CN110095022A - A kind of economic benefits and social benefits answer infrared stealth structure - Google Patents
A kind of economic benefits and social benefits answer infrared stealth structure Download PDFInfo
- Publication number
- CN110095022A CN110095022A CN201910415174.7A CN201910415174A CN110095022A CN 110095022 A CN110095022 A CN 110095022A CN 201910415174 A CN201910415174 A CN 201910415174A CN 110095022 A CN110095022 A CN 110095022A
- Authority
- CN
- China
- Prior art keywords
- layer
- infrared stealth
- metal layer
- double
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H3/00—Camouflage, i.e. means or methods for concealment or disguise
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
本发明涉及一种双效应红外隐身结构,包括基底层,所述基底层内设置有共振腔,所述共振腔的上方设置有真空腔层,所述真空腔层的上方设置有外保护层;该双效应红外隐身结构通过设置。真空腔可以阻止热量的扩散传播,通过设置共振共振腔可以防止热辐射传播,这样从两个方面对设备进行红外隔绝,从而使得设备能够实现红外隐身功能。
The invention relates to a double-effect infrared stealth structure, comprising a base layer, a resonant cavity is arranged in the base layer, a vacuum cavity layer is set above the resonant cavity, and an outer protective layer is set above the vacuum cavity layer; The double-effect infrared stealth structure is set. The vacuum cavity can prevent the diffusion of heat, and the heat radiation can be prevented by setting the resonant cavity, so that the equipment can be isolated from infrared in two aspects, so that the equipment can realize the infrared stealth function.
Description
技术领域technical field
本发明属于红外探测技术领域,具体涉及一种双效应红外隐身结构。The invention belongs to the technical field of infrared detection, and in particular relates to a double-effect infrared stealth structure.
背景技术Background technique
随着电子信息技术高速发展及其在军事领域中的广泛应用,军事侦察手段已经实现了高技术化。在战场目标“发现即可命中”的形势下,红外成像仪的面世,使得曾经有效的可见光和雷达隐身技术面临被破解的威胁。大气条件良好时,机载红外搜索和跟踪系统对目标的探测距离可超过80km。因此,在可见光和雷达波段隐身的基础上,兼顾红外是未来全波段隐身技术发展的必然趋势。With the rapid development of electronic information technology and its wide application in the military field, the means of military reconnaissance have achieved high-tech. In the situation where battlefield targets are "hit when found", the advent of infrared imagers has made the once effective visible light and radar stealth technologies face the threat of being cracked. When the atmospheric conditions are good, the airborne infrared search and track system can detect the target at a distance of more than 80km. Therefore, on the basis of visible light and radar band stealth, taking into account infrared is an inevitable trend in the development of full-band stealth technology in the future.
近年来,红外探测手段的高精度、智能化和多样化发展对红外隐身技术提出了更高挑战。红外隐身技术作为一种军用反侦察技术,主要通过抑制目标在红外大气窗口波段(3-5μm 和8-14μm)的热辐射实现目标的低可探测性。目前,主要通过冷却、屏蔽、遮挡和隐身涂料等手段降低或改变目标的红外辐射特征来实现对红外探测的隐身,其中,在目标表面涂覆低发射率材料应用最为广泛。但低发射率红外隐身涂料存在热量积累、频带范围有限、使用寿命短等一系列问题,因此,探索和发展高性能红外隐身材料和技术迫在眉睫。In recent years, the high-precision, intelligent and diversified development of infrared detection methods has posed higher challenges to infrared stealth technology. As a military anti-reconnaissance technology, infrared stealth technology mainly achieves low detectability of targets by suppressing the thermal radiation of targets in the infrared atmospheric window band (3-5μm and 8-14μm). At present, the stealth of infrared detection is mainly achieved by reducing or changing the infrared radiation characteristics of the target by means of cooling, shielding, occlusion, and stealth coatings. Among them, coating low-emissivity materials on the target surface is the most widely used. However, low-emissivity infrared stealth coatings have a series of problems such as heat accumulation, limited frequency range, and short service life. Therefore, it is urgent to explore and develop high-performance infrared stealth materials and technologies.
发明内容Contents of the invention
本发明的目的是提供一种双效应红外隐身结构,包括基底层,所述基底层内设置有共振腔,所述共振腔的上方设置有真空腔层,所述真空腔层的上方设置有外保护层。The object of the present invention is to provide a double-effect infrared stealth structure, including a base layer, a resonant cavity is arranged inside the base layer, a vacuum cavity layer is set above the resonant cavity, and an outer cavity layer is set above the vacuum cavity layer. The protective layer.
所述共振腔包括第一金属层、填充层、第二金属层,所述第二金属层设置于基底层的上方,第一金属层设置于真空腔层的下方,第一金属层与第二金属层之间空隙填充有填充层。The resonant cavity includes a first metal layer, a filling layer, and a second metal layer, the second metal layer is disposed above the base layer, the first metal layer is disposed below the vacuum chamber layer, and the first metal layer and the second The gaps between the metal layers are filled with filling layers.
所述第二金属层包括多个周期排列的金属条。The second metal layer includes a plurality of metal strips arranged periodically.
所述金属条的间距为50~60nm。The distance between the metal strips is 50-60nm.
所述金属条的间距为60nm。The pitch of the metal strips is 60nm.
所述真空腔层设置有多层真空腔。The vacuum chamber layer is provided with multi-layer vacuum chambers.
所述基底层为聚甲基丙烯酸甲酯制成。The base layer is made of polymethyl methacrylate.
所述第一金属层与第二金属层的间距为80nm。The distance between the first metal layer and the second metal layer is 80nm.
所述外保护层为由金属制成。The outer protective layer is made of metal.
本发明的有益效果:本发明提供的这种双效应红外隐身结构通过设置。真空腔层可以阻止热量的扩散传播,通过设置共振共振腔可以防止热辐射传播,能够使得入射的红外光在共振腔内形成共振,增强光的吸收,所吸收的光能够更快更多的转化为热能;这样从两个方面对设备进行红外隔绝,从而使得设备能够实现红外隐身功能。Beneficial effects of the present invention: the double-effect infrared stealth structure provided by the present invention is provided through setting. The vacuum cavity layer can prevent the diffusion of heat, and the heat radiation can be prevented by setting the resonant cavity, which can make the incident infrared light resonate in the cavity, enhance the absorption of light, and the absorbed light can be converted faster and more In this way, the device is isolated from infrared from two aspects, so that the device can realize the infrared stealth function.
以下将结合附图对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是双效应红外隐身结构示意图一。Figure 1 is a schematic diagram of a dual-effect infrared stealth structure.
图2是双效应红外隐身结构示意图二。Fig. 2 is the second schematic diagram of the double-effect infrared stealth structure.
图中:1、基底层;2、共振腔;3、真空腔层;4、外保护层;5、第一金属层;6、第二金属层;7、填充层。In the figure: 1. Base layer; 2. Resonant cavity; 3. Vacuum cavity layer; 4. Outer protective layer; 5. First metal layer; 6. Second metal layer; 7. Filling layer.
具体实施方式Detailed ways
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明如下。In order to further illustrate the technical means and effects adopted by the present invention to achieve the intended purpose, the specific implementation, structural features and effects of the present invention will be described in detail below in conjunction with the accompanying drawings and examples.
实施例1Example 1
本实施例提供了一种如图1所示的双效应红外隐身结构,包括基底层1,所述基底层1内设置有共振腔2,通过该共振腔2可以隔绝热辐射效应,使得热辐射不能够被传播;所述共振腔2的上方设置有真空腔层3,通过真空腔层3从而可以隔绝热传播效应,所述真空腔层3的上方设置有外保护层4,外保护层主要是用来保护该隐身结构,可以由金属制成,也可以由其他材料制成,可以根据该红外隐身结构实际工作的环境进行选择,例如在水下工作可以选择防水材料制成,在高温环境工作可以选择耐高温材料制成。This embodiment provides a double-effect infrared stealth structure as shown in Figure 1, including a base layer 1, a resonant cavity 2 is arranged in the base layer 1, and the thermal radiation effect can be isolated through the resonant cavity 2, so that the thermal radiation Can not be propagated; the top of the resonant cavity 2 is provided with a vacuum cavity layer 3, through which the heat transmission effect can be isolated, and the top of the vacuum cavity layer 3 is provided with an outer protective layer 4, the outer protective layer mainly It is used to protect the stealth structure. It can be made of metal or other materials. It can be selected according to the actual working environment of the infrared stealth structure. For example, it can be made of waterproof materials when working underwater. The work can be made of high temperature resistant materials.
进一步的,所述共振腔2包括第一金属层5、填充层7、第二金属层6,所述第二金属层6设置于基底层1的上方,第一金属层5设置于真空腔层3的下方,第一金属层5与第二金属层6间隔,并且第一金属层5与第二金属层6之间空隙填充有填充层7,这样就可以形成一个法布里-珀罗腔,当红外光从下网上入射的时候,能够在法布里-珀罗腔形成共振,从而产生更多的热量,。Further, the resonant cavity 2 includes a first metal layer 5, a filling layer 7, and a second metal layer 6, the second metal layer 6 is arranged above the base layer 1, and the first metal layer 5 is arranged on the vacuum cavity layer 3, the first metal layer 5 is spaced from the second metal layer 6, and the gap between the first metal layer 5 and the second metal layer 6 is filled with a filling layer 7, so that a Fabry-Perot cavity can be formed , when the infrared light is incident from the lower net, it can form a resonance in the Fabry-Perot cavity, thereby generating more heat.
进一步的,第一金属层5、第二金属层6是由金、银、铜等制成。Further, the first metal layer 5 and the second metal layer 6 are made of gold, silver, copper and the like.
进一步的,所述第二金属层6包括多个周期排列的金属条,并且所述金属条的间距为50~60nm,优先的,可以选择50nm、55nm、60nm等。Further, the second metal layer 6 includes a plurality of metal strips arranged periodically, and the distance between the metal strips is 50-60 nm, preferably, 50 nm, 55 nm, 60 nm, etc. can be selected.
进一步的,所述第一金属层5与第二金属层6的间距为80nm,这样可以提高红外光共振的效率。Further, the distance between the first metal layer 5 and the second metal layer 6 is 80 nm, which can improve the efficiency of infrared light resonance.
进一步的,所述基底层1为聚甲基丙烯酸甲酯制成(PMMA),PMMA的机械强度较高,因此能够很好的起到支撑作用,而且PMMA透光率较高,可以达到92%以上,这样,这样使得更多的红外光进入共振腔,以便发生工作,避免红外光外泄,从而形成更好的红外隐身效果。Further, the base layer 1 is made of polymethyl methacrylate (PMMA), PMMA has high mechanical strength, so it can play a good supporting role, and the light transmittance of PMMA is high, which can reach 92%. Above, in this way, more infrared light enters the resonant cavity so as to work and avoid leakage of infrared light, thereby forming a better infrared stealth effect.
进一步的,所述真空腔层3可以由氧化铝在真空环境下制成。也可以由多孔材料,在真空环境下封堵孔洞,形成真空腔制成。Further, the vacuum cavity layer 3 can be made of aluminum oxide in a vacuum environment. It can also be made of porous materials to seal holes in a vacuum environment to form a vacuum chamber.
实施例2Example 2
本实施例提供了一种如图2所示的双效应红外隐身结构,包括基底层1,所述基底层1内设置有共振腔2,通过该共振腔2可以隔绝热辐射效应,使得热辐射不能够被传播;所述共振腔2的上方设置有真空腔层3,所述真空腔层3设置有多层真空腔。图2所示的真空腔设置有3层;通过真空腔层3从而可以更好的隔绝热传播效应,所述真空腔层3的上方设置有外保护层4,外保护层主要是用来保护该隐身结构,可以由金属制成,也可以由其他材料制成,可以根据该红外隐身结构实际工作的环境进行选择,例如在水下工作可以选择防水材料制成,在高温环境工作可以选择耐高温材料制成。This embodiment provides a double-effect infrared stealth structure as shown in Figure 2, including a base layer 1, a resonant cavity 2 is arranged in the base layer 1, and the thermal radiation effect can be isolated through the resonant cavity 2, so that thermal radiation cannot be propagated; a vacuum cavity layer 3 is provided above the resonant cavity 2, and the vacuum cavity layer 3 is provided with a multi-layer vacuum cavity. The vacuum chamber shown in Figure 2 is provided with 3 layers; the heat transmission effect can be better insulated through the vacuum chamber layer 3, and an outer protective layer 4 is arranged above the vacuum chamber layer 3, and the outer protective layer is mainly used to protect The stealth structure can be made of metal or other materials. It can be selected according to the actual working environment of the infrared stealth structure. Made of high temperature material.
进一步的,所述共振腔2包括第一金属层5、填充层7、第二金属层6,所述第二金属层6设置于基底层1的上方,第一金属层5设置于真空腔层3的下方,第一金属层5与第二金属层6间隔,并且第一金属层5与第二金属层6之间空隙填充有填充层7,这样就可以形成一个法布里-珀罗腔,当红外光从下网上入射的时候,能够在法布里-珀罗腔形成共振,从而产生更多的热量,。Further, the resonant cavity 2 includes a first metal layer 5, a filling layer 7, and a second metal layer 6, the second metal layer 6 is arranged above the base layer 1, and the first metal layer 5 is arranged on the vacuum cavity layer 3, the first metal layer 5 is spaced from the second metal layer 6, and the gap between the first metal layer 5 and the second metal layer 6 is filled with a filling layer 7, so that a Fabry-Perot cavity can be formed , when the infrared light is incident from the lower net, it can form a resonance in the Fabry-Perot cavity, thereby generating more heat.
进一步的,所述第二金属层6包括多个周期排列的金属条,并且所述金属条的间距为50~60nm,优先的,可以选择50nm、55nm、60nm等。Further, the second metal layer 6 includes a plurality of metal strips arranged periodically, and the distance between the metal strips is 50-60 nm, preferably, 50 nm, 55 nm, 60 nm, etc. can be selected.
进一步的,所述第一金属层5与第二金属层6的间距为80nm,这样可以提高红外光共振的效率。Further, the distance between the first metal layer 5 and the second metal layer 6 is 80 nm, which can improve the efficiency of infrared light resonance.
进一步的,所述基底层1为聚甲基丙烯酸甲酯制成(PMMA),PMMA的机械强度较高,因此能够很好的起到支撑作用,而且PMMA透光率较高,可以达到92%以上,这样,这样使得更多的红外光进入共振腔,以便发生工作,避免红外光外泄,从而形成更好的红外隐身效果。Further, the base layer 1 is made of polymethyl methacrylate (PMMA), PMMA has high mechanical strength, so it can play a good supporting role, and the light transmittance of PMMA is high, which can reach 92%. Above, in this way, more infrared light enters the resonant cavity so as to work and avoid leakage of infrared light, thereby forming a better infrared stealth effect.
综上所述,该双效应红外隐身结构通过设置。真空腔层3可以阻止热量的扩散传播,通过设置共振共振腔2可以防止热辐射传播,能够使得入射的红外光在共振腔2内形成共振,增强光的吸收,所吸收的光能够更快更多的转化为热能;这样从两个方面对设备进行红外隔绝,从而使得设备能够实现红外隐身功能。In summary, the double-effect infrared stealth structure is set. The vacuum cavity layer 3 can prevent the diffusion of heat, and the heat radiation can be prevented by setting the resonant resonator 2, which can make the incident infrared light form a resonance in the resonant cavity 2, enhance the absorption of light, and the absorbed light can be faster and more efficient. Much of it is converted into heat energy; in this way, the infrared isolation of the device is carried out from two aspects, so that the device can realize the infrared stealth function.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deduction or replacement can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910415174.7A CN110095022B (en) | 2019-05-17 | 2019-05-17 | A dual-effect infrared stealth structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910415174.7A CN110095022B (en) | 2019-05-17 | 2019-05-17 | A dual-effect infrared stealth structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110095022A true CN110095022A (en) | 2019-08-06 |
CN110095022B CN110095022B (en) | 2021-06-25 |
Family
ID=67448520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910415174.7A Expired - Fee Related CN110095022B (en) | 2019-05-17 | 2019-05-17 | A dual-effect infrared stealth structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110095022B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103643A (en) * | 2019-12-26 | 2020-05-05 | 中国人民解放军国防科技大学 | A kind of selective emission infrared stealth material and preparation method thereof |
CN111457236A (en) * | 2020-03-21 | 2020-07-28 | 复旦大学 | An all-thermal metasurface that exhibits infrared thermal phantoms and is invisible in visible light |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2685583Y (en) * | 2004-02-11 | 2005-03-16 | 赵啸宇 | Infrared hidden engine exhaust pipe |
CN103293581A (en) * | 2013-06-28 | 2013-09-11 | 南京理工大学 | Laser and intermediate and far infrared compatible invisible membrane structure |
CN103513316A (en) * | 2013-09-29 | 2014-01-15 | 苏州大学 | Selective absorption filtering structure |
CN102856663B (en) * | 2012-08-24 | 2014-07-23 | 电子科技大学 | Metamaterial, broadband and infrared wave-absorbing structural material |
CN105137518A (en) * | 2015-08-25 | 2015-12-09 | 浙江大学 | Color optical filter insensitive to incident angle and preparation method for the same |
CN106767168A (en) * | 2017-01-11 | 2017-05-31 | 中国人民解放军空军工程大学 | A kind of selective radiation infrared stealth structure |
CN107436192A (en) * | 2017-07-12 | 2017-12-05 | 电子科技大学 | A kind of near infrared absorption body based on graphene/metal nano band structure |
CN107804041A (en) * | 2017-09-27 | 2018-03-16 | 北京机电工程研究所 | A kind of heat-insulated stealthy high temperature resistant air intake duct and preparation method thereof |
CN108957604A (en) * | 2018-09-27 | 2018-12-07 | 中国计量大学 | A kind of multilayered structure absorbed with selection |
-
2019
- 2019-05-17 CN CN201910415174.7A patent/CN110095022B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2685583Y (en) * | 2004-02-11 | 2005-03-16 | 赵啸宇 | Infrared hidden engine exhaust pipe |
CN102856663B (en) * | 2012-08-24 | 2014-07-23 | 电子科技大学 | Metamaterial, broadband and infrared wave-absorbing structural material |
CN103293581A (en) * | 2013-06-28 | 2013-09-11 | 南京理工大学 | Laser and intermediate and far infrared compatible invisible membrane structure |
CN103513316A (en) * | 2013-09-29 | 2014-01-15 | 苏州大学 | Selective absorption filtering structure |
CN105137518A (en) * | 2015-08-25 | 2015-12-09 | 浙江大学 | Color optical filter insensitive to incident angle and preparation method for the same |
CN106767168A (en) * | 2017-01-11 | 2017-05-31 | 中国人民解放军空军工程大学 | A kind of selective radiation infrared stealth structure |
CN107436192A (en) * | 2017-07-12 | 2017-12-05 | 电子科技大学 | A kind of near infrared absorption body based on graphene/metal nano band structure |
CN107804041A (en) * | 2017-09-27 | 2018-03-16 | 北京机电工程研究所 | A kind of heat-insulated stealthy high temperature resistant air intake duct and preparation method thereof |
CN108957604A (en) * | 2018-09-27 | 2018-12-07 | 中国计量大学 | A kind of multilayered structure absorbed with selection |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111103643A (en) * | 2019-12-26 | 2020-05-05 | 中国人民解放军国防科技大学 | A kind of selective emission infrared stealth material and preparation method thereof |
CN111457236A (en) * | 2020-03-21 | 2020-07-28 | 复旦大学 | An all-thermal metasurface that exhibits infrared thermal phantoms and is invisible in visible light |
CN111457236B (en) * | 2020-03-21 | 2022-05-20 | 复旦大学 | Full-thermal super surface presenting infrared thermal illusion and being invisible under visible light |
Also Published As
Publication number | Publication date |
---|---|
CN110095022B (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110703370B (en) | A multi-band compatible heat dissipation functional infrared stealth material | |
CN200986957Y (en) | Dual-bandpass frequency selecting surface film | |
CN102856663B (en) | Metamaterial, broadband and infrared wave-absorbing structural material | |
CN102868021B (en) | A kind of High-performance frequency selection radar cover | |
CN103715513B (en) | Broadband wave-absorbing material based on sub-wavelength metal structure | |
CN107257035B (en) | Six-frequency-band metamaterial wave absorber insensitive to microwave band polarization | |
KR102122090B1 (en) | The infrared ray stealth device using the dual band total absorption meta material | |
CN103094709B (en) | Absorbing meta-material | |
EP4376102A3 (en) | Fabrication methods, structures, and uses for passive radiative cooling | |
DE60228267D1 (en) | INTERFACE FOR COMPOSITE GLASS AND COMPOSITE GLASS | |
CN112273747B (en) | Multiband stealth garment based on photonic crystal film material | |
CN110112282B (en) | A multilayer stealth nanostructure with a graphene thermally conductive layer | |
CN110095022A (en) | A kind of economic benefits and social benefits answer infrared stealth structure | |
CN114185117B (en) | A multi-band compatible stealth film structure and its preparation method | |
CN104198051A (en) | Multiband infrared metamaterial wave absorber | |
CN114865327B (en) | Attenuator formed by resonant ring array | |
CN104021817A (en) | Dynamic tunable absorber based on coherent control | |
CN108346860B (en) | A kind of light-transmitting structural broadband absorbing material with water as loss medium | |
CN108287377A (en) | A kind of photonic crystal laminated film of infrared protection and preventing laser detection compatibility | |
CN111690382B (en) | Transmission type radiation refrigeration inorganic material | |
CN103013440B (en) | High dielectric ceramic particle and metal sheet composite wave-absorbing material and preparation method thereof | |
CN101752026B (en) | A kind of infrared transparent conductive film and preparation method thereof | |
CN107221752A (en) | A kind of insensitive Meta Materials wave absorbing device of wide bandwidth angle polarization | |
EP3628484B1 (en) | Multilayer radiation cooling film transparent to visible light | |
CN110366361A (en) | A kind of wave absorbing device based on super surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210625 |
|
CF01 | Termination of patent right due to non-payment of annual fee |