[go: up one dir, main page]

CN110093486A - 一种耐消除应力退火的低铁损取向硅钢的制造方法 - Google Patents

一种耐消除应力退火的低铁损取向硅钢的制造方法 Download PDF

Info

Publication number
CN110093486A
CN110093486A CN201810095479.XA CN201810095479A CN110093486A CN 110093486 A CN110093486 A CN 110093486A CN 201810095479 A CN201810095479 A CN 201810095479A CN 110093486 A CN110093486 A CN 110093486A
Authority
CN
China
Prior art keywords
silicon steel
beam spot
steel sheet
laser
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810095479.XA
Other languages
English (en)
Other versions
CN110093486B (zh
Inventor
储双杰
李国保
杨勇杰
赵自鹏
马长松
沈侃毅
吴美洪
吉亚明
章华兵
胡卓超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201810095479.XA priority Critical patent/CN110093486B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to EP18904474.6A priority patent/EP3748019B1/en
Priority to US16/963,334 priority patent/US11459634B2/en
Priority to CA3088327A priority patent/CA3088327C/en
Priority to MX2020007830A priority patent/MX2020007830A/es
Priority to BR112020015012-6A priority patent/BR112020015012B1/pt
Priority to PCT/CN2018/092077 priority patent/WO2019148742A1/zh
Priority to KR1020207020333A priority patent/KR102507090B1/ko
Priority to JP2020540629A priority patent/JP7210598B2/ja
Priority to RU2020125368A priority patent/RU2746618C1/ru
Publication of CN110093486A publication Critical patent/CN110093486A/zh
Application granted granted Critical
Publication of CN110093486B publication Critical patent/CN110093486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种耐消除应力退火的低铁损取向硅钢的制造方法,采用脉冲激光在冷轧后、脱碳退火后、在高温退火后或在热拉伸平整退火后的硅钢片单面或双面进行扫描刻槽,在硅钢片轧制方向上形成若干相互平行的沟槽;其中,所述脉冲激光的单个激光脉冲时间宽度≤100ns,单个脉冲峰值能量密度≥0.05J/cm2;单束激光单次扫描的能量密度为1~100J/cm2;所述脉冲激光的束斑为单束斑或多束斑组合,束斑形状为圆形或椭圆形,束斑在扫描方向的直径为5μm~1mm,在垂直于扫描方向上的直径为5~300μm;在硅钢片同一位置扫描刻槽时,脉冲激光的束斑数量与扫描次数乘积≥5。本发明制造的取向硅钢的铁损得到明显改善,且经过消除应力退火,性能不发生劣化。

Description

一种耐消除应力退火的低铁损取向硅钢的制造方法
技术领域
本发明涉及一种耐消除应力退火的低铁损取向硅钢的制造方法,特别 涉及一种耐消除应力退火的激光刻痕取向硅钢的制造方法。
背景技术
近年来,全球能源环境问题日益突出,节能降耗的需求不断增加。2011 年,我国输配电总损耗约2874亿kWh,其中取向硅钢变压器铁芯损耗约 占总量的20%。可见,降低取向硅钢的铁损具有巨大的经济及社会效益。 此外,由于取向硅钢磁致伸缩、磁力线畸变等因素造成的变压器噪音也备 受关注,降低变压器噪音水平也是取向硅钢性能改善的重要方向。
目前,改善取向硅钢铁损和噪音水平的主要方法如下:
第一、冶金学方法:通过成分体系及工艺参数的优化,获得完善的二 次再结晶组织,并提高取向度。
第二、张力控制:改善基板表面涂层的张力,细化磁畴,降低铁损。
第三、刻痕:通过激光、机械、电子束、等离子、化学侵蚀等手段在 硅钢表面刻痕,施加应力以细化磁畴,从而降低铁损。
目前利用冶金学方法已将取向硅钢晶粒的取向度提高到相当高的水 平,Hi-B钢中晶粒的取向平均偏离角低于5°。因此,提升取向硅钢性能 的技术主要集中在涂层张力和刻痕工艺的改进上。
在取向硅钢表面刻痕可以细化磁畴,从而降低铁损。通常刻痕技术可 分为两类:一类是不耐消除应力退火的刻痕技术,也被称为非耐热刻痕技 术,通过激光、等离子束、电子束等方式在硅钢片表面以一定间距形成线 状热应力区,使该区域周围出现亚磁畴,从而减小主磁畴宽度,达到降低 铁损的目的,但其细化磁畴效果经过消除应力退火后消失,产品通常用于 制造不需要退火的叠片铁芯变压器。另一类是耐消除应力退火的刻痕技 术,也被称为耐热刻痕技术,现有的产业化技术主要通过机械或电化学侵 蚀等手段在取向硅钢基板表面形成线状应变区,即线状沟槽,使应变区周 围系统静磁能重新分配,减小主磁畴宽度,从而实现降低铁损的效果,其 细化磁畴效果经过消除应力退火后不发生劣化,产品可用于制造需消除应 力退火的卷绕铁芯变压器。
早期耐热刻痕取向硅钢产品的生产常采用机械的方法。如美国专利 US4770720A,采用齿轮辊等机械刻痕的方式在取向硅钢表面刻出线状沟 槽,从而实现耐热刻痕,但含Si约3%的取向硅钢基材和表面的硅酸镁层 具有极高的硬度,齿轮辊易磨损,导致整卷铁损不均匀,生产成本极高, 不利于批量生产。
采用电化学、电子束及离子束腐蚀的生产耐热刻痕产品的方法也较早 报道。美国专利US7063780利用电解腐蚀的方法形成耐热刻痕取向硅钢, 首先通过激光等方法对带底层的取向硅钢片进行线状加工,使该区域裸露 出金属基体后再在电解液中浸泡,使硅钢片和电极形成电极对,通过交替 控制电极电位正负的变化来电解腐蚀基板,使该区域形成线状沟槽。美国 专利US5013374采用激光、电子束和电化学腐蚀等方法形成沟槽后,利用 电泳或喷雾等方式在沟槽内填入与硅钢片基体热膨胀系数不同的金属如 Al等,之后在650℃环境下固化烧结,利用填充物与基体热膨胀系数的不 同在该线状区域内形成应力,P17/50可降低8~12%。但上述两种方法的工 序及工艺控制极其复杂,制造成本高,处理速度有限。
美国专利US5146063利用电子束将硅钢表面涂层压入金属基体,形成 线状应变从而达到细化磁畴的目的,但该方法会在硅钢片的另一面形成微 凸起,降低硅钢片的叠片系数,且易导致钢板绝缘性能下降。
近年来,采用激光的方法生产耐热刻痕型取向硅钢产品技术已成为研 发的热点。美国专利US7045025利用激光束在热拉伸平整退火前或后的硅 钢基板表面进行线状局部加热,形成重熔区,将涂层物质和部分金属基体 熔化再冷却固化形成熔融区,通过控制重熔区的宽度和深度来控制成品的 磁性能,使硅钢片铁损降低。中国专利CN102834529采用连续式激光器 刻槽,通过对扫描速度和功率的控制,减少热熔融突起和熔融凝固层,提 升取向硅钢的使用性能。
但上述激光耐热刻痕的方法均采用传统连续式或脉冲激光器,由于钢 铁熔点高且导热速度快,采用以往激光实现耐热刻痕的方式均不同程度的 存在熔融物堆积,甚至可能出现钢板热变形,激光能量利用效率极低;刻 痕质量难以控制,从而导致产品磁性能不稳定,改善效果受到极大制约。
目前报道的激光耐热型磁畴细化技术均采用脉冲激光光源或连续式 激光光源,其原理是利用高能束激光将钢板加热至熔融温度以上,基板金 属发生熔融并形成细小的融化金属液滴飞散,或基板金属被直接加热至汽 化,从而在硅钢片表面形成沟槽。实际加工过程中,由于钢铁熔融温度高, 热传导速度快,因此当激光作用能量达到钢铁熔化至形成沟槽时,大部分 激光能量通过基板金属热传导而损失,在基板上形成很大的热扩散区和热 应力区,不仅易导致钢板发生热变形翘曲,还可能导致磁性能劣化。同时, 飞溅的金属液滴及残余熔渣极易堆积在沟槽两侧,使得沟槽不平整,槽型 控制稳定性差,导致磁性能不稳定;堆积熔渣使边部凸起严重,不仅导致 硅钢片的叠片系数显著下降,而且会对硅钢片耐蚀性和绝缘性能产生不良 影响。
发明内容
本发明的目的在于提供一种耐消除应力退火的低铁损取向硅钢的制 造方法,克服现有激光耐热刻痕工艺的不足,在激光刻痕加工过程中大幅 减少热影响、熔化物突起和热影响区,无板形劣化,制造的取向硅钢片的 磁畴细化效果显著,铁损低且叠片系数不发生降低。
为达到上述目的,本发明的技术方案是:
一种耐消除应力退火的低铁损取向硅钢的制造方法,该制造方法包 括:硅钢经炼铁、炼钢、连铸、热轧、一次或两次冷轧,再经过脱碳退火、 表面涂布MgO类隔离剂、高温退火,最后经过表面涂布绝缘层并进行热 拉伸平整退火得到成品,其特征在于,采用脉冲激光在冷轧后、脱碳退火 后、在高温退火后或在热拉伸平整退火后的硅钢片单面或双面进行扫描刻 槽,在硅钢片轧制方向上形成若干相互平行的沟槽;
其中,所述脉冲激光的单个激光脉冲时间宽度≤100ns,单个脉冲峰值 能量密度≥0.05J/cm2;单束激光单次扫描的能量密度Es为1~100J/cm2
所述脉冲激光的束斑为单束斑或多束斑组合,所述多束斑组合由多个 束斑沿扫描方向线性排列而成,束斑数量为2~300个;单束斑或多束斑组 合中束斑形状为圆形或椭圆形,束斑在扫描方向的直径a为5μm~1mm, 在垂直于扫描方向上的直径b为5~300μm;所述多束斑组合内的束斑在扫 描方向的间隙平均值dm介于c/5至5c之间,其中c为束斑在扫描方向上 的平均直径;在硅钢片同一位置扫描刻槽时,脉冲激光的束斑数量与扫描 次数乘积≥5。
进一步,本发明在热拉伸平整退火后在硅钢片单面或双面进行扫描刻 槽加工,经刻槽加工后,在硅钢片单面或双面进行二次绝缘涂层涂覆及烧 结。
再,本发明在硅钢片表面形成的沟槽深度为5~35μm,宽度为 8~310μm,沟槽两侧因激光加工形成的堆积物高度≤2.5μm,沟槽与硅钢片 横向的夹角≤45°。
本发明中,在取向硅钢片单面刻槽时,相邻沟槽在硅钢片轧制方向的 间距为1~10mm;在取向硅钢片双面刻槽时,相邻沟槽在硅钢片轧制方向 的间距为2~20mm。
优选的,激光光波波长为0.3~3μm。
以下对本发明所述方案进行详细说明。
常规取向硅钢经过炼铁、炼钢、连铸、热轧、一次或两次冷轧,轧制 至最终厚度,之后经过脱碳退火、表面涂布MgO类隔离剂、高温退火形 成完整二次再结晶和硅酸镁底层,最后经过表面涂布绝缘层并进行热拉伸 平整退火形成成品,再分包出厂。本发明适用于常规取向硅钢的制造,利 用瞬时高能量脉冲激光在硅钢片表面扫描形成沟槽,刻槽加工可以在脱碳 退火前或后、或热拉伸平整退火前或后实施。在热拉伸平整退火后实施刻 痕加工的取向硅钢板或带材,经刻槽加工后,可进行或不进行二次绝缘涂 层涂覆及烧结。
本发明通过研究发现,采用时间宽度较小的脉冲激光,可提高瞬时能 量,从而可以有效控制热熔融及扩散导致钢板变形的现象,且脉冲时间宽 度的缩短可以显著降低材料热效应,减少热熔融及金属飞溅。本发明中, 当单个激光脉冲时间宽度≤100ns,激光内的瞬时脉冲能量大幅提高,可使 加工沟槽深度在5~35μm的范围内,两侧堆积物高度≤2.5μm,能够获得磁 性能优良、叠片系数好的取向硅钢产品。
本发明对使用的脉冲激光的光波波长不限,但光波波长优选范围为 0.3~3μm,在该优选范围内,取向硅钢材料激光吸收系数更高,从而可以 获得更好的加工效率。
本发明采用的脉冲激光的单个脉冲峰值能量密度≥0.05J/cm2,这是因 为,当脉冲激光的单个脉冲峰值能量密度<0.05J/cm2时,激光能量过低, 在取向硅钢表面上加工刻槽效率极低,甚至无法形成沟槽,无应用价值。
本发明加工用激光束斑可为单束斑或多束斑组合,如图1所示,单束 斑或多束斑组合中束斑形状为圆形或椭圆形,圆形束斑直径a及椭圆形束 斑在激光扫描方向直径a在5μm~1mm范围内,椭圆形束斑在垂直于激光 扫描方向直径b在5μm~300μm范围内;多束斑组合由多个束斑沿扫描方 向线性排列而成,束斑数量在2~300个,在钢板表面形成的束斑组合内束 斑沿扫描方向的间隙平均值dm介于c/5至5c之间,c为束斑在扫描方向上 的平均直径,间隙限定在此范围内,使得激光束间隙形成冷却时间,防止 出现温度过高而使表面材料发生熔融物堆积的现象。本发明在获得具有降 低铁损效果的沟槽尺寸情况下,所述单束斑或多束斑组合模式可以减少激 光扫描次数,提高激光扫描效率。
本发明研究发现,为了防止沟槽两侧形成熔融物堆积,需要适当降低 单束斑的能量密度,并通过多次扫描的方式来达到目标沟槽深度。本发明 通过实验确定了激光束斑数量与扫描次数即在钢片同一位置扫描刻槽时, 激光束斑数量与扫描次数乘积≥5,达到了控制熔融物堆积和降低铁损双重 目的。当该乘积小于5时,可以通过提高激光能量达到降低铁损目的,但 热熔融现象严重,熔融物堆积在沟槽两侧,大幅降低硅钢片的叠片系数;若通过降低能量的方式控制热熔融,则无法达到目标沟槽深度,不能达到 显著细化磁畴、降低硅钢片铁损的目的。
对于瞬时高能量脉冲激光源,单束激光单次扫描能流密度Es由下式导 出:
其中,EP为单个脉冲峰值能量密度,单位为J/cm2,表达式为:
fr为激光脉冲重复频率,单位Hz;P为激光输出功率,单位W;S 为激光束斑面积,单位cm2
Vc为激光束扫描速度,其方向大致与钢板横向平行,单位cm/s;
a为束斑在扫描方向上的直径,单位cm。
本发明所述单束激光单次扫描的能流密度Es的范围为1~100J/cm2,当 能流密度Es超出该范围,激光烧蚀形成沟槽时会在形成严重的热沉积现 象,沟槽边部熔融物堆积,降低取向硅钢片的叠片系数。
本发明利用瞬时高能量脉冲激光在硅钢片单面或双面进行线状微加 工形成沟槽,沟槽深度为5~30μm,宽度为8~310μm:当沟槽深度小于5μm 或沟槽宽度低于8μm时,刻痕细化磁畴效果不明显,铁损下降效果有限; 沟槽深度超过30μm或宽度超过310μm时,沟槽处漏磁较多,磁感下降, 且通常需要多次扫描才能形成目标沟槽尺寸,激光刻痕效率较低。
本发明中,当取向硅钢片单面刻槽时,相邻沟槽沿轧制方向的间距为 1~10mm;取向硅钢片双面刻槽时,相邻沟槽沿沿轧制方向的间距为 2~20mm。激光刻痕在取向硅钢片的单面实施时,相邻沟槽沿轧向间距小 于1mm时,较多的刻痕线显著降低取向硅钢片的磁感;相邻沟槽沿轧向 间距超过10mm时,刻痕线形成的细化磁畴效果有限,铁损降低效果不明 显。对于在取向硅钢片的双面实施时,当相邻沟槽沿轧向间距小于2mm、 超过20mm时同样会出现上述问题。
本发明的有益效果:
本发明使用瞬时高能量脉冲激光源进行非热熔性加工形成沟槽,获得 低铁损的耐热刻痕取向硅钢,并且刻槽加工过程中大幅减少了热影响、熔 化物突起和热影响区,其刻痕沟槽边缘平整,凸起或堆积物高度小,且板 型良好,制造的取向硅钢片的磁畴细化效果显著,铁损低且叠片系数不发 生降低,由此取向硅钢片所制成的卷绕铁芯变压器同时具有低损耗、低噪 音的特性。
本发明采用瞬时高能量脉冲激光对于取向硅钢片进行刻痕,其激光束 斑数量与扫描次数乘积远多于现有激光刻痕方法,不仅能够极大减少热效 应及其累积,确保钢板不变形,还能够有效控制沟槽两侧堆积物及金属飞 溅,控制沟槽两侧堆积物高度≤2.5μm,确保取向硅钢叠片系数不下降,以 更好的激光能量效率获得更好的刻痕质量及成品性能,制造的取向硅钢片 磁畴细化效果显著,铁损低且叠片系数不发生降低。
附图说明
图1为本发明使用的激光单束斑及多束斑组合示意图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
实施例一
取向硅钢经过炼铁、炼钢、连铸得到以质量%计含有C:0.07%、Si: 3.1%、Mn:0.14%、Al:0.020%、N:0.01%、S:0.01%的钢坯,经过热 轧工艺,再经过一次冷轧,轧至最终厚度0.23mm,经过脱碳退火工艺, 形成表面氧化层后在其表面涂覆以MgO为主要成分的退火隔离剂,再经 过1250℃高温退火保持20小时,清洗掉未反应的残余MgO后,之后在钢板单一表面实施激光耐热刻痕。激光扫描刻痕加工参数如下:激光脉冲时 间宽度10ns,激光波长1066nm,重复频率800KHz,束斑垂直于扫描方向 的直径b为50μm,组内束斑间距dm为10μm,束斑数量为5个。刻痕形 成沟槽深度控制在15~18μm之间,宽度控制在50~55μm之间,沟槽与钢 板横向夹角为8°,相邻沟槽沿轧制方向的间距为4.5mm,具体刻痕加工参 数参见表1。刻痕完成后经过最终退火施加张力涂层。
采用GB/T3655-2008中的Epstein0.5kg方法对硅钢片进行磁测,采用 GB/T19289-2003测定硅钢片的叠片系数,实施例1-10和对比例1-3的测 量结果见表2。
从表1-2可知,实施例1-10中单脉冲峰值能量密度Ep和单束激光单 次扫描能流密度Es在本发明要求范围内时,刻痕后硅钢片铁损P17/50在 0.75W/kg以下,叠片系数保持在95%以上;对比例1、2的单束激光单次 扫描能流密度超过本发明范围,尽管铁损P17/50较好,但叠片系数显著下 降;对比例3由于单脉冲峰值能量密度过低,刻痕效果过低,扫描次数达 到30次时,激光刻痕形成沟槽深度仅3.3μm,铁损偏高,不具备工业实现 价值。
实施例二
取向硅钢经过炼铁、炼钢、连铸得到以质量%计含有C:0.05%、Si: 3.7%、Mn:0.10%、Al:0.03%、N:0.016%、S:0.013%的钢坯,经过热 轧工艺,再经过一次冷轧,轧至最终厚度0.26mm,经过脱碳退火工艺, 形成表面氧化层后在其表面涂覆以MgO为主要成分的退火隔离剂,再经 过1250℃高温退火保持20小时,清洗掉未反应的残余MgO后,后经过热拉伸平整退火施加张力涂层,之后,在钢板上下两个表面同时实施激光刻 痕,激光波长为533nm,重复频率为600KHz,调节脉冲宽度、激光输出 功率、束斑尺寸、束斑组合、扫描速度、扫描次数等参数达到目标刻痕效 果,具体刻痕加工参数参见表3,沟槽与钢板轧向垂直,相邻沟槽沿轧制 方向的间距为6mm;刻痕完成后再次涂覆绝缘涂层并烘干烧结,形成最终 成品取向硅钢片。
采用GB/T3655-2008中的Epstein0.5kg方法对硅钢片进行磁测,采用 GB/T19289-2003测定硅钢片的叠片系数,实施例11-20和对比例4-12的 测量结果见表4。
从表3-4可知,实施例11-20中脉冲宽度、束斑尺寸、束斑组合参数、 及束斑数量和扫描次数乘积在本发明范围内时,刻痕形成沟槽两侧凸起物 高度在2.5μm以内,消除应力退火后硅钢片磁性能均较好;对比例4-12 中,当上述参数超过本发明范围要求后,刻痕形成沟槽两侧凸起物超过 2.5μm,磁感显著降低或叠片系数显著下降。
实施例三
取向硅钢经过炼铁、炼钢、连铸得到以质量%计含有C:0.09%、Si: 2.9%、Mn:0.12%、Al:0.019%、N:0.016%、S:0.012%的钢坯,经过 热轧工艺,再经过一次冷轧,轧至最终厚度0.22mm,经过脱碳退火工艺, 形成表面氧化层后在其表面利用脉冲时间宽度为0.5纳秒的脉冲激光器进 行线状微沟槽刻痕,激光输出功率为100W,光波波长533nm,重复频率 为200KHz,聚焦到钢板表面的束斑呈圆形,激光为多束斑组合模式,束 斑数量为20个,组内束斑之间间距为40μm,激光扫描速度10m/s,调节 扫描次数、扫描方向、扫描偏移方向得到不同尺寸的沟槽深度、宽度、刻 痕线与钢板横向夹角,具体刻痕加工参数参见表5。
以上样品经过温度为830℃的脱碳退火工艺,形成表面氧化层后在其 表面涂覆MgO隔离剂,卷制成钢卷后在1200℃高温退火条件下保持20 小时,最后清洗掉残余MgO,并在其表面涂覆绝缘涂层并进行最终热拉伸 平整退火形成成品硅钢片。
利用GB/T3655-2008中的Epstein0.5kg方法对硅钢片进行磁测,采用 GB/T19289-2003测定硅钢片的叠片系数,实施例21-30和对比例13-21的 测量结果见表6。
从表5-6可知,实施例21-30中当激光刻痕形成沟槽参数及刻痕线在本发 明要求范围内时,铁损P17/50与磁感B8均较好;但对比例13-21中激光刻 痕形成沟槽及刻痕线参数超过本发明要求范围时,则会出现P17/50偏高或 B8明显偏低的情况。
综上可知,本发明采用瞬时高能量激光在硅钢表面刻蚀,具有加工效 率高、刻痕效果好的优点,特别适用于高能效卷铁芯变压器的制造,能够 有效节约电网中输配电所带来的电能损失,具有良好的可应用性。

Claims (5)

1.一种耐消除应力退火的低铁损取向硅钢的制造方法,该制造方法包括:硅钢经炼铁、炼钢、连铸、热轧、一次或两次冷轧,再经过脱碳退火、表面涂布MgO类隔离剂、高温退火,最后经过表面涂布绝缘层并进行热拉伸平整退火得到成品;其特征在于,采用脉冲激光在冷轧后、脱碳退火后、在高温退火后或在热拉伸平整退火后的硅钢片单面或双面进行扫描刻槽,在硅钢片轧制方向上形成若干相互平行的沟槽;
其中,所述脉冲激光的单个激光脉冲时间宽度≤100ns,单个脉冲峰值能量密度≥0.05J/cm2;单束激光单次扫描的能量密度Es为1~100J/cm2
所述脉冲激光的束斑为单束斑或多束斑组合,所述多束斑组合由多个束斑沿扫描方向线性排列而成,束斑数量为2~300个;单束斑或多束斑组合中束斑形状为圆形或椭圆形,束斑在扫描方向的直径a为5μm~1mm,在垂直于扫描方向上的直径b为5~300μm;所述多束斑组合内的束斑在扫描方向的间隙平均值dm介于c/5至5c之间,其中c为子束斑在扫描方向上的平均直径;
在硅钢片同一位置扫描刻槽时,脉冲激光的束斑数量与扫描次数乘积≥5。
2.根据权利要求1所述的耐消除应力退火的低铁损取向硅钢的制造方法,其特征在于,在热拉伸平整退火后进行扫描刻槽加工,经扫描刻槽后,在硅钢片单面或双面进行二次绝缘涂层涂覆及烧结。
3.根据权利要求1所述的耐消除应力退火的低铁损取向硅钢的制造方法,其特征在于,所述脉冲激光的光波波长为0.3~3μm。
4.根据权利要求1所述的耐消除应力退火的低铁损取向硅钢的制造方法,其特征在于,在硅钢片表面形成的沟槽深度为5~35μm,宽度为8~310μm,沟槽两侧堆积物高度≤2.5μm,沟槽与硅钢片横向的夹角≤45°。
5.根据权利要求1所述的耐消除应力退火的低铁损取向硅钢的制造方法,其特征在于,当取向硅钢片单面刻槽时,相邻沟槽在硅钢片轧制方向上的间距为1~10mm;当取向硅钢片双面刻槽时,相邻沟槽在硅钢片轧制方向上的间距为2~20mm。
CN201810095479.XA 2018-01-31 2018-01-31 一种耐消除应力退火的低铁损取向硅钢的制造方法 Active CN110093486B (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201810095479.XA CN110093486B (zh) 2018-01-31 2018-01-31 一种耐消除应力退火的低铁损取向硅钢的制造方法
JP2020540629A JP7210598B2 (ja) 2018-01-31 2018-06-21 耐応力除去焼鈍の低鉄損方向性ケイ素鋼の製造方法
CA3088327A CA3088327C (en) 2018-01-31 2018-06-21 Method for manufacturing stress-relief-annealing-resistant, low-iron-loss grain-oriented silicon steel
MX2020007830A MX2020007830A (es) 2018-01-31 2018-06-21 Metodo para fabricar acero de silicio orientado a los granos de baja perdida de hierro con alivio de estres resistente al templado.
BR112020015012-6A BR112020015012B1 (pt) 2018-01-31 2018-06-21 Método para fabricar aço silício com grão orientado com baixa perda de ferro e resistente ao recozimento de alívio de tensão
PCT/CN2018/092077 WO2019148742A1 (zh) 2018-01-31 2018-06-21 一种耐消除应力退火的低铁损取向硅钢的制造方法
EP18904474.6A EP3748019B1 (en) 2018-01-31 2018-06-21 Method for manufacturing a stress-relief annealing resistant, low iron-loss grain-oriented silicon steel
US16/963,334 US11459634B2 (en) 2018-01-31 2018-06-21 Method for manufacturing stress-relief-annealing-resistant, low-iron-loss grain-oriented silicon steel
RU2020125368A RU2746618C1 (ru) 2018-01-31 2018-06-21 Способ получения стойкой при отжиге для снятия напряжений, текстурированной кремнистой стали с низкими потерями в железе
KR1020207020333A KR102507090B1 (ko) 2018-01-31 2018-06-21 응력-완화-어닐링-저항성의 낮은 철 손실-입자-방향성 실리콘 스틸의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810095479.XA CN110093486B (zh) 2018-01-31 2018-01-31 一种耐消除应力退火的低铁损取向硅钢的制造方法

Publications (2)

Publication Number Publication Date
CN110093486A true CN110093486A (zh) 2019-08-06
CN110093486B CN110093486B (zh) 2021-08-17

Family

ID=67442820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810095479.XA Active CN110093486B (zh) 2018-01-31 2018-01-31 一种耐消除应力退火的低铁损取向硅钢的制造方法

Country Status (10)

Country Link
US (1) US11459634B2 (zh)
EP (1) EP3748019B1 (zh)
JP (1) JP7210598B2 (zh)
KR (1) KR102507090B1 (zh)
CN (1) CN110093486B (zh)
BR (1) BR112020015012B1 (zh)
CA (1) CA3088327C (zh)
MX (1) MX2020007830A (zh)
RU (1) RU2746618C1 (zh)
WO (1) WO2019148742A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564321A (zh) * 2021-07-09 2021-10-29 首钢智新迁安电磁材料有限公司 一种取向硅钢的磁畴细化方法及应用
CN115519226A (zh) * 2022-11-28 2022-12-27 中国航空制造技术研究院 一种提高电子束熔丝成形制件精度的成形装置及方法
WO2024012439A1 (zh) * 2022-07-11 2024-01-18 宝山钢铁股份有限公司 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230074828A1 (en) * 2019-11-18 2023-03-09 Sumitomo Metal Mining Co., Ltd. Magnetostrictive member and method for manufacturing magnetostrictive member
RU2764777C1 (ru) * 2021-01-26 2022-01-21 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ обработки поверхности цветного металла путем формирования микрорельефа
JP7053933B1 (ja) 2021-08-31 2022-04-12 Dmg森精機株式会社 ワーク加工方法およびレーザ加工機
CN113960085A (zh) * 2021-09-22 2022-01-21 中国工程物理研究院激光聚变研究中心 一种有色金属多晶材料晶粒尺寸的高效测量方法
CN113957222B (zh) * 2021-10-26 2023-06-30 无锡普天铁心股份有限公司 一种降低取向硅钢铁损的方法
JP7659219B2 (ja) 2022-10-04 2025-04-09 日本製鉄株式会社 方向性電磁鋼板およびその製造方法
CN115767937B (zh) * 2022-12-07 2023-07-21 广东工业大学 一种基于减成法原理的精细线路修复方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870843A1 (en) * 1995-12-27 1998-10-14 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
CN106282512A (zh) * 2015-05-11 2017-01-04 宝山钢铁股份有限公司 低噪音变压器用取向硅钢片制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535218A (en) * 1982-10-20 1985-08-13 Westinghouse Electric Corp. Laser scribing apparatus and process for using
JPS60103183A (ja) 1983-11-09 1985-06-07 Kawasaki Steel Corp 歪取り焼鈍によつて特性が劣化しない低鉄損の方向性けい素鋼板およびその製造方法
JPS61117218A (ja) 1984-11-10 1986-06-04 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
GB2208871B (en) * 1987-08-22 1991-03-27 British Steel Plc Processing grain-oriented "electrical" steel
IN171547B (zh) 1988-03-25 1992-11-14 Armco Advanced Materials
US5146063A (en) 1988-10-26 1992-09-08 Kawasaki Steel Corporation Low iron loss grain oriented silicon steel sheets and method of producing the same
JP2563729B2 (ja) * 1992-08-07 1996-12-18 新日本製鐵株式会社 パルスco2レーザを用いた方向性電磁鋼板の鉄損改善方法および装置
US5296051A (en) 1993-02-11 1994-03-22 Kawasaki Steel Corporation Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
KR100530814B1 (ko) 2002-03-04 2005-11-24 신닛뽄세이테쯔 카부시키카이샤 금속띠의 간접 통전식 연속 전해 에칭 방법 및 간접통전식 연속 전해 에칭장치
JP4398666B2 (ja) 2002-05-31 2010-01-13 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板およびその製造方法
US8366836B2 (en) * 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
EP2554685B1 (en) * 2010-04-01 2016-07-27 Nippon Steel & Sumitomo Metal Corporation Grain oriented electrical steel sheet and method for manufacturing same
EP2599883B1 (en) * 2010-07-28 2015-09-09 Nippon Steel & Sumitomo Metal Corporation Orientated electromagnetic steel sheet and manufacturing method for same
CN104099458B (zh) * 2010-09-09 2016-05-11 新日铁住金株式会社 方向性电磁钢板的制造方法
CN102477484B (zh) * 2010-11-26 2013-09-25 宝山钢铁股份有限公司 一种快速激光刻痕方法
US10240220B2 (en) * 2012-01-12 2019-03-26 Nucor Corporation Electrical steel processing without a post cold-rolling intermediate anneal
IN2014MN01830A (zh) * 2012-03-29 2015-07-03 Jfe Steel Corp
CN107109552B (zh) * 2014-10-06 2018-12-28 杰富意钢铁株式会社 低铁损取向性电磁钢板及其制造方法
KR101659350B1 (ko) * 2016-02-11 2016-09-23 주식회사 포스코 방향성 전기강판 및 그 제조방법
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
CN107502723A (zh) * 2017-09-15 2017-12-22 武汉钢铁有限公司 通过激光双面刻痕降低取向硅钢铁损的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870843A1 (en) * 1995-12-27 1998-10-14 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
CN106282512A (zh) * 2015-05-11 2017-01-04 宝山钢铁股份有限公司 低噪音变压器用取向硅钢片制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564321A (zh) * 2021-07-09 2021-10-29 首钢智新迁安电磁材料有限公司 一种取向硅钢的磁畴细化方法及应用
CN113564321B (zh) * 2021-07-09 2024-04-12 首钢智新迁安电磁材料有限公司 一种取向硅钢的磁畴细化方法及应用
WO2024012439A1 (zh) * 2022-07-11 2024-01-18 宝山钢铁股份有限公司 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
CN115519226A (zh) * 2022-11-28 2022-12-27 中国航空制造技术研究院 一种提高电子束熔丝成形制件精度的成形装置及方法
CN115519226B (zh) * 2022-11-28 2023-02-28 中国航空制造技术研究院 一种提高电子束熔丝成形制件精度的成形装置及方法

Also Published As

Publication number Publication date
EP3748019B1 (en) 2022-06-15
CA3088327C (en) 2022-03-08
WO2019148742A1 (zh) 2019-08-08
BR112020015012B1 (pt) 2023-05-02
CN110093486B (zh) 2021-08-17
US20200362433A1 (en) 2020-11-19
BR112020015012A2 (pt) 2021-01-19
CA3088327A1 (en) 2019-08-08
KR102507090B1 (ko) 2023-03-07
EP3748019A4 (en) 2021-05-12
JP2021512218A (ja) 2021-05-13
JP7210598B2 (ja) 2023-01-23
US11459634B2 (en) 2022-10-04
EP3748019A1 (en) 2020-12-09
KR20200096298A (ko) 2020-08-11
MX2020007830A (es) 2020-09-25
RU2746618C1 (ru) 2021-04-19

Similar Documents

Publication Publication Date Title
CN110093486A (zh) 一种耐消除应力退火的低铁损取向硅钢的制造方法
KR102316204B1 (ko) 응력-완화 어닐링에 강한 레이저-에칭된 입자-방향성 실리콘강 및 그 제조방법
CN106282512B (zh) 低噪音变压器用取向硅钢片制造方法
JP6405378B2 (ja) 方向性電磁鋼板およびその製造方法
JP4319715B2 (ja) 磁気特性の優れた一方向性電磁鋼板とその製造方法
KR102320039B1 (ko) 낮은 코어 손실을 갖는 방향성 규소강 및 이의 제조 방법
CN110323044B (zh) 一种耐热磁畴细化型取向硅钢及其制造方法
CN102127716A (zh) 一种表面覆膜良好的低温加热取向电工钢及生产方法
CN104726672A (zh) 取向电工钢板及其制造方法
CN113319524B (zh) 一种激光刻痕降低取向硅钢铁损的制造方法
CN113584279A (zh) 一种耐消除应力退火刻痕取向硅钢及其制造方法
CN104164544A (zh) 一种无线状凸起缺陷的无取向电工钢板的制造方法
WO2024012439A1 (zh) 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
CN117672655A (zh) 一种铁损性能均匀良好的取向硅钢板及其激光刻痕方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant