CN110095083B - Hot casting measuring method and device based on compressed sensing algorithm - Google Patents
Hot casting measuring method and device based on compressed sensing algorithm Download PDFInfo
- Publication number
- CN110095083B CN110095083B CN201910349743.2A CN201910349743A CN110095083B CN 110095083 B CN110095083 B CN 110095083B CN 201910349743 A CN201910349743 A CN 201910349743A CN 110095083 B CN110095083 B CN 110095083B
- Authority
- CN
- China
- Prior art keywords
- measured
- casting
- optical signal
- hot
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明涉及热铸件测量技术领域,具体涉及一种基于压缩感知算法的热铸件测量方法及装置。The invention relates to the technical field of hot casting measurement, in particular to a hot casting measurement method and device based on a compressive sensing algorithm.
背景技术Background technique
金属铸件刚被铸造出来时,温度很高,可以到达800度。这时测量其尺寸,面临较大困难,采用人工测量,工作环境差,工人无法长时间工作。采用接触式的传感器测量,由于高温会导致传感器测量不准,且寿命变短。采用图像拍摄的方法由于被测铸件的高温导致附近的空气温度升高,导致空气对光线的折射率发生变化导致拍摄图像产生变形,无法获得正确的图像。When the metal casting is first cast, the temperature is very high, which can reach 800 degrees. At this time, it is difficult to measure its size, and manual measurement is used, the working environment is poor, and workers cannot work for a long time. Using contact sensor measurement, due to high temperature, the sensor measurement will be inaccurate, and the life of the sensor will be shortened. Using the method of image capture, the high temperature of the tested casting causes the temperature of the nearby air to rise, resulting in the change of the refractive index of the air to the light, resulting in the distortion of the captured image, and the correct image cannot be obtained.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于压缩感知算法的热铸件测量方法及装置,以解决现有技术中导致的无法获得正确的图像的问题。The purpose of the present invention is to provide a method and device for measuring a hot casting based on a compressed sensing algorithm, so as to solve the problem of inability to obtain a correct image in the prior art.
为达到上述目的,本发明是采用下述技术方案实现的:To achieve the above object, the present invention adopts the following technical solutions to realize:
一种基于压缩感知算法的热铸件测量方法,包括如下步骤:A method for measuring a hot casting based on a compressive sensing algorithm, comprising the following steps:
步骤1、获取所述被测热铸件待测部分完整的光信号,并将获取所述光信号转换为电信号;步骤2、将所述电信号转换为电信号矩阵,所述电信号矩阵表达式为:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强;Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at each position;
步骤3、通过压缩感知算法求解所述电信号方程,获取向量C;步骤4、将获取的向量C按照行优先的原则恢复成二维网格矩阵,获取所述被测热铸件待测部分的图像信息;步骤5、根据所述被测热铸件待测部分的图像信息获取所述被测热铸件待测部分的尺寸信息。
一种基于压缩感知算法的热铸件测量装置,包括:光电处理模块、转换模块、计算模块、图像恢复模块和图像处理模块;光电处理模块用于获取所述被测热铸件待测部分完整的光信号,并将获取所述光信号转换为电信号;转换模块用于将所述电信号转换为电信号矩阵,并将所述电信号矩阵简化为电信号方程;计算模块用于通过压缩感知算法求解所述电信号方程,获取向量C;图像恢复模块用于将获取的向量C按照行优先的原则恢复成二维网格矩阵,获取所述被测热铸件待测部分的图像;图像处理模块用于根据所述被测热铸件待测部分的图像信息获取所述被测热铸件待测部分的尺寸信息。A thermal casting measurement device based on compressive sensing algorithm, comprising: a photoelectric processing module, a conversion module, a calculation module, an image restoration module and an image processing module; signal, and convert the acquired optical signal into an electrical signal; the conversion module is used to convert the electrical signal into an electrical signal matrix, and the electrical signal matrix is simplified into an electrical signal equation; the calculation module is used to pass the compressed sensing algorithm Solve the electric signal equation to obtain the vector C; the image recovery module is used to restore the obtained vector C into a two-dimensional grid matrix according to the principle of row priority, and obtain the image of the to-be-measured part of the tested thermal casting; the image processing module It is used to obtain the size information of the to-be-measured part of the measured thermal casting according to the image information of the to-be-measured part of the measured thermal casting.
进一步的,所述光电处理模块为光电传感器。Further, the photoelectric processing module is a photoelectric sensor.
进一步的,本装置还包括:放置台和石棉网;被测热铸件放置在所述放置台上,所述放置台两侧均设有支撑电机,所述石棉网转动连接在两侧的所述支撑电机之间,所述光电传感器固定在所述石棉网上方。Further, the device also includes: a placing table and an asbestos net; the heat-to-be-measured casting is placed on the placing table, both sides of the placing table are provided with support motors, and the asbestos net is rotatably connected to the said placing table on both sides. Between the supporting motors, the photoelectric sensor is fixed above the asbestos mesh.
本发明的优点在于:本发明提供了一种基于压缩感知算法的热铸件形态测量方法及装置,能够有效的解决热铸件由于表面温度过高而导致的测量不准确的问题,通过多次测量被遮挡耐高温石棉网下方的热铸件,并结合压缩感知算法来获取完整的热铸件的测量信息,能够准确的获得被测热铸件的形态。The advantages of the present invention are: the present invention provides a method and device for measuring the shape of a hot casting based on a compressive sensing algorithm, which can effectively solve the problem of inaccurate measurement of the hot casting due to excessive surface temperature. Block the hot casting under the high temperature resistant asbestos mesh, and combine the compression sensing algorithm to obtain the complete measurement information of the hot casting, which can accurately obtain the shape of the measured hot casting.
附图说明Description of drawings
图1为本发明具体实施方式中实施例1和实施例2的整体结构示意图;Fig. 1 is the overall structure schematic diagram of
图2为本发明具体实施方式中石棉网的整体结构示意图;Fig. 2 is the overall structure schematic diagram of the asbestos net in the specific embodiment of the present invention;
图3为本发明具体实施方式中热铸件目标图像的示意图;Fig. 3 is the schematic diagram of the hot casting target image in the specific embodiment of the present invention;
图4为本发明具体实施方式中实施例2整体结构的俯视图;4 is a top view of the overall structure of Example 2 in the specific embodiment of the present invention;
图5为本发明具体实施方式中实施例3和实施例4的整体结构示意图;5 is a schematic diagram of the overall structure of
图6为本发明具体实施方式中实施例3和实施例4中光电传感器接收信号的示意图;6 is a schematic diagram of a photoelectric sensor receiving signals in
图7为本发明具体实施方式中实施例4和实施例6中石棉网的示意图;Fig. 7 is the schematic diagram of the asbestos net in embodiment 4 and
图8为本发明具体实施方式中实施例5和实施例6的整体结构示意图;8 is a schematic diagram of the overall structure of
图9为本发明具体实施方式中实施例5和实施例6中光电传感器接收信号示意图;9 is a schematic diagram of a signal received by a photoelectric sensor in
图10为本发明具体实施方式中实施例5和实施例6中光电传感器采集信号的角度示意图。FIG. 10 is an angular schematic diagram of a signal collected by a photoelectric sensor in Example 5 and Example 6 in the specific implementation of the present invention.
其中:1、光电传感器;2、石棉网;3、热铸件;4、放置台;5、支撑电机;6、挡板;7、上传输装置;8、下传输装置;9、方筒。Among them: 1. Photoelectric sensor; 2. Asbestos mesh; 3. Hot casting; 4. Placing table; 5. Support motor; 6. Baffle plate; 7. Upper transmission device; 8. Lower transmission device;
具体实施方式Detailed ways
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, creative features, achievement goals and effects realized by the present invention easy to understand, the present invention will be further described below with reference to the specific embodiments.
实施例1Example 1
如图1-图3所示,本实施例包括光电传感器1、放置台4和网格挡板,网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。石棉网2的结构为布满正方形网格结构,每个网格的大小均为d,50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。被测热铸件3发出的光不能通过遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。As shown in Figures 1-3, this embodiment includes a
热铸件3放置在放置台4上,放置台4的两侧均固定有支撑电机5,石棉网2连接在放置台4两侧的支撑电机5之间,支撑电机5转动带动石棉网2在两个支撑电机5之间双向运动,光电传感器1固定在石棉网2的上方,光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。The
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、控制两侧的支撑电机5转动,使石棉网2向右移动,石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3完整的光信号信息,控制支撑电机5停止转动,使石棉网2停止移动。步骤3、将获取的热铸件3完整的光信号转换为热铸件完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1: Step 2.1:
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。(补充式中各字母的含义)Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation. (the meaning of each letter in the supplementary formula)
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的图像信息获取热铸件3的尺寸信息。具体的,根据热铸件3在石棉网2上占据的网格数即能够计算出热铸件的大小。图3中,展示了一副重构后热铸件3的目标图像,其宽度为6个像素,那么实际宽度为D=6d。Step 7: Obtain size information of the
本方法远程拍摄的图像,可以避免出现因温度的干扰出现测量误差。The images taken remotely by this method can avoid the occurrence of measurement errors due to the interference of temperature.
实施例2Example 2
如图1图2和图4所示,本实施例包括光电传感器1、放置台4、挡板6和网格挡板,挡板6和网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。挡板6固定在放置台4上,热铸件3的左端固定在放置台4上。热铸件3放置在放置台4上,放置台4的两侧均固定有支撑电机5,石棉网2连接在放置台4两侧的支撑电机5之间,支撑电机5转动带动石棉网2在两个支撑电机5之间双向运动,光电传感器1固定在石棉网2的上方,光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。As shown in FIG. 1, FIG. 2 and FIG. 4, this embodiment includes a
石棉网2的结构为布满正方形网格结构,每个网格的大小均为d。热铸件3非固定端处即热铸件3的右端处的石棉网2上50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。被测热铸件3发出的光不能通过所述遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。The structure of the
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3右端发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、控制两侧的支撑电机5转动,使石棉网2向右移动,石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3右端部分完整的光信号信息,控制支撑电机5停止转动,使石棉网2停止移动。步骤3、将获取的热铸件3右端完整的光信号转换为热铸件完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1:gn=<rn-1,K>Step 2.1: g n =<r n-1 ,K>
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation.
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的右端图像信息获取热铸件3的高度信息。具体的,根据热铸件3在石棉网2上最右端占据的网格位置和挡板6占据的网格位置之间的距离,即能够计算出热铸件高度的大小。Step 7: Obtain the height information of the
本方法远程拍摄的图像,可以避免出现因温度的干扰出现测量误差。对于大件的热铸件,只需测量部分位置的图像,提高测量精度和测量的速度。The images taken remotely by this method can avoid the occurrence of measurement errors due to the interference of temperature. For large hot castings, only the image of the partial position is measured, which improves the measurement accuracy and measurement speed.
实施例3Example 3
如图2、图3、图5和图6所示,本实施例包括光电传感器1、下传输装置8、上传输装置7和网格挡板,网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。石棉网2的结构为布满正方形网格结构,每个网格的大小均为d,50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。被测热铸件3发出的光不能通过遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。As shown in Fig. 2, Fig. 3, Fig. 5 and Fig. 6, this embodiment includes a
热铸件3固定在下传输装置8上,下传输装置8和上传输装置7均是传输带,石棉网2固定连接在上传输装置7和下传输装置8之间。方筒9固定在上传输装置7上,光电传感器1固定在方筒9内部,利用筒的遮挡,使光电传感器1接收到光只来自热铸件3。光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。The
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、上传输装置7和下传输装置8等速向右运动,即上传输装置7和下传输装置8保持相对静止,由于热铸件3固定在下传输装置上,所以石棉网2相对于热铸件3在移动。石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3完整的光信号信息,上传输装置7和下传输装置8停止运动。步骤3、将获取的热铸件3完整的光信号转换为热铸件完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1:gn=<rn-1,K>Step 2.1: g n =<r n-1 ,K>
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation.
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的图像信息获取热铸件3的尺寸信息。具体的,根据热铸件3在石棉网2上占据的网格数即能够计算出热铸件的大小。图3中,展示了一副重构后热铸件3的目标图像,其宽度为6个像素,那么实际宽度为D=6d。Step 7: Obtain size information of the
本方法远程拍摄的图像,可以避免出现因温度的干扰出现测量误差。利用已有的传输装置,进行热铸件的测量,可以充分节约时间,提高生产效率。The images taken remotely by this method can avoid the occurrence of measurement errors due to the interference of temperature. Using the existing transmission device to measure the hot casting can fully save time and improve production efficiency.
实施例4Example 4
如图3、图5-7所示,本实施例包括光电传感器1、下传输装置8、上传输装置7和网格挡板,网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。石棉网2的结构为布满正方形网格结构,每个网格的大小均为d,本实施例中的石棉网2如图7所示,石棉网2中间的网格全部被遮光挡板挡住,两侧的网格中有50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。石棉网2的中间和两侧是根据热铸件3大致形状确定的,石棉网2的两侧确保热铸件3的两端发出的光能被光电传感器1接收。被测热铸件3发出的光不能通过遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。As shown in Figures 3 and 5-7, this embodiment includes a
热铸件3固定在下传输装置8上,下传输装置8和上传输装置7均是传输带,石棉网2固定连接在上传输装置7和下传输装置8之间。方筒9固定在上传输装置7上,光电传感器1固定在方筒9内部,使光电传感器1接收到光只来自热铸件3。光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。The
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3右端发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、上传输装置7和下传输装置8等速向右运动,即上传输装置7和下传输装置8保持相对静止,由于热铸件3固定在下传输装置上,所以石棉网2相对于热铸件3在移动。石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3两端部分完整的光信号信息,上传输装置7和下传输装置8停止运动。步骤3、将获取的热铸件3两端的完整的光信号转换为热铸件完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1:gn=<rn-1,K>Step 2.1: g n =<r n-1 ,K>
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation.
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的两端图像信息获取热铸件3的高度信息。具体的,根据热铸件3在石棉网2上最两端占据的网格位置和石棉网2中间的遮光挡板占据的网格位置之间的总和,即能够计算出热铸件高度的大小。Step 7: Acquire height information of the
本方法远程拍摄的图像,可以避免出现因温度的干扰出现测量误差。对于大件的热铸件,只需测量部分位置的图像,提高测量精度和效率。The images taken remotely by this method can avoid the occurrence of measurement errors due to the interference of temperature. For large hot castings, only the image of the partial position needs to be measured, which improves the measurement accuracy and efficiency.
实施例5Example 5
如图2、图8-10所示,本实施例包括光电传感器1、下传输装置8、方筒9和网格挡板,网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。石棉网2的结构为布满正方形网格结构,每个网格的大小均为d,50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。被测热铸件3发出的光不能通过遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。As shown in Figures 2 and 8-10, this embodiment includes a
热铸件3固定在下传输装置8上,下传输装置8是传输带,石棉网2固定连接在下传输装置8上方。方筒9固定在石棉网2上的方中间部分,光电传感器1固定在方筒9内部,使光电传感器1接收到光来整个石棉网2。加一个方筒9使光电传感器1不会接收到其他光源直射的光,减少测量噪声。光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。The
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在测量过程中应保证,根据热铸件3的大小,确定一个基本的范围,确定n的大小。n为最终图像的像素数量,n越大分辨率越高,测量结果越准确,但是测量的时间要增加。随着热铸件3的运动,每移动过一列网格,光电传感器1采集一次信号。由于每次采集时,相对位置的不同会导致像素点大小的不一致。因此需要进行相对校准:每次采集的亮度I=I0/cos(α)其I0为热铸件3在正下方时的亮度,α为热铸件3中心到光电传感器1连线与光电传感器1垂直方向的夹角。In the measurement process, it should be ensured that a basic range is determined according to the size of the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、下传输装置8向右运动带动热铸件3向右运动,以热铸件3为参考点,石棉网2即向左运动,石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3完整的光信号信息,下传输装置8停止运动。步骤3、将获取的热铸件3完整的光信号转换为热铸件3完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1:gn=<rn-1,K>Step 2.1: g n =<r n-1 ,K>
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation.
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的图像信息获取热铸件3的尺寸信息。具体的,根据热铸件3在石棉网2上占据的网格数即能够计算出热铸件的大小。图3中,展示了一副重构后热铸件3的目标图像,其宽度为6个像素,那么实际宽度为D=6d。Step 7: Obtain size information of the
本实施例中,只采用一个光电传感器1既能够有效的测量出铸件的形态,节约了成本。In this embodiment, only one
实施例6Example 6
如图7-10所示,本实施例包括光电传感器1、下传输装置8、方筒9和网格挡板,网格挡板是石棉网或其它耐高温的材料制成的。耐高温的温度指耐800度以上的温度。石棉网2的结构为布满正方形网格结构,每个网格的大小均为d,本实施例中的石棉网2如图7所示,石棉网2中间的网格全部被遮光挡板挡住,两侧的网格中有50%的网格中固定有遮光挡板,遮光挡板分布按照计算机产生的随机向量分布,由计算机生成和存储。石棉网2的中间和两侧是根据热铸件3大致形状确定的,石棉网2的两侧确保热铸件3的两端发出的光能被光电传感器1接收。被测热铸件3发出的光不能通过遮光挡板,只能透过石棉网2上没有遮光挡板的网格。为了保证本装置的测量精度,正方形网格的尺寸应小于测量的精度要求。同时热铸件3与石棉网2的距离也应尽量小于测量精度要求。As shown in Figures 7-10, this embodiment includes a
热铸件3固定在下传输装置8上,下传输装置8是传输带,石棉网2固定连接在下传输装置8上方。方筒9固定在石棉网2上的方中间部分,光电传感器1固定在方筒9内部,使光电传感器1接收到光来整个石棉网2。光电传感器1能够透过石棉网2上无遮光挡板的网格接收到热铸件3发出的光源信息,光电传感器1能够将接收的光源信号转换为电信号。The
在探测过程中,由高温造成的湍流或大气扰动主要对光场的空间分布造成影响,但对于整个光场的总强度影响不大。因此,在石棉网2与光电传感器1之间的湍流并不会对单像素成像结果造成影响。从而实现对热铸件3的抗扰动成像,然后通过图像处理获得相应的铸件形态。During the detection process, turbulence or atmospheric disturbance caused by high temperature mainly affects the spatial distribution of the light field, but has little effect on the total intensity of the entire light field. Therefore, the turbulent flow between the
在本实施例中,测量方法包括如下步骤:In this embodiment, the measurement method includes the following steps:
步骤1、光电传感器1接收热铸件3右端发出光源信号,并将接收的光源信号转换为电信号;电信号表达式为:
其中,α为光电转换系数,ki为随机向量系数,值为0或1,ci为热铸件上一个小点的发光亮度。Among them, α is the photoelectric conversion coefficient, ki is the random vector coefficient, the value is 0 or 1, and ci is the luminous brightness of a small point on the hot casting.
步骤2、步骤2、下传输装置8向右运动带动热铸件3向右运动,以热铸件3为参考点,石棉网2即向左运动。石棉网2每移动一列网格,光电传感器1获取一次热铸件3发出的光信号,直至获取到被测热铸件3两端部分完整的光信号信息,下传输装置8停止运动。步骤3、将获取的热铸件3两端的完整的光信号转换为热铸件完整的电信号信息。
步骤4、将完整的电信号信息转换为电信号矩阵,电信号矩阵表达式为:Step 4. Convert the complete electrical signal information into an electrical signal matrix, and the electrical signal matrix expression is:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤5、通过压缩感知算法求解所述电信号方程,获取向量C。Step 5: Solve the electrical signal equation through a compressive sensing algorithm to obtain a vector C.
以压缩感知算法中的OMP算法为例:Take the OMP algorithm in the compressed sensing algorithm as an example:
步骤1:初始化r0=Y,C0=0,Γ0=φStep 1: Initialize r 0 =Y, C 0 =0, Γ 0 =φ
步骤2:n=1,Step 2: n=1,
步骤2.1:gn=<rn-1,K>Step 2.1: g n =<r n-1 ,K>
步骤2.2: Step 2.2:
步骤2.3:Γn=Γn-1∪in Step 2.3: Γ n = Γ n -1 ∪in
步骤2.4:Cn=ΓnYStep 2.4: C n = Γ n Y
步骤2.5:rn=Y-KCn Step 2.5: rn = Y - KC n
步骤2.6:重复2.1-2.5直到||rn-rn-1||<ε,ε为设置的精度要求。此时Cn即为方程的解。Step 2.6: Repeat 2.1-2.5 until ||r n -r n-1 ||<ε, where ε is the set precision requirement. At this point C n is the solution of the equation.
Cn表示方程Y=KC中向量C的预测值。rn利用预测值代入方程后的残差。Γn表示一个向量的集合,其开始时为空集合φ。<rn-1,K>表示残差rn-1和矩阵K的列向量的内积,表示这些内积的值。in表示取内积值最大情况下,对应的K中的列向量。Γn=Γn-1∪in表示将in这个向量放入集合中。C n represents the predicted value of the vector C in the equation Y=KC. r n Residuals after substituting the predicted values into the equation. Γ n represents a set of vectors, which starts with the empty set φ. <r n-1 ,K> represents the inner product of the residual r n-1 and the column vector of the matrix K, represent the values of these inner products. i n represents the column vector in the corresponding K when the inner product value is the largest. Γ n = Γ n -1 ∪in means to put the vector i n into the set.
步骤6、将获取的向量C按照行优先的原则恢复成二维网格矩阵,将按照其在石棉网2上的位置重新排列,就可以恢复出热铸件3的图像。具体的,根据ci在石棉网上的不同位置,将不同网格上的亮度(ci的值)记录在对应的位置,可以获得一个二维的亮分布,就是一副图片。
步骤7、根据热铸件3的两端图像信息获取热铸件3的高度信息。具体的,根据热铸件3在石棉网2上最两端占据的网格位置和石棉网2中间的遮光挡板占据的网格位置之间的总和,即能够计算出热铸件高度的大小。Step 7: Acquire height information of the
本实施例中,只采用一个光电传感器1既能够有效的测量出铸件的形态,节约了成本。In this embodiment, only one
综合上述六个实施例,本发明提供了一种基于压缩感知算法的热铸件测量方法,包括如下步骤:Combining the above six embodiments, the present invention provides a method for measuring a hot casting based on a compressive sensing algorithm, comprising the following steps:
步骤1、获取所述被测热铸件待测部分完整的光信号,并将获取光信号转换为电信号;步骤2、将电信号转换为电信号矩阵,电信号矩阵表达式为:
将上述电信号矩阵简化为方程:Y=KC;其中,Yi(i=1,…m)表示在对应网格挡板不同位置时探测器探测到的光强;kij i=1…n,j=1…n其值为1或者0,表示第i个网格挡板位置上第j个位置上,光是否可以通过,1代表通过,0代表不通过;cj表示在图像第j个位置上的光强。Simplify the above-mentioned electrical signal matrix into the equation: Y=KC; wherein, Y i (i=1,...m) represents the light intensity detected by the detector at different positions of the corresponding grid baffle; k ij i=1...n , j=1...n whose value is 1 or 0, indicating whether the light can pass at the jth position on the ith grid baffle position, 1 means passing, 0 means not passing; c j means in the image jth position light intensity at a location.
步骤3、通过压缩感知算法求解所述电信号方程,获取向量C;步骤4、将获取的向量C按照行优先的原则恢复成二维网格矩阵,获取被测热铸件3待测部分的图像信息;步骤5、根据被测热铸件3待测部分的图像信息获取所述被测热铸件3待测部分的尺寸信息。
一种基于压缩感知算法的热铸件测量装置,包括:光电处理模块、转换模块、计算模块、图像恢复模块和图像处理模块;光电处理模块用于获取被测热铸件3待测部分完整的光信号,并将获取光信号转换为电信号;转换模块用于将电信号转换为电信号矩阵,并将电信号矩阵简化为电信号方程;计算模块用于通过压缩感知算法求解所述电信号方程,获取向量C;图像恢复模块用于将获取的向量C按照行优先的原则恢复成二维网格矩阵,获取被测热铸件3待测部分的图像;图像处理模块用于根据被测热铸件3待测部分的图像信息获取被测热铸件3待测部分的尺寸信息。A thermal casting measurement device based on compressive sensing algorithm, comprising: a photoelectric processing module, a conversion module, a calculation module, an image recovery module and an image processing module; the photoelectric processing module is used to obtain the complete optical signal of the to-be-measured part of the measured
本发明提供了一种基于压缩感知算法的热铸件形态测量方法及装置,能够有效的解决热铸件由于表面温度过高而导致的测量不准确的问题,通过多次测量被遮挡耐高温石棉网2下方的热铸件,并结合压缩感知算法来获取完整的热铸件的测量信息,能够准确的获得被测热铸件的形态。The invention provides a method and device for measuring the shape of a hot casting based on a compressive sensing algorithm, which can effectively solve the problem of inaccurate measurement of the hot casting due to excessive surface temperature. The hot casting below, combined with the compressive sensing algorithm to obtain the complete measurement information of the hot casting, can accurately obtain the shape of the measured hot casting.
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。It is known from the technical common sense that the present invention can be realized by other embodiments without departing from its spirit or essential characteristics. Accordingly, the above-disclosed embodiments are, in all respects, illustrative and not exclusive. All changes within the scope of the present invention or within the scope equivalent to the present invention are encompassed by the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910349743.2A CN110095083B (en) | 2019-04-28 | 2019-04-28 | Hot casting measuring method and device based on compressed sensing algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910349743.2A CN110095083B (en) | 2019-04-28 | 2019-04-28 | Hot casting measuring method and device based on compressed sensing algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110095083A CN110095083A (en) | 2019-08-06 |
CN110095083B true CN110095083B (en) | 2020-12-25 |
Family
ID=67446098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910349743.2A Active CN110095083B (en) | 2019-04-28 | 2019-04-28 | Hot casting measuring method and device based on compressed sensing algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110095083B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110779463A (en) * | 2019-11-12 | 2020-02-11 | 南京工程学院 | A non-contact high temperature forging shape detection device and method |
CN111854623B (en) * | 2020-07-29 | 2022-02-11 | 南京工程学院 | Rapid detection method and detection system for micro deformation of object |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191912A (en) * | 1982-05-07 | 1983-11-09 | Masahisa Muroki | Electronic range finder |
CN101151506A (en) * | 2005-03-04 | 2008-03-26 | 马洛有限及两合公司 | Sensor assembly for optically detecting the edges of a product and width-measurement method |
CN103822581A (en) * | 2014-02-26 | 2014-05-28 | 陕西科技大学 | Irregular object volume measurement method based on compressed sensing |
CN103900492A (en) * | 2014-04-01 | 2014-07-02 | 四川大学 | Structured light online hot forging piece detection principle and device based on fluorescence reaction |
CN104748680A (en) * | 2015-03-19 | 2015-07-01 | 酷派软件技术(深圳)有限公司 | Size measuring method and device based on camera |
CN106441116A (en) * | 2016-12-21 | 2017-02-22 | 湖南师范大学 | Automatic measuring instrument for split performance |
CN105700135B (en) * | 2016-04-14 | 2018-03-20 | 安徽大学 | A kind of high speed large scene phase recovery data acquisition device of natural lighting |
CN109596069A (en) * | 2018-12-07 | 2019-04-09 | 哈尔滨工业大学 | Object phase restoration methods based on distortion grating and code aperture |
-
2019
- 2019-04-28 CN CN201910349743.2A patent/CN110095083B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191912A (en) * | 1982-05-07 | 1983-11-09 | Masahisa Muroki | Electronic range finder |
CN101151506A (en) * | 2005-03-04 | 2008-03-26 | 马洛有限及两合公司 | Sensor assembly for optically detecting the edges of a product and width-measurement method |
CN103822581A (en) * | 2014-02-26 | 2014-05-28 | 陕西科技大学 | Irregular object volume measurement method based on compressed sensing |
CN103900492A (en) * | 2014-04-01 | 2014-07-02 | 四川大学 | Structured light online hot forging piece detection principle and device based on fluorescence reaction |
CN104748680A (en) * | 2015-03-19 | 2015-07-01 | 酷派软件技术(深圳)有限公司 | Size measuring method and device based on camera |
CN105700135B (en) * | 2016-04-14 | 2018-03-20 | 安徽大学 | A kind of high speed large scene phase recovery data acquisition device of natural lighting |
CN106441116A (en) * | 2016-12-21 | 2017-02-22 | 湖南师范大学 | Automatic measuring instrument for split performance |
CN109596069A (en) * | 2018-12-07 | 2019-04-09 | 哈尔滨工业大学 | Object phase restoration methods based on distortion grating and code aperture |
Also Published As
Publication number | Publication date |
---|---|
CN110095083A (en) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11119016B2 (en) | Image measurement device and method for the surface deformation of specimen based on sub-pixel corner detection | |
CN110095083B (en) | Hot casting measuring method and device based on compressed sensing algorithm | |
CN110191335B (en) | Remote sensing camera imaging quality evaluation and simulation system | |
CN114323571B (en) | Multi-optical-axis consistency detection method for photoelectric aiming system | |
WO2022121562A1 (en) | Devices and methods for temperature measurment | |
CN113066132B (en) | 3D modeling calibration method based on multi-equipment acquisition | |
ES2681094B1 (en) | SYSTEM AND METHOD FOR VOLUMETRIC AND ISOTOPIC IDENTIFICATION OF DISTRIBUTIONS OF RADIOACTIVE SCENES | |
CN105960569A (en) | Methods of inspecting a 3d object using 2d image processing | |
CN107816950A (en) | Specimen surface warped digital image measuring apparatus and method based on sub-pix corner recognition | |
CN109243268A (en) | A kind of the aerospace test of visible images detector and demonstration and verification platform and method | |
KR20070101458A (en) | Radiation source 3D position detection method and apparatus using two CD cameras | |
CN112857244A (en) | Micro-electronic substrate warpage measuring method and system based on speckle structured light | |
CN112577439A (en) | Microelectronic substrate warpage measurement method and system based on infrared and optical images | |
CN105954021B (en) | The detection method of spiral bevel gear circular tooth contact in a kind of automotive rear axle differential gear | |
CN110296689B (en) | A device and method for testing the overlap ratio of swept images in an aerial imaging camera | |
CN104751464A (en) | Real sense material measurement device and method based on camera light source array modes | |
CN117152257A (en) | Method and device for multidimensional angle calculation of ground monitoring camera | |
CN108489397B (en) | Non-contact detection device and method for running state of vehicle-mounted contact network | |
Zhao et al. | Three-dimensional reconstruction and measurement of fuel assemblies for sodium-cooled fast reactor using linear structured light | |
CN109085190A (en) | A kind of X-ray three dimensional CT data scanning system and its scan method for plate object | |
CN101726316A (en) | Inner Orientation Element and Distortion Tester | |
CN109357637B (en) | Method for measuring curvature radius and thickness of plate rolling machine plate rolling based on depth camera | |
CN107063638A (en) | A kind of test device based on the high-precision microscopic system of modularity | |
JP2012007972A (en) | Vehicle dimension measuring device | |
CN109087341A (en) | A kind of fusion method of short distance EO-1 hyperion camera and distance measuring sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190806 Assignee: Nanjing Duozi Control Technology Co.,Ltd. Assignor: NANJING INSTITUTE OF TECHNOLOGY Contract record no.: X2024980001809 Denomination of invention: A measurement method and device for hot castings based on compressive sensing algorithm Granted publication date: 20201225 License type: Common License Record date: 20240202 Application publication date: 20190806 Assignee: Jiangsu Nangong Testing Co.,Ltd. Assignor: NANJING INSTITUTE OF TECHNOLOGY Contract record no.: X2024980001802 Denomination of invention: A measurement method and device for hot castings based on compressive sensing algorithm Granted publication date: 20201225 License type: Common License Record date: 20240202 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190806 Assignee: Nanjing Jinxi Yunchuang Technology Co.,Ltd. Assignor: NANJING INSTITUTE OF TECHNOLOGY Contract record no.: X2024980001815 Denomination of invention: A measurement method and device for hot castings based on compressive sensing algorithm Granted publication date: 20201225 License type: Common License Record date: 20240204 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190806 Assignee: Nanjing Institute of Engineering Technical Service Co.,Ltd. Assignor: NANJING INSTITUTE OF TECHNOLOGY Contract record no.: X2025980003047 Denomination of invention: A measurement method and device for hot castings based on compressive sensing algorithm Granted publication date: 20201225 License type: Common License Record date: 20250127 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190806 Assignee: MAANSHAN YUEMEI METAL PRODUCT TECHNOLOGY INDUSTRY CO.,LTD. Assignor: NANJING INSTITUTE OF TECHNOLOGY Contract record no.: X2025980004448 Denomination of invention: A measurement method and device for hot castings based on compressive sensing algorithm Granted publication date: 20201225 License type: Common License Record date: 20250228 |
|
EE01 | Entry into force of recordation of patent licensing contract |