CN110095446A - A kind of portable two-channel time-resolved fluorescence device - Google Patents
A kind of portable two-channel time-resolved fluorescence device Download PDFInfo
- Publication number
- CN110095446A CN110095446A CN201910409718.9A CN201910409718A CN110095446A CN 110095446 A CN110095446 A CN 110095446A CN 201910409718 A CN201910409718 A CN 201910409718A CN 110095446 A CN110095446 A CN 110095446A
- Authority
- CN
- China
- Prior art keywords
- fluorescence
- led
- module
- light
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 73
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 28
- 239000010703 silicon Substances 0.000 claims abstract description 28
- 238000004891 communication Methods 0.000 claims abstract description 27
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 40
- 230000005284 excitation Effects 0.000 claims description 36
- 238000001917 fluorescence detection Methods 0.000 claims description 20
- 230000004907 flux Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 3
- 230000001364 causal effect Effects 0.000 claims description 3
- 239000013522 chelant Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims 1
- 230000009897 systematic effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000012123 point-of-care testing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- GMFTYFSOONOZOH-MCTJRNESSA-K europium(3+) 1,10-phenanthroline (Z)-4,4,4-trifluoro-3-oxo-1-thiophen-2-ylbut-1-en-1-olate Chemical compound [Eu+3].[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.[O-]\C(=C/C(=O)C(F)(F)F)c1cccs1.c1cnc2c(c1)ccc1cccnc21 GMFTYFSOONOZOH-MCTJRNESSA-K 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012929 ultra trace analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及免疫分析技术的生物检测领域,尤其涉及一种便携式双通道时间分辨荧光装置。The invention relates to the biological detection field of immune analysis technology, in particular to a portable dual-channel time-resolved fluorescent device.
背景技术Background technique
时间分辨荧光分析法(Time-Resolved Fluorescence Immunoassay,TRFIA)于20世纪80年代被提出,降低了样品中干扰,极大地提高了分析的灵敏度。与其他免疫分析法相比,TRFIA技术有如下优点:灵敏度高、稳定性好、特异性强、标准曲线范围宽、不受背景荧光干扰、非放射性等优点,非常适用于医学、生物学、环境学上的超微量分析。随着研究的深入,该技术不断被医院、科研机构等采用。目前,TRFIA技术在国外已被广泛用于临床检测,其应用场景也在不断扩展,如免疫组织化学、微阵列,多标记免疫分析等。Time-Resolved Fluorescence Immunoassay (TRFIA) was proposed in the 1980s, which reduces the interference in the sample and greatly improves the sensitivity of the analysis. Compared with other immunoassay methods, TRFIA technology has the following advantages: high sensitivity, good stability, strong specificity, wide range of standard curve, no interference from background fluorescence, non-radioactive, etc., very suitable for medicine, biology, and environmental science ultratrace analysis. With the deepening of research, this technology has been continuously adopted by hospitals and scientific research institutions. At present, TRFIA technology has been widely used in clinical testing abroad, and its application scenarios are also expanding, such as immunohistochemistry, microarray, multi-label immunoassay, etc.
中国专利及论文文献中现有的时间分辨荧光免疫分析装置的设计方案与本发明存在区别。例如,专利号:CN201711029384.X,名称:《小型全自动时间分辨荧光免疫分析仪》以及专利号:CN201310674089.5,名称:《全自动时间分辨荧光分析装置及使用方法》提供的方案都是全自动高通量仪器,一次检测多个样本,从机械结构到程序设计思路都与本发明不一样,无法做到真正的小型化,本发明是一次进行单个样本检测,并且不存在丝杆、导轨等结构;专利号:CN201711260928.3,名称:《一种用于时间分辨荧光测试的支架》提供的仅是装置的测试支架结构设计,且其激发光和发射光角度由外部控制增加了不定因素,本发明不仅包含结构设计也包含硬件电路和程序设计,同时,两者的结构设计也不一样,本发明的光路结构是固定的,不能进行角度变换控制;专利号:CN201110354794.8,名称:《时间分辨荧光系统》采用的光学模块为积分球式和氙灯,无法实现真正的小型化,而本发明采用单双通道检测方法,不仅提高激发光和荧光的强度也缩短了光程,两者的整个实际设计方案并不相同;专利号:CN201610379774.9,名称:《一种时间分辨荧光检测方法》提供的是一种检测方法而非仪器;专利号:CN201610116392.7,名称:《光电探测系统及时间分辨荧光免疫分析仪》所述的光路模块只有一个光源,且样品和光源同侧致使整个光路结构与本发明不一样,本发明的双通道检测采用双侧光源激发,并在光源上方设有参考紫外光电二极管进行光强大小的调节;论文:《340nm pulsed UV LED system for europium based time-resolved fluorescence detection of immunoassays》中的主体光路与本发明相似,但其仅为单通道检测不包含双通道检测,且两者参考紫外光电二极管的放置位置不同,调节电流的方法也因此而不同,动态调节范围不同;论文:《Toward sensitive,quantitativepoint-of-care testing(POCT)of protein markers:miniaturization of ahomogeneous time-resolved fluoroimmunoassay for prostate-specific antigendetection》与《A novel luminescence analyser for europium chelates using solid-state excitation and a gated photomultiplier》采用的激发光源与检测元件都与本发明不同,其采用激光器和光电倍增管,虽然功率和检测精度高,但是增加了成本和占用空间。The design scheme of the existing time-resolved fluorescent immunoassay device in Chinese patents and papers is different from the present invention. For example, the patent number: CN201711029384.X, title: "Small Automatic Time-Resolved Fluorescence Immunoassay Analyzer" and patent number: CN201310674089.5, title: "Automatic Time-Resolved Fluorescence Analysis Device and Method of Use" provide all solutions The automatic high-throughput instrument detects multiple samples at one time. It is different from the present invention in terms of mechanical structure and program design ideas, and cannot be truly miniaturized. The present invention detects a single sample at a time, and there is no screw rod or guide rail and other structures; patent number: CN201711260928.3, title: "A Bracket for Time-Resolved Fluorescence Test" provides only the test bracket structure design of the device, and the angle of excitation light and emission light is controlled by external factors to increase the uncertainty , the present invention includes not only structural design but also hardware circuit and program design. At the same time, the structural design of the two is also different. The optical path structure of the present invention is fixed and cannot be controlled by angle transformation; patent number: CN201110354794.8, name: The optical modules used in the "Time-Resolved Fluorescence System" are integrating spheres and xenon lamps, which cannot be truly miniaturized. However, the present invention uses a single- and dual-channel detection method, which not only increases the intensity of excitation light and fluorescence, but also shortens the optical path. The entire actual design scheme is not the same; patent number: CN201610379774.9, name: "A Time-Resolved Fluorescence Detection Method" provides a detection method rather than an instrument; patent number: CN201610116392.7, name: "Photoelectric Detection System and Time-Resolved Fluorescence Immunity Analyzer "The optical path module described in " has only one light source, and the sample and the light source are on the same side so that the entire optical path structure is different from the present invention. There is a reference ultraviolet photodiode to adjust the light intensity; the main optical path in the paper: "340nm pulsed UV LED system for europium based time-resolved fluorescence detection of immunoassays" is similar to the present invention, but it is only for single-channel detection and does not include Dual-channel detection, and the placement of the two reference ultraviolet photodiodes is different, the method of adjusting the current is also different, and the dynamic adjustment range is different; the paper: "Toward sensitive, quantitative point-of-care testing (POCT) of protein markers: miniaturization of ahomogeneous time-resolved fluoroimmunoassay for prostate-specific antigen detection" and "A novel luminescence anal Yser for europium chelates using solid-state excitation and a gated photomultiplier uses different excitation light sources and detection elements from the present invention. It uses lasers and photomultiplier tubes. Although the power and detection accuracy are high, it increases the cost and occupies space.
目前商用化TRFIA分析仪主要以高通量、超高灵敏度的中大型仪器为主,便携式甚至手持式的产品极少,不利于POCT即时检测。同时,大型TRFIA分析仪所使用的光源为氙灯或激光,功耗大且成本高。因此,手持式的TRFIA分析仪仍然有很大的研究价值和市场空间,且随着个性化医疗理念的推广,其市场将更为广阔。At present, commercial TRFIA analyzers are mainly medium and large-scale instruments with high throughput and ultra-high sensitivity, and there are very few portable or even hand-held products, which is not conducive to real-time POCT detection. At the same time, the light source used by large TRFIA analyzers is xenon lamp or laser, which consumes a lot of power and is expensive. Therefore, the handheld TRFIA analyzer still has great research value and market space, and with the promotion of the concept of personalized medicine, its market will be broader.
发明内容Contents of the invention
为解决现有技术中的上述问题,本发明的目的在于提出一种便携式双通道时间分辨荧光装置,在保证灵敏度的情况下实现低成本与小型化,采用紫外发光二极管UV-LED作为激发光源,检测模块更换为硅光电二极管PD,使其提高了灵敏度的情况下,也降低了成本;小型化体现在模块小型化、光路小型化与电路小型化,模块小型化是指采用纯光路的方式进行双通道采集,取代了电机带动光学模块的方式来切换采集通道,同时,创新性地提出了基于荧光激发-衰减模型与脉冲LED驱动电路的多点采样拟合法,以及通过数学模型找出了MOSFET的最优工作区间,并优化了LED恒流驱动与脉冲控制方法。In order to solve the above-mentioned problems in the prior art, the purpose of the present invention is to propose a portable dual-channel time-resolved fluorescence device, which can achieve low cost and miniaturization while ensuring sensitivity, and adopts ultraviolet light-emitting diodes UV-LEDs as excitation light sources. The detection module is replaced by a silicon photodiode PD, which improves the sensitivity and reduces the cost; the miniaturization is reflected in the miniaturization of the module, the miniaturization of the optical path and the miniaturization of the circuit. The miniaturization of the module refers to the use of a pure optical path. Dual-channel acquisition replaces the way that the motor drives the optical module to switch the acquisition channel. At the same time, it innovatively proposes a multi-point sampling fitting method based on the fluorescence excitation-attenuation model and the pulse LED drive circuit, and finds out the MOSFET through the mathematical model. The optimal working range, and optimize the LED constant current drive and pulse control method.
为了达到上述目的,本发明的技术方案为:In order to achieve the above object, technical scheme of the present invention is:
一种便携式双通道时间分辨荧光装置,包括光路模块1、LED驱动电路模块2、荧光信号检测电路模块3、数据通信模块4、嵌入式主控模块5和为前述除光路模块1之外的所有模块进行供电的电源模块6;A portable dual-channel time-resolved fluorescent device, including an optical path module 1, an LED drive circuit module 2, a fluorescent signal detection circuit module 3, a data communication module 4, an embedded main control module 5 and all the aforementioned components except the optical path module 1 A power supply module 6 for supplying power to the module;
所述的光路模块1用于将LED驱动电路模块2的激发光传递照射到样品,提高射入样品的激发光强度;将激发出的荧光传递到荧光信号检测电路模块3的硅光电二极管PD8上,提高到达硅光电二极管PD8的荧光强度以及缩短光程;The optical path module 1 is used to transmit and irradiate the excitation light of the LED driving circuit module 2 to the sample, so as to increase the intensity of the excitation light injected into the sample; transmit the excited fluorescence to the silicon photodiode PD8 of the fluorescence signal detection circuit module 3 , increase the fluorescence intensity reaching the silicon photodiode PD8 and shorten the optical path;
所述的LED驱动电路模块2对UV-LED12进行驱动产生光脉冲,并调整光强大小,然后通过光路模块1的光路传递UV-LED12激发光,用于激发稀土螯合物,并使荧光落在较大的量程内;The LED driving circuit module 2 drives the UV-LED12 to generate light pulses, and adjusts the light intensity, and then transmits the UV-LED12 excitation light through the optical path of the optical path module 1 to excite the rare earth chelate and make the fluorescence fall in a larger range;
所述的荧光信号检测电路模块3灵敏度高,用于检测通过光路模块1传递到硅光电二极管PD 8的pA级的荧光信号电流,且具有1MHz左右的信号输入带宽,以及较低的失调电流;The fluorescent signal detection circuit module 3 has high sensitivity, is used to detect the pA-level fluorescent signal current transmitted to the silicon photodiode PD 8 through the optical path module 1, and has a signal input bandwidth of about 1 MHz, and a relatively low offset current;
所述的数据通信模块4将数据进行标准化封装以便于多种上位机(PC机嵌入式系统)传递数据指令控制嵌入式主控模块5,通过USB、UART两种通讯模式将嵌入式主控模块5处理后的荧光检测数据传输到上位机进行显示;Described data communication module 4 standardizes and encapsulates data so that various upper computers (PC machine embedded systems) transmit data instructions to control the embedded main control module 5, and the embedded main control module 5 is controlled by two kinds of communication modes of USB and UART. 5. The processed fluorescence detection data is transmitted to the host computer for display;
所述的嵌入式主控模块5用于完成对LED驱动电路模块2的LED进行恒流调节与光脉冲控制;对荧光信号检测电路模块3的时域检测控制,以及对荧光检测电路模块3检测到的荧光强度信号数据进行后续处理及传输工作;对数据通信模块4传递的控制指令进行操作,并通过数据通信模块4向上位机传递检测数据。The embedded main control module 5 is used to complete the constant current adjustment and light pulse control of the LED of the LED drive circuit module 2; the time domain detection control of the fluorescence signal detection circuit module 3, and the detection of the fluorescence detection circuit module 3 Subsequent processing and transmission of the received fluorescence intensity signal data; operation of the control instructions transmitted by the data communication module 4, and transmission of detection data to the host computer through the data communication module 4.
所述的电源模块6满足各级电路的供电要求。The power supply module 6 meets the power supply requirements of circuits at all levels.
所述的光路模块1包含单通道检测光路和双通道检测光路,所述单通道检测光路为UV-LED 12输出一束激发光先经Rf-PD 7调整输出光通量,然后激发光经过组合透镜13平行射在二向色镜9上,激发光反射后经过平凸透镜11聚光于检测对象中进行激发,激发出的荧光经过平凸透镜11平行射入二向色镜9,透射后经过平凸透镜11聚光在硅光电二极管PD8上进行荧光检测;The optical path module 1 includes a single-channel detection optical path and a dual-channel detection optical path. The single-channel detection optical path is for the UV-LED 12 to output a bunch of excitation light first through the Rf-PD 7 to adjust the output luminous flux, and then the excitation light passes through the combination lens 13 Parallel to the dichroic mirror 9, the excitation light is reflected by the plano-convex lens 11 and concentrated in the detection object for excitation, and the excited fluorescence is parallelly injected into the dichroic mirror 9 through the plano-convex lens 11, and then passes through the plano-convex lens 11 after transmission Concentrate light on the silicon photodiode PD8 for fluorescence detection;
所述双通道检测光路是指两侧的UV-LED 12各输出一束激发光经两侧的Rf-PD 7调整光通量后,射入各自前方的组合透镜13,成为平行光经各自前方的二向色镜9进行反射,其中一束反射光透过50%分光镜15,而另一束反射光经下方的反射镜14反射在50%分光镜15后再次反射,此时两束光重合经平凸透镜11会聚于检测对象中进行荧光激发,激发出的荧光经过平凸透镜11后一束荧光透过50%分光镜15和二向色镜9经平凸透镜11直接会聚于第一个通道的硅光电二极管PD8进行荧光检测,另一束荧光在50%分光镜15和反射镜14上反射后透过二向色镜9经平凸透镜11后直接会聚于第二个通道的硅光电二极管PD8进行荧光检测。The two-channel detection light path means that the UV-LEDs 12 on both sides output a bunch of excitation light respectively, after the luminous flux is adjusted by the Rf-PD 7 on both sides, it is injected into the combined lens 13 in front of each, and becomes parallel light through the two lights in front of each. Reflect to the color mirror 9, wherein one beam of reflected light passes through the 50% beam splitter 15, and the other beam of reflected light is reflected by the reflector 14 below and reflected again after the 50% beam splitter 15. At this time, the two beams of light overlap through The plano-convex lens 11 converges in the detection object for fluorescence excitation. After the excited fluorescence passes through the plano-convex lens 11, a beam of fluorescence passes through the 50% beam splitter 15 and the dichroic mirror 9. The photodiode PD8 performs fluorescence detection, and another beam of fluorescence is reflected on the 50% beam splitter 15 and reflector 14, and then passes through the dichroic mirror 9, passes through the plano-convex lens 11, and then directly converges on the silicon photodiode PD8 of the second channel for fluorescence. detection.
所述组合透镜13由两块平凸透镜11同方向紧靠,其平面一侧对着UV-LED12的凸面,UV-LED12放置于组合透镜13的物方焦点处,能使激发光路的数值孔径增加了0.36倍;所述UV-LED12波段范围为395-405nm;所述平凸透镜11为K9;所述二向色镜9的型号为FF506-Di03,在350-400低频波段表现良好。The combined lens 13 is close to the same direction by two plano-convex lenses 11, and one side of its plane faces the convex surface of the UV-LED12. The wavelength range of the UV-LED12 is 395-405nm; the plano-convex lens 11 is K9; the model of the dichroic mirror 9 is FF506-Di03, which performs well in the 350-400 low frequency band.
所述UV-LED12斜上方放置了一个Rf-PD7,能够通过LED驱动电路模块2调整UV-LED12的输出光通量,避免UV-LED12由于老化或工艺差异引起的系统误差。An Rf-PD7 is placed obliquely above the UV-LED12, which can adjust the output luminous flux of the UV-LED12 through the LED drive circuit module 2, and avoid system errors caused by aging or process differences of the UV-LED12.
所述的LED驱动电路模块2采用PID软件反馈控制器实现电流调节,栅源极电压VGS可实现0~3.3V范围的调控,能关断UV-LED12。LED驱动电路模块2为荧光激发检测的最前端,整个LED驱动过程可分为恒流调节与光脉冲控制。恒流调节能够调整UV-LED12光强的大小,使荧光落在较大的量程内;光脉冲控制产生光脉冲,用于激发稀土螯合物;所述LED驱动电路模块2采用CSD15571Q2芯片,该MOSFET在4.2V电源的供电下,恒流驱动功率为3W的UV-LED12,并且保持较低的发热功率,DAC电压输出的动态范围为1.45~2.25V。在LED照明时间短,温升忽略的情况下,LED驱动系统近似为时不变因果系统,进行开环控制UV-LED12,进一步缩短LED光脉冲的脉宽。UV-LED12的调光利用查表法进行,建立一张DAC跳变设定值与UV-LED12电流关系表来进行人工标定UV-LED12的电流,随后通过查表法控制UV-LED12。根据实测,得到每个档位下所测得电流与参考PD8测得的UV-LED12相对光强图。UV-LED12电流在0~0.8A范围内时,MOSFET始终工作在饱和区域,参照图3;UV-LED12电流与光通量基本呈线性关系,参照图4,即UV-LED12灌入电流与UV-LED12的光功率基本呈线性关系。The LED driving circuit module 2 adopts a PID software feedback controller to realize current regulation, and the gate-source voltage V GS can realize regulation in the range of 0-3.3V, and can turn off the UV-LED 12 . The LED driving circuit module 2 is the front end of fluorescence excitation detection, and the whole LED driving process can be divided into constant current regulation and light pulse control. Constant current regulation can adjust the size of the UV-LED12 light intensity, so that the fluorescence falls within a larger range; light pulse control generates light pulses for exciting rare earth chelates; the LED drive circuit module 2 uses a CSD15571Q2 chip, the Under the power supply of 4.2V power supply, the MOSFET drives the UV-LED12 with a constant current power of 3W, and maintains a low heating power. The dynamic range of the DAC voltage output is 1.45-2.25V. In the case of short LED lighting time and negligible temperature rise, the LED driving system is approximately a time-invariant causal system, and the open-loop control of UV-LED12 is performed to further shorten the pulse width of the LED light pulse. The dimming of UV-LED12 is carried out by using the look-up table method, and a table of the relationship between the DAC jump setting value and the UV-LED12 current is established to manually calibrate the current of UV-LED12, and then the UV-LED12 is controlled by the look-up table method. According to the actual measurement, a graph of the relative light intensity of the UV-LED 12 measured at each gear and the measured current of the reference PD8 is obtained. When the UV-LED12 current is in the range of 0-0.8A, the MOSFET always works in the saturation region, refer to Figure 3; the UV-LED12 current and luminous flux basically have a linear relationship, refer to Figure 4, that is, the UV-LED12 sink current and UV-LED12 The optical power is basically linear.
所述的荧光信号检测电路模块3采用双运放放大电路和硅光电二极管PD8,检测方法为脉冲法,所述双运放放大电路用于扩展带宽和降低该电路的输出电阻与输出噪声;所述硅光电二极管PD8用于光信号检测时作为电流信号源,采取零偏获得最优的线性关系。由于嵌入式主控模块5的主控芯片上的片内ADC的输入信号通常为电压信号,所以使用电流-电压转换电路将硅光电二极管PD8输出的电流信号转换为电压信号后再输出。荧光检测电路模块3的最大输出电压为2.048V,光电二极管PD8的最大光电流约为2.56uA。所述的荧光检测电路模块3所能实现的稳定带宽为0.65MHz,由反馈RF、放大器的增益带宽积fc(65MHz)和放大器输入端的总电容CIN决定。The fluorescent signal detection circuit module 3 adopts a double op-amp amplifier circuit and a silicon photodiode PD8, and the detection method is a pulse method, and the dual op-amp amplifier circuit is used to expand the bandwidth and reduce the output resistance and output noise of the circuit; The above-mentioned silicon photodiode PD8 is used as a current signal source when used for optical signal detection, and adopts zero bias to obtain an optimal linear relationship. Since the input signal of the on-chip ADC on the main control chip of the embedded main control module 5 is usually a voltage signal, a current-voltage conversion circuit is used to convert the current signal output by the silicon photodiode PD8 into a voltage signal before outputting. The maximum output voltage of the fluorescence detection circuit module 3 is 2.048V, and the maximum photocurrent of the photodiode PD8 is about 2.56uA. The stable bandwidth that the fluorescent detection circuit module 3 can achieve is 0.65 MHz, which is determined by the feedback R F , the gain-bandwidth product f c (65 MHz) of the amplifier and the total capacitance C IN at the input end of the amplifier.
所述的数据通信模块4采用的与外部通讯的方式有CAN与串口;所述CAN主要用于与嵌入式系统通信;所述串口用于与PC机通信,两种通讯方式所用的数据结构为联合体中的结构体。Described data communication module 4 adopts and the mode of external communication has CAN and serial port; Described CAN is mainly used for communicating with embedded system; Described serial port is used for communicating with PC, and the used data structure of two kinds of communication methods is A structure in a union.
所述的嵌入式主控模块5采用的主控芯片为STM32F405RGT6,使用片上DAC,所用的控制算法主要有PID控制器与多点采样数据拟合法。PID控制器为增量式PID,用于UV-LED12调光,其数据结构采用结构体的形式,参数中另增了输出最大值与输出最小值,以对输出加以限制。增量式PID的表达式为Δuk=uk-uk-1=Aek+Bek-1+Cek-2,其中 k——采用序号;T——两次采样间的间隔。因此只需用KP,Ki和Kd确定A、B、C这三个参数后,并获得连续三组测量偏差值,即可得到控制量。The main control chip adopted by the embedded main control module 5 is STM32F405RGT6, and an on-chip DAC is used. The control algorithm used mainly includes PID controller and multi-point sampling data fitting method. The PID controller is an incremental PID, which is used for dimming UV-LED12. Its data structure is in the form of a structure, and the output maximum value and output minimum value are added to the parameters to limit the output. The expression of incremental PID is Δu k =u k -u k-1 =Ae k +Be k-1 +Ce k-2 , where k—the serial number used; T—the interval between two samples. Therefore, it is only necessary to use K P , K i and K d to determine the three parameters A, B, and C, and obtain three consecutive sets of measurement deviation values to obtain the control quantity.
所述的多点采样数据拟合法通过计算能够推求衰减方程中的两个参数:相对荧光强度与荧光寿命。多点采样数据拟合法包括步骤:The multi-point sampling data fitting method can calculate two parameters in the decay equation: relative fluorescence intensity and fluorescence lifetime. The multi-point sampling data fitting method includes steps:
S1、荧光浓度与荧光检测强度之间有对其两边取自然对数可得其中αC即为t=0时刻的相对荧光强度。S1. There is a relationship between the fluorescence concentration and the fluorescence detection intensity Taking the natural logarithm on both sides, we get Wherein αC is the relative fluorescence intensity at time t=0.
S2、对所采得的数据取自然对数后,进行一元线性回归分析,能够得到荧光寿命与相对初始荧光强度。S2. After taking the natural logarithm of the acquired data, a linear regression analysis is performed to obtain the fluorescence lifetime and the relative initial fluorescence intensity.
S3、使用最小二乘法对转换后的数据进行拟合,其中ei为样本(Xi,Yi)的误差,与表示需拟合的参数。存在关系式式中:ei——样本(Xi,Yi)的误差;——拟合参数1;——拟合参数2。因此误差ei可表示为:则平方损失函数可表示为式5-9,其中Q为残差平方和,得到当Q值最小时,所确定的直线即为最佳拟合直线。Q关于两个待估参数的偏导数方程为:求解上式,可求得与为:即可完成数据拟合,得到荧光寿命与t=0时刻的相对荧光强度,并求出荧光衰减方程。S3, use the least squares method to fit the converted data, where ei is the error of the sample (Xi, Yi), and Indicates the parameters to be fitted. existential relation In the formula: ei - the error of the sample (Xi, Yi); - fitting parameter 1; - Fitting parameter 2. So the error e i can be expressed as: Then the square loss function can be expressed as Equation 5-9, where Q is the residual sum of squares, we get When the Q value is the smallest, the determined straight line is the best fitting straight line. The partial derivative equation of Q with respect to the two parameters to be estimated is: Solving the above formula, we can get and for: The data fitting can be completed, the fluorescence lifetime and the relative fluorescence intensity at time t=0 are obtained, and the fluorescence decay equation is obtained.
有益效果Beneficial effect
本发明实施例提供的便携式双通道时间分辨荧光装置,弥补了对比技术的不足,具体具有如下优点:The portable dual-channel time-resolved fluorescence device provided by the embodiment of the present invention makes up for the deficiency of the contrast technology, and specifically has the following advantages:
(1)使用电流峰值加电流脉宽的双自由度调光法;(1) Two-degree-of-freedom dimming method using current peak plus current pulse width;
(2)单次采样即可满足精度要求,可大大缩短采样时间;(2) A single sampling can meet the accuracy requirements, which can greatly shorten the sampling time;
(3)测控模块实现了小型化、低成本、模块化;(3) The measurement and control module realizes miniaturization, low cost and modularization;
(4)荧光光强变异系数CV<3.4%,荧光寿命变异系数CV<5.8%;(4) Fluorescence light intensity variation coefficient CV<3.4%, fluorescence lifetime variation coefficient CV<5.8%;
(5)以Eu(TTA)3phen荧光探针为检测对象,检测限<0.185mg/L。(5) With Eu(TTA)3phen fluorescent probe as the detection object, the detection limit is <0.185mg/L.
附图说明Description of drawings
表1为本发明实施例的利用查表法的DAC设定值与LED灌入电流测定表;Table 1 is the DAC setting value and LED pouring current measurement table utilizing the look-up table method according to the embodiment of the present invention;
图1为本发明的便携式双通道时间分辨荧光装置的模块示意图;1 is a schematic diagram of a module of a portable dual-channel time-resolved fluorescence device of the present invention;
图2为本发明的便携式双通道时间分辨荧光装置的内部结构图;Fig. 2 is the internal structure diagram of the portable dual-channel time-resolved fluorescence device of the present invention;
图3为本发明实施例的利用查表法的DAC设定值与LED1灌入电流关系图;Fig. 3 is the relationship between the DAC set value and the LED1 pouring current utilizing the look-up table method according to an embodiment of the present invention;
图4为本发明实施例的利用查表法的LED1灌入电流与相对光强关系图;Fig. 4 is the relationship diagram between LED1 pouring current and relative light intensity utilizing the look-up table method according to an embodiment of the present invention;
其中:1:光路模块;2:LED驱动电路模块;3:荧光信号检测电路模块;4:数据通信模块;5:嵌入式主控模块;6:电源模块;7:Rf PD;8:硅光电二极管(PD);9:二向色镜;10:滤光片;11:K9平凸透镜;12:紫外发光二极管(UV-LED);13:组合透镜;14:反射镜;15:50%分光镜。Among them: 1: Optical path module; 2: LED drive circuit module; 3: Fluorescent signal detection circuit module; 4: Data communication module; 5: Embedded main control module; 6: Power module; 7: Rf PD; 8: Silicon photoelectric Diode (PD); 9: dichroic mirror; 10: optical filter; 11: K9 plano-convex lens; 12: ultraviolet light-emitting diode (UV-LED); 13: combined lens; 14: reflector; 15: 50% light splitting mirror.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,一种便携式双通道时间分辨荧光装置,包括光路模块1、LED驱动电路模块2、荧光信号检测电路模块3、数据通信模块4、嵌入式主控模块5和为前述除光路模块1之外的所有模块进行供电的电源模块6;As shown in Figure 1, a portable dual-channel time-resolved fluorescence device includes an optical path module 1, an LED drive circuit module 2, a fluorescent signal detection circuit module 3, a data communication module 4, an embedded main control module 5 and the aforementioned optical path Power supply module 6 for supplying power to all modules except module 1;
所述的光路模块1用于将LED驱动电路模块2的激发光传递照射到样品,提高射入样品的激发光强度;将激发出的荧光传递到荧光信号检测电路模块3的硅光电二极管PD8上,提高到达硅光电二极管PD8的荧光强度以及缩短光程;The optical path module 1 is used to transmit and irradiate the excitation light of the LED driving circuit module 2 to the sample, so as to increase the intensity of the excitation light injected into the sample; transmit the excited fluorescence to the silicon photodiode PD8 of the fluorescence signal detection circuit module 3 , increase the fluorescence intensity reaching the silicon photodiode PD8 and shorten the optical path;
所述的LED驱动电路模块2对UV-LED12进行驱动产生光脉冲,并调整光强大小,然后通过光路模块1的光路传递UV-LED12激发光,用于激发稀土螯合物,并使荧光落在较大的量程内;The LED driving circuit module 2 drives the UV-LED12 to generate light pulses, and adjusts the light intensity, and then transmits the UV-LED12 excitation light through the optical path of the optical path module 1 to excite the rare earth chelate and make the fluorescence fall in a larger range;
所述的荧光信号检测电路模块3灵敏度高,用于检测通过光路模块1传递到硅光电二极管PD8的pA级的荧光信号电流,且具有1MHz左右的信号输入带宽,以及较低的失调电流;The fluorescent signal detection circuit module 3 has high sensitivity, is used to detect the pA-level fluorescent signal current transmitted to the silicon photodiode PD8 through the optical path module 1, and has a signal input bandwidth of about 1 MHz, and a low offset current;
所述的数据通信模块4将数据进行标准化封装以便于多种上位机(PC机嵌入式系统)传递数据指令控制嵌入式主控模块5,可通过USB、UART两种通讯模式将嵌入式主控模块5处理后的荧光检测数据传输到上位机进行显示;The data communication module 4 standardizes the data packaging so that various upper computers (PC embedded systems) transmit data instructions to control the embedded main control module 5, and the embedded main control module 5 can be controlled by two communication modes of USB and UART. The fluorescence detection data processed by module 5 is transmitted to the host computer for display;
所述的嵌入式主控模块5用于对LED驱动电路模块2的LED进行恒流调节与光脉冲控制;对荧光信号检测电路模块3的时域检测控制,以及对荧光检测电路模块3检测到的荧光强度信号数据进行后续处理及传输工作;对数据通信模块4传递的控制指令进行操作,并通过数据通信模块4向上位机传递检测数据。The embedded main control module 5 is used for constant current regulation and light pulse control of the LED of the LED drive circuit module 2; time-domain detection control of the fluorescence signal detection circuit module 3, and detection of the fluorescent signal detection circuit module 3 Follow-up processing and transmission of the fluorescence intensity signal data; operate the control instructions transmitted by the data communication module 4, and transmit the detection data to the host computer through the data communication module 4.
所述的电源模块6满足各级电路的供电要求。The power supply module 6 meets the power supply requirements of circuits at all levels.
所述的光路模块1包含单通道检测光路和双通道检测光路,所述单通道检测光路为UV-LED 12输出一束激发光先经Rf-PD 7调整输出光通量,然后激发光经过组合透镜13平行射在二向色镜9上,激发光反射后经过平凸透镜11聚光于检测对象中进行激发,激发出的荧光经过平凸透镜11平行射入二向色镜9,透射后经过平凸透镜11聚光在硅光电二极管PD8上进行荧光检测;The optical path module 1 includes a single-channel detection optical path and a dual-channel detection optical path. The single-channel detection optical path is for the UV-LED 12 to output a bunch of excitation light first through the Rf-PD 7 to adjust the output luminous flux, and then the excitation light passes through the combination lens 13 Parallel to the dichroic mirror 9, the excitation light is reflected by the plano-convex lens 11 and concentrated in the detection object for excitation, and the excited fluorescence is parallelly injected into the dichroic mirror 9 through the plano-convex lens 11, and then passes through the plano-convex lens 11 after transmission Concentrate light on the silicon photodiode PD8 for fluorescence detection;
所述双通道检测光路是指两侧的UV-LED 12各输出一束激发光经两侧的Rf-PD 7调整光通量后,射入各自前方的组合透镜13,成为平行光经各自前方的二向色镜9进行反射,其中一束反射光透过50%分光镜15,而另一束反射光经下方的反射镜14反射在50%分光镜15后再次反射,此时两束光重合经平凸透镜11会聚于检测对象中进行荧光激发,激发出的荧光经过平凸透镜11后一束荧光透过50%分光镜15和二向色镜9经平凸透镜11直接会聚于第一个通道的硅光电二极管PD8进行荧光检测,另一束荧光在50%分光镜15和反射镜14上反射后透过二向色镜9经平凸透镜11后直接会聚于第二个通道的硅光电二极管PD8进行荧光检测。The two-channel detection light path means that the UV-LEDs 12 on both sides output a bunch of excitation light respectively, after the luminous flux is adjusted by the Rf-PD 7 on both sides, it is injected into the combined lens 13 in front of each, and becomes parallel light through the two lights in front of each. Reflect to the color mirror 9, wherein one beam of reflected light passes through the 50% beam splitter 15, and the other beam of reflected light is reflected by the reflector 14 below and reflected again after the 50% beam splitter 15. At this time, the two beams of light overlap through The plano-convex lens 11 converges in the detection object for fluorescence excitation. After the excited fluorescence passes through the plano-convex lens 11, a beam of fluorescence passes through the 50% beam splitter 15 and the dichroic mirror 9. The photodiode PD8 performs fluorescence detection, and another beam of fluorescence is reflected on the 50% beam splitter 15 and reflector 14, and then passes through the dichroic mirror 9, passes through the plano-convex lens 11, and then directly converges on the silicon photodiode PD8 of the second channel for fluorescence. detection.
所述组合透镜13由两块平凸透镜11同方向紧靠,其平面一侧对着UV-LED12的凸面,UV-LED12放置于组合透镜13的物方焦点处,使激发光路的数值孔径增加了0.36倍;所述UV-LED12波段范围为395-405nm;所述平凸透镜11为K9;所述二向色镜9的型号为FF506-Di03,在350-400低频波段表现良好。所述UV-LED12斜上方放置了一个Rf-PD7,能够通过LED驱动电路模块2调整UV-LED12的输出光通量,避免UV-LED12由于老化或工艺差异引起的系统误差。Described combination lens 13 is close to in the same direction by two plano-convex lenses 11, and one side of its plane is facing the convex surface of UV-LED12, and UV-LED12 is placed in the object space focal point of combination lens 13, and the numerical aperture of excitation light path is increased 0.36 times; the wavelength range of the UV-LED 12 is 395-405nm; the plano-convex lens 11 is K9; the model of the dichroic mirror 9 is FF506-Di03, which performs well in the 350-400 low frequency band. An Rf-PD7 is placed obliquely above the UV-LED12, which can adjust the output luminous flux of the UV-LED12 through the LED drive circuit module 2, and avoid system errors caused by aging or process differences of the UV-LED12.
所述的LED驱动电路模块2采用PID软件反馈控制器实现电流调节,栅源极电压VGS可实现0~3.3V范围的调控,能关断UV-LED12。LED驱动电路模块2为荧光激发检测的最前端,整个LED驱动过程可分为恒流调节与光脉冲控制。恒流调节能够调整UV-LED12光强的大小,使荧光落在较大的量程内;光脉冲控制产生光脉冲,用于激发稀土螯合物;所述LED驱动电路模块2采用CSD15571Q2芯片,该MOSFET在4.2V电源的供电下,恒流驱动功率为3W的UV-LED12,并且保持较低的发热功率,DAC电压输出的动态范围为1.45~2.25V。在LED照明时间短,温升忽略的情况下,LED驱动系统近似为时不变因果系统,进行开环控制UV-LED12,进一步缩短LED光脉冲的脉宽。UV-LED12的调光利用查表法进行,建立一张DAC跳变设定值与UV-LED12电流关系表来进行人工标定UV-LED12的电流,随后通过查表法控制UV-LED12,参照表1,The LED driving circuit module 2 adopts a PID software feedback controller to realize current regulation, and the gate-source voltage V GS can realize regulation in the range of 0-3.3V, and can turn off the UV-LED 12 . The LED driving circuit module 2 is the front end of fluorescence excitation detection, and the whole LED driving process can be divided into constant current regulation and light pulse control. The constant current regulation can adjust the size of the UV-LED12 light intensity, so that the fluorescence falls within a larger range; the light pulse control generates light pulses for exciting rare earth chelates; the LED drive circuit module 2 uses a CSD15571Q2 chip, the Under the power supply of 4.2V power supply, the MOSFET drives the UV-LED12 with a constant current power of 3W, and maintains a low heating power. The dynamic range of the DAC voltage output is 1.45-2.25V. In the case of short LED lighting time and negligible temperature rise, the LED driving system is approximately a time-invariant causal system, and the open-loop control of UV-LED12 is performed to further shorten the pulse width of the LED light pulse. The dimming of UV-LED12 is carried out by using the table look-up method, and a table of the relationship between the DAC jump setting value and the UV-LED12 current is established to manually calibrate the current of UV-LED12, and then the UV-LED12 is controlled by the table look-up method, refer to the table 1,
表1Table 1
根据实测,得到每个档位下所测得电流与参考PD8测得的UV-LED12相对光强图。UV-LED12电流在0~0.8A范围内时,MOSFET始终工作在饱和区域,参照图3;UV-LED12电流与光通量基本呈线性关系,参照图4,即UV-LED12灌入电流与UV-LED12的光功率基本呈线性关系。According to the actual measurement, a graph of the relative light intensity of the UV-LED 12 measured at each gear and the measured current of the reference PD8 is obtained. When the UV-LED12 current is in the range of 0-0.8A, the MOSFET always works in the saturation region, refer to Figure 3; the UV-LED12 current and luminous flux basically have a linear relationship, refer to Figure 4, that is, the UV-LED12 sink current and UV-LED12 The optical power is basically linear.
所述的荧光信号检测电路模块3采用双运放放大电路和硅光电二极管PD8,检测方法为脉冲法,所述双运放放大电路用于扩展带宽和降低该电路的输出电阻与输出噪声;所述硅光电二极管PD8用于光信号检测时作为电流信号源,采取零偏获得最优的线性关系。由于嵌入式主控模块5的主控芯片上的片内ADC的输入信号通常为电压信号,所以使用电流-电压转换电路将硅光电二极管PD8输出的电流信号转换为电压信号后再输出。荧光检测电路模块3的最大输出电压为2.048V(由ADS8328的参考电压决定),光电二极管PD8的最大光电流约为2.56uA。所述的荧光检测电路模块3所能实现的稳定带宽为0.65MHz,由反馈RF、放大器的增益带宽积fc(65MHz)和放大器输入端的总电容CIN决定。The fluorescent signal detection circuit module 3 adopts a double op-amp amplifier circuit and a silicon photodiode PD8, and the detection method is a pulse method, and the dual op-amp amplifier circuit is used to expand the bandwidth and reduce the output resistance and output noise of the circuit; The above-mentioned silicon photodiode PD8 is used as a current signal source when used for optical signal detection, and adopts zero bias to obtain an optimal linear relationship. Since the input signal of the on-chip ADC on the main control chip of the embedded main control module 5 is usually a voltage signal, a current-voltage conversion circuit is used to convert the current signal output by the silicon photodiode PD8 into a voltage signal before outputting. The maximum output voltage of the fluorescence detection circuit module 3 is 2.048V (determined by the reference voltage of ADS8328), and the maximum photocurrent of the photodiode PD8 is about 2.56uA. The stable bandwidth that the fluorescent detection circuit module 3 can achieve is 0.65 MHz, which is determined by the feedback R F , the gain-bandwidth product f c (65 MHz) of the amplifier and the total capacitance C IN at the input end of the amplifier.
所述的数据通信模块4采用的与外部通讯的方式有CAN与串口;所述CAN主要用于与嵌入式系统通信;所述串口用于与PC机通信,两种通讯方式所用的数据结构为联合体中的结构体。Described data communication module 4 adopts and the mode of external communication has CAN and serial port; Described CAN is mainly used for communicating with embedded system; Described serial port is used for communicating with PC, and the used data structure of two kinds of communication methods is A structure in a union.
所述的嵌入式主控模块5采用的主控芯片为STM32F405RGT6,使用片内DAC,所用的控制算法主要有PID控制器与多点采样数据拟合法。PID控制器为增量式PID,用于UV-LED12调光,其数据结构采用结构体的形式,参数中另增了输出最大值与输出最小值,以对输出加以限制。增量式PID的表达式为Δuk=uk-uk-1=Aek+Bek-1+Cek-2,其中 k——采用序号;T——两次采样间的间隔。因此只需用KP,Ki和Kd确定A、B、C这三个参数后,并获得连续三组测量偏差值,即可得到控制量。The main control chip adopted by the embedded main control module 5 is STM32F405RGT6, and an on-chip DAC is used. The control algorithms used mainly include PID controller and multi-point sampling data fitting method. The PID controller is an incremental PID, which is used for dimming UV-LED12. Its data structure is in the form of a structure, and the output maximum value and output minimum value are added to the parameters to limit the output. The expression of incremental PID is Δu k =u k -u k-1 =Ae k +Be k-1 +Ce k-2 , where k—the serial number used; T—the interval between two samples. Therefore, it is only necessary to use K P , K i and K d to determine the three parameters A, B, and C, and obtain three consecutive sets of measurement deviation values to obtain the control quantity.
电源模块6外接电源为5V,经TLV62084降压转换器供给各电路4.2V电压,经LP5907稳压器和RT9193稳压器供给运放电路3.3V电压。所述电源模块的电源类型涉及了线性电源、电荷泵与开关电源。The external power supply of the power supply module 6 is 5V, the 4.2V voltage is supplied to each circuit through the TLV62084 step-down converter, and the 3.3V voltage is supplied to the operational amplifier circuit through the LP5907 voltage regulator and the RT9193 voltage regulator. The power supply type of the power supply module involves a linear power supply, a charge pump and a switching power supply.
所述的多点采样数据拟合法弥补了传统检测法的采样时间长的问题,通过计算能够推求衰减方程中的两个参数:相对荧光强度与荧光寿命。多点采样数据拟合法包括步骤:The multi-point sampling data fitting method makes up for the long sampling time problem of the traditional detection method, and two parameters in the decay equation can be deduced through calculation: relative fluorescence intensity and fluorescence lifetime. The multi-point sampling data fitting method includes steps:
S1、荧光浓度与荧光检测强度之间有对其两边取自然对数可得其中αC即为t=0时刻的相对荧光强度。S1. There is a relationship between the fluorescence concentration and the fluorescence detection intensity Taking the natural logarithm on both sides, we get Wherein αC is the relative fluorescence intensity at time t=0.
S2、对所采得的数据取自然对数后,进行一元线性回归分析,能够得到荧光寿命与相对初始荧光强度。S2. After taking the natural logarithm of the acquired data, a linear regression analysis is performed to obtain the fluorescence lifetime and the relative initial fluorescence intensity.
S3、使用最小二乘法对转换后的数据进行拟合,其中ei为样本(Xi,Yi)的误差,与表示需拟合的参数。存在关系式式中:ei——样本(Xi,Yi)的误差;——拟合参数1;——拟合参数2。因此误差ei可表示为:则平方损失函数可表示为式5-9,其中Q为残差平方和,得到当Q值最小时,所确定的直线即为最佳拟合直线。Q关于两个待估参数的偏导数方程为:求解上式,可求得与为:即可完成数据拟合,得到荧光寿命与t=0时刻的相对荧光强度,并求出荧光衰减方程。S3, use the least squares method to fit the converted data, where ei is the error of the sample (Xi, Yi), and Indicates the parameters to be fitted. existential relation In the formula: ei - the error of the sample (Xi, Yi); - fitting parameter 1; - Fitting parameter 2. So the error e i can be expressed as: Then the square loss function can be expressed as Equation 5-9, where Q is the residual sum of squares, we get When the Q value is the smallest, the determined straight line is the best fitting straight line. The partial derivative equation of Q with respect to the two parameters to be estimated is: Solving the above formula, we can get and for: The data fitting can be completed, the fluorescence lifetime and the relative fluorescence intensity at time t=0 are obtained, and the fluorescence decay equation is obtained.
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行同等替换;而这些修改或者替换,并不使相应技术方案的本职脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be described in the foregoing embodiments The recorded technical solutions are modified, or some of the technical features are replaced equivalently; and these modifications or replacements do not make the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910409718.9A CN110095446B (en) | 2019-05-16 | 2019-05-16 | Portable double-channel time resolution fluorescence device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910409718.9A CN110095446B (en) | 2019-05-16 | 2019-05-16 | Portable double-channel time resolution fluorescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110095446A true CN110095446A (en) | 2019-08-06 |
CN110095446B CN110095446B (en) | 2021-06-11 |
Family
ID=67448338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910409718.9A Active CN110095446B (en) | 2019-05-16 | 2019-05-16 | Portable double-channel time resolution fluorescence device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110095446B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111735977A (en) * | 2019-12-23 | 2020-10-02 | 江苏科兴诺生物技术有限公司 | A Single-Channel Multi-Applicability Intelligent Fluorescence Immunoassay Analyzer |
CN113686825A (en) * | 2021-08-16 | 2021-11-23 | 帝鸿科技(珠海)有限公司 | Hand-held fluorescence immune data acquisition instrument based on ICT |
CN119005020A (en) * | 2024-10-24 | 2024-11-22 | 江苏和福生物科技有限公司 | Automatic information identification method and system for fluorescence immunoassay analyzer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080044919A1 (en) * | 2004-08-13 | 2008-02-21 | Dowben Robert M | Analyte Detection Using Time-Resolved Photon Counting Fluorescence |
CN104614353A (en) * | 2015-01-28 | 2015-05-13 | 中国科学院半导体研究所 | Two channel-based multi-spectrum fluorescent imaging microscopic system and method |
CN105759025A (en) * | 2016-03-01 | 2016-07-13 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Photoelectric detection system and time-resolved fluorescence immunoassay analyzer |
CN206270228U (en) * | 2016-11-02 | 2017-06-20 | 杭州奥盛仪器有限公司 | Fluorescence photometer with binary channels light path system |
CN107525793A (en) * | 2017-10-17 | 2017-12-29 | 上海科源电子科技有限公司 | A kind of multichannel fluorescence detecting system |
CN108007904A (en) * | 2016-10-27 | 2018-05-08 | 韩国帕克特生物科技有限公司 | The signal supervisory instrument and its detection method of band based on film |
-
2019
- 2019-05-16 CN CN201910409718.9A patent/CN110095446B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080044919A1 (en) * | 2004-08-13 | 2008-02-21 | Dowben Robert M | Analyte Detection Using Time-Resolved Photon Counting Fluorescence |
CN104614353A (en) * | 2015-01-28 | 2015-05-13 | 中国科学院半导体研究所 | Two channel-based multi-spectrum fluorescent imaging microscopic system and method |
CN105759025A (en) * | 2016-03-01 | 2016-07-13 | 广东顺德工业设计研究院(广东顺德创新设计研究院) | Photoelectric detection system and time-resolved fluorescence immunoassay analyzer |
CN108007904A (en) * | 2016-10-27 | 2018-05-08 | 韩国帕克特生物科技有限公司 | The signal supervisory instrument and its detection method of band based on film |
CN206270228U (en) * | 2016-11-02 | 2017-06-20 | 杭州奥盛仪器有限公司 | Fluorescence photometer with binary channels light path system |
CN107525793A (en) * | 2017-10-17 | 2017-12-29 | 上海科源电子科技有限公司 | A kind of multichannel fluorescence detecting system |
Non-Patent Citations (3)
Title |
---|
字崇德: "基于时间分辨的便携式免疫荧光分析仪相关技术研究与实现", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
张笑河 等: "基于时间分辨荧光光谱法同时测定己酸乙酯与乙酸乙酯", 《光谱学与光谱分析》 * |
郭丽: "时间分辨荧光技术在食用植物油品质检测中的应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111735977A (en) * | 2019-12-23 | 2020-10-02 | 江苏科兴诺生物技术有限公司 | A Single-Channel Multi-Applicability Intelligent Fluorescence Immunoassay Analyzer |
CN111735977B (en) * | 2019-12-23 | 2024-11-01 | 江苏科兴诺生物技术有限公司 | Single-channel multi-applicability intelligent fluorescence immunoassay instrument |
CN113686825A (en) * | 2021-08-16 | 2021-11-23 | 帝鸿科技(珠海)有限公司 | Hand-held fluorescence immune data acquisition instrument based on ICT |
CN119005020A (en) * | 2024-10-24 | 2024-11-22 | 江苏和福生物科技有限公司 | Automatic information identification method and system for fluorescence immunoassay analyzer |
CN119005020B (en) * | 2024-10-24 | 2024-12-24 | 江苏和福生物科技有限公司 | Automatic information identification method and system for fluorescence immunoassay analyzer |
Also Published As
Publication number | Publication date |
---|---|
CN110095446B (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11112365B2 (en) | Increasing the usable dynamic range in photometry | |
CN110095446A (en) | A kind of portable two-channel time-resolved fluorescence device | |
US8189196B2 (en) | Self referencing LED detection system for spectroscopy applications | |
US10506765B2 (en) | Intelligent light adjusting system and intelligent light adjusting method in crop growth process | |
CN104483254A (en) | Multi-color multi-parameter portable flow cytometer | |
CN205898677U (en) | Acousto -optic modulation double -light -path double detector type near -infrared spectroscopy | |
CN102519878B (en) | Method and system for automatic correction and compensation of stability of microfluidic chip photoelectric detection light source | |
CN105246190B (en) | Standard sources and the chemical illumination immunity analysis instrument using the standard sources | |
CN116593427A (en) | A device and method for automatic calibration of excitation light intensity for quantitative FRET imaging | |
CN106153575A (en) | A kind of acousto-optic modulation double light path double detector type near infrared spectrometer and method of testing | |
CN100588950C (en) | Absorbed light and fluorescence spectrum composite detector | |
CN202256152U (en) | Specific protein measuring apparatus | |
CN102385330B (en) | Control system for multiple space camera focusing coders | |
CN104568799A (en) | Monochromatic light composited light scanning type luminosity absorption detection system | |
CN111781144A (en) | A miniature dual-channel fluorescence detection device | |
CN217709486U (en) | Light-operated nucleic acid detection device | |
CN206684048U (en) | A kind of minimal feeding instrument in double fluorescent emission faces | |
CN100437088C (en) | Multiwave length spectro state carbon dioxide automatic monitoring device | |
CN204514810U (en) | Laser-induced fluorescence detection system | |
CN219957303U (en) | Light source with constant illumination intensity and photoelectric measuring device | |
CN205333493U (en) | Urine mummification analytical equipment based on beam splitter | |
CN205982074U (en) | Wet chemical analysis platform | |
CN206648953U (en) | A kind of fluorimetric analysis device | |
CN209148530U (en) | It is a kind of for detecting the infrared light supply of moisture | |
CN204086146U (en) | A kind of light channel structure of time-resolved fluorescence immunoassay instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |