CN110096792B - Dynamic simulation method for calculating unsteady Langmuir circulation - Google Patents
Dynamic simulation method for calculating unsteady Langmuir circulation Download PDFInfo
- Publication number
- CN110096792B CN110096792B CN201910351576.5A CN201910351576A CN110096792B CN 110096792 B CN110096792 B CN 110096792B CN 201910351576 A CN201910351576 A CN 201910351576A CN 110096792 B CN110096792 B CN 110096792B
- Authority
- CN
- China
- Prior art keywords
- ocean
- langmuir
- circulation
- wave
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000005094 computer simulation Methods 0.000 title claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 3
- 239000013535 sea water Substances 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000004088 simulation Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000003851 biochemical process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种计算非定常Langmuir环流的动态模拟方法:(1)采用近岸海浪模式计算某一时间范围内的波浪场,输出波浪参数;(2)将得到的波浪参数输入Stokes漂移速度计算模型,计算得到stokes漂移速度;(3)改进普林斯顿海洋模式,使普林斯顿海洋模式包含非定常Langmuir环流的参数化计算方法;(4)将得到的stokes漂移速度输入改进后的普林斯顿海洋模式,实时模拟包含非定常Langmuir环流的海洋动态过程,得到包含非定常Langmuir环流物理过程影响的海洋温度、盐度和流速场。本发明在海洋环流模型的湍动能参数化计算方法中加入非定常langmuir环流的作用,可以动态地模拟非定常Langmuir环流对海洋要素的影响,可以完善海洋数值模式的物理过程,得到更加精准的海洋预报模型。
The invention discloses a dynamic simulation method for calculating unsteady Langmuir circulation: (1) adopting nearshore ocean wave mode to calculate the wave field within a certain time range, and outputting wave parameters; (2) inputting the obtained wave parameters into Stokes drift velocity Calculation model, calculate the Stokes drift velocity; (3) Improve the Princeton ocean model, so that the Princeton ocean model includes the parametric calculation method of the unsteady Langmuir circulation; (4) Input the obtained Stokes drift velocity into the improved Princeton ocean model, real-time The ocean dynamic process including the unsteady Langmuir circulation is simulated, and the ocean temperature, salinity and current velocity fields including the influence of the physical process of the unsteady Langmuir circulation are obtained. The present invention adds the effect of unsteady langmuir circulation into the turbulent kinetic energy parameterized calculation method of the ocean circulation model, can dynamically simulate the influence of unsteady Langmuir circulation on ocean elements, can improve the physical process of the ocean numerical model, and obtain a more accurate ocean forecast model.
Description
技术领域Technical Field
本发明涉及物理海洋模型的动态化实时模拟技术,特别涉及一种计算非定常Langmuir环流的动态模拟方法。The invention relates to a dynamic real-time simulation technology of a physical ocean model, and in particular to a dynamic simulation method for calculating an unsteady Langmuir circulation.
背景技术Background Art
Langmuir环流指发生在上层海洋中的一对轴向与风向平行的反对称旋转旋涡,是波流相互作用的主要表现形式之一。由于海面风场非定常的性质,诱导了海表受风应力的非定常性,进而形成了垂直于海表的涡旋。又因风吹起了海浪,海浪产生stokes漂移,在stokes漂移的影响下,垂直于海表的涡旋逐渐向水平方向移动,最终形成了Langmuir环流。Langmuir环流的存在,使得上层海洋垂向剪切不稳定性增强,并直接对湍动能产生贡献,加强了上层湍流效应,并且Langmuir环流促使垂向对流速度增大,起到了“卷挟”的作用,将上层的热量、动量和物质带到更深位置,使得上层海洋混合层加深,因而Langmuir环流对上层海洋的动力和热力过程都起着非常重要的作用,对海洋生态环境,海洋气候都有非常重要的意义和实际应用价值。Langmuir circulation refers to a pair of antisymmetric rotating vortices with axes parallel to the wind direction occurring in the upper ocean. It is one of the main manifestations of wave-current interaction. Due to the unsteady nature of the wind field on the sea surface, the unsteadiness of wind stress on the sea surface is induced, and then a vortex perpendicular to the sea surface is formed. Because the wind blows up the waves, the waves produce Stokes drift. Under the influence of Stokes drift, the vortex perpendicular to the sea surface gradually moves horizontally, and finally forms the Langmuir circulation. The existence of the Langmuir circulation enhances the vertical shear instability of the upper ocean, and directly contributes to the turbulent kinetic energy, strengthens the upper turbulent effect, and the Langmuir circulation promotes the increase of the vertical convection speed, plays the role of "entrainment", brings the heat, momentum and matter of the upper layer to a deeper position, and deepens the mixed layer of the upper ocean. Therefore, the Langmuir circulation plays a very important role in the dynamic and thermal processes of the upper ocean, and has very important significance and practical application value for the marine ecological environment and marine climate.
Langmuir环流的强度主要受海面风力和波浪大小的影响,因而目前一些没有考虑海况时空变化特性的Langmuir环流参数化计算方法是不准确的,与海洋中实际发生的Langmuir环流现象不相符,无法体现langmuir环流对海洋水文要素产生的动态影响。The intensity of the Langmuir circulation is mainly affected by the sea surface wind and wave size. Therefore, some current Langmuir circulation parameterization calculation methods that do not take into account the temporal and spatial variation characteristics of sea conditions are inaccurate, inconsistent with the actual Langmuir circulation phenomenon in the ocean, and cannot reflect the dynamic impact of the Langmuir circulation on ocean hydrological elements.
发明内容Summary of the invention
本发明的目的是克服现有技术中的不足,提供一种计算非定常langmuir环流的动态模拟方法,在海洋环流模型的湍动能参数化计算方法中加入非定常langmuir环流的作用,完善了海洋环流模型的物理机制。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a dynamic simulation method for calculating unsteady Langmuir circulation, add the effect of unsteady Langmuir circulation to the turbulent kinetic energy parameterization calculation method of the ocean circulation model, and improve the physical mechanism of the ocean circulation model.
本发明所采用的技术方案是:一种计算非定常Langmuir环流的动态模拟方法,包括以下步骤:The technical solution adopted by the present invention is: a dynamic simulation method for calculating unsteady Langmuir circulation, comprising the following steps:
步骤1,采用近岸海浪模式计算某一时间范围内的波浪场,输出波浪参数;Step 1, using the nearshore wave model to calculate the wave field within a certain time range and output wave parameters;
步骤2,将步骤1得到的波浪参数输入Stokes漂移速度计算模型,计算得到stokes漂移速度;Step 2, inputting the wave parameters obtained in step 1 into the Stokes drift velocity calculation model to calculate the Stokes drift velocity;
步骤3,改进普林斯顿海洋模式,使普林斯顿海洋模式包含非定常Langmuir环流的参数化计算方法;Step 3, improve the Princeton Ocean Model so that it includes the parameterization calculation method of the unsteady Langmuir circulation;
步骤4,将步骤2得到的stokes漂移速度输入步骤3改进后的普林斯顿海洋模式,实时模拟包含非定常Langmuir环流的海洋动态过程,得到包含非定常Langmuir环流物理过程影响的海洋温度、盐度和流速场,用于分析Langmuir环流对海洋物质以及海洋动力过程的影响。Step 4, input the Stokes drift velocity obtained in step 2 into the improved Princeton ocean model in step 3, simulate the ocean dynamic process including the unsteady Langmuir circulation in real time, and obtain the ocean temperature, salinity and velocity field including the influence of the unsteady Langmuir circulation physical process, which is used to analyze the influence of the Langmuir circulation on marine materials and ocean dynamic processes.
进一步地,步骤1中,所述的波浪参数包括:有效波高,波长,波浪平均周期和波向。Furthermore, in step 1, the wave parameters include: effective wave height, wavelength, wave average period and wave direction.
进一步地,步骤2中,所述的Stokes漂移速度计算模型为:Furthermore, in step 2, the Stokes drift velocity calculation model is:
式中,Us是海面以下z米深度处的stokes漂移速度的东分量,Vs是海面以下z米深度处的stokes漂移速度的北分量;|Us(0)|是海表面的stokes漂移速度;z是垂向坐标;θ是波向;DS是stokes影响深度;wn是波数;Hs是有效波高;T是波浪平均周期;L是波长;Hs、T、L和θ均由步骤1所述的近岸海浪模式输出得到。Where Us is the east component of the Stokes drift velocity at a depth of z meters below the sea surface, Vs is the north component of the Stokes drift velocity at a depth of z meters below the sea surface; | Us (0)| is the Stokes drift velocity on the sea surface; z is the vertical coordinate; θ is the wave direction; DS is the Stokes influence depth; wn is the wave number; Hs is the significant wave height; T is the average wave period; L is the wavelength; Hs , T, L and θ are all obtained from the output of the nearshore wave model described in step 1.
进一步地,步骤3中,所述的改进普林斯顿海洋模式,为对普林斯顿海洋模式中的Mellor-Yamada2.5阶湍封闭模型加入Langmuir湍效应,得到改进后的Mellor-Yamada2.5阶湍封闭模型。Furthermore, in step 3, the improved Princeton ocean model is to add the Langmuir turbulence effect to the Mellor-Yamada 2.5-order turbulence closed model in the Princeton ocean model to obtain an improved Mellor-Yamada 2.5-order turbulence closed model.
其中,所述改进后的Mellor-Yamada2.5阶湍封闭模型为:Among them, the improved Mellor-Yamada 2.5-order turbulent closed model is:
KMS=qlSMS (9) KMS = qlSMS (9)
式中,q是湍流动能;l是湍混合长度;U是流速的东分量,V是流速的北分量;Us是海面以下z米深度处的stokes漂移速度的东分量,Vs是海面以下z米深度处的stokes漂移速度的北分量,Us和Vs由步骤2所述的Stokes漂移速度计算模型计算得到;x和y是水平坐标,x代表东方向,y代表北方向;t是时间变量;k是广义垂向坐标;sk是第k层水层的厚度;ω是垂向流速;KH是垂向温度混合系数,Kq是垂向湍动能混合系数;是绝热衰减率修正后的密度;是面壁近似函数;Fq是湍动能长度的水平扩散项,Fl是湍混合长度的水平扩散项;E1,E3,B1,E6,A1和A2是常数项;g是重力加速度;ρ0是海水密度;是垂向雷诺应力的东分量,由公式(7)计算得到;是垂向湍雷诺应力的北分量,由公式(8)计算得到;KM是垂向湍混合系数,而KMS是和Langmuir环流有关的垂向湍混合系数;SMS是稳定性方程,由公式(10)计算得到;GH=-l2q-2N2,N是浮力频率;fz s是表面函数。Wherein, q is the turbulent kinetic energy; l is the turbulent mixing length; U is the east component of the velocity, V is the north component of the velocity; Us is the east component of the Stokes drift velocity at a depth of z meters below the sea surface, Vs is the north component of the Stokes drift velocity at a depth of z meters below the sea surface, Us and Vs are calculated by the Stokes drift velocity calculation model described in step 2; x and y are horizontal coordinates, x represents the east direction, and y represents the north direction; t is the time variable; k is the generalized vertical coordinate; sk is the thickness of the kth water layer; ω is the vertical velocity; KH is the vertical temperature mixing coefficient, and Kq is the vertical turbulent kinetic energy mixing coefficient; is the density corrected for the adiabatic decay rate; is the wall approximation function; Fq is the horizontal diffusion term of the turbulent kinetic energy length, Fl is the horizontal diffusion term of the turbulent mixing length; E1 , E3 , B1 , E6 , A1 and A2 are constant terms; g is the gravitational acceleration; ρ0 is the seawater density; is the east component of the vertical Reynolds stress, calculated by formula (7); is the north component of the vertical turbulent Reynolds stress, calculated by formula (8); K M is the vertical turbulent mixing coefficient, and K MS is the vertical turbulent mixing coefficient related to the Langmuir circulation; S MS is the stability equation, calculated by formula (10); G H = -l 2 q -2 N 2 , N is the buoyancy frequency; f z s is the surface function.
本发明的有益效果是:本发明方法可以动态地模拟非定常Langmuir环流对海洋要素的影响,可以完善海洋数值模式的物理过程,得到更加精准的海洋预报模型,对研究分析海洋中物质、热量、动量以及能量交换和众多的物理、生化过程有重要的意义,对构建海洋生态环境及灾害预测模型,实现业务化海洋预报,提供防灾减灾的思路和方法有积极的指导作用,为正确认识海洋环流和气候变化机理提供理论和技术参考,并为建立海-气耦合模型奠定基础。The beneficial effects of the present invention are as follows: the method of the present invention can dynamically simulate the influence of the unsteady Langmuir circulation on ocean elements, can improve the physical process of the ocean numerical model, and obtain a more accurate ocean forecast model, which is of great significance for studying and analyzing the exchange of matter, heat, momentum and energy and numerous physical and biochemical processes in the ocean, has a positive guiding role in constructing a marine ecological environment and disaster prediction model, realizing commercial ocean forecasting, and providing ideas and methods for disaster prevention and mitigation, provides theoretical and technical references for correctly understanding the mechanism of ocean circulation and climate change, and lays the foundation for establishing an ocean-air coupling model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:本发明模拟过程示意图。Figure 1: Schematic diagram of the simulation process of the present invention.
具体实施方式DETAILED DESCRIPTION
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:In order to further understand the content, features and effects of the present invention, the following embodiments are given as examples and described in detail with reference to the accompanying drawings:
一种计算非定常langmuir环流的动态模拟方法,包括:A dynamic simulation method for calculating unsteady Langmuir circulation, comprising:
1.近岸海浪模式(SWAN):SWAN是第三代近岸海浪数值模式,采用基于能量守恒原理的平衡方程,选用了全隐式的有限差分格式,无条件稳定,使计算空间网格和时间步长不受限制。在平衡方程的各源汇项中,考虑了风输入,三相波、四相波相互作用,底摩擦,波浪破碎和白浪耗散,被广泛运用于浅水条件下的波浪模拟。利用SWAN模式可以输出计算stokes漂移速度所需的波浪参数(有效波高,波长,波浪平均周期和波向等)。1. Nearshore Wave Model (SWAN): SWAN is the third generation of nearshore wave numerical model. It adopts the balance equation based on the principle of energy conservation and uses a fully implicit finite difference format. It is unconditionally stable and makes the computational space grid and time step unrestricted. In the source and sink terms of the balance equation, wind input, three-phase wave and four-phase wave interaction, bottom friction, wave breaking and white wave dissipation are considered. It is widely used in wave simulation under shallow water conditions. The SWAN model can output the wave parameters (effective wave height, wavelength, wave average period and wave direction, etc.) required to calculate the Stokes drift velocity.
2.Stokes漂移速度计算模型:一个计算stokes漂移速度的模型,需要波高、波长、周期、波向等波浪参数数据作为输入,本质是stokes漂移速度计算方程。2. Stokes drift velocity calculation model: A model for calculating Stokes drift velocity requires wave height, wavelength, period, wave direction and other wave parameter data as input. Its essence is the Stokes drift velocity calculation equation.
Stokes漂移速度计算模型如下:The Stokes drift velocity calculation model is as follows:
式中,Us是海面以下z米深度处的stokes漂移速度的东分量,Vs是海面以下z米深度处的stokes漂移速度的北分量;|Us(0)|是海表面的stokes漂移速度;z是垂向坐标;θ是波向;DS是stokes影响深度;wn是波数;Hs是有效波高;T是波浪平均周期;L是波长;Hs、T、L和θ均由SWAN模式输出得到。where Us is the east component of the Stokes drift velocity at a depth of z meters below the sea surface, Vs is the north component of the Stokes drift velocity at a depth of z meters below the sea surface; | Us (0)| is the Stokes drift velocity on the sea surface; z is the vertical coordinate; θ is the wave direction; DS is the Stokes influence depth; wn is the wave number; Hs is the significant wave height; T is the average wave period; L is the wavelength; Hs , T, L and θ are all obtained from the SWAN model output.
3.普林斯顿海洋模式(POM):POM是一个基于三维斜压原始方程的海洋数值模式,采用蛙跳有限差分格式和算子分裂技术,被国内外学者广泛应用于潮流、风生流、混合层和跃层、热盐环流、海洋环流和输运的模拟。本发明提出改进POM模式中Mellor-Yamada2.5阶湍封闭模型的方法,使Mellor-Yamada2.5阶湍封闭模型包含计算非定常Langmuir环流的参数化计算方法,具体为:在Mellor-Yamada2.5阶湍封闭模型加入Langmuir湍效应,得到改进后的Mellor-Yamada2.5阶湍封闭模型,改进后的Mellor-Yamada2.5阶湍封闭模型如下:3. Princeton Ocean Model (POM): POM is an ocean numerical model based on the three-dimensional baroclinic primitive equations. It adopts the leapfrog finite difference format and operator splitting technology and is widely used by domestic and foreign scholars in the simulation of tidal currents, wind-driven currents, mixed layers and jump layers, thermohaline circulation, ocean circulation and transport. The present invention proposes a method for improving the Mellor-Yamada 2.5-order turbulent closed model in the POM model, so that the Mellor-Yamada 2.5-order turbulent closed model includes a parameterized calculation method for calculating unsteady Langmuir circulation, specifically: adding the Langmuir turbulent effect to the Mellor-Yamada 2.5-order turbulent closed model to obtain an improved Mellor-Yamada 2.5-order turbulent closed model. The improved Mellor-Yamada 2.5-order turbulent closed model is as follows:
KMS=qlSMS (9) KMS = qlSMS (9)
式中,q是湍流动能;l是湍混合长度;U是流速的东分量,V是流速的北分量;Us是海面以下z米深度处的stokes漂移速度的东分量,Vs是海面以下z米深度处的stokes漂移速度的北分量,Us和Vs由步骤2所述的Stokes漂移速度计算模型计算得到;x和y是水平坐标,x代表东方向,y代表北方向;t是时间变量;k是广义垂向坐标;sk是第k层水层的厚度;ω是垂向流速;KH是垂向温度混合系数,Kq是垂向湍动能混合系数;是绝热衰减率修正后的密度;是面壁近似函数;Fq是湍动能长度的水平扩散项,Fl是湍混合长度的水平扩散项;E1,E3,B1,E6,A1和A2是常数项,E1=E3=1.8,B1=16.6,E6=4E1=7.2,A1=0.92,A2=0.74;g是重力加速度;ρ0是海水密度;是垂向雷诺应力的东分量,由公式(7)计算得到;是垂向湍雷诺应力的北分量,由公式(8)计算得到;KM是垂向湍混合系数,而KMS是和Langmuir环流有关的垂向湍混合系数;SMS是稳定性方程,由公式(10)计算得到;GH=-l2q-2N2,N是浮力频率;fz s是表面函数。Wherein, q is the turbulent kinetic energy; l is the turbulent mixing length; U is the east component of the velocity, V is the north component of the velocity; Us is the east component of the Stokes drift velocity at a depth of z meters below the sea surface, Vs is the north component of the Stokes drift velocity at a depth of z meters below the sea surface, Us and Vs are calculated by the Stokes drift velocity calculation model described in step 2; x and y are horizontal coordinates, x represents the east direction, and y represents the north direction; t is the time variable; k is the generalized vertical coordinate; sk is the thickness of the kth water layer; ω is the vertical velocity; KH is the vertical temperature mixing coefficient, and Kq is the vertical turbulent kinetic energy mixing coefficient; is the density corrected for the adiabatic decay rate; is the wall approximation function; Fq is the horizontal diffusion term of the turbulent kinetic energy length, Fl is the horizontal diffusion term of the turbulent mixing length; E1 , E3 , B1 , E6 , A1 and A2 are constant terms, E1 = E3 = 1.8, B1 = 16.6, E6 = 4E1 = 7.2 , A1 = 0.92, A2 = 0.74; g is the gravitational acceleration; ρ0 is the seawater density; is the east component of the vertical Reynolds stress, calculated by formula (7); is the north component of the vertical turbulent Reynolds stress, calculated by formula (8); K M is the vertical turbulent mixing coefficient, and K MS is the vertical turbulent mixing coefficient related to the Langmuir circulation; S MS is the stability equation, calculated by formula (10); G H = -l 2 q -2 N 2 , N is the buoyancy frequency; f z s is the surface function.
本发明运用SWAN模式计算出某一时间范围内的波浪场,输出波浪参数,并将波浪参数传递给Stokes漂移速度计算模型计算得到stokes漂移速度。然后在POM模式中引入非定常的Langmuir环流的参数化计算方法,得到改进后的POM模式。最后,利用得到的stokes漂移速度,采用改进后的POM模式实时模拟包含非定常Langmuir环流的海洋动态过程,得到包含非定常Langmuir环流物理过程影响的海洋温度、盐度和流速场,用于分析Langmuir环流对海洋物质以及海洋动力过程的影响。The present invention uses the SWAN model to calculate the wave field within a certain time range, outputs wave parameters, and passes the wave parameters to the Stokes drift velocity calculation model to calculate the Stokes drift velocity. Then, the parameterized calculation method of the unsteady Langmuir circulation is introduced into the POM model to obtain the improved POM model. Finally, the obtained Stokes drift velocity is used to simulate the ocean dynamic process including the unsteady Langmuir circulation in real time using the improved POM model, and the ocean temperature, salinity and velocity field including the influence of the unsteady Langmuir circulation physical process are obtained, which is used to analyze the influence of the Langmuir circulation on the marine material and the marine dynamic process.
如图1所示,本发明的运行过程如下:As shown in Figure 1, the operation process of the present invention is as follows:
①:SWAN模式开始运行,计算出某一时间段内的波浪场,输出波浪参数数据文件,终止运行。①: SWAN mode starts running, calculates the wave field within a certain period of time, outputs the wave parameter data file, and terminates the operation.
②:Stokes漂移速度计算模型接收到波浪参数数据文件,开始运行,计算得到stokes漂移速度场,输出数据文件后终止运行。②: The Stokes drift velocity calculation model receives the wave parameter data file, starts running, calculates the Stokes drift velocity field, and terminates after outputting the data file.
③:改进POM模式,使其包含非定常Langmuir环流的参数化计算方法。③: Improve the POM model to include the parameterized calculation method of unsteady Langmuir circulation.
④:改进后的POM模式接收到stokes漂移速度文件后,开始运行,实时模拟包含非定常Langmuir环流的海洋动态过程,输出海洋水文要素数据(海洋水文要素数据包括海洋温度、盐度和流速场等)文件后,终止运行。④: After the improved POM mode receives the Stokes drift velocity file, it starts running, simulates the ocean dynamic process including the unsteady Langmuir circulation in real time, and terminates the operation after outputting the ocean hydrological element data (ocean hydrological element data includes ocean temperature, salinity and velocity field, etc.) file.
当POM运行完成时,输出的海洋水文要素数据就体现出来Langmuir环流对海洋环流过程的影响。相比于不考虑Langmuir环流过程或只考虑定常的Langmuir环流过程,本发明更符合实际海洋中发生的物理过程,体现了Langmuir环流对海洋的动态化影响,可以完善海洋数值模式的物理机制,得到更加精准的海洋预报模型,对研究分析海洋中物质、热量、动量以及能量交换和众多的物理、生化过程有重要的意义。When the POM operation is completed, the output ocean hydrological element data reflects the influence of the Langmuir circulation on the ocean circulation process. Compared with not considering the Langmuir circulation process or only considering the steady Langmuir circulation process, the present invention is more in line with the physical process occurring in the actual ocean, reflects the dynamic influence of the Langmuir circulation on the ocean, can improve the physical mechanism of the ocean numerical model, and obtain a more accurate ocean forecast model, which is of great significance for the study and analysis of the exchange of matter, heat, momentum and energy in the ocean and numerous physical and biochemical processes.
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。Although the preferred embodiments of the present invention have been described above in conjunction with the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are merely illustrative and not restrictive. Under the guidance of the present invention, ordinary technicians in this field can also make many forms without departing from the scope of protection of the present invention and the claims, which all fall within the scope of protection of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910351576.5A CN110096792B (en) | 2019-04-28 | 2019-04-28 | Dynamic simulation method for calculating unsteady Langmuir circulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910351576.5A CN110096792B (en) | 2019-04-28 | 2019-04-28 | Dynamic simulation method for calculating unsteady Langmuir circulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110096792A CN110096792A (en) | 2019-08-06 |
CN110096792B true CN110096792B (en) | 2023-04-07 |
Family
ID=67446230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910351576.5A Expired - Fee Related CN110096792B (en) | 2019-04-28 | 2019-04-28 | Dynamic simulation method for calculating unsteady Langmuir circulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110096792B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111859748B (en) * | 2020-07-15 | 2024-04-02 | 天津大学 | Ocean internal wave simulation method based on vertical mixed coordinates |
CN113408179A (en) * | 2021-07-15 | 2021-09-17 | 天津大学 | Dynamic simulation method for calculating real-time wave breaking-caused mixing |
CN114970393B (en) * | 2022-06-01 | 2025-02-11 | 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) | A high-resolution three-dimensional baroclinic circulation model for the South China Sea and its construction method and application |
CN115564150A (en) * | 2022-12-06 | 2023-01-03 | 中交天津港湾工程研究院有限公司 | Oil spill track prediction method based on stokes drift and tide mixing mechanism |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105389468A (en) * | 2015-11-06 | 2016-03-09 | 中国海洋大学 | Rip current forecasting method |
CN106596040A (en) * | 2016-11-03 | 2017-04-26 | 东北石油大学 | Marine environment load simulating method |
CN107563064A (en) * | 2017-09-05 | 2018-01-09 | 河海大学 | A two-dimensional numerical simulation method for tsunami wave overrunning process |
CN108431579A (en) * | 2015-12-02 | 2018-08-21 | 哥德堡传感器设备公司 | Method for the hydrodynamic size for determining object |
CN108595831A (en) * | 2018-04-22 | 2018-09-28 | 天津大学 | It is a kind of to calculate the mixed Dynamic Simulation Method of tide cause in real time |
-
2019
- 2019-04-28 CN CN201910351576.5A patent/CN110096792B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105389468A (en) * | 2015-11-06 | 2016-03-09 | 中国海洋大学 | Rip current forecasting method |
CN108431579A (en) * | 2015-12-02 | 2018-08-21 | 哥德堡传感器设备公司 | Method for the hydrodynamic size for determining object |
CN106596040A (en) * | 2016-11-03 | 2017-04-26 | 东北石油大学 | Marine environment load simulating method |
CN107563064A (en) * | 2017-09-05 | 2018-01-09 | 河海大学 | A two-dimensional numerical simulation method for tsunami wave overrunning process |
CN108595831A (en) * | 2018-04-22 | 2018-09-28 | 天津大学 | It is a kind of to calculate the mixed Dynamic Simulation Method of tide cause in real time |
Non-Patent Citations (5)
Title |
---|
"An Improved Second-Moment Closure Model for Langmuir Turbulence Conditions: Model Derivation and Validation";W.Yu 等;《Journal of Geophysical Research: Oceans》;20181213;第9010-9037页 * |
"Impacts of surface wave-induced Coriolis-Stokes forcing on the upper ocean circulation";Zengan Deng 等;《Journal of Oceanography and Marine Science》;20110430;第2卷(第4期);第102-121页 * |
"Stokes-drift 对上层海洋的影响研究";王智峰;《中国博士学位论文全文数据库 基础科学辑》;20130115;第A010-10页 * |
"台风条件下朗缪尔环流对上层海洋混合的影响研究进展";丁亚梅 等;《海洋学报》;20180131;第40卷(第1期);第1-9页 * |
"近岸浪-流耦合物理机制及其应用研究";李锐;《中国博士学位论文全文数据库 基础科学辑》;20140115;第A010-9页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110096792A (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110096792B (en) | Dynamic simulation method for calculating unsteady Langmuir circulation | |
Kantha et al. | On the effect of surface gravity waves on mixing in the oceanic mixed layer | |
Bolaños et al. | Wave–current interactions in a tide dominated estuary | |
CN101694678B (en) | Method for measuring and calculating regulation scale of artificial fish shelter flow field | |
Hassan et al. | Unsteady RANS simulation of wind flow around a building shape obstacle | |
CN106446438B (en) | A kind of nearly far field approach of coupled numerical simulation of power plant's warm water discharge deep water discharge | |
Rosman et al. | Currents and turbulence within a kelp forest (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model | |
Hu et al. | Two near-inertial peaks in antiphase controlled by stratification and tides in the Yellow Sea | |
CN107256312B (en) | Gulf tide receiving variation calculation method based on tidal current environment | |
James et al. | Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation | |
Sarlak et al. | Comparison of two LES codes for wind turbine wake studies | |
CN113408179A (en) | Dynamic simulation method for calculating real-time wave breaking-caused mixing | |
Cao et al. | Impacts of surface gravity waves on summer ocean dynamics in Bohai Sea | |
Liang et al. | Bottom shear stress under wave-current interaction | |
CN119416704A (en) | Hydrodynamic model system based on MIKE 21FM model and parameter automatic judgment setting, selection and verification method | |
Kim et al. | A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant | |
CN108595831A (en) | It is a kind of to calculate the mixed Dynamic Simulation Method of tide cause in real time | |
CN118332827A (en) | Parameterization method for vortex resolution ocean mode sub-mesoscale vertical buoyancy flux | |
Zhang et al. | Modeling of the turbulence in the water column under breaking wind waves | |
Baston et al. | Sensitivity analysis of the turbulence closure models in the assessment of tidal energy resource in Orkney | |
CN112749520B (en) | Modeling method for three-dimensional hydrodynamic numerical model of large shallow lake | |
CN114970393A (en) | A high-resolution three-dimensional baroclinic circulation model in the South China Sea and its construction method and application | |
CN114814276A (en) | Method for calculating peripheral seawater vertical movement flow velocity caused by operation of offshore wind power equipment | |
CN114201933A (en) | Method for simulating resource distribution condition of fish in early stage | |
Khaleghi et al. | Design and output power evaluation for a novel hybrid wave-wind energy converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20230407 |
|
CF01 | Termination of patent right due to non-payment of annual fee |