHz处模式6的模式电流分布情况;Fig. 14(b) is the mode current distribution of
图15(a)是超表面子阵列4在23GHz处模式2的模式电流分布情况;Fig. 15(a) is the mode current distribution of
图15(b)是超表面子阵列4在23GHz处模式6的模式电流分布情况;Fig. 15(b) is the mode current distribution of
图16(a)是超表面子单元3布局结构示意图俯视图;Figure 16 (a) is a schematic top view of the layout structure of the
图16(b)是超表面子单元3布局结构示意图侧视图;Figure 16(b) is a schematic side view of the layout structure of the
图17(a)是超表面子阵列4布局结构图俯视图;Figure 17 (a) is a top view of the layout structure of the
图17(b)是超表面子阵列4布局结构图侧视图;Fig. 17(b) is a side view of the layout structure diagram of
图18(a)是模式转化超表面阵列5的布局结构俯视图;Figure 18 (a) is a top view of the layout structure of the mode
图18(b)是模式转化超表面阵列5的布局结构侧视图;FIG. 18(b) is a side view of the layout structure of the mode
图19为参考金属地板7的结构示意图;FIG. 19 is a schematic structural diagram of the
图20为具有RCS减缩效果的超表面阵列5与参考金属地板7的单站 RCS随频率变化对比曲线图。FIG. 20 is a graph showing the comparison of the single-station RCS of the
图中,1.金属贴片单元;2.Rogers5880介质基板;3.超表面子单元;4. 超表面子阵列;5.具有RCS减缩效果的超表面阵列;6.金属地板;7.参考金属地板。In the figure, 1. Metal patch unit; 2. Rogers5880 dielectric substrate; 3. Metasurface subunit; 4. Metasurface subarray; 5. Metasurface array with RCS reduction effect; 6. Metal floor; 7. Reference metal floor.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清晰,下面将结合附图和具体实施例对本发明作进一步地详细描述:In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments:
为了充分说明本发明思想,需要说明:本发明中的特征模理论见指哈林登于1971年在文献‘Theory of Characteristic Modes for Conducting Bodies’中介绍。In order to fully illustrate the idea of the present invention, it should be noted that the characteristic mode theory in the present invention can be found in the document 'Theory of Characteristic Modes for Conducting Bodies' introduced by Harrington in 1971.
如图1所示,一种基于特征模理论的低RCS超表面的模式转化方法,至少包括以下步骤:As shown in Figure 1, a mode conversion method for low RCS metasurfaces based on eigenmode theory, at least includes the following steps:
步骤1:依据特征模理论计算一块超表面子单元在固定电磁波入射条件下的特征模曲线,使超表面子单元的尺寸、形状在工作频带内能够实现模式转化;Step 1: Calculate the characteristic mode curve of a metasurface subunit under the condition of fixed electromagnetic wave incidence according to the characteristic mode theory, so that the size and shape of the metasurface subunit can realize mode conversion within the working frequency band;
所述的步骤1包括:The
1a)计算一块超表面子单元3在固定电磁波入射条件下的特征模曲线,根据模式展开系数的幅度曲线来判定超表面子单元3的主要激励模式;1a) calculate the characteristic mode curve of a
2a)提取上述超表面子单元3的特征电流,生成特征电流矢量分布图;2a) extract the characteristic current of above-mentioned
3a)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流矢量分布,调整超表面子单元 3的结构尺寸使其在工作频段内实现模式转化。3a) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current vector distribution of the main excitation mode, and adjust the structure size of the
最终确定超表面子单元的结构尺寸,如图16所示,与水平方向成45°夹角的长轴为5.2mm,短轴为1.4mm的椭圆形金属贴片单元1印制在 10mm×10mm×3.2mm大小的Rogers5880介质基板2上,Rogers5880介质基板2的下方为金属地板6。The structure size of the metasurface subunit is finally determined. As shown in Figure 16, the long axis with an angle of 45° to the horizontal direction is 5.2mm, and the short axis is 1.4mm. The elliptical
通过特征模理论计算超表面子单元在x极化电磁波入射条件下的特征模曲线,依据模式展开系数的幅度曲线判断工作频段内的主要激励模式。超表面子单元3的模式展开系数幅度曲线如图2所示,在7-23GHz的工作频段内,模式1和模式2的模式展开系数幅度远大于其它模式,因而模式 1和模式2是超表面子单元在x极化电磁波入射条件下的主要激励模式。提取在9GHz、11GHz、17GHz、21GHz和23GHz五个频点处模式1和模式2 的特征电流如图4-图8所示,(图4(a)超表面子单元3在9GHz处模式1 的模式电流分布情况;图4(b)超表面子单元3在9GHz处模式2的模式电流分布情况;图5(a)是超表面子单元3在11GHz处模式1的模式电流分布情况;图5(b)是超表面子单元3在11GHz处模式2的模式电流分布情况;图6(a)是超表面子单元3在17GHz处模式1的模式电流分布情况;图6(b)是超表面子单元3在17GHz处模式2的模式电流分布情况;图7(a) 是超表面子单元3在21GHz处模式1的模式电流分布情况;图7(b)是超表面子单元3在21GHz处模式2的模式电流分布情况;图8(a)是超表面子单元3在23GHz处模式1的模式电流分布情况;图8(b)是超表面子单元3在23GHz处模式2的模式电流分布情况。)并结合模式展开系数的相位曲线如图3,得到这五个频点处的合成模式电流分布。可以看出,在9GHz 频点处,模式1的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向。模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变。将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。在11GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向。模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变。将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在17GHz频点处,模式1的模式展开系数相位在 90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在 -90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式1和模式 2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在21GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向,将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在23GHz频点处,模式1的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式1和模式2叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。总的来说,在9GHz和23GHz频点处,合成模式电流方向与入射波一致,未发生模式转化;在11GHz、17GHz和21GHz的频点处,合成模式电流方向与入射波正交,发生模式转化。可以判断出超表面子单元模式转化的频率范围为11GHz-21GHz。The characteristic mode curve of the metasurface subunit under the condition of x-polarized electromagnetic wave incidence is calculated by the characteristic mode theory, and the main excitation mode in the working frequency band is determined according to the amplitude curve of the mode expansion coefficient. The mode expansion coefficient amplitude curve of
步骤2:根据步骤1中得到的超表面子单元3进行4×4的阵列排布形成超表面子阵列4,依据特征模理论计算超表面子阵列4在固定电磁波入射条件下的特征模曲线,并依据工作频段内的特征模分析结果对超表面子阵列4的结构尺寸进行优化,得到能够在工作频段内实现模式转化的超表面子阵列。Step 2: According to the
具体包括如下步骤:Specifically include the following steps:
2a)根据步骤1得到的超表面子单元3对其进行4×4的阵列排布形成超表面子阵列4,并对第超表面子阵列4进行特征模式分析;2a) performing a 4×4 array arrangement on the
2b)根据2a)中特征模式分析后得到的模式展开系数幅度曲线判断工作频段内的主要激励模式;2b) According to the mode expansion coefficient amplitude curve obtained after the characteristic mode analysis in 2a), determine the main excitation mode in the working frequency band;
2c)提取主要激励模式对应的特征电流,生成特征电流矢量分布图;2c) Extract the characteristic current corresponding to the main excitation mode, and generate the characteristic current vector distribution map;
2d)结合主要激励模式的特征电流矢量分布图以及其模式展开系数的相位曲线得到主要激励模式的合成模式电流分布,优化超表面子阵列4 的结构尺寸,使超表面子阵列4在工作频段内能够实现模式转化。2d) Combine the characteristic current vector distribution diagram of the main excitation mode and the phase curve of its mode expansion coefficient to obtain the composite mode current distribution of the main excitation mode, and optimize the structure size of the
将超表面子单元3进行4×4的阵列排布得到超表面子阵列4,优化超标面子阵列4的结构尺寸,使超表面子阵列4在工作频段内能够实现模式转化。最后确定超表面子阵列4的优化结构如图17所示,与水平方向成 45°夹角的长轴为5.2mm、短轴为1.2mm的椭圆形金属贴片单元1印制在 40mm×40mm×3.2mm大小的Rogers5880介质基板2上。
超表面子阵列4的模式展开系数幅度曲线如图9所示,在7-23GHz的工作频段内,模式2和模式6的模式展开系数幅度远大于其它模式,是超表面子阵列4在x极化电磁波入射条件下的主要激励模式。之后,提取在 7GHz、9GHz、13GHz、21GHz和23GHz五个频点处模式2和模式6的特征电流得到特征电流矢量分布如图11-15所示(图11(a)是超表面子阵列4 在7GHz处模式2的模式电流分布情况;图11(b)是超表面子阵列4在7GHz 处模式6的模式电流分布情况;图12(a)是超表面子阵列4在9GHz处模式2的模式电流分布情况;图12(b)是超表面子阵列4在9GHz处模式6 的模式电流分布情况;图13(a)是超表面子阵列4在13GHz处模式2的模式电流分布情况;图13(b)是超表面子阵列4在13GHz处模式6的模式电流分布情况;图14(a)是超表面子阵列4在21GHz处模式2的模式电流分布情况;图14(b)是超表面子阵列4在21GHz处模式6的模式电流分布情况;图15(a)是超表面子阵列4在23GHz处模式2的模式电流分布情况;图15(b)是超表面子阵列4在23GHz处模式2的模式电流分布情况);并结合模式展开系数的相位曲线如图10所示,得到合成模式电流分布。可以看出,在7GHz频点处,模式2的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式6的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。在9GHz频点处,模式2的模式展开系数相位在 90°~180°区间,对应的模式电流方向反向,模式6的模式展开系数相位在 -90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式 6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在13GHz频点处,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,模式6的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在21GHz频点处,模式 2的模式展开系数相位在90°~180°区间,对应的模式电流方向反向,模式 6的模式展开系数相位在-180°~-90°区间,对应的模式电流方向反向,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿y方向,与入射波极化方向正交,该频点处发生模式转化。在23GHz 频点处,模式2的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,模式6的模式展开系数相位在-90°~90°区间,对应的模式电流方向不变,将考虑相位后的模式2和模式6叠加后得到合成模式电流矢量分布,其电流方向沿x方向,与入射波极化方向一致,该频点处未发生模式转化。总的来说,在7GHz和23GHz频点处,合成模式电流方向与入射波一致,未发生模式转化;在9GHz、13GHz和21GHz的频点处,合成模式电流方向与入射波正交,发生模式转化。所以,可以判断出超表面子阵列4 实现模式转化的频率范围为9GHz-21GHz。The amplitude curve of the mode expansion coefficient of
步骤3,将步骤2得到的超表面子阵列4与其旋转子阵列进行2×2的对称排布,形成具有RCS减缩效果的超表面阵列5。In
将超表面子阵列4以其中心按照90°,180°,270°的角度进行顺时针旋转,所得到旋转后的3个超表面子阵列与超表面子阵列4一起以中心对称方式排布成2×2的阵列,得到具有RCS减缩效果的超表面阵列5,如图18。对比所设计的超表面子阵列5和图19所示的参考金属地板7的RCS曲线,如图20所示,可以看出,在7-21GHz频段内(模式转化频段)实现了超过10dB的RCS减缩效果。Rotate the center of the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910410937.9A CN110098488B (en) | 2019-05-17 | 2019-05-17 | A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910410937.9A CN110098488B (en) | 2019-05-17 | 2019-05-17 | A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110098488A CN110098488A (en) | 2019-08-06 |
CN110098488B true CN110098488B (en) | 2020-11-24 |
Family
ID=67448451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910410937.9A Active CN110098488B (en) | 2019-05-17 | 2019-05-17 | A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110098488B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114665282B (en) * | 2022-03-11 | 2023-06-27 | 中国人民解放军空军工程大学 | Design method of broadband high-gain low-RCS super-structure surface antenna based on characteristic mode theory |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3327489A1 (en) * | 2013-03-15 | 2018-05-30 | Johnson & Johnson Vision Care Inc. | Ophthalmic devices incorporating metasurface elements |
CN108959772A (en) * | 2018-07-02 | 2018-12-07 | 安徽大学 | Large-scale finite period array structure characteristic pattern analysis method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2060874U (en) * | 1989-07-31 | 1990-08-22 | 郝志毅 | Filling-in type measuring implement |
NO319858B1 (en) * | 2003-09-26 | 2005-09-26 | Tandberg Telecom As | Identification procedure |
CN108172999B (en) * | 2017-12-27 | 2020-12-01 | 西安电子科技大学 | Design Method of Pattern Reconfigurable 2-Port MIMO Antenna Based on Eigenmode Theory |
CN108365338A (en) * | 2018-02-08 | 2018-08-03 | 中国电子科技集团公司第三十八研究所 | A kind of wideband multi-mode ground suitable for ultra-wideband antenna |
CN108415017B (en) * | 2018-05-10 | 2021-07-30 | 北京航空航天大学 | A 1D Augmented State Space Method for Sparse Representation of Radar Scattering Characteristics of Complex Targets |
CN109449545B (en) * | 2018-12-19 | 2024-02-13 | 桂林电子科技大学 | Terahertz converter capable of realizing switching between wave-absorbing mode and polarization conversion mode |
-
2019
- 2019-05-17 CN CN201910410937.9A patent/CN110098488B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3327489A1 (en) * | 2013-03-15 | 2018-05-30 | Johnson & Johnson Vision Care Inc. | Ophthalmic devices incorporating metasurface elements |
CN108959772A (en) * | 2018-07-02 | 2018-12-07 | 安徽大学 | Large-scale finite period array structure characteristic pattern analysis method |
Non-Patent Citations (3)
Title |
---|
"基于支节容性加载的小型化低剖面超表面天线";隽月 等;《南京信息工程大学学报(自然科学版)》;20190131;全文 * |
"基于特征模理论的十字贴片单元超表面分析";邱丽娜 等;《2018年全国微波毫米波会议论文集(下册)》;20190131;摘要,第1-4部分,图1-5 * |
"天线雷达截面减缩与极化旋转反射面的设计应用研究";贾永涛;《中国博士学位论文全文数据库》;20190115;正文下标第55-73页,图6.1-6.40 * |
Also Published As
Publication number | Publication date |
---|---|
CN110098488A (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Full‐polarization 3D metasurface cloak with preserved amplitude and phase | |
Hao et al. | Manipulating electromagnetic wave polarizations by anisotropic metamaterials | |
Manteghi et al. | Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations | |
CN110957581B (en) | Three-functional metasurface integrated device based on geometric Bell phase and its design method | |
Goussetis et al. | Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate | |
Liu et al. | Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator | |
Ruppin | Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder | |
Ge et al. | Broadband and high‐gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover | |
CN106374232A (en) | Ultra-broadband Microwave Vortex Metasurface and Its Broadband Design Method | |
CN103367926B (en) | Multi-beam antenna design method based on holographic impedance surface | |
Li et al. | Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi‐fractal tree | |
CN109950704B (en) | In-band RCS control method for strong coupling broadband phased array antenna | |
Guo et al. | High resolution 2-D electromagnetic vortex imaging using uniform circular arrays | |
CN110098488B (en) | A Mode Conversion Method for Low RCS Metasurfaces Based on Eigenmode Theory | |
Oraizi et al. | Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials | |
Li et al. | Wideband radar cross‐section reduction of microstrip patch antenna using coding metasurface | |
Wang et al. | Hybrid geometrical optics and uniform asymptotic physical optics for rapid and accurate practical grin lens design | |
Yang et al. | Robust adaptive beamformer using interpolation technique for conformal antenna array | |
Zhong et al. | Generation of broadband high-modal and high-purity OAM using PB phase metasurface | |
Yan et al. | Z-transform-based FDTD analysis of perfectly conducting cylinder covered with unmagnetized plasma | |
Alyahya et al. | Physical optics modeling of scattering by checkerboard structure for RCS reduction | |
Khan et al. | Design of a metasurface with wide RCS reduction bandwidth | |
Han et al. | RCS reduction and gain enhancement for patch antenna by using low profile EBG | |
Zhang et al. | An efficient technique for wide band RCS reduction of patch antenna array using rectangular cavity walls and phase cancellation principle | |
Wang et al. | Checkerboard AMC Surface for Ultra-wideband Radar Cross Section Reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |