CN110093399A - A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid - Google Patents
A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid Download PDFInfo
- Publication number
- CN110093399A CN110093399A CN201910325528.9A CN201910325528A CN110093399A CN 110093399 A CN110093399 A CN 110093399A CN 201910325528 A CN201910325528 A CN 201910325528A CN 110093399 A CN110093399 A CN 110093399A
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- methyladenine
- adenine
- extension
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 40
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 33
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 33
- 238000001514 detection method Methods 0.000 title claims abstract description 24
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229940035893 uracil Drugs 0.000 title claims abstract description 10
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 title abstract description 18
- 229930024421 Adenine Natural products 0.000 title abstract description 16
- 229960000643 adenine Drugs 0.000 title abstract description 16
- 230000004048 modification Effects 0.000 title abstract description 14
- 238000012986 modification Methods 0.000 title abstract description 14
- 230000011987 methylation Effects 0.000 title abstract description 10
- 238000007069 methylation reaction Methods 0.000 title abstract description 10
- XQRLCLUYWUNEEH-UHFFFAOYSA-N diphosphonic acid Chemical compound OP(=O)OP(O)=O XQRLCLUYWUNEEH-UHFFFAOYSA-N 0.000 title 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 claims abstract description 53
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 239000001177 diphosphate Substances 0.000 claims abstract description 10
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims abstract description 10
- 235000011180 diphosphates Nutrition 0.000 claims abstract description 10
- 238000012360 testing method Methods 0.000 claims abstract description 10
- XCCTYIAWTASOJW-XVFCMESISA-N Uridine-5'-Diphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 XCCTYIAWTASOJW-XVFCMESISA-N 0.000 claims abstract description 6
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 14
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 14
- 102100034343 Integrase Human genes 0.000 claims description 12
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 6
- 238000011534 incubation Methods 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 230000006820 DNA synthesis Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000010348 incorporation Methods 0.000 abstract 1
- 238000012545 processing Methods 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000031018 biological processes and functions Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000001973 epigenetic effect Effects 0.000 description 3
- 230000004049 epigenetic modification Effects 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 108020005345 3' Untranslated Regions Proteins 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 description 2
- 230000008506 pathogenesis Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 108010077544 Chromatin Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 230000030914 DNA methylation on adenine Effects 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102100030569 Nuclear receptor corepressor 2 Human genes 0.000 description 1
- 101710153660 Nuclear receptor corepressor 2 Proteins 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 108700020471 RNA-Binding Proteins Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 230000019975 dosage compensation by inactivation of X chromosome Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000030147 nuclear export Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种利用二磷酸尿嘧啶脱氧核苷酸检测核酸中腺嘌呤N6位发生甲基化修饰的方法。该检测方法主要由两部分组成。第一部分是对被测核酸或对照核酸通过延伸反应将二磷酸尿嘧啶脱氧核苷酸(dUDP)掺入基因组序列。第二部分是使用变性聚丙烯酰胺凝胶分析延伸反应结果,经数据处理后得到被测核酸或对照核酸的延伸百分比,进行比较从而实现识别检测N6‑甲基腺嘌呤和N1‑甲基腺嘌呤。该方法克服了现有检测方法设备需求高、操作繁琐等不足,灵敏度高、适应范围广,所用原料简单易得,操作简便。
The invention discloses a method for detecting the methylation modification at the N6 position of adenine in nucleic acid by using uridine diphosphate deoxynucleotide. The detection method mainly consists of two parts. The first part is the incorporation of uracil deoxynucleotide diphosphate (dUDP) into the genome sequence through the extension reaction of the test nucleic acid or the control nucleic acid. The second part is to use denatured polyacrylamide gel to analyze the extension reaction results. After data processing, the extension percentage of the tested nucleic acid or the control nucleic acid is obtained, and compared to realize the identification and detection of N 6 ‑methyl adenine and N 1 ‑methyl adenine. The method overcomes the shortcomings of existing detection methods such as high equipment requirements and cumbersome operations, and has high sensitivity and wide application range. The raw materials used are simple and easy to obtain, and the operation is simple and convenient.
Description
技术领域technical field
本发明属于分子生物学、核酸化学和表观遗传学(Epigenetic)领域,具体涉及一种基因组中N6-甲基腺嘌呤(N6-methyladenine)的识别检测方法。The invention belongs to the fields of molecular biology, nucleic acid chemistry and epigenetics, and specifically relates to a method for identifying and detecting N 6 -methyladenine (N 6 -methyladenine ) in genome.
背景技术Background technique
表观遗传学作为遗传学的一门重要分支学科,主要研究基于非基因序列改变所引起的基因表达的可遗传的变化。其作用机制主要包括:DNA甲基化、染色质重塑、非编码RNA调控、组蛋白修饰等。表观遗传学与众多生命功能有关,例如基因组印记、X-染色体失活等。同时研究表明,表观遗传学与癌症、免疫系统疾病、数种遗传性的智力迟钝疾病等疾病的发生存在重要关联。As an important branch of genetics, epigenetics mainly studies the heritable changes in gene expression based on non-gene sequence changes. Its mechanism of action mainly includes: DNA methylation, chromatin remodeling, non-coding RNA regulation, histone modification, etc. Epigenetics is related to many life functions, such as genome imprinting, X-chromosome inactivation, etc. At the same time, studies have shown that epigenetics is important for the occurrence of diseases such as cancer, immune system diseases, and several inherited mental retardation diseases.
DNA的表观遗传学修饰主要分为两大类,一是胞嘧啶上C5位的甲基化修饰,称之为5-甲基胞嘧啶(5mC);第二类为腺嘌呤上N6位发生甲基化修饰,我们把它称之为N6-甲基腺嘌呤。这两种不同的表观遗传修饰不仅存在着生物体分布位置和含量的差异,同时他们所承担的生物学功能也完全不同。例如,5-甲基胞嘧啶主要分布于哺乳动物以及其他真核生物中,对于基因的选择性表达、基因的稳定性、个体发育及疾病的发生都起着至关重要的作用。然而在原核生物和一些低等的真核生物中,N6-甲基腺嘌呤则取代5-甲基胞嘧啶成为主要的表观遗传学修饰,并执行其特定的生物学功能。在过去很长的一段时间里,由于检测手段的限制,N6-甲基腺嘌呤—直被认为只分布于细菌的DNA中。The epigenetic modification of DNA is mainly divided into two categories, one is the methylation modification at the C5 position on cytosine, which is called 5-methylcytosine (5mC); the second type is the methylation modification at the N6 position on adenine. Methylation modification, we call it N 6 -methyladenine. These two different epigenetic modifications not only have differences in the distribution position and content of organisms, but also have completely different biological functions. For example, 5-methylcytosine is mainly distributed in mammals and other eukaryotes, and plays a vital role in the selective expression of genes, gene stability, individual development and the occurrence of diseases. However, in prokaryotes and some lower eukaryotes, N 6 -methyladenine replaces 5-methylcytosine as the main epigenetic modification and performs its specific biological functions. For a long time in the past, due to the limitation of detection means, N 6 -methyladenine was considered to be only distributed in the DNA of bacteria.
随着检测技术的发展,研究人员发现N6-甲基腺嘌呤也存在于一些真核生物中,同时其潜在的表观遗传学功能也逐步被揭示。例如,可能也携带有重要的表观遗传学信息,并且能够在子代中进行遗传传递等。With the development of detection technology, researchers have found that N 6 -methyladenine also exists in some eukaryotes, and its potential epigenetic functions have been gradually revealed. For example, it may also carry important epigenetic information and be able to carry out genetic transmission in offspring, etc.
不同于DNA,已知RNA存在超过100种修饰。而随着更多表观遗传修饰物功能的揭示,人们发现,除了将遗传信息从DNA传递至蛋白质,mRNA本身也会参与许多生物学过程。N6-甲基腺嘌呤广泛存在于哺乳动物的mRNA以及非编码RNA中,平均在每条mRNA上就存在3~5个N6-甲基腺嘌呤修饰碱基。此外,人们已经发现,N6-甲基腺嘌呤的分布具有一定的特征。首先,它们集中分布在终止密码子附近以及内部长的外显子中,这说明N6-甲基腺嘌呤很可能在mRNA的翻译调控和RNA的选择性拼接中都发挥很重要的作用。另外,人们还发现N6-甲基腺嘌呤广泛存在于3’UTRs中,而这些区域中的N6-甲基腺嘌呤极有可能影响自身与RNA结合蛋白的结合力,进而影响RNA的一系列生物学过程。同时,还有课题组发现3’UTRs中N6-甲基腺嘌呤总是恰好分布在miRNA结合区域之前,并推测N6-甲基腺嘌呤会影响miRNA诱导的转录本降解以及翻译抑制。他们还通过分析,发现含有N6-甲基腺嘌呤的基因很多还与RNA代谢,细胞间信号传递,以及神经系统疾病相关。Unlike DNA, more than 100 modifications are known to exist in RNA. With the revelation of the functions of more epigenetic modifiers, it has been found that, in addition to transmitting genetic information from DNA to proteins, mRNA itself also participates in many biological processes. N 6 -methyladenine widely exists in mammalian mRNA and non-coding RNA, and there are 3-5 N 6 -methyladenine modified bases on average in each mRNA. Furthermore, it has been found that the distribution of N 6 -methyladenine has certain characteristics. First, they are concentrated near the stop codon and in the long internal exon, which indicates that N 6 -methyladenine may play an important role in the translation regulation of mRNA and the selective splicing of RNA. In addition, people also found that N 6 -methyladenine widely exists in 3'UTRs, and N 6 -methyladenine in these regions is very likely to affect the binding force between itself and RNA-binding proteins, and then affect a part of RNA. series of biological processes. At the same time, another research group found that N 6 -methyladenine in 3'UTRs is always distributed just before the miRNA binding region, and speculated that N 6 -methyladenine would affect miRNA-induced transcript degradation and translation inhibition. Through analysis, they also found that many genes containing N 6 -methyladenine are also related to RNA metabolism, intercellular signal transmission, and nervous system diseases.
在转录组水平,不同类型的mRNA有不同丰度的N6-甲基腺嘌呤修饰。而且,N6-甲基腺嘌呤在不同的细胞阶段和不同的组织样本中,含量都不一样。因此,N6-甲基腺嘌呤很可能在RNA代谢和生长发育中起着很重要的作用。目前,人们已经发现了它的一些重要功能,包括mRNA的剪接,mRNA的出核,mRNA的翻译,加速mRNA的降解从而降低mRNA稳定性,影响生物钟的维持、细胞周期的调节以及哺乳动物胚胎干细胞的分化。由此可见,N6-甲基腺嘌呤在哺乳动物的多种生物学过程中都发挥着难以替代的重要作用。At the transcriptome level, different types of mRNAs have different abundances of N 6 -methyladenine modifications. Moreover, the content of N 6 -methyladenine is different in different cell stages and different tissue samples. Therefore, N 6 -methyladenine probably plays an important role in RNA metabolism and growth and development. At present, some important functions of it have been discovered, including splicing of mRNA, nuclear export of mRNA, translation of mRNA, accelerating mRNA degradation to reduce mRNA stability, affecting the maintenance of biological clock, regulation of cell cycle and mammalian embryonic stem cells. differentiation. It can be seen that N 6 -methyladenine plays an irreplaceable important role in various biological processes of mammals.
逐渐深入的研究表明,DNA与RNA中的N6-甲基腺嘌呤具有不可替代的研究价值,而其检测方法的便捷高效性对其功能特点、作用机理等的进一步研究的影响就愈发关键。Gradually in-depth research shows that N 6 -methyladenine in DNA and RNA has irreplaceable research value, and the convenience and high efficiency of its detection method is more and more critical to further research on its functional characteristics and mechanism of action. .
现有的N6-甲基腺嘌呤主要检测方法包括超高效液相色谱-串联质谱法(Ultra-High Performance Liquid Chromatography-tandem Mass Spectrometry,UHPLC-MS/MS)、单细胞实时测序(Single molecule real time sequencing,SMRT)等方法。尽管这些方法能够达到检测N6-甲基腺嘌呤的目的,但是它们仍存在一些局限性。例如单细胞实时测序法难以识别N6-甲基腺嘌呤和N1-甲基腺嘌呤这些结构相似的修饰类型;而其他方法步骤繁琐或者设备昂贵。Existing N 6 -methyladenine main detection methods include Ultra-High Performance Liquid Chromatography-tandem Mass Spectrometry (UHPLC-MS/MS), single cell real-time sequencing (Single molecule real time sequencing, SMRT) and other methods. Although these methods can achieve the purpose of detecting N 6 -methyladenine, they still have some limitations. For example, single-cell real-time sequencing methods are difficult to identify structurally similar modification types such as N 6 -methyladenine and N 1 -methyladenine; while other methods have cumbersome steps or expensive equipment.
发明内容Contents of the invention
为了解决现有技术存在的缺陷与不足,本发明的目的是提供一种无需使用昂贵仪器、无繁琐步骤、环境友好、实用性强且能高效、特异并灵敏地识别检测核酸中N6-甲基腺嘌呤的方法。In order to solve the defects and deficiencies in the prior art, the purpose of the present invention is to provide a method that does not need to use expensive instruments, has no cumbersome steps, is environmentally friendly, has strong practicability, and can efficiently, specifically and sensitively identify and detect N 6 -formazan in nucleic acids. base adenine method.
本发明通过如下技术方案完成:The present invention is accomplished through the following technical solutions:
本发明提供了一种利用二磷酸尿嘧啶脱氧核苷酸识别带有N6-甲基腺嘌呤的核酸的方法,具体包括:The present invention provides a method for identifying nucleic acid with N 6 -methyladenine by using uridine diphosphate deoxynucleotide, which specifically includes:
(1)以二磷酸尿嘧啶脱氧核苷酸(dUDP)作为DNA合成的原料,在紧邻疑为N6-甲基腺嘌呤的位点上游根据模板链序列设计一条长度为17-20bp的引物,在DNA聚合酶或逆转录酶作用下与核酸共孵育进行延伸反应,以将二磷酸尿嘧啶脱氧核苷酸(dUDP)掺入序列,所述核酸为疑为含N6-甲基腺嘌呤的位点的待测核酸或对照核酸,所述对照核酸为对应位点不含N6-甲基腺嘌呤、序列与待测核酸相近且其他位点含N6-甲基腺嘌呤水平与待测核酸相同的核酸;(1) Use uridine diphosphate (dUDP) as the raw material for DNA synthesis, and design a primer with a length of 17-20 bp according to the template strand sequence upstream of the site suspected to be N 6 -methyladenine, Extension reactions by incubation with nucleic acids suspected of containing N 6 -methyladenine under the action of DNA polymerase or reverse transcriptase to incorporate uracil deoxynucleotide diphosphate (dUDP) into the sequence The test nucleic acid or control nucleic acid at the site, the control nucleic acid is that the corresponding site does not contain N 6 -methyl adenine, the sequence is similar to the test nucleic acid, and the other sites contain N 6 -methyl adenine at the same level as the test Nucleic acid identical to nucleic acid;
(2)步骤(1)延伸产物通过变性聚丙烯酰胺凝胶分析,经凝胶成像仪测定被延伸的底物浓度和未被延伸的底物浓度,得到延伸百分比,所述延伸百分比为:延伸百分比=被延伸的底物浓度/(被延伸的底物浓度+未被延伸的底物浓度);(2) Step (1) The extension product is analyzed by denaturing polyacrylamide gel, and the concentration of the extended substrate and the concentration of the unextended substrate are measured by a gel imager to obtain the extension percentage, and the extension percentage is: extension Percent = extended substrate concentration/(extended substrate concentration+unextended substrate concentration);
(3)结果判定:如果待测核酸的延伸百分比小于对照核酸的延伸百分比,即可识别带有N6-甲基腺嘌呤的核酸。(3) Result determination: if the extension percentage of the test nucleic acid is less than that of the control nucleic acid, the nucleic acid with N 6 -methyladenine can be identified.
优选地,步骤(1)所述的引物的5’端修饰有FAM。Preferably, the 5' end of the primer described in step (1) is modified with FAM.
优选地,步骤(1)所述DNA聚合酶为Bst DNA聚合酶。Preferably, the DNA polymerase in step (1) is Bst DNA polymerase.
优选地,步骤(1)所述逆转录酶为M-MuLV逆转录酶。Preferably, the reverse transcriptase in step (1) is M-MuLV reverse transcriptase.
第二方面,提供二磷酸尿嘧啶脱氧核苷酸在制备识别带有N6-甲基腺嘌呤的核酸的检测试剂中的应用。The second aspect provides the application of uracil deoxynucleotide diphosphate in the preparation of detection reagents for recognizing nucleic acids with N 6 -methyladenine.
本发明技术方案的原理是:当以dUDP为合成原料时,利用含N6-甲基腺嘌呤的核酸链与含未修饰的腺嘌呤的核酸链在DNA聚合酶或逆转录酶催化下的延伸反应速率的显著差别,获得甲基化修饰位点的准确信息。The principle of the technical solution of the present invention is: when dUDP is used as a synthetic raw material, the nucleic acid chain containing N 6 -methyladenine and the nucleic acid chain containing unmodified adenine are extended under the catalysis of DNA polymerase or reverse transcriptase Significant differences in reaction rates provide accurate information on methylation modification sites.
本发明的优点和有益效果Advantages and beneficial effects of the present invention
1.本发明不受检出限与待测序列长度的限制,本发明的检测结果由量化的延伸效果(百分比)分析而来,当以dUDP为合成原料时,利用含N6-甲基腺嘌呤的核酸链与含未修饰的腺嘌呤的核酸链在DNA聚合酶或逆转录酶催化下的延伸反应速率的显著差别,获得甲基化修饰位点的准确信息。同时,由于DNA聚合酶或逆转录酶催化下的延伸反应速率极快,未经修饰的序列在本发明技术方案下进行的延伸反应时间不存在显著差别,因此检测的分辨率依然能获得保证,这种优势使得本发明能适应较大长度范围的核酸链样本检测,完善其应用价值;1. The present invention is not limited by the detection limit and the length of the sequence to be tested. The detection result of the present invention is obtained by analyzing the quantified extension effect (percentage). Accurate information on the methylation modification site can be obtained by the significant difference in the extension reaction rate of the nucleic acid chain containing purine and the nucleic acid chain containing unmodified adenine under the catalysis of DNA polymerase or reverse transcriptase. At the same time, since the extension reaction rate catalyzed by DNA polymerase or reverse transcriptase is extremely fast, there is no significant difference in the extension reaction time of the unmodified sequence under the technical solution of the present invention, so the detection resolution can still be guaranteed. This advantage enables the present invention to adapt to the detection of nucleic acid chain samples in a relatively large length range, improving its application value;
2.本发明为研究疾病的发病机制提供了便利:当前研究已发现某些癌症的发病机制涉及基因组中特定位点的甲基化修饰,而受限于检测手段,其甲基化修饰的类型无法被准确获知。本发明在全基因组序列及可能存在的修饰位点已知的情况下,进一步完善对腺嘌呤甲基化类型的探究,从而准确了解病理病因并针对性开发特效药物;2. The present invention provides convenience for studying the pathogenesis of diseases: current research has found that the pathogenesis of some cancers involves methylation modification at specific sites in the genome, and is limited by detection means, the type of methylation modification cannot be accurately known. In the present invention, when the whole genome sequence and possible modification sites are known, the exploration of adenine methylation type is further improved, so as to accurately understand the pathological etiology and develop specific drugs;
3.本发明为癌症等疾病的早期诊断提供了新思路:癌症的早期检测已有血项检查、抗原-抗体杂交等方式,其局限性在于设计检测试剂成本高昂,步骤繁琐,结果分析间隔时间长,而且对于不同时期的初期癌症检测效果存在不确定性。本发明采用常见的生化试剂dUDP和Bst DNA聚合酶或M-MuLV逆转录酶,可通过健康个体与患癌个体检测结果的对比确认检测指标,并以此为参照检测患癌情况未知的个体,因此显著缩短反应时间,为癌症筛查提供重要参考依据,同时降低检测开展成本,减轻社会负担,在医疗检测机构具有广阔的应用前景。3. The present invention provides a new idea for the early diagnosis of cancer and other diseases: the early detection of cancer has blood item inspection, antigen-antibody hybridization and other methods, the limitations of which are the high cost of designing detection reagents, cumbersome steps, and the interval time between results analysis Long, and there is uncertainty about the effect of early cancer detection in different periods. The present invention uses the common biochemical reagents dUDP and Bst DNA polymerase or M-MuLV reverse transcriptase to confirm the detection index by comparing the detection results of healthy individuals and cancer-stricken individuals, and use this as a reference to detect individuals with unknown cancer conditions. Therefore, the response time is significantly shortened, providing an important reference for cancer screening, while reducing the cost of testing and reducing social burdens, and has broad application prospects in medical testing institutions.
附图说明Description of drawings
图1为63℃时将在同一位点为腺嘌呤或N6-甲基腺嘌呤的DNA序列分别与不同浓度的二磷酸尿嘧啶脱氧核苷酸(dUDP)在Bst DNA聚合酶作用下共孵育处理后的延伸百分比-时间关系图。Figure 1 shows the co-incubation of DNA sequences containing adenine or N 6 -methyladenine at the same site with different concentrations of uracil deoxynucleotide diphosphate (dUDP) under the action of Bst DNA polymerase at 63°C Percent elongation after treatment versus time plot.
A为含腺嘌呤的DNA的延伸百分比-时间曲线图,B含N6-甲基腺嘌呤的DNA的延伸百分比-时间曲线图。图例的标注为二磷酸尿嘧啶脱氧核苷酸(dUDP)的浓度。A is the percentage elongation-time curve of DNA containing adenine, and B is the percentage elongation-time curve of DNA containing N 6 -methyladenine. Legend labeling is the concentration of uracil deoxyribonucleotide diphosphate (dUDP).
图2为63℃时将在同一位点为腺嘌呤或N6-甲基腺嘌呤的DNA序列分别与400μM二磷酸尿嘧啶脱氧核苷酸(dUDP)在Bst DNA聚合酶作用下共孵育不同时间后的变性聚丙烯酰胺凝胶分析图。(电泳图中上面的条带为延伸片段,下面的条带为未延伸的片段,图例中6mA代表N6-甲基腺嘌呤)Figure 2 is the co-incubation of the DNA sequence of adenine or N 6 -methyladenine at the same site with 400 μM uridine deoxynucleotide diphosphate (dUDP) under the action of Bst DNA polymerase for different times at 63°C The final denaturing polyacrylamide gel analysis chart. (The upper band in the electropherogram is an extended fragment, and the lower band is an unextended fragment. In the legend, 6mA represents N 6 -methyladenine)
A为只含有腺嘌呤位点的DNA序列,从左往右条带1-14对应不同处理时间的结果。B为含有N6-甲基腺嘌呤位点的DNA序列,从左往右条带1-14对应不同处理时间的结果。C为含有腺嘌呤位点的DNA序列和含有N6-甲基腺嘌呤的DNA序列延伸百分比-时间曲线。A is the DNA sequence containing only adenine sites, and bands 1-14 from left to right correspond to the results of different treatment times. B is the DNA sequence containing the N 6 -methyladenine site, and bands 1-14 from left to right correspond to the results of different treatment times. C is the extension percentage-time curve of the DNA sequence containing adenine site and the DNA sequence containing N 6 -methyladenine.
图3为42℃时将在同一位点为腺嘌呤或N6-甲基腺嘌呤的RNA序列分别与100μM二磷酸尿嘧啶脱氧核苷酸(dUDP)在RNA M-MuLV逆转录酶作用下共孵育不同时间后的变性聚丙烯酰胺凝胶分析图。(电泳图中上面的条带为延伸片段,下面的条带为未延伸的片段,图例中6mA代表N6-甲基腺嘌呤)Figure 3 shows that the RNA sequences containing adenine or N 6 -methyladenine at the same site were co-sequenced with 100 μM uracil deoxynucleotide diphosphate (dUDP) under the action of RNA M-MuLV reverse transcriptase at 42°C. Denaturing polyacrylamide gel analysis pictures after incubation for different times. (The upper band in the electropherogram is an extended fragment, and the lower band is an unextended fragment. In the legend, 6mA represents N 6 -methyladenine)
A为只含有腺嘌呤(A)位点的RNA序列,从左往右条带1-14对应不同处理时间的结果。B为含有N6-甲基腺嘌呤位点的RNA序列,从左往右条带1-14对应不同处理时间的结果。C为只含有腺嘌呤位点的RNA序列和含有N6-甲基腺嘌呤的RNA序列延伸百分比-时间曲线。A is the RNA sequence containing only the adenine (A) site, and bands 1-14 from left to right correspond to the results of different treatment times. B is the RNA sequence containing the N 6 -methyladenine site, and bands 1-14 from left to right correspond to the results of different treatment times. C is the elongation percentage-time curve of the RNA sequence containing only adenine site and the RNA sequence containing N 6 -methyladenine.
具体实施方式Detailed ways
通过以下详细说明结合附图可以进一步理解本发明的特点和优点。所提供的实施例仅是对本发明方法的说明,而不以任何方式限制本发明揭示的其余内容。以下实施例所用到的核酸序列如下表1:The features and advantages of the present invention can be further understood through the following detailed description in conjunction with the accompanying drawings. The examples provided are only illustrative of the method of the present invention and do not limit the rest of the present disclosure in any way. The nucleic acid sequences used in the following examples are shown in Table 1:
表1Table 1
【实施例1】将在同一位点为腺嘌呤或N6-甲基腺嘌呤的DNA序列分别与不同浓度的二磷酸尿嘧啶脱氧核苷酸(dUDP)在Bst DNA聚合酶作用下共孵育处理后的延伸百分比-时间关系比较[Example 1] The DNA sequences containing adenine or N 6 -methyladenine at the same site were co-incubated with different concentrations of uracil deoxynucleotide diphosphate (dUDP) under the action of Bst DNA polymerase Post-elongation percentage-time relationship comparison
1.配置25℃下pH 8.8的1μL 1×ThermoPol缓冲液:20mM Tris-HCl,10mM硫酸铵,10mM氯化钾,2mM硫酸镁,0.1%聚乙二醇辛基苯基醚。加入0.2μL双链DNA DNA-17mer-A1或DNA-17mer-6mA1,使其终浓度为2μM,加入0.1μL梯度浓度dUDP,1μL Bst DNA聚合酶,及引物Primer,引物和双链DNA的浓度比例为3:5,用ddH2O补齐体积至10μL。1. Prepare 1 μL of 1×ThermoPol buffer at pH 8.8 at 25° C.: 20 mM Tris-HCl, 10 mM ammonium sulfate, 10 mM potassium chloride, 2 mM magnesium sulfate, 0.1% polyethylene glycol octylphenyl ether. Add 0.2 μL double-stranded DNA DNA-17mer-A1 or DNA-17mer-6mA1 to make the final concentration 2 μM, add 0.1 μL gradient concentration dUDP, 1 μL Bst DNA polymerase, and primer Primer, the concentration ratio of primer and double-stranded DNA For 3:5, make up the volume to 10 μL with ddH 2 O.
2.63℃下孵育5min,并间隔不同的时间取样分析,时间间隔随反应的进行加长以获得区分度较高的表征结果,加入45μL停止缓冲液(95%甲酰胺,25mM EDTA,pH 8.0)以终止反应,反应体系立即加热到90℃并保温10min,冷却到4℃。2. Incubate at 63°C for 5 minutes, and take samples for analysis at different intervals. The time interval increases with the progress of the reaction to obtain highly differentiated characterization results. Add 45 μL of stop buffer (95% formamide, 25mM EDTA, pH 8.0) to stop For the reaction, the reaction system was immediately heated to 90°C and kept for 10 minutes, then cooled to 4°C.
3.20%变性聚丙烯酰胺凝胶电泳分离已完成延伸反应与未发生延伸反应的片段,并在凝胶成像仪下表征,继而得到完成延伸反应的待检测核酸链的比例。3. 20% denatured polyacrylamide gel electrophoresis to separate the fragments that have completed the extension reaction and the fragments that have not undergone the extension reaction, and characterize them under a gel imager, and then obtain the proportion of the nucleic acid chain to be detected that has completed the extension reaction.
结果:反应时间的增长能使延伸百分比的区别更加明显,且提高了反应的特异性。反应条件的优化给后续检测提供了更加适宜的条件,能够对检测方法所需要的灵敏度、准确性等各方面予以提高。(图1)Results: The increase of reaction time can make the difference of elongation percentage more obvious and improve the specificity of reaction. The optimization of reaction conditions provides more suitable conditions for subsequent detection, and can improve the sensitivity, accuracy and other aspects required by the detection method. (figure 1)
【实施例2】本发明方法应用于包含N6-甲基腺嘌呤的DNA序列的检测[Example 2] The method of the present invention is applied to the detection of DNA sequences containing N 6 -methyladenine
1.配置两组25℃下pH 8.8的1μL 1×ThermoPol缓冲液:20mM Tris-HCl,10mM硫酸铵,10mM氯化钾,2mM硫酸镁,0.1%聚乙二醇辛基苯基醚。各加入0.2μL双链DNA DNA-17mer-A1或DNA-17mer-6mA1,使其终浓度为2μM。加入终浓度为400μM的dUDP,1μL Bst DNA聚合酶,及引物Primer,引物和双链DNA的浓度比例为3:5,用ddH2O补齐体积至10μL。1. Prepare two sets of 1 μL 1×ThermoPol buffer solution at pH 8.8 at 25° C.: 20 mM Tris-HCl, 10 mM ammonium sulfate, 10 mM potassium chloride, 2 mM magnesium sulfate, 0.1% polyethylene glycol octylphenyl ether. 0.2 μL of double-stranded DNA DNA-17mer-A1 or DNA-17mer-6mA1 was added each to make a final concentration of 2 μM. Add dUDP at a final concentration of 400 μM, 1 μL of Bst DNA polymerase, and primer, the concentration ratio of primer and double-stranded DNA is 3:5, and make up the volume to 10 μL with ddH 2 O.
2.63℃下孵育5min并间隔不同的时间取样分析,时间间隔随反应的进行加长以获得区分度较高的表征结果,加入45μL停止缓冲液(95%甲酰胺,25mM EDTA,pH 8.0)以终止反应,反应体系立即加热到90℃并保温10min,冷却到4℃。2. Incubate at 63°C for 5 minutes and take samples for analysis at different intervals. The time interval increases with the progress of the reaction to obtain highly differentiated characterization results. Add 45 μL of stop buffer (95% formamide, 25mM EDTA, pH 8.0) to stop the reaction , the reaction system was immediately heated to 90°C and kept for 10 minutes, then cooled to 4°C.
3.20%变性聚丙烯酰胺凝胶电泳分离延伸与未延伸的片段并在凝胶成像仪下表征,继而确定延伸百分比。3. 20% denaturing polyacrylamide gel electrophoresis to separate extended and unextended fragments and characterize them under a gel imager, and then determine the extension percentage.
结果:对于DNA样本,含有腺嘌呤的模板序列延伸百分比高于含有N6-甲基腺嘌呤的模板序列的延伸百分比。(图2)Results: For DNA samples, the percentage extension of the template sequence containing adenine was higher than that of the template sequence containing N 6 -methyladenine. (figure 2)
【实施例3】本发明方法应用于包含N6-甲基腺嘌呤的RNA序列的检测[Example 3] The method of the present invention is applied to the detection of RNA sequences containing N 6 -methyladenine
1.配置25℃下pH 8.3的1μL 1×M-MuLV RT缓冲液:50mM Tris-HCl,75mM氯化钾,2mM氯化镁,10nM二硫苏糖醇,加入0.2μL终浓度为2μM的RNA-17mer-A1或RNA-17mer-6mA1,引物Primer,引物和双链DNA的浓度比例为3:5,终浓度100μM的dUDP、1μL M-MuLV逆转录酶,用ddH2O补齐体积至10μL。1. Prepare 1 μL of 1×M-MuLV RT buffer at pH 8.3 at 25°C: 50 mM Tris-HCl, 75 mM potassium chloride, 2 mM magnesium chloride, 10 nM dithiothreitol, and add 0.2 μL of RNA-17mer at a final concentration of 2 μM -A1 or RNA-17mer-6mA1, primer Primer, the concentration ratio of primer and double-stranded DNA is 3:5, the final concentration is 100 μM dUDP, 1 μL M-MuLV reverse transcriptase, and the volume is made up to 10 μL with ddH 2 O.
2.控制42℃下孵育5min,间隔不同的时间段取样分析,分析时加入45μL停止缓冲液(95%甲酰胺,25mM EDTA,pH 8.0)以终止反应,立即加热到90℃并保温10min,冷却到4℃。2. Incubate at 42°C for 5 minutes, take samples for analysis at different time intervals, add 45 μL of stop buffer (95% formamide, 25mM EDTA, pH 8.0) to stop the reaction, immediately heat to 90°C and keep warm for 10 minutes, cool to 4°C.
3.20%变性聚丙烯酰胺(PAGE)凝胶电泳分离延伸与未延伸的片段,并在凝胶成像仪下表征,继而确定延伸百分比。3. 20% denaturing polyacrylamide (PAGE) gel electrophoresis to separate extended and unextended fragments, and characterize them under a gel imager, and then determine the extension percentage.
结果:对于RNA样本,含有腺嘌呤的模板序列延伸百分比高于含有N6-甲基腺嘌呤的模板序列的延伸百分比。(图3)。Results: For RNA samples, the percent extension of the template sequence containing adenine was higher than that of the template sequence containing N 6 -methyladenine. (image 3).
序列表 sequence listing
<110> 武汉大学<110> Wuhan University
<120> 一种利用二磷酸尿嘧啶脱氧核苷酸检测核酸中腺嘌呤N6位发生甲基化修饰的方法<120> A method for detecting methylation at the N6 position of adenine in nucleic acid by using uridine diphosphate nucleotides
<160> 5<160> 5
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 17<211> 17
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
aatgccacat gctgcac 17aatgccacat gctgcac 17
<210> 2<210> 2
<211> 17<211> 17
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<221> modified_base<221> modified_base
<222> (1)..(1)<222> (1)..(1)
<223> N6-甲基<223> N6-Methyl
<400> 2<400> 2
aatgccacat gctgcac 17aatgccacat gctgcac 17
<210> 3<210> 3
<211> 17<211> 17
<212> RNA<212> RNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
aaugccacau gcugcac 17aaugccacau gcugcac 17
<210> 4<210> 4
<211> 17<211> 17
<212> RNA<212> RNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> N6-甲基<223> N6-Methyl
<400> 4<400> 4
aaugccacau gcugcac 17aaugccacau gcugcac 17
<210> 5<210> 5
<211> 16<211> 16
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<220><220>
<221> misc_feature<221> misc_feature
<222> (1)..(1)<222> (1)..(1)
<223> 5'-fam<223> 5'-fam
<400> 5<400> 5
gtgcagcatg tggcat 16gtgcagcatg tggcat 16
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910325528.9A CN110093399A (en) | 2019-04-22 | 2019-04-22 | A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910325528.9A CN110093399A (en) | 2019-04-22 | 2019-04-22 | A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110093399A true CN110093399A (en) | 2019-08-06 |
Family
ID=67445578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910325528.9A Pending CN110093399A (en) | 2019-04-22 | 2019-04-22 | A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110093399A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102399863A (en) * | 2010-09-16 | 2012-04-04 | 上海迦美生物科技有限公司 | Methylated DNA detection method based on fragment length analysis |
CN103392008A (en) * | 2010-09-07 | 2013-11-13 | 加利福尼亚大学董事会 | Control of DNA movement in a nanopore at one nucleotide precision by a processive enzyme |
CN104262434A (en) * | 2014-10-28 | 2015-01-07 | 武汉大学 | A Chemical Demethylation Method of N6-Methyladenosine in RNA |
CN104350067A (en) * | 2012-04-10 | 2015-02-11 | 牛津纳米孔技术公司 | Mutant lysenin pores |
CN107109489A (en) * | 2014-10-17 | 2017-08-29 | 牛津纳米孔技术公司 | Nano-pore RNA characterizing methods |
-
2019
- 2019-04-22 CN CN201910325528.9A patent/CN110093399A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103392008A (en) * | 2010-09-07 | 2013-11-13 | 加利福尼亚大学董事会 | Control of DNA movement in a nanopore at one nucleotide precision by a processive enzyme |
CN102399863A (en) * | 2010-09-16 | 2012-04-04 | 上海迦美生物科技有限公司 | Methylated DNA detection method based on fragment length analysis |
CN104350067A (en) * | 2012-04-10 | 2015-02-11 | 牛津纳米孔技术公司 | Mutant lysenin pores |
CN107109489A (en) * | 2014-10-17 | 2017-08-29 | 牛津纳米孔技术公司 | Nano-pore RNA characterizing methods |
CN104262434A (en) * | 2014-10-28 | 2015-01-07 | 武汉大学 | A Chemical Demethylation Method of N6-Methyladenosine in RNA |
Non-Patent Citations (5)
Title |
---|
CAROLINE ROOST等: "Structure and Thermodynamics of N6-Methyladenosine in RNA: A Spring-Loaded Base Modification", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 * |
CASSANDRA R. BURKE等: "DNA synthesis from diphosphate substrates by DNA polymerases", 《PNAS》 * |
CLAUDIO STASOLLA等: "Purine and pyrimidine nucleotide metabolism in higher plants", 《J. PLANT PHYSIOL.》 * |
SHAORU WANG等: "N6-Methyladenine hinders RNA- and DNA-directed DNA synthesis: application in human rRNA methylation analysis of clinical specimens", 《CHEM. SCI.》 * |
SHAORU WANG等: "The m6A methylation perturbs Hoogsteen pairing-guided incorporation of an oxidized nucleotide", 《CHEM. SCI.》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10718025B2 (en) | Methods for predicting age and identifying agents that induce or inhibit premature aging | |
Mi et al. | Circular RNA detection methods: A minireview | |
CN110878343B (en) | Cpf1 kit for rapidly detecting genetic deafness pathogenic gene SLC26A4 mutation and detection method thereof | |
CN103834719A (en) | miRNA detection probe and miRNA amplification detection method | |
CN107058538B (en) | A kind of primer composition and its composition kit and application | |
EP3904515A1 (en) | Tumor marker stamp-ep3 based on methylation modification | |
CN107619857A (en) | A kind of method and its application for detecting beef cattle KLF8 gene Cs NV marks | |
Zhou et al. | A novel methyl-dependent DNA endonuclease GlaI coupling with double cascaded strand displacement amplification and CRISPR/Cas12a for ultra-sensitive detection of DNA methylation | |
Wang et al. | Absolute quantification of circRNA using digital reverse transcription-hyperbranched rolling circle amplification | |
Tu et al. | Capped or uncapped? Techniques to assess the quality of mRNA molecules | |
CN106498044A (en) | A kind of quantitative detecting method of dusky white prawn mitochondrial genome copy number | |
CN103555848B (en) | 3'-5'-qPCR (quantitative polymerase chain reaction) quantitative detection technology for small RNA (ribonucleic acid) | |
CN118773322A (en) | MGMT methylation detection kit without conversion treatment and its application | |
CN111118179B (en) | DNA detection method for detecting chest depth character of Luxi black ram and application thereof | |
Kocabey et al. | Ultrasensitive detection of cancer-associated nucleic acids and mutations by primer exchange reaction-based signal amplification and flow cytometry | |
CN103773857A (en) | Kit for identifying genetype of silky fowl skin color by detecting EDN3 (endothelin 3) gene copy number difference | |
CN114045333B (en) | Method for predicting age by pyrosequencing and random forest regression analysis | |
CN110093399A (en) | A method of utilizing N6 generation methylation modifications of adenine in diphosphonic acid uracil deoxynucleotide detection nucleic acid | |
CN101892309B (en) | Method for discriminating ox and early embryo sex thereof | |
Wang et al. | Differences of circular RNA expression profiles between monozygotic twins' blood, with the forensic application in bloodstain and saliva | |
CN112359120B (en) | A method for detecting CNV marker of cattle MFN1 gene and its application | |
CN102851352A (en) | A neotype real-time fluorescent quantitative detection method for miRNA | |
Wei et al. | CRISPR/Cas13a-based single-nucleotide polymorphism detection for reliable determination of ABO blood group genotypes | |
CN110343757A (en) | A kind of short tandem repeat general probe and its design method and application | |
CN110106231B (en) | A kind of method that utilizes dUTP or dTTP to detect the methylation modification of adenine N6 or N1 in nucleic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190806 |