[go: up one dir, main page]

CN110089151B - System and method for packet forwarding during handover procedure - Google Patents

System and method for packet forwarding during handover procedure Download PDF

Info

Publication number
CN110089151B
CN110089151B CN201780079141.9A CN201780079141A CN110089151B CN 110089151 B CN110089151 B CN 110089151B CN 201780079141 A CN201780079141 A CN 201780079141A CN 110089151 B CN110089151 B CN 110089151B
Authority
CN
China
Prior art keywords
user data
data packets
node
ran node
drb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780079141.9A
Other languages
Chinese (zh)
Other versions
CN110089151A (en
Inventor
S·帕拉
R·伯比奇
姚丽娟
张玉健
S·班格来
许允亨
M·马丁内斯塔拉德利
A·S·斯托扬诺夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Intel Corp
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN110089151A publication Critical patent/CN110089151A/en
Application granted granted Critical
Publication of CN110089151B publication Critical patent/CN110089151B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述的技术可以在涉及第五代(5G)技术的切换(HO)过程期间实现分组转发。在HO过程期间,源无线接入网(RAN)节点可以将旨在用于用户设备(UE)的用户数据分组发送到目标RAN节点。可以基于由源RAN节点用来将分组发送到UE的服务质量(QoS)或数据无线承载(DRB)来为每个分组分派序列号(SN)。目标RAN节点可以使用相同的DRB来将分组转发到UE、使用不同的DRB来将分组转发到UE、或者使用不同的QoS来将分组转发到UE。目标RAN节点还可以或替代地创建转发到UE的分组的记录,以在适当时实现分组的重新发送。

Figure 201780079141

The techniques described herein may enable packet forwarding during handover (HO) procedures involving fifth generation (5G) technologies. During the HO procedure, the source radio access network (RAN) node may send user data packets intended for user equipment (UE) to the target RAN node. Each packet may be assigned a sequence number (SN) based on the quality of service (QoS) or data radio bearer (DRB) used by the source RAN node to send the packet to the UE. The target RAN node may use the same DRB to forward the packet to the UE, use a different DRB to forward the packet to the UE, or use a different QoS to forward the packet to the UE. The target RAN node may also or alternatively create a record of packets forwarded to the UE to enable retransmission of packets when appropriate.

Figure 201780079141

Description

在切换过程期间用于分组转发的系统和方法System and method for packet forwarding during handover procedure

相关申请Related applications

本申请要求于2016年12月20日提交的第62/436,900号美国临时专利申请的权益,其内容通过引用合并于此,如同在本文中完全阐述一样。This application claims the benefit of US Provisional Patent Application No. 62/436,900, filed on December 20, 2016, the contents of which are hereby incorporated by reference as if fully set forth herein.

技术领域technical field

本申请涉及在切换过程期间用于分组转发的系统和方法。The present application relates to systems and methods for packet forwarding during handover procedures.

背景技术Background technique

无线通信网络可以包括用户设备(UE)(例如,智能电话、平板计算机、膝上型计算机等)、无线接入网(RAN)节点(例如,基站)和核心网。UE可以通过与RAN节点通信并向核心网注册来连接到核心网。UE和RAN节点(本文也称为接入节点)之间的通信可以在与频带相对应的信号载波上进行。A wireless communication network may include user equipment (UE) (eg, smartphones, tablets, laptops, etc.), radio access network (RAN) nodes (eg, base stations), and a core network. The UE may connect to the core network by communicating with the RAN node and registering with the core network. Communication between a UE and a RAN node (also referred to herein as an access node) may occur on signal carriers corresponding to frequency bands.

随着UE移动到无线通信网络内的不同覆盖区域,UE可以参与一个或多个切换(HO)过程。切换(HO)过程可以包括UE从一个接入节点转移到另一个接入节点(本文通常分别称为源节点和目标节点)的过程。在进行HO过程之前,源节点可以从核心网接收指向UE的信息,并且在将信息传输到UE之前将信息临时存储在缓冲存储器中。当源节点确定将UE切换到目标节点时,旨在用于UE的一些信息仍然可以存储在源节点的缓冲存储器中。这样,HO过程除了使UE能够连接到目标节点之外,HO过程还可以包括源节点向目标节点提供缓冲数据以及目标节点将数据发送到UE(在目标节点和UE之间的连接已经被建立之后)。As the UE moves to different coverage areas within the wireless communication network, the UE may participate in one or more handover (HO) procedures. Handover (HO) procedures may include procedures in which a UE is transferred from one access node to another access node (commonly referred to herein as source node and target node, respectively). Before the HO procedure, the source node may receive information directed to the UE from the core network and temporarily store the information in a buffer memory before transmitting the information to the UE. When the source node determines to handover the UE to the target node, some information intended for the UE may still be stored in the source node's buffer memory. In this way, in addition to enabling the UE to connect to the target node, the HO procedure may include the source node providing buffered data to the target node and the target node sending data to the UE (after the connection between the target node and the UE has been established) ).

发明内容SUMMARY OF THE INVENTION

根据本公开的一方面,提供了一种无线接入网RAN节点的装置,所述装置包括:射频RF电路的接口;以及一个或多个处理器,用于:将序列号SN插入到多个用户数据分组的每个用户数据分组中,所述多个用户数据分组指向连接到RAN节点的用户设备UE,所述SN基于所述多个用户数据分组的每个用户数据分组的相对顺序位置;并且在使所述多个用户数据分组中的至少一个用户数据分组经由所述RF电路传输到所述UE之前,作为切换过程的一部分,确定所述UE要被转移到目标RAN节点,并且使所述至少一个用户数据分组与所述至少一个用户数据分组在所述切换过程之前原本将如何被所述RAN节点经由所述RF电路的所述接口传输到所述UE的指示一起,在所述切换过程期间被转移到所述目标RAN节点。According to an aspect of the present disclosure, there is provided an apparatus for a radio access network RAN node, the apparatus comprising: an interface of a radio frequency RF circuit; and one or more processors for: inserting a sequence number SN into a plurality of In each user data packet of the user data packet, the plurality of user data packets are directed to the user equipment UE connected to the RAN node, and the SN is based on the relative order position of each user data packet of the plurality of user data packets; And before causing at least one user data packet of the plurality of user data packets to be transmitted to the UE via the RF circuit, as part of a handover procedure, it is determined that the UE is to be transferred to a target RAN node, and all at the handover procedure, together with an indication of how the at least one user data packet would have been transmitted by the RAN node to the UE via the interface of the RF circuit prior to the handover procedure is transferred to the target RAN node during the procedure.

根据本公开的另一方面,提供了一种无线接入网RAN节点的装置,所述装置包括:射频RF电路的接口;以及一个或多个处理器,用于:从切换过程的源RAN节点接收多个用户数据分组,所述多个用户数据分组指向与所述切换过程对应的用户设备UE,所述多个用户数据分组的每个用户数据分组包括基于所述多个用户数据分组的每个用户数据分组的相对顺序位置的序列号SN;从所述源RAN节点接收在所述切换过程之前所述多个用户数据分组的每个用户数据分组原本将如何被所述源RAN节点传输到所述UE的指示;基于所述指示,确定用于将所述多个用户数据分组传输到所述UE的数据无线承载DRB;作为所述切换过程的一部分,经由所述RF电路的所述接口接收所述UE准备好与所述RAN节点通信的指示;并且使用所述DRB,经由所述RF电路的所述接口,使所述多个用户数据分组被传输到所述UE。According to another aspect of the present disclosure, there is provided an apparatus for a radio access network RAN node, the apparatus comprising: an interface to a radio frequency RF circuit; and one or more processors for: a source RAN node from a handover procedure A plurality of user data packets are received, the plurality of user data packets are directed to the user equipment UE corresponding to the handover process, and each user data packet of the plurality of user data packets includes each user data packet based on the plurality of user data packets. the sequence number SN of the relative sequential position of the user data packets; received from the source RAN node how each of the plurality of user data packets would have been transmitted by the source RAN node to the source RAN node prior to the handover procedure an indication of the UE; based on the indication, determining a data radio bearer DRB for transmitting the plurality of user data packets to the UE; via the interface of the RF circuit as part of the handover procedure receiving an indication that the UE is ready to communicate with the RAN node; and causing the plurality of user data packets to be transmitted to the UE via the interface of the RF circuit using the DRB.

根据本公开的另一方面,提供了一种用户设备UE的装置,所述装置包括:射频RF电路的接口;以及一个或多个处理器,用于:经由所述RF电路的所述接口从第一无线接入网RAN节点接收多个第一用户数据分组,所述多个第一用户数据分组的每个用户数据分组包括基于所述多个第一用户数据分组的每个用户数据分组的顺序位置的序列号SN;经由所述RF电路的所述接口接收参与涉及所述第一RAN节点和第二RAN节点的切换过程的指令;作为所述切换过程的一部分,经由所述RF电路的所述接口从所述第二RAN节点接收多个第二用户数据分组,所述多个第二用户数据分组的每个用户数据分组包括基于每个用户数据分组相对于所述多个第一用户数据分组和所述多个第二用户数据分组的顺序位置的SN,其中所述第二RAN节点从所述第一RAN节点接收所述多个第二用户数据分组和在所述切换过程之前所述多个第二用户数据分组的每个用户数据分组原本将如何被所述第一RAN节点传输到所述UE的指示,并且其中所述第二RAN节点基于所述指示将所述多个第二用户数据分组的每个用户数据分组发送到所述UE;并且基于所述多个第一用户数据分组和所述多个第二用户数据分组的每个用户数据分组的SN,将所述多个第一用户数据分组与所述多个第二用户数据分组合并。According to another aspect of the present disclosure, there is provided an apparatus for user equipment UE, the apparatus comprising: an interface of a radio frequency RF circuit; and one or more processors for: from the interface via the RF circuit The first radio access network RAN node receives a plurality of first user data packets, each user data packet of the plurality of first user data packets includes a user data packet based on each user data packet of the plurality of first user data packets. sequence number SN of a sequential position; receiving instructions via said interface of said RF circuit to participate in a handover procedure involving said first RAN node and a second RAN node; as part of said handover procedure, via said RF circuit's The interface receives a plurality of second user data packets from the second RAN node, each user data packet of the plurality of second user data packets comprising relative to the plurality of first user data packets on a per user data packet basis SN of sequential positions of data packets and said plurality of second user data packets, wherein said second RAN node received said plurality of second user data packets from said first RAN node and said plurality of second user data packets prior to said handover procedure an indication of how each user data packet of the plurality of second user data packets would have been transmitted by the first RAN node to the UE, and wherein the second RAN node converts the plurality of first user data packets based on the indication Each user data packet of two user data packets is sent to the UE; and based on the SN of each user data packet of the plurality of first user data packets and the plurality of second user data packets, the plurality of user data packets are sent to the UE. A first user data packet is combined with the plurality of second user data packets.

附图说明Description of drawings

通过以下结合附图的详细描述将容易理解本文描述的实施例。为了便于描述,相同的附图标记可以表示相同的结构元件。通过示例而非限制的方式在附图中示出了实施例。Embodiments described herein will be readily understood from the following detailed description taken in conjunction with the accompanying drawings. For convenience of description, the same reference numerals may denote the same structural elements. Embodiments are shown in the drawings by way of example and not limitation.

图1示出了根据一些实施例的网络的系统的架构;1 illustrates the architecture of a system of networks according to some embodiments;

图2是在切换过程期间分组转发的示例过程的顺序流程图,其中源节点和目标节点使用相同的数据无线承载(DRB)与用户设备(UE)通信;2 is a sequence flow diagram of an example process of packet forwarding during a handover procedure, wherein a source node and a target node communicate with user equipment (UE) using the same data radio bearer (DRB);

图3是在切换过程期间基于服务质量(QoS)ID的分组转发的示例过程的顺序流程图;3 is a sequence flow diagram of an example process for packet forwarding based on Quality of Service (QoS) IDs during a handover procedure;

图4是在切换过程期间分组转发的示例过程的顺序流程图,其中源节点和目标节点使用不同的DRB;4 is a sequential flow diagram of an example process of packet forwarding during a handover process, wherein the source node and the target node use different DRBs;

图5和图6是在切换过程期间分组转发的详细过程的示例的顺序流程图;5 and 6 are sequence flow diagrams of examples of detailed processes for packet forwarding during a handover process;

图7示出了根据一些实施例的设备的示例组件;Figure 7 illustrates example components of a device according to some embodiments;

图8示出了根据一些实施例的基带电路的示例接口;和Figure 8 illustrates an example interface for a baseband circuit in accordance with some embodiments; and

图9是示出根据一些示例实施例的能够从机器可读或计算机可读介质(例如,非暂时性机器可读存储介质)中读取指令并执行本文中讨论的任何一种或多种方法的组件的框图。9 is a diagram illustrating the ability to read instructions from a machine-readable or computer-readable medium (eg, a non-transitory machine-readable storage medium) and perform any one or more of the methods discussed herein, according to some example embodiments A block diagram of the components.

具体实施方式Detailed ways

以下详细描述参考了附图。不同附图中的相同附图标记可以标识相同或相似的元件。应当理解,在不脱离本公开的范围的情况下,可以利用其他实施例并且可以进行结构或逻辑上的改变。因此,以下详细描述不应被视为具有限制意义,并且实施例的范围由所附权利要求及其等同物限定。The following detailed description refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description should not be considered in a limiting sense, and the scope of the embodiments is defined by the appended claims and their equivalents.

在无线通信网络中,切换(HO)过程可以包括UE从一个接入节点转移到另一个接入节点(通常分别称为源节点和目标节点)的过程。当源节点确定切换UE时,旨在用于UE的一些信息仍然可以存储在源节点的缓冲存储器中。这样,HO过程除了使UE能够连接到目标节点之外,HO过程还可以包括源节点向目标节点提供UE的缓冲数据,并且在目标节点和UE之间的连接已经被建立之后,目标节点将数据发送到UE。In a wireless communication network, a handover (HO) procedure may include a UE's transfer from one access node to another access node (commonly referred to as source node and target node, respectively). When the source node decides to hand over the UE, some information intended for the UE may still be stored in the source node's buffer memory. In this way, in addition to enabling the UE to connect to the target node, the HO procedure may include the source node providing the UE's buffered data to the target node, and after the connection between the target node and the UE has been established, the target node transfers the data to the target node. sent to the UE.

在一些场景中,例如使用长期演进(LTE)无线电接入技术(RAT),向UE提供缓冲数据可以涉及使用分组数据汇聚协议(PDCP)来将序列号(SN)分派给旨在用于UE的分组数据单元(PDU)。SN可以使UE能够确定哪些PDU已被接收以及哪些PDU尚未被接收,并且采取适当的动作(诸如请求将一个或多个PDU重新发送到UE)。此外,用于向UE传输数据的每个数据无线承载(DRB)可以具有其自己的PDCP实例,使得分派给通过特定DRB传输的PDU的SN可以不依赖于分派给通过不同DRB传输的PDU的SN或者与分派给通过不同DRB传输的PDU的SN相关。可以在PDU被存储在存储器缓冲器中之前和/或在PDU被存储在存储器缓冲器中时,为PDU分派SN,以准备将PDU传输到UE。In some scenarios, such as using Long Term Evolution (LTE) Radio Access Technology (RAT), providing buffered data to the UE may involve using Packet Data Convergence Protocol (PDCP) to assign a sequence number (SN) to a sequence number (SN) intended for the UE Packet Data Unit (PDU). The SN may enable the UE to determine which PDUs have been received and which PDUs have not, and take appropriate action (such as requesting that one or more PDUs be resent to the UE). Furthermore, each data radio bearer (DRB) used to transmit data to the UE may have its own PDCP instance so that the SN assigned to PDUs transmitted over a particular DRB may not depend on the SN assigned to PDUs transmitted over a different DRB Or related to the SNs assigned to PDUs transmitted over different DRBs. A SN may be assigned to a PDU in preparation for transmission to the UE before and/or while the PDU is stored in the memory buffer.

关于HO过程,其中存储在源节点的存储器缓冲器中的PDU被转发到目标节点然后被转发到UE,有用的是保留了PDU的SN,使得UE可以将来自源节点的PDU与来自目标节点的PDU合并以按照适当的顺序布置PDU和/或确定是否已经成功接收到给定顺序的所有PDU。当UE确定丢失了一个或多个PDU时,UE可以请求由目标节点重新发送PDU,并且作为响应,目标节点可以重新发送给定集合中的所有PDU或仅重新发送丢失的PDU。当重新发送所有PDU时,UE可以(基于SN)检测哪些PDU是重复的并且删除/忽略重复的PDU。由于上述过程使得UE能够以适当的顺序布置来自源节点和目标节点的PDU并请求重新发送丢失的分组,所以该过程有时被表征为向参与HO过程的UE顺序无损失地递送数据。Regarding the HO procedure, where the PDUs stored in the memory buffer of the source node are forwarded to the target node and then to the UE, it is useful to preserve the SN of the PDUs so that the UE can compare the PDUs from the source node with the PDUs from the target node The PDUs are merged to arrange the PDUs in the proper order and/or to determine if all PDUs in a given order have been successfully received. When the UE determines that one or more PDUs are lost, the UE may request that the PDUs be resent by the target node, and in response, the target node may resend all PDUs in a given set or only the lost PDUs. When retransmitting all PDUs, the UE can detect (based on SN) which PDUs are duplicates and delete/ignore duplicate PDUs. Since the above procedure enables the UE to arrange PDUs from the source and target nodes in the proper order and to request retransmission of lost packets, the procedure is sometimes characterized as delivering data to UEs participating in the HO procedure without loss of order.

可以使得由源节点分派的SN能够由目标节点使用的LTE的方面可以包括确保源节点和目标节点正在使用相同的DRB来将数据发送到UE。然而,在新空口(NR)技术(例如,下一代节点B(gNB)和连接到NR核心网的eNB)中,数据到DRB的映射可以直到RAN节点(即,eNB、gNB等)。因此,源节点和目标节点可以最终使用不同的DRB来将数据发送到经历HO过程的UE。在这样的场景中,如果目标节点使用与源节点不同的DRB,则目标节点可以将SN分派给与先前由源节点发送到UE的PDU的SN不相对应的PDU。因此,UE可能无法将来自源节点的PDU与来自目标节点的PDU合并以按照适当的顺序布置PDU和/或无法确定是否已成功接收到给定传输的所有PDU。Aspects of LTE that may enable the SN assigned by the source node to be used by the target node may include ensuring that the source node and the target node are using the same DRB to send data to the UE. However, in New Radio (NR) technologies (eg, Next Generation Node Bs (gNBs) and eNBs connected to the NR core network), the mapping of data to DRBs can be up to RAN nodes (ie, eNBs, gNBs, etc.). Therefore, the source node and the target node may end up using different DRBs to send data to the UE undergoing the HO procedure. In such a scenario, if the target node uses a different DRB than the source node, the target node may assign a SN to a PDU that does not correspond to the SN of a PDU previously sent by the source node to the UE. Consequently, the UE may not be able to combine the PDUs from the source node with the PDUs from the target node to arrange the PDUs in the proper order and/or may not be able to determine whether all PDUs for a given transmission have been successfully received.

本文描述的技术可以用于实现向参与涉及NR技术(例如,gNB、连接到NR核心网的eNB等)的HO过程的UE的顺序无损损失地递送数据。在一个示例中,源节点可以指示哪个DRB正被源节点用来将PDU传输到UE,并且目标节点可以使用相同的DRB来将从源节点接收的PDU转发到UE。一旦UE已成功接收到PDU,则目标节点可以根据其自身的偏好来重新配置哪些DRB被用于将后续PDU发送到UE。The techniques described herein may be used to enable sequential lossless delivery of data to UEs participating in HO procedures involving NR techniques (eg, gNBs, eNBs connected to an NR core network, etc.). In one example, the source node may indicate which DRB is being used by the source node to transmit the PDU to the UE, and the target node may use the same DRB to forward the PDU received from the source node to the UE. Once the UE has successfully received the PDU, the target node can reconfigure according to its own preferences which DRBs are used to send subsequent PDUs to the UE.

在另一示例中,接入节点(例如,源节点和目标节点)可以基于除用于传输PDU的DRB之外的标准、属性、特性等将SN分派给PDU。例如,分派给PDU的SN可以是基于与PDU对应的QoS流。这样,即使/当两个QoS流属于相同的DRB时,两个不同的QoS流也可以在PDCP中具有不同的编号顺序。由于可以在HO过程期间和之后维持QoS流,所以发送到UE的PDU的SN可以是顺序且无损失的。In another example, access nodes (eg, source and target nodes) may assign SNs to PDUs based on criteria, attributes, characteristics, etc. other than the DRB used to transmit the PDU. For example, the SN assigned to the PDU may be based on the QoS flow corresponding to the PDU. In this way, two different QoS flows can have different numbering order in PDCP even/when they belong to the same DRB. Since the QoS flow can be maintained during and after the HO procedure, the SNs of the PDUs sent to the UE can be sequential and lossless.

在另一示例中,每个PDU可以包括由源节点分派的SN和由目标节点分派的SN。例如,从源节点发送到目标节点的PDU可以包括由源节点分派的SN以及源节点将PDU发送到UE的方式(例如,在该方式下的一个或多个条件等)的指示。此指示的示例可以包括与被源节点用来将PDU发送到UE的DRB相对应的DRB ID。在一些实施例中,可以使用不同类型的标识符(例如,除了DRB ID之外)来将数据分组映射到DRB。在另一示例中,此指示可以包括与被源节点用来将PDU发送到UE的服务质量(QoS)相对应的QoS ID。在一些实施例中,可以使用不同类型的标识符(例如,除了QoS ID之外)来将数据分组映射到DRB。In another example, each PDU may include an SN assigned by the source node and an SN assigned by the target node. For example, a PDU sent from a source node to a target node may include an SN assigned by the source node and an indication of the manner in which the source node transmitted the PDU to the UE (eg, one or more conditions under that manner, etc.). An example of this indication may include the DRB ID corresponding to the DRB used by the source node to send the PDU to the UE. In some embodiments, different types of identifiers (eg, in addition to DRB IDs) may be used to map data packets to DRBs. In another example, this indication may include a QoS ID corresponding to the quality of service (QoS) used by the source node to send the PDU to the UE. In some embodiments, different types of identifiers (eg, in addition to QoS IDs) may be used to map data packets to DRBs.

然后,目标节点可以将另一个SN分派给PDU,使得每个PDU包括两个SN,一个由源节点分派,另一个由目标节点分派。目标节点可以将PDU发送到UE,并且UE可以使用来自源节点的DRB ID和SN来合并先前从源节点接收的PDU与从目标节点接收的PDU。此外,当UE发现未接收到特定PDU时,UE可以基于由源节点分派的SN或由目标节点分派的SN来请求重新发送PDU。The target node can then assign another SN to the PDU, such that each PDU includes two SNs, one assigned by the source node and the other assigned by the target node. The target node can send the PDU to the UE, and the UE can combine the PDUs previously received from the source node with the PDUs received from the target node using the DRB ID and SN from the source node. Furthermore, when the UE finds that a specific PDU is not received, the UE may request to retransmit the PDU based on the SN assigned by the source node or the SN assigned by the target node.

在一些实施例中,源节点可以使用一种或多种技术来确定要将哪些缓冲的PDU发送到目标节点以便传输到UE。在一个示例中,当源节点将PDU发送到UE时,源节点可以监视UE确认(如成功接收)了哪些PDU。这样,如果/当涉及UE的HO过程的时间到来时,源节点可以确定尚未从UE接收到确认的最旧的PDU,并且可以将从仍然未被UE确认的最旧的PDU开始的所有PDU发送到目标节点。在这种情况下,发送到目标节点的一些PDU可以包括已经由UE确认但是不像最旧的、未确认的PDU那样旧的PDU。在另一示例中,源节点可以仅将未确认的PDU发送到目标节点。在一些实施例中,从源节点接收的一些PDU可能尚未被分派SN,并且目标节点可以识别此种PDU并且(例如,根据上述示例之一)适当地处理它们。此外,本文描述的技术可以结合现有HO过程技术(诸如以上参考LTE RAT描述的那些技术)应用。In some embodiments, the source node may use one or more techniques to determine which buffered PDUs to send to the target node for transmission to the UE. In one example, when the source node sends PDUs to the UE, the source node can monitor which PDUs the UE acknowledges (eg, successfully received). In this way, if/when the time comes for the HO procedure involving the UE, the source node can determine the oldest PDU that has not received an acknowledgment from the UE, and can send all PDUs starting from the oldest PDU that has not yet been acknowledged by the UE to the target node. In this case, some of the PDUs sent to the target node may include PDUs that have been acknowledged by the UE but are not as old as the oldest, unacknowledged PDUs. In another example, the source node may only send unacknowledged PDUs to the target node. In some embodiments, some PDUs received from the source node may not have been assigned a SN, and the target node may recognize such PDUs and process them appropriately (eg, according to one of the examples above). Furthermore, the techniques described herein may be applied in conjunction with existing HO procedure techniques, such as those described above with reference to the LTE RAT.

图1示出了根据一些实施例的网络的系统100的架构。系统100被示为包括UE 101和UE 102。UE 101和102被示为智能电话(例如,可连接到一个或多个蜂窝网络的手持触摸屏移动计算设备),但是也可以包括任何移动或非移动计算设备,例如个人数据助理(PDA)、寻呼机、膝上型计算机、台式计算机、无线手持设备或包括无线通信接口的任何计算设备。FIG. 1 illustrates the architecture of a system 100 of a network in accordance with some embodiments. System 100 is shown including UE 101 and UE 102 . UEs 101 and 102 are shown as smart phones (eg, handheld touchscreen mobile computing devices connectable to one or more cellular networks), but may also include any mobile or non-mobile computing devices such as personal data assistants (PDAs), pagers , laptop computer, desktop computer, wireless handheld device, or any computing device that includes a wireless communication interface.

在一些实施例中,UE 101和102中的任一个可以包括物联网(IoT)UE,其可以包括针对利用短期UE连接的低功率IoT应用所设计的网络接入层。IoT UE可以利用诸如机器到机器(M2M)或机器类型通信(MTC)的技术,以经由公共陆地移动网络(PLMN)、邻近服务(ProSe)或设备到设备(D2D)通信、传感器网络或IoT网络与MTC服务器或设备交换数据。M2M或MTC数据交换可以是机器发起的数据交换。IoT网络描述了互连IoT UE,其可以包括具有短期连接的(在互联网基础设施内)唯一可识别的嵌入式计算设备。IoT UE可以执行后台应用(例如,保持有效消息、状态更新等),以促进IoT网络的连接。In some embodiments, either of UEs 101 and 102 may include Internet of Things (IoT) UEs, which may include a network access layer designed for low-power IoT applications utilizing short-term UE connections. IoT UEs may utilize technologies such as Machine-to-Machine (M2M) or Machine-Type Communication (MTC) to communicate via Public Land Mobile Networks (PLMN), Proximity Services (ProSe) or Device-to-Device (D2D), sensor networks or IoT networks Exchange data with MTC servers or devices. M2M or MTC data exchanges can be machine-initiated data exchanges. An IoT network describes interconnected IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure) with short-lived connections. IoT UEs can execute background applications (eg, keep-alive messages, status updates, etc.) to facilitate connectivity to the IoT network.

UE 101和102可以被配置为与无线接入网(RAN)110连接(例如,以通信方式耦合)——RAN 110可以是例如演进通用移动通信系统(UMTS)陆地无线接入网(E-UTRAN)、NextGen RAN(NG RAN)或其他类型的RAN。UE 101和102分别利用连接103和104,每个连接包括物理通信接口或层(下面进一步详细讨论);在该示例中,连接103和104被示为用于实现通信耦合的空中接口,并且可以符合蜂窝通信协议,例如全球移动通信系统(GSM)协议、码分多址(CDMA)网络协议、即按即说(PTT)协议、蜂窝上PTT(POC)协议、通用移动通信系统(UMTS)协议、3GPP长期演进(LTE)协议、第五代(5G)协议,新空口(NR)协议等。UEs 101 and 102 may be configured to be connected (eg, communicatively coupled) with a Radio Access Network (RAN) 110 - RAN 110 may be, eg, Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ), NextGen RAN (NG RAN), or other types of RAN. UEs 101 and 102 utilize connections 103 and 104, respectively, each connection comprising a physical communication interface or layer (discussed in further detail below); in this example, connections 103 and 104 are shown as air interfaces for enabling communication coupling, and may Compliant with cellular communication protocols such as Global System for Mobile Communications (GSM) protocol, Code Division Multiple Access (CDMA) network protocol, Push to Talk (PTT) protocol, PTT over Cellular (POC) protocol, Universal Mobile Telecommunications System (UMTS) protocol , 3GPP Long Term Evolution (LTE) protocol, Fifth Generation (5G) protocol, New Radio (NR) protocol, etc.

在该实施例中,UE 101和102还可以经由ProSe接口105直接交换通信数据。ProSe接口105可以替换地称为侧链路接口,其包括一个或多个逻辑信道,包括但不限于物理侧链路控制信道(PSCCH)、物理侧链路共享信道(PSSCH)、物理侧链路发现信道(PSDCH)和物理侧链路广播信道(PSBCH)。In this embodiment, the UEs 101 and 102 can also directly exchange communication data via the ProSe interface 105 . ProSe interface 105, which may alternatively be referred to as a sidelink interface, includes one or more logical channels including, but not limited to, Physical Sidelink Control Channel (PSCCH), Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Discovery Channel (PSDCH) and Physical Sidelink Broadcast Channel (PSBCH).

UE 102被示为经配置以经由连接107接入接入点(AP)106。连接107可以包括本地无线连接,例如符合任何IEEE 802.11协议的连接,其中,AP 106将包括无线保真

Figure GDA0003189881600000071
路由器。在该示例中,AP 106被示为连接到互联网而不连接到无线系统的核心网(下面进一步详细描述)。UE 102 is shown configured to access access point (AP) 106 via connection 107 . Connection 107 may include a local wireless connection, such as a connection conforming to any IEEE 802.11 protocol, where AP 106 would include Wi-Fi
Figure GDA0003189881600000071
router. In this example, AP 106 is shown connected to the Internet and not to the core network of the wireless system (described in further detail below).

RAN 110可以包括启用连接103和104的一个或多个接入节点。这些接入节点(AN)可以称为基站(BS)、NodeB、演进NodeB(eNB)、下一代NodeB(gNB)、RAN节点等,并且可以包括在地理区域(例如,小区)内提供覆盖的地面站(例如,陆地接入点)或卫星站。RAN 110可以包括用于提供宏小区的一个或多个RAN节点(例如,宏RAN节点111)以及用于提供毫微微小区或微微小区(例如,与宏小区相比具有更小的覆盖区域、更小的用户容量或更高的带宽的小区)的一个或多个RAN节点(例如,低功率(LP)RAN节点112)。RAN 110 may include one or more access nodes enabling connections 103 and 104 . These Access Nodes (ANs) may be referred to as Base Stations (BSs), NodeBs, Evolved NodeBs (eNBs), Next Generation NodeBs (gNBs), RAN nodes, etc., and may include terrestrial providing coverage within a geographic area (eg, cell) station (eg, terrestrial access point) or satellite station. RAN 110 may include one or more RAN nodes (eg, macro RAN node 111 ) for providing macro cells and for providing femto cells or pico cells (eg, having a smaller coverage area, more one or more RAN nodes (eg, low power (LP) RAN node 112) for cells with small user capacity or higher bandwidth).

RAN节点111和112中的任一个可以端接空中接口协议,并且可以是用于UE 101和102的第一接触点。在一些实施例中,RAN节点111和112中的任一个可以履行RAN 110的各种逻辑功能,包括但不限于无线电网络控制器(RNC)功能,例如无线承载管理、上行链路和下行链路动态无线资源管理和数据分组调度以及移动性管理。Either of the RAN nodes 111 and 112 may terminate the air interface protocol and may be the first point of contact for the UEs 101 and 102 . In some embodiments, either of RAN nodes 111 and 112 may perform various logical functions of RAN 110, including but not limited to radio network controller (RNC) functions such as radio bearer management, uplink and downlink Dynamic radio resource management and data packet scheduling and mobility management.

根据一些实施例,UE 101和102可以被配置为:根据各种通信技术(例如但不限于正交频分多址(OFDMA)通信技术(例如,用于下行链路通信)或单载波频分多址(SC-FDMA)通信技术(例如,用于上行链路和ProSe或侧链路通信),在多载波通信信道上使用正交频分复用(OFDM)通信信号彼此或与RAN节点111和112中的任一个进行通信,但实施例的范围不限于此。OFDM信号可以包括多个正交子载波。According to some embodiments, UEs 101 and 102 may be configured to: according to various communication techniques such as, but not limited to, Orthogonal Frequency Division Multiple Access (OFDMA) communication techniques (eg, for downlink communication) or single carrier frequency division Multiple Access (SC-FDMA) communication technology (eg, for uplink and ProSe or sidelink communication), using Orthogonal Frequency Division Multiplexing (OFDM) communication signals to each other or to the RAN node 111 over a multi-carrier communication channel The scope of the embodiments is not limited to communicate with any of 112. The OFDM signal may include multiple orthogonal sub-carriers.

在一些实施例中,下行链路资源网格可以用于从RAN节点111和112中的任一个到UE 101和102的下行链路传输,而上行链路传输可以利用类似的技术。网格可以是称为资源网格或时频资源网格的时频网格,其为下行链路中每个时隙中的物理资源。这种时频平面表示是OFDM系统的常见做法,这使得无线电资源分配是直观的。资源网格的每列和每行分别对应于一个OFDM符号和一个OFDM子载波。资源网格在时域中的持续时间对应于无线帧中的一个时隙。资源网格中的最小时频单元称为资源元素。每个资源网格包括多个资源块,其描述了某些物理信道到资源元素的映射。每个资源块包括资源元素的集合;在频域中,这可以表示当前能够被分配的最小资源量。存在使用这样的资源块传送的若干不同的物理下行链路信道。In some embodiments, a grid of downlink resources may be used for downlink transmissions from either of RAN nodes 111 and 112 to UEs 101 and 102, while uplink transmissions may utilize similar techniques. The grid may be a time-frequency grid called a resource grid or a time-frequency resource grid, which is the physical resource in each time slot in the downlink. This time-frequency plane representation is a common practice in OFDM systems, which makes radio resource allocation intuitive. Each column and row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in the radio frame. The smallest time-frequency units in the resource grid are called resource elements. Each resource grid includes a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block includes a set of resource elements; in the frequency domain, this may represent the smallest amount of resources that can currently be allocated. There are several different physical downlink channels transmitted using such resource blocks.

物理下行链路共享信道(PDSCH)可以将用户数据和更高层信令携带到UE 101和102。物理下行链路控制信道(PDCCH)可以携带关于与PDSCH信道有关的传输格式和资源分配的信息等。它还可以向UE 101和102通知与上行链路共享信道有关的传输格式、资源分配和H-ARQ(混合自动重传请求)信息。通常,可以基于从UE 101和102中的任一个反馈的信道质量信息,在RAN节点111和112中的任一个处执行下行链路调度(将控制信道资源块和共享信道资源块分派给小区内的UE 102)。可以在用于(例如,分派给)UE 101和102中的每一个的PDCCH上发送下行链路资源分派信息。The Physical Downlink Shared Channel (PDSCH) may carry user data and higher layer signaling to UEs 101 and 102 . The Physical Downlink Control Channel (PDCCH) may carry information about the transport format and resource allocation related to the PDSCH channel, among others. It can also inform UEs 101 and 102 of uplink shared channel related transport format, resource allocation and H-ARQ (Hybrid Automatic Repeat Request) information. In general, downlink scheduling (assignment of control channel resource blocks and shared the UE 102). Downlink resource assignment information may be sent on the PDCCH for (eg, assigned to) each of UEs 101 and 102.

PDCCH可以使用控制信道元素(CCE)来传达控制信息。在被映射到资源元素之前,PDCCH复值符号可以首先被组织成四元组,然后可以使用子块交织器进行排列,以用于速率匹配。可以使用这些CCE中的一个或多个来发送每个PDCCH,其中,每个CCE可以对应于九组称为资源元素组(REG)的四个物理资源元素。可以将四个正交相移键控(QPSK)符号映射到每个REG。可以使用一个或多个CCE来发送PDCCH,这取决于下行链路控制信息(DCI)的大小和信道条件。在LTE中可以定义具有不同数量的CCE(例如,聚合等级,L=1、2、4或8)的四种或更多种不同的PDCCH格式。The PDCCH may use control channel elements (CCEs) to convey control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quads, which may then be arranged using a subblock interleaver for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine groups of four physical resource elements called resource element groups (REGs). Four quadrature phase shift keying (QPSK) symbols can be mapped to each REG. The PDCCH may be transmitted using one or more CCEs, depending on the size of the downlink control information (DCI) and channel conditions. Four or more different PDCCH formats with different numbers of CCEs (eg, aggregation levels, L=1, 2, 4, or 8) may be defined in LTE.

一些实施例可以使用作为上述概念的扩展的概念为控制信道信息进行资源分配。例如,一些实施例可以利用增强物理下行链路控制信道(EPDCCH),其使用PDSCH资源进行控制信息传输。可以使用一个或多个增强控制信道元素(ECCE)来发送EPDCCH。与上面类似,每个ECCE可以对应于九组称为增强资源元素组(EREG)的四个物理资源元素。在某些情况下,ECCE可以具有其他数量的EREG。Some embodiments may use concepts that are extensions of the above concepts for resource allocation for control channel information. For example, some embodiments may utilize an Enhanced Physical Downlink Control Channel (EPDCCH), which uses PDSCH resources for control information transmission. The EPDCCH may be transmitted using one or more enhanced control channel elements (ECCEs). Similar to above, each ECCE may correspond to nine groups of four physical resource elements called Enhanced Resource Element Groups (EREGs). In some cases, ECCEs can have other numbers of EREGs.

RAN 110被示为经由S1接口113以通信方式耦合到核心网(CN)120。在实施例中,CN120可以是演进分组核心(EPC)网络、下一代分组核心(NPC)网络或一些其他类型的CN。在该实施例中,S1接口113被分成两部分:S1-U接口114,其携带RAN节点111和112与服务网关(S-GW)122之间的业务数据;以及S1移动性管理实体(MME)接口115,其为RAN节点111和112与MME 121之间的信令接口。The RAN 110 is shown communicatively coupled to a core network (CN) 120 via an S1 interface 113 . In an embodiment, CN 120 may be an Evolved Packet Core (EPC) network, a Next Generation Packet Core (NPC) network, or some other type of CN. In this embodiment, the S1 interface 113 is divided into two parts: the S1-U interface 114, which carries traffic data between the RAN nodes 111 and 112 and the Serving Gateway (S-GW) 122; and the S1 Mobility Management Entity (MME) ) interface 115, which is the signaling interface between the RAN nodes 111 and 112 and the MME 121.

在该实施例中,CN 120包括MME 121、S-GW 122、分组数据网络(PDN)网关(P-GW)123和归属订户服务器(HSS)124。MME 121可以在功能上类似于遗留服务通用分组无线服务(GPRS)支持节点(SGSN)的控制平面。MME 121可以管理接入中的移动性方面,例如网关选择和跟踪区域列表管理。HSS 124可以包括用于网络用户的数据库,包括用于支持网络实体处理通信会话的订阅相关信息。CN 120可以包括一个或多个HSS 124,这取决于移动订户的数量、设备的容量、网络的组织等。例如,HSS 124可以提供对路由/漫游、鉴权、授权、命名/寻址解决方案、位置依赖性等的支持。In this embodiment, CN 120 includes MME 121 , S-GW 122 , Packet Data Network (PDN) Gateway (P-GW) 123 and Home Subscriber Server (HSS) 124 . The MME 121 may be functionally similar to the control plane of the legacy service General Packet Radio Service (GPRS) Support Node (SGSN). The MME 121 may manage mobility aspects of access, such as gateway selection and tracking area list management. HSS 124 may include a database for network users, including subscription-related information used to support network entities in handling communication sessions. The CN 120 may include one or more HSSs 124, depending on the number of mobile subscribers, the capacity of the equipment, the organization of the network, and the like. For example, HSS 124 may provide support for routing/roaming, authentication, authorization, naming/addressing solutions, location dependencies, and the like.

S-GW 122可以端接去往RAN 110的S1接口113,并且在RAN 110与CN 120之间路由数据分组。此外,S-GW 122可以是用于RAN间节点切换的本地移动性锚点,并且还可以提供用于3GPP间移动性的锚定。其他责任可以包括法定拦截、计费和某种策略实施。S-GW 122 may terminate S1 interface 113 to RAN 110 and route data packets between RAN 110 and CN 120. Additionally, the S-GW 122 may be a local mobility anchor for inter-RAN node handover, and may also provide an anchor for inter-3GPP mobility. Other responsibilities can include legal interception, billing and some kind of policy enforcement.

P-GW 123可以端接去往PDN的SGi接口。P-GW 123可以经由互联网协议(IP)接口125,在EPC网络123与外部网络(例如,包括应用服务器130(替换地称为应用功能(AF))的网络)之间路由数据分组。通常,应用服务器130可以是向核心网提供使用IP承载资源的应用(例如,UMTS分组服务(PS)域、LTE PS数据服务等)的元件。在该实施例中,P-GW 123被示为经由IP通信接口125以通信方式耦合到应用服务器130。应用服务器130还可以被配置为经由CN 120支持用于UE 101和102的一种或多种通信服务(例如,互联网协议上的语音(VoIP)会话、PTT会话、组通信会话、社交网络服务等)。The P-GW 123 may terminate the SGi interface to the PDN. P-GW 123 may route data packets between EPC network 123 and an external network (eg, a network including application server 130 (alternatively referred to as application function (AF))) via internet protocol (IP) interface 125 . In general, application server 130 may be an element that provides applications (eg, UMTS Packet Service (PS) domain, LTE PS data services, etc.) using IP bearer resources to the core network. In this embodiment, P-GW 123 is shown as being communicatively coupled to application server 130 via IP communication interface 125 . Application server 130 may also be configured to support one or more communication services for UEs 101 and 102 via CN 120 (eg, Voice over Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc. ).

P-GW 123还可以是用于策略实施和计费数据收集的节点。策略和计费规则功能(PCRF)126是CN 120的策略和计费控制元件。在非漫游场景中,在归属公共陆地移动网络(HPLMN)中可以存在与UE的互联网协议连接性接入网(IP-CAN)会话关联的单个PCRF。在业务脱离本地的漫游场景中,可以存在与UE的IP-CAN会话关联的两个PCRF:HPLMN内的归属PCRF(H-PCRF)和访问公共陆地移动网络(VPLMN)中的访问PCRF(V-PCRF)。PCRF 126可以经由P-GW 123以通信方式耦合到应用服务器130。应用服务器130可以用信号通知PCRF 126以指示新的服务流,并选择适当的服务质量(QoS)和计费参数。PCRF 126可以将该规则提供给具有适当的业务流模板(TFT)和QoS类标识符(QCI)的策略和计费执行功能(PCEF)(未示出),其开始由应用服务器130指定的QoS和计费。P-GW 123 may also be a node for policy enforcement and charging data collection. Policy and Charging Rules Function (PCRF) 126 is the policy and charging control element of CN 120 . In a non-roaming scenario, there may be a single PCRF associated with the UE's Internet Protocol Connectivity Access Network (IP-CAN) session in the Home Public Land Mobile Network (HPLMN). In a roaming scenario where services are off-premises, there may be two PCRFs associated with the UE's IP-CAN session: the home PCRF (H-PCRF) within the HPLMN and the visited PCRF (V-PCRF) within the visited public land mobile network (VPLMN). PCRF). PCRF 126 may be communicatively coupled to application server 130 via P-GW 123 . The application server 130 may signal the PCRF 126 to indicate the new service flow and select the appropriate quality of service (QoS) and charging parameters. PCRF 126 may provide this rule to a Policy and Charging Enforcement Function (PCEF) (not shown) with the appropriate Traffic Flow Template (TFT) and QoS Class Identifier (QCI), which initiates the QoS specified by Application Server 130 and billing.

图1中所示的设备和/或网络的数量仅用于说明目的。实际上,系统100可以包括额外的设备和/或网络;更少的设备和/或网络;不同的设备和/或网络;或与图1中所示的设备和/或网络不同布置的设备和/或网络。例如,虽然未示出,但是系统100可以包括促进或实现系统100中示出的各种组件之间的通信的设备,例如路由器、调制解调器、网关、交换机、集线器(hub)等。替代地或另外地,系统100的一个或多个设备可以执行被描述为由系统100的另一个或多个设备执行的一个或多个功能。此外,系统100的设备可以经由有线连接、无线连接或有线连接和无线连接的组合来彼此互连和/或与其他设备互连。在一些实施例中,系统100的一个或多个设备可以物理地集成在系统100的一个或多个其他设备中,和/或可以物理地附连到系统100的一个或多个其他设备。此外,虽然在图1的某些设备之间示出了“直接”连接,但是实际上,一些所述设备可以经由一个或多个附加设备和/或网络彼此通信。The number of devices and/or networks shown in Figure 1 is for illustration purposes only. In practice, system 100 may include additional devices and/or networks; fewer devices and/or networks; different devices and/or networks; or devices and/or networks arranged differently than those shown in FIG. 1 . / or network. For example, although not shown, system 100 may include devices that facilitate or enable communications between the various components shown in system 100, such as routers, modems, gateways, switches, hubs, and the like. Alternatively or additionally, one or more devices of system 100 may perform one or more functions described as being performed by another device or devices of system 100 . Furthermore, the devices of system 100 may be interconnected with each other and/or with other devices via wired connections, wireless connections, or a combination of wired and wireless connections. In some embodiments, one or more devices of system 100 may be physically integrated within and/or may be physically attached to one or more other devices of system 100 . Furthermore, although a "direct" connection is shown between some of the devices of FIG. 1, in practice, some of the devices may communicate with each other via one or more additional devices and/or networks.

图2是在切换过程期间用于分组转发的示例过程的顺序流程图,其中源节点和目标节点111使用相同的(多个)DRB来与UE 101通信。如图所示,图2的示例可以包括UE 101、源节点111-1和目标节点111-2。源节点111-1和目标节点111-2均可以是上面参考图1描述的宏RAN节点111或LP RAN节点112的示例。图2的示例被提供为非限制性示例。实际上,图2的示例可以包括更少的、附加的和/或替代的操作或功能,诸如图3至图6中的一个或多个操作或功能。另外,图2的一个或多个操作或功能可以由更少的、附加的或替代的设备执行,这些设备可以包括上面参考图1描述的一个或多个设备。2 is a sequence flow diagram of an example process for packet forwarding during a handover procedure, where source and target nodes 111 use the same DRB(s) to communicate with UE 101 . As shown, the example of FIG. 2 may include UE 101, source node 111-1, and target node 111-2. Both the source node 111-1 and the target node 111-2 may be examples of the macro RAN node 111 or the LP RAN node 112 described above with reference to FIG. 1 . The example of FIG. 2 is provided as a non-limiting example. Indeed, the example of FIG. 2 may include fewer, additional, and/or alternative operations or functions, such as one or more of the operations or functions in FIGS. 3-6 . Additionally, one or more of the operations or functions of FIG. 2 may be performed by fewer, additional, or alternative devices, which may include one or more of the devices described above with reference to FIG. 1 .

如图所示,UE 101和源节点111-1可以向彼此传输分组(路线205)。如本文所述的,分组可以包括通过无线通信网络的用户平面在设备(例如,UE 101、源节点111-1、目标节点111-2、CN 120的设备等)之间传输的PDU。此种分组在本文中可以称为用户数据(UD)。UE101和源节点111-1均可以实现诸如PDCP的协议,以将SN分派给每个分组。SN可以被包括在为SN信息保留的位置上的分组中。例如,SN的长度可以是12位,并且可以占用分组的第一个八位位组的位4-8,以及分组的第二个八位位组的所有8个位。在此实施例中,第一八位位组的第一位可以专用于指示分组是对应于用户数据还是控制数据,并且第一八位位组的第二位、第三位和第四位可以被保留用于其他目的。在一些实施例中,可以以不同的方式配置分组。As shown, UE 101 and source node 111-1 may transmit packets to each other (route 205). As described herein, packets may include PDUs transmitted between devices (eg, UE 101, source node 111-1, target node 111-2, devices of CN 120, etc.) over the user plane of the wireless communication network. Such packets may be referred to herein as user data (UD). Both the UE 101 and the source node 111-1 may implement a protocol such as PDCP to assign an SN to each packet. The SN may be included in the packet at a location reserved for SN information. For example, the SN may be 12 bits in length and may occupy bits 4-8 of the first octet of the packet, and all 8 bits of the second octet of the packet. In this embodiment, the first bit of the first octet may be dedicated to indicating whether the packet corresponds to user data or control data, and the second, third and fourth bits of the first octet may be reserved for other purposes. In some embodiments, the grouping may be configured in different ways.

源节点111-1可以(从CN 120)接收旨在用于UE 101的分组,并且可以将分组临时存储在源节点111-1的本地缓冲存储器中。在将分组发送到UE 101之前,源节点111-1可以将SN分派给每个分组。根据PDCP,分派给每个分组的SN可以是基于被源节点111-1用来将分组发送到UE101的DRB。分组的SN可以以与分组要被UE101发送、接收、读取、和/或处理的方式(例如,顺序)一致的相对顺序(例如,1、2、3等)来分派。在向UE 101发送分组时,源节点111-1可以监视哪些分组已经被发送(以及发送的时间)以及UE 101是否已经确认了任何所发送的分组。当UE 101指示未接收到一个或多个分组时,源节点111-1可以重新发送所标识的分组,记录重新发送的时间,并继续监视UE 101是否确认了重新发送的分组。当缓冲分组被UE 101确认时,源节点111-1可以(立即或周期性地)从缓冲器中移除分组。Source node 111-1 may receive packets intended for UE 101 (from CN 120) and may temporarily store the packets in a local buffer memory of source node 111-1. Before sending the packets to the UE 101, the source node 111-1 may assign a SN to each packet. According to PDCP, the SN assigned to each packet may be based on the DRB used by the source node 111-1 to send the packet to the UE 101. The SNs of the packets may be assigned in a relative order (eg, 1, 2, 3, etc.) consistent with the manner (eg, order) in which the packets are to be sent, received, read, and/or processed by the UE 101 . When sending packets to UE 101, source node 111-1 can monitor which packets have been sent (and when) and whether UE 101 has acknowledged any sent packets. When the UE 101 indicates that one or more packets were not received, the source node 111-1 may resend the identified packets, record the time of the resend, and continue to monitor whether the UE 101 acknowledges the resent packets. When the buffered packet is acknowledged by the UE 101, the source node 111-1 may (immediately or periodically) remove the packet from the buffer.

SN可以由源节点111-1实现的协议栈的PDCP层来分派。在此种实施例中,PDCP层可以在协议栈的无线链路控制(RLC)层之上操作,RLC层可以在协议栈的介质访问控制(MAC)层之上操作,并且MAC层可以是在协议栈的物理(PHY)层之上操作。UE 101可以实现类似的协议栈(例如,PDCP层、RLC层、MAC层和PHY层),并且可以以与源节点111-1类似的方式发送、处理和接收分组。在一些实施例中,源节点111-1可以在切换过程之前和期间将SN分派给分组。在一些实施例中,源节点111-1可以仅在确定UE 101要被切换到另一个RAN节点111之后才开始将SN分派给分组。The SN may be assigned by the PDCP layer of the protocol stack implemented by the source node 111-1. In such an embodiment, the PDCP layer may operate above the radio link control (RLC) layer of the protocol stack, the RLC layer may operate above the medium access control (MAC) layer of the protocol stack, and the MAC layer may be in the Operates above the physical (PHY) layer of the protocol stack. UE 101 may implement similar protocol stacks (eg, PDCP layer, RLC layer, MAC layer, and PHY layer), and may transmit, process, and receive packets in a manner similar to source node 111-1. In some embodiments, source node 111-1 may assign SNs to packets before and during the handover procedure. In some embodiments, the source node 111-1 may start assigning SNs to packets only after determining that the UE 101 is to be handed over to another RAN node 111.

假设源节点111-1确定UE 101应该经历涉及目标节点111-2的切换过程(框210)。作为响应,源节点111-1可以停止向UE 101发送用户数据分组,并确定要将哪些缓冲分组发送到目标节点111-2。在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组包括自仍然未被UE 101确认的最旧分组测得的发送到UE 101的所有分组。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101已经确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组4是仍然未被UE 101确认的最旧分组,所以目标节点可以确定分组4-10要被发送到目标节点111-2。与之相比,在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组仅包括尚未被UE 101确认的分组。例如,继续其中源节点111-1向UE 101发送分组1-10的示例,并且UE101已确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组1-3和6-7已经被UE 101确认,所以目标节点可以确定仅将分组4、5和8-10发送到目标节点111-2。Assume that the source node 111-1 determines that the UE 101 should undergo a handover procedure involving the target node 111-2 (block 210). In response, source node 111-1 may stop sending user data packets to UE 101 and determine which buffered packets to send to target node 111-2. In some embodiments, the source node 111-1 may determine that the packets to be sent to the target node 111-2 include all packets sent to the UE 101 measured from the oldest packet still unacknowledged by the UE 101. For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packets 4 is the oldest packet still unacknowledged by UE 101, so the target node can determine that packet 4-10 is to be sent to target node 111-2. In contrast, in some embodiments, source node 111-1 may determine that packets to be sent to target node 111-2 only include packets that have not been acknowledged by UE 101. For example, continuing the example where source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), then Since packets 1-3 and 6-7 have been acknowledged by UE 101, the target node can determine to send only packets 4, 5 and 8-10 to target node 111-2.

源节点111-1可以将确定的分组传输到目标节点111-2(路线220)。如图所示,每个分组可以包括相应的SN和DRB ID。DRB ID可以指示源节点111-1用来确定SN并且源节点111-1将使用以将分组发送到UE101的DRB。在一些实施例中,源节点111-1可以仅将DRB ID插入到由目标节点111-2传输到UE 101的分组中(例如,在源节点111-1确定执行切换过程之后)。在一些实施例中,源节点111-1可以在指向UE101的所有分组(例如,甚至在源节点111-1确定执行切换过程之前所接收的分组)中包括DRB ID。目标节点111-2可以缓冲每个分组并基于与每个分组相关联的DRB ID将每个分组映射到相应的DRB(框225)。另外,目标节点111-2可以基于DRB ID分派与用于将分组发送到UE101的源节点111-1相同的DRB(框230)。如此,目标节点111-2可以使用与源节点111-1相同的DRB将分组传输到UE 101(路线255)。The source node 111-1 may transmit the determined packet to the destination node 111-2 (route 220). As shown, each packet may include a corresponding SN and DRB ID. The DRB ID may indicate the DRB that the source node 111-1 will use to determine the SN and that the source node 111-1 will use to send packets to the UE 101 . In some embodiments, source node 111-1 may only insert the DRB ID into packets transmitted by target node 111-2 to UE 101 (eg, after source node 111-1 determines to perform a handover procedure). In some embodiments, source node 111-1 may include the DRB ID in all packets directed to UE 101 (eg, packets received even before source node 111-1 determines to perform a handover procedure). Target node 111-2 may buffer each packet and map each packet to a corresponding DRB based on the DRB ID associated with each packet (block 225). Additionally, the target node 111-2 may assign the same DRB as the source node 111-1 used to send the packet to the UE 101 based on the DRB ID (block 230). As such, target node 111-2 may transmit the packet to UE 101 using the same DRB as source node 111-1 (route 255).

源节点111-1可以通过向UE 101发送RRC连接重新配置请求消息来向UE 101通知HO过程(路线235),其可以包括用于与目标节点111-2建立连接的配置信息。在一些实施例中,UE 101可以通过例如从源节点111-1分离并且将RRC连接重新配置完成消息传输到目标节点111-2来响应来自源节点111-1的消息,其示例在下面参考图5和图6被详细描述。The source node 111-1 may notify the UE 101 of the HO procedure (route 235) by sending an RRC connection reconfiguration request message to the UE 101, which may include configuration information for establishing a connection with the target node 111-2. In some embodiments, UE 101 may respond to the message from source node 111-1 by, for example, detaching from source node 111-1 and transmitting an RRC connection reconfiguration complete message to target node 111-2, examples of which are described below with reference to Figures 5 and 6 are described in detail.

在其中(如上所述)源节点111-1被配置为确定要发送到目标节点111-2的分组包括自尚未被UE 101确认的最旧分组以来发送到UE 101的所有分组的实施例中,UE 101可以通过基于由源节点111-1发送的UE101尚未成功接收到(并且因此尚未确认)的最旧分组来丢弃分组进行类似地操作(框240)。例如,如果源节点111-1向UE 101发送分组1-10,并且UE101仅接收到分组1-3和6-7(但未接收到4、5或8-10),则因为分组4是UE 101仍未接收/确认的最旧分组,所以UE 101可以丢弃分组4-10。这样做可以释放UE 101的存储容量,因为在此种实施例中,目标节点111-2可以被配置为重新发送从最旧的、未确认的分组开始的分组(例如,分组4-10)。与之相比,在源节点111-1仅将未确认的分组(例如,分组4、5和8-10)发送到目标节点111-2使得目标节点111-2可以仅将未确认的分组发送到UE 101的实施例中,UE 101可以处理从源节点111-1成功接收到的分组(例如,分组1-3和6-7),并将其发送到上层(例如,IP层或另一类型的层3协议)等,而不等待来自目标节点111-2的丢失分组(例如,分组4、5和8-10)(框245)。In embodiments where (as described above) the source node 111-1 is configured to determine that the packets to be sent to the target node 111-2 comprise all packets sent to the UE 101 since the oldest packet not yet acknowledged by the UE 101, The UE 101 may operate similarly by dropping packets based on the oldest packet sent by the source node 111-1 that the UE 101 has not successfully received (and therefore not acknowledged) (block 240). For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 only receives packets 1-3 and 6-7 (but not 4, 5 or 8-10), then because packet 4 is the UE The oldest packet that 101 has not yet received/acknowledged, so UE 101 may discard packets 4-10. Doing so may free up storage capacity for UE 101, since in such an embodiment, target node 111-2 may be configured to resend packets (eg, packets 4-10) starting with the oldest, unacknowledged packet. In contrast, sending only unacknowledged packets (eg, packets 4, 5, and 8-10) at source node 111-1 to destination node 111-2 allows destination node 111-2 to send only unacknowledged packets In embodiments to UE 101, UE 101 may process packets (eg, packets 1-3 and 6-7) successfully received from source node 111-1 and send them to upper layers (eg, IP layer or another type of Layer 3 protocol), etc., without waiting for lost packets (eg, packets 4, 5, and 8-10) from target node 111-2 (block 245).

在目标节点111-2已经成功地将分组发送到UE 101之后,UE 101、源节点111-1和目标节点111-2可以完成HO过程。这样做可以包括各种操作中的一个或多个(诸如UE 101从源节点111-1分离并且将RRC连接重新配置完成消息传输到目标节点111-2)(路线250)。下面参考图5和图6描述此种操作的详细示例。目标节点111-2可以向UE 101发送数据分组(路线255)。在一些实施例中,目标节点111-2可以向UE 101发送目标节点111-2从源节点111-1接收的所有数据分组(路线220)。在一些实施例中,在目标节点111-2向UE 101发送数据分组之前,UE101可以向目标节点111-2发送针对目标节点111-2已经从源节点111-1接收到的一个或多个数据分组的确认消息,并且目标节点111-2可以向UE 101仅发送尚未接收到确认的数据分组(即,未确认的分组)。After the target node 111-2 has successfully sent the packet to the UE 101, the UE 101, the source node 111-1 and the target node 111-2 may complete the HO procedure. Doing so may include one or more of various operations (such as UE 101 detaching from source node 111-1 and transmitting an RRC connection reconfiguration complete message to target node 111-2) (route 250). A detailed example of such an operation is described below with reference to FIGS. 5 and 6 . Target node 111-2 may send the data packet to UE 101 (route 255). In some embodiments, target node 111-2 may send to UE 101 all data packets received by target node 111-2 from source node 111-1 (route 220). In some embodiments, before the target node 111-2 sends the data packet to the UE 101, the UE 101 may send to the target node 111-2 one or more data that the target node 111-2 has received from the source node 111-1 acknowledgment message for the packet, and the target node 111-2 may send to the UE 101 only data packets for which an acknowledgment has not been received (ie, unacknowledged packets).

在一些实施例中,UE 101可以通知目标节点111-2已经接收到所有数据分组(例如,来自源节点的具有SN的所有分组)的时间。在一些实施例中,该通知或指示可以由UE101经由结束标记分组或另一类型的指示符来提供。另外或替代地,在UE 101已经成功地从目标节点111-2接收到分组(路线255)之后,目标节点111-2可以重新配置用于与UE101通信的DRB(框260)。例如,源节点111-1设置的与UE 101通信的DRB可以不是目标节点111-2与UE101通信的最佳或优选DRB。如此,在来自源节点111-1的分组已经由UE 101成功接收到之后,目标节点111-2可以重新配置(例如,重新分派、重新分配等)目标节点111-2和UE 101可以使用来向彼此传输用户数据的DRB(框260)。在一些实施例中,目标节点111-2可以在更早的时间执行这些操作。例如,在将数据分组传输到UE 101(路线255)之前,目标节点111-2可以确定在将数据分组传输到UE 101之后(例如,在HO过程完成之后)目标节点111-2将要使用的DRB,并且在UE 101已经接收到数据分组之后(例如,在HO过程完成之后),目标节点111-2可以向UE 101提供用于使用新DRB的配置信息。In some embodiments, the UE 101 may notify the target node 111-2 when all data packets (eg, all packets with SNs from the source node) have been received. In some embodiments, this notification or indication may be provided by the UE 101 via an end marker packet or another type of indicator. Additionally or alternatively, after UE 101 has successfully received the packet from target node 111-2 (route 255), target node 111-2 may reconfigure the DRB for communicating with UE 101 (block 260). For example, the DRB set by the source node 111-1 to communicate with the UE 101 may not be the best or preferred DRB for the target node 111-2 to communicate with the UE 101. As such, after a packet from source node 111-1 has been successfully received by UE 101, target node 111-2 may reconfigure (eg, reassign, reallocate, etc.) DRBs of user data are transmitted to each other (block 260). In some embodiments, target node 111-2 may perform these operations at an earlier time. For example, before transmitting the data packet to UE 101 (route 255), target node 111-2 may determine the DRB to be used by target node 111-2 after transmitting the data packet to UE 101 (eg, after the HO procedure is completed) , and after the UE 101 has received the data packet (eg, after the HO procedure is completed), the target node 111-2 may provide the UE 101 with configuration information for using the new DRB.

图3是在切换过程期间基于QoS ID进行分组转发的示例过程的顺序流程图。如图所示,图3的示例可以包括UE 101、源节点111-1和目标节点111-2。源节点111-1和目标节点111-2均可以是上面参考图1描述的宏RAN节点111或LP RAN节点112的示例。图3的示例被提供为非限制性示例。在实践中,图3的示例可以包括更少的、额外的和/或替代的操作或功能,诸如图2和图4至图6中的一个或多个操作或功能。另外,图3的一个或多个操作或功能可以由更少的、额外的或替代的设备执行,这些设备可以包括上面参考图1描述的一个或多个设备。3 is a sequence flow diagram of an example process for packet forwarding based on QoS IDs during a handover process. As shown, the example of FIG. 3 may include UE 101, source node 111-1, and target node 111-2. Both the source node 111-1 and the target node 111-2 may be examples of the macro RAN node 111 or the LP RAN node 112 described above with reference to FIG. 1 . The example of FIG. 3 is provided as a non-limiting example. In practice, the example of FIG. 3 may include fewer, additional and/or alternative operations or functions, such as one or more of the operations or functions in FIGS. 2 and 4-6. Additionally, one or more of the operations or functions of FIG. 3 may be performed by fewer, additional, or alternative devices, which may include one or more of the devices described above with reference to FIG. 1 .

如图所示,UE 101和源节点111-1可以通过用户平面向彼此传输用户数据分组(路线305)。UE 101和源节点111-1均可以实现协议以将SN分派给每个分组。代替每个分组的SN是基于用于传输分组的DRB,每个分组的SN可以是基于与分组相关联的QoS流。可以基于QoS流滤波器或QoS指示符或分组中包括的其他QoS标记信息来确定或识别与分组相关联的QoS流。此信息也可以或者可选地通过无线协议,在用户平面中或作为在UE 101和CN 120之间交换的配置信息的一部分来传输。由于SN可以是基于与分组(而不是,例如,DRB)相关联的QoS流,所以可以使用一个DRB来传输对应于多个不同编号序列的用户数据分组。As shown, UE 101 and source node 111-1 may transmit user data packets to each other over the user plane (route 305). Both UE 101 and source node 111-1 may implement a protocol to assign a SN to each packet. Instead of the per-packet SN being based on the DRB used to transport the packet, the per-packet SN may be based on the QoS flow associated with the packet. The QoS flow associated with the packet may be determined or identified based on a QoS flow filter or QoS indicator or other QoS marking information included in the packet. This information may also or alternatively be transmitted over the radio protocol, in the user plane or as part of the configuration information exchanged between the UE 101 and the CN 120. Since the SN may be based on QoS flows associated with packets (rather than, eg, DRBs), one DRB may be used to transport user data packets corresponding to multiple different numbering sequences.

假设源节点111-1确定UE 101将经历涉及目标节点111-2的HO过程(框310)。作为响应,源节点111-1可以停止向UE 101发送用户数据的分组,并确定要将哪些缓冲分组发送到目标节点111-2。在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组包括自仍然未被UE 101确认的最旧分组以来发送到UE 101的所有分组。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101已经确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组4是仍然未被UE 101确认的最旧分组,所以目标节点111-2可以确定分组4-10要被发送到目标节点111-2。与之相比,在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组仅包括尚未被UE 101确认的分组。例如,继续其中源节点111-1向UE 101发送分组1-10的示例,并且UE 101已确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组1-3和6-7已经被UE 101确认,所以目标节点111-2可以确定仅将分组4、5和8-10发送到目标节点111-2。Assume that source node 111-1 determines that UE 101 will undergo a HO procedure involving target node 111-2 (block 310). In response, source node 111-1 may stop sending packets of user data to UE 101 and determine which buffered packets to send to target node 111-2. In some embodiments, source node 111-1 may determine that the packets to be sent to target node 111-2 include all packets sent to UE 101 since the oldest packet still unacknowledged by UE 101. For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packets 4 is the oldest packet still unacknowledged by UE 101, so target node 111-2 can determine that packet 4-10 is to be sent to target node 111-2. In contrast, in some embodiments, source node 111-1 may determine that packets to be sent to target node 111-2 only include packets that have not been acknowledged by UE 101. For example, continuing with the example where source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), Then since packets 1-3 and 6-7 have been acknowledged by UE 101, target node 111-2 can determine to send only packets 4, 5 and 8-10 to target node 111-2.

源节点111-1可以通过向UE 101发送RRC连接重新配置请求消息来向UE 101通知HO过程(路线320),其可以包括用于与目标节点111-2建立连接的配置信息。配置信息可以包括关于源节点和目标节点111正在实现哪种分组转发技术的指令(例如,目标节点111-2是否仅转发未确认的分组等)。分组转发技术可以向UE 101通知从目标节点111-2期望哪些分组。在一些实施例中,UE 101可以通过例如从源节点111-1分离并且将RRC连接重新配置完成消息传输到目标节点111-2来响应来自源节点111-1的消息,其示例在下面参考图5和图6被详细描述。The source node 111-1 may notify the UE 101 of the HO procedure (route 320) by sending an RRC connection reconfiguration request message to the UE 101, which may include configuration information for establishing a connection with the target node 111-2. The configuration information may include instructions as to which packet forwarding technique the source and target nodes 111 are implementing (eg, whether the target node 111-2 is only forwarding unacknowledged packets, etc.). Packet forwarding techniques may inform UE 101 which packets are expected from target node 111-2. In some embodiments, UE 101 may respond to the message from source node 111-1 by, for example, detaching from source node 111-1 and transmitting an RRC connection reconfiguration complete message to target node 111-2, examples of which are described below with reference to Figures 5 and 6 are described in detail.

在其中(如上所述)源节点111-1被配置为确定要发送到目标节点111-2的分组包括自尚未被UE 101确认的最旧分组以来发送到UE 101的所有分组的实施例中,UE 101可以通过基于由源节点111-1发送的UE101尚未成功接收到(并且因此尚未确认)的最旧分组来丢弃分组进行类似地操作(框325)。例如,如果源节点111-1向UE 101发送分组1-10,并且UE101仅接收到分组1-3和6-7(但未接收到4、5或8-10),则因为分组4是UE 101仍未接收/确认的最旧分组,所以UE 101可以丢弃分组4-10。这样做可以释放UE 101的存储容量,因为在此种实施例中,目标节点111-2可以被配置为重新发送从最旧的、未确认的分组开始的分组(例如,分组4-10)。与之相比,在源节点111-1仅将未确认的分组(例如,分组4、5和8-10)发送到目标节点111-2使得目标节点111-2可以仅将未确认的分组发送到UE 101的实施例中,UE 101可以处理从源节点111-1成功接收到的分组(例如,分组1-3和6-7),并将其发送到上层(例如,IP层或另一类型的层3协议)等,而不等待来自目标节点111-2的丢失分组(例如,分组4、5和8-10)(框330)。In embodiments where (as described above) the source node 111-1 is configured to determine that the packets to be sent to the target node 111-2 comprise all packets sent to the UE 101 since the oldest packet not yet acknowledged by the UE 101, The UE 101 may operate similarly by dropping packets based on the oldest packet sent by the source node 111-1 that the UE 101 has not successfully received (and therefore not acknowledged) (block 325). For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 only receives packets 1-3 and 6-7 (but not 4, 5 or 8-10), then because packet 4 is the UE The oldest packet that 101 has not yet received/acknowledged, so UE 101 may discard packets 4-10. Doing so may free up storage capacity for UE 101, since in such an embodiment, target node 111-2 may be configured to resend packets (eg, packets 4-10) starting with the oldest, unacknowledged packet. In contrast, sending only unacknowledged packets (eg, packets 4, 5, and 8-10) at source node 111-1 to destination node 111-2 allows destination node 111-2 to send only unacknowledged packets In embodiments to UE 101, UE 101 may process packets (eg, packets 1-3 and 6-7) successfully received from source node 111-1 and send them to upper layers (eg, IP layer or another type of Layer 3 protocol), etc., without waiting for lost packets (eg, packets 4, 5, and 8-10) from target node 111-2 (block 330).

源节点111-1可以将用户数据分组传输到目标节点111-2(路线335)。如图所示,每个分组可以包括相应的SN和QoS流ID。目标节点111-2可以缓冲每个分组并基于已经与每个分组相关联的QoS流ID将每个分组映射到相应的QoS流ID(框340)。另外,目标节点111-2可以确定并分配用于将数据用户分组发送到UE 101的优选DRB(框345)。与图2的示例相比,目标节点111-2可以选择与源节点111-1用于将用户数据分组传输到UE 101不同的DRB集合。The source node 111-1 may transmit the user data packet to the destination node 111-2 (route 335). As shown, each packet may include a corresponding SN and QoS flow ID. Target node 111-2 may buffer each packet and map each packet to a corresponding QoS flow ID based on the QoS flow ID already associated with each packet (block 340). Additionally, target node 111-2 may determine and assign a preferred DRB for sending data user packets to UE 101 (block 345). Compared to the example of FIG. 2 , the target node 111 - 2 may select a different set of DRBs than the source node 111 - 1 uses to transmit user data packets to the UE 101 .

UE 101、源节点111-1和目标节点111-2可以完成HO过程。这样做可以包括各种操作中的一个或多个(诸如UE 101从源节点111-1分离并且将RRC连接重新配置完成消息传输到目标节点111-2)(路线350)。下面参考图5和图6描述此种操作的详细示例。目标节点111-2可以将用户数据分组发送到UE 101(在路线355上)。在UE 101未能成功接收一个或多个所发送的分组的情况下,UE 101可以向目标节点110发送关于失败分组的重新发送请求,并且目标节点111-2可以通过重新发送失败分组来进行响应(路线360)。The UE 101, the source node 111-1 and the target node 111-2 can complete the HO procedure. Doing so may include one or more of various operations (such as UE 101 detaching from source node 111-1 and transmitting an RRC connection reconfiguration complete message to target node 111-2) (route 350). A detailed example of such an operation is described below with reference to FIGS. 5 and 6 . Target node 111-2 may send the user data packet to UE 101 (on route 355). In the event that the UE 101 fails to successfully receive one or more of the transmitted packets, the UE 101 may send a resend request for the failed packet to the target node 110, and the target node 111-2 may respond by resending the failed packet (Route 360).

图4是在切换过程期间用于分组转发的示例过程的顺序流程图,其中源节点和目标节点111使用不同的DRB。如图所示,图4的示例可以包括UE 101、源节点111-1和目标节点111-2,它们均可以是上面参考图1描述的宏RAN节点111或LP RAN节点112的示例。图4的示例被提供为非限制性示例。实际上,图4的示例可以包括更少的、额外的和/或替代的操作或功能,诸如图2、图3、图5和图6中的一个或多个操作或功能。另外,图4的一个或多个操作或功能可以由更少的、额外的或替代的设备执行,这些设备可以包括上面参考图1描述的一个或多个设备。Figure 4 is a sequential flow diagram of an example process for packet forwarding during a handover procedure, where the source and target nodes 111 use different DRBs. As shown, the example of FIG. 4 may include UE 101, source node 111-1 and target node 111-2, all of which may be examples of macro RAN node 111 or LP RAN node 112 described above with reference to FIG. The example of FIG. 4 is provided as a non-limiting example. Indeed, the example of FIG. 4 may include fewer, additional and/or alternative operations or functions, such as one or more of the operations or functions of FIGS. 2 , 3 , 5 and 6 . Additionally, one or more of the operations or functions of FIG. 4 may be performed by fewer, additional, or alternative devices, which may include one or more of the devices described above with reference to FIG. 1 .

如图所示,UE 101和源节点111-1可以向彼此传输分组(路线405)。例如,源节点111-1可以(从CN 120)接收旨在用于UE 101的分组,并且可以将分组临时存储在源节点111-1的本地缓冲存储器中。在将分组发送到UE 101之前,源节点111-1可以将SN分派给每个分组。根据PDCP,分派给每个分组的SN可以是基于被源节点111-1用来将分组发送到UE101的DRB。分组的SN可以以与分组要被UE101接收、读取、和/或处理的方式一致的顺序来分派。在向UE 101发送分组时,源节点111-1可以监视哪些分组已经被发送(以及发送的时间)以及UE 101是否已经确认了任何所发送的分组。当UE 101指示未接收到一个或多个分组时,源节点111-1可以重新发送所标识的分组,记录重新发送的时间,并继续监视UE 101是否确认了重新发送的分组。当缓冲分组被UE101确认时,源节点111-1可以(立即或周期性地)从缓冲器中移除分组。As shown, UE 101 and source node 111-1 may transmit packets to each other (route 405). For example, source node 111-1 may receive packets (from CN 120) intended for UE 101 and may temporarily store the packets in a local buffer memory of source node 111-1. Before sending the packets to the UE 101, the source node 111-1 may assign a SN to each packet. According to PDCP, the SN assigned to each packet may be based on the DRB used by the source node 111-1 to send the packet to the UE 101. The SNs of the packets may be assigned in an order consistent with the manner in which the packets are to be received, read, and/or processed by the UE 101 . When sending packets to UE 101, source node 111-1 can monitor which packets have been sent (and when) and whether UE 101 has acknowledged any sent packets. When the UE 101 indicates that one or more packets were not received, the source node 111-1 may resend the identified packets, record the time of the resend, and continue to monitor whether the UE 101 acknowledges the resent packets. When the buffered packet is acknowledged by the UE 101, the source node 111-1 may (immediately or periodically) remove the packet from the buffer.

假设源节点111-1确定UE 101应该经历涉及目标节点111-2的切换过程(框410)。作为响应,源节点111-1可以停止向UE 101发送用户数据的分组,并确定要将哪些缓冲分组发送到目标节点111-2。在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组包括自仍然未被UE 101确认的最旧分组开始测得的发送到UE 101的所有分组。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101已经确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组4是仍然未被UE 101确认的最旧分组,所以目标节点111-2可以确定分组4-10要被发送到目标节点111-2。与之相比,在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组仅包括尚未被UE 101确认的分组。例如,继续其中源节点111-1向UE 101发送分组1-10的示例,并且UE 101已确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组1-3和6-7已经被UE 101确认,所以目标节点111-2可以确定仅将分组4、5和8-10发送到目标节点111-2。Assume that the source node 111-1 determines that the UE 101 should undergo a handover procedure involving the target node 111-2 (block 410). In response, source node 111-1 may stop sending packets of user data to UE 101 and determine which buffered packets to send to target node 111-2. In some embodiments, source node 111-1 may determine that the packets to be sent to target node 111-2 include all packets sent to UE 101 measured starting with the oldest packet still unacknowledged by UE 101. For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packets 4 is the oldest packet still unacknowledged by UE 101, so target node 111-2 can determine that packet 4-10 is to be sent to target node 111-2. In contrast, in some embodiments, source node 111-1 may determine that packets to be sent to target node 111-2 only include packets that have not been acknowledged by UE 101. For example, continuing with the example where source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), Then since packets 1-3 and 6-7 have been acknowledged by UE 101, target node 111-2 can determine to send only packets 4, 5 and 8-10 to target node 111-2.

源节点111-1可以将确定的分组传输到目标节点111-2(路线420)。如图所示,每个分组可以包括相应的SN和DRB ID。DRB ID可以指示源节点111-1用来确定SN并且源节点111-1将使用以将分组发送到UE101的DRB。源节点111-1可以通过向UE 101发送RRC连接重新配置请求消息来向UE 101通知HO过程(路线425),其可以包括用于与目标节点111-2建立连接的配置信息。The source node 111-1 may transmit the determined packet to the destination node 111-2 (route 420). As shown, each packet may include a corresponding SN and DRB ID. The DRB ID may indicate the DRB that the source node 111-1 will use to determine the SN and that the source node 111-1 will use to send packets to the UE 101 . The source node 111-1 may notify the UE 101 of the HO procedure (route 425) by sending an RRC connection reconfiguration request message to the UE 101, which may include configuration information for establishing a connection with the target node 111-2.

在一些实施例中,其中源节点111-1被配置为确定要发送到目标节点111-2的分组包括自尚未被UE 101确认的最旧分组以来发送到UE 101的所有分组,UE 101可以通过基于由源节点111-1发送的UE 101尚未成功接收到(并且因此尚未确认)的最旧分组来丢弃分组进行类似地操作(框430)。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101仅接收到分组1-3和6-7(但未接收到4、5或8-10),则因为分组4是UE 101仍未接收/确认的最旧分组,所以UE 101可以丢弃分组4-10。与之相比,在源节点111-1仅将未确认的分组(例如,分组4、5和8-10)发送到目标节点111-2使得目标节点111-2可以仅将未确认的分组发送到UE 101的实施例中,UE 101可以处理从源节点111-1成功接收到的分组(例如,分组1-3和6-7),并将其发送到上层(例如,IP层或另一类型的层3协议)等,而不等待来自目标节点111-2的丢失分组(例如,分组4、5和8-10)(框435)。In some embodiments, where the source node 111-1 is configured to determine that the packets to be sent to the target node 111-2 include all packets sent to the UE 101 since the oldest packet not yet acknowledged by the UE 101, the UE 101 may pass Operates similarly (block 430), dropping packets based on the oldest packet sent by source node 111-1 that UE 101 has not successfully received (and therefore not acknowledged). For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 only receives packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packet 4 is The oldest packet that UE 101 has not yet received/acknowledged, so UE 101 may discard packets 4-10. In contrast, sending only unacknowledged packets (eg, packets 4, 5, and 8-10) at source node 111-1 to destination node 111-2 allows destination node 111-2 to send only unacknowledged packets In embodiments to UE 101, UE 101 may process packets (eg, packets 1-3 and 6-7) successfully received from source node 111-1 and send them to upper layers (eg, IP layer or another type of Layer 3 protocol), etc., without waiting for lost packets (eg, packets 4, 5, and 8-10) from target node 111-2 (block 435).

响应于从源节点111-1接收分组,目标节点111-2可以缓冲每个分组并确定用于将分组转发到UE 101的DRB(框440)。如此,目标节点111-2使用的DRB可以与源节点111-1使用的DRB不同。另外,在HO过程中的这一点上使目标节点111-2能够分派、确定和使用优选DRB可以缓和目标节点111-2稍后(例如,在HO过程之后)切换DRB,如上面参考图2所述的。In response to receiving the packets from source node 111-1, target node 111-2 may buffer each packet and determine a DRB for forwarding the packet to UE 101 (block 440). As such, the DRB used by the target node 111-2 may be different from the DRB used by the source node 111-1. Additionally, enabling target node 111-2 to assign, determine, and use a preferred DRB at this point in the HO procedure may mitigate target node 111-2 switching DRBs later (eg, after the HO procedure), as described above with reference to FIG. 2 stated.

另外,目标节点111-2可以基于新确定的DRB确定分组的新SN,并且将新SN分派给每个分组(框445)。在一些实施例中,对于每个分组,目标节点111-2可以使用来自目标节点111-2的新SN(和/或DRB)来映射(例如,创建记录)源节点111-1的SN(和/或DRB)。这样做可以使目标节点111-2能够确保分组被成功发送到UE 101,其可以涉及来自UE 101的确认消息、来自目标节点111-2的重新发送。作为HO过程的一部分,UE 101可以将RRC连接重新配置完成消息传输到目标节点111-2(路线450),并且目标节点111-2可以使用与源节点111-1相同的DRB将分组传输到UE 101(框455)。在UE 101未成功接收到一个或多个所发送的分组的情况下,UE 101可以向目标节点110发送关于失败分组的重新发送请求,并且目标节点111-2可以通过重新发送失败分组来进行响应(路线460)。Additionally, target node 111-2 may determine a new SN for the packet based on the newly determined DRB, and assign the new SN to each packet (block 445). In some embodiments, for each packet, target node 111-2 may map (eg, create a record) the SN (and/or DRB) of source node 111-1 with the new SN (and/or DRB) from target node 111-2. / or DRB). Doing so may enable target node 111-2 to ensure that the packet is successfully sent to UE 101, which may involve an acknowledgment message from UE 101, retransmission from target node 111-2. As part of the HO procedure, the UE 101 may transmit an RRC connection reconfiguration complete message to the target node 111-2 (route 450), and the target node 111-2 may transmit the packet to the UE using the same DRB as the source node 111-1 101 (block 455). In the event that the UE 101 does not successfully receive one or more of the transmitted packets, the UE 101 may send a resend request for the failed packet to the target node 110, and the target node 111-2 may respond by resending the failed packet (Route 460).

图5和图6是在切换过程期间用于分组转发的详细过程的示例的顺序流程图。如图所示,图5的示例可以包括UE 101、源节点111-1、目标节点111-2、SGW 112和(多个)用户平面功能设备510。5 and 6 are sequence flow diagrams of examples of detailed procedures for packet forwarding during a handover procedure. As shown, the example of FIG. 5 may include UE 101 , source node 111 - 1 , target node 111 - 2 , SGW 112 and user plane function device(s) 510 .

源节点111-1和目标节点111-2均可以是上面参考图1描述的宏RAN节点111或LPRAN节点112的示例。类似地,SGW 122可以是图1的S-GW 122的示例。(多个)用户平面功能设备510可以包括实现5G(或下一代(NG))CN的用户平面功能(与例如控制平面功能相对的)的一个或多个服务器设备。根据实施例,SGW 122和(多个)用户平面功能设备510可以对应于同一CN或不同的CN。例如,SGW 122可以对应于支持源节点111-1的EPC,而(多个)用户平面功能设备510可以对应于支持目标节点111-2的5G CN。Both the source node 111-1 and the target node 111-2 may be examples of the macro RAN node 111 or the LPRAN node 112 described above with reference to FIG. 1 . Similarly, SGW 122 may be an example of S-GW 122 of FIG. 1 . The user plane function device(s) 510 may comprise one or more server devices implementing the user plane functions (as opposed to eg control plane functions) of the 5G (or next generation (NG)) CN. Depending on the embodiment, the SGW 122 and the user plane function device(s) 510 may correspond to the same CN or different CNs. For example, SGW 122 may correspond to an EPC supporting source node 111-1, while user plane functional device(s) 510 may correspond to a 5G CN supporting target node 111-2.

图5和图6的示例被提供为非限制性示例。在实践中,图5和图6的示例可以包括更少的、额外的和/或替代的操作或功能,诸如图2至图4中的一个或多个操作或功能。另外,图5和图6中的一个或多个操作或功能可以由更少的、额外的或替代的设备执行,这些设备可以包括上面参考图1描述的一个或多个设备。The examples of FIGS. 5 and 6 are provided as non-limiting examples. In practice, the examples of FIGS. 5 and 6 may include fewer, additional and/or alternative operations or functions, such as one or more of the operations or functions of FIGS. 2-4 . Additionally, one or more of the operations or functions in FIGS. 5 and 6 may be performed by fewer, additional, or alternative devices, which may include one or more of the devices described above with reference to FIG. 1 .

参考图5,UE 101可以经由与源节点111-1的连接向CN 120发送信息和从CN 120接收信息(路线505)。可以通过用户数据(UD)平面传输信息。例如,源节点111-1可以(从CN120)接收旨在用于UE 101的分组,并且可以将分组临时存储在源节点111-1的本地缓冲存储器中。在将分组发送到UE 101之前,源节点111-1可以将SN分派给每个分组。根据PDCP,分派给每个分组的SN可以是基于源节点111-1可以用来将分组发送到UE 101的DRB。分组的SN可以以与分组要被UE101接收、读取、和/或处理的方式一致的顺序来分派。在向UE 101发送分组时,源节点111-1可以监视哪些分组已经被发送(以及发送的时间)以及UE101是否已经确认了任何所发送的分组。当UE 101指示未接收到一个或多个分组时,源节点111-1可以重新发送所标识的分组,记录重新发送的时间,并继续监视UE 101是否确认了重新发送的分组。当缓冲分组被UE 101确认时,源节点111-1可以(立即或周期性地)从缓冲器中移除分组。Referring to Figure 5, UE 101 may send and receive information to and from CN 120 via the connection with source node 111-1 (route 505). Information can be transmitted through the User Data (UD) plane. For example, source node 111-1 may receive packets (from CN 120) intended for UE 101 and may temporarily store the packets in a local buffer memory of source node 111-1. Before sending the packets to the UE 101, the source node 111-1 may assign a SN to each packet. According to PDCP, the SN assigned to each packet may be based on the DRB that the source node 111-1 may use to send the packet to the UE 101. The SNs of the packets may be assigned in an order consistent with the manner in which the packets are to be received, read, and/or processed by the UE 101 . When sending packets to UE 101, source node 111-1 can monitor which packets have been sent (and when) and whether UE 101 has acknowledged any sent packets. When the UE 101 indicates that one or more packets were not received, the source node 111-1 may resend the identified packets, record the time of the resend, and continue to monitor whether the UE 101 acknowledges the resent packets. When the buffered packet is acknowledged by the UE 101, the source node 111-1 may (immediately or periodically) remove the packet from the buffer.

假设源节点111-1确定UE 101应该经历涉及目标节点111-2的切换过程(框510)。作为响应,源节点111-1可以停止向UE 101发送用户数据的分组,并确定要将哪些缓冲分组发送到目标节点111-2。在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组包括自仍然未被UE 101确认的最旧分组开始测得的发送到UE 101的所有分组。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101已经确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组4是仍然未被UE 101确认的最旧分组,所以目标节点111-2可以确定分组4-10要被发送到目标节点111-2。与之相比,在一些实施例中,源节点111-1可以确定要发送到目标节点111-2的分组仅包括尚未被UE 101确认的分组。例如,继续其中源节点111-1向UE 101发送分组1-10的示例,并且UE 101已确认接收到分组1-3和6-7(但未确认接收到4、5或8-10),则因为分组1-3和6-7已经被UE 101确认,所以目标节点111-2可以确定仅将分组4、5和8-10发送到目标节点111-2。Assume that source node 111-1 determines that UE 101 should undergo a handover procedure involving target node 111-2 (block 510). In response, source node 111-1 may stop sending packets of user data to UE 101 and determine which buffered packets to send to target node 111-2. In some embodiments, source node 111-1 may determine that the packets to be sent to target node 111-2 include all packets sent to UE 101 measured starting with the oldest packet still unacknowledged by UE 101. For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packets 4 is the oldest packet still unacknowledged by UE 101, so target node 111-2 can determine that packet 4-10 is to be sent to target node 111-2. In contrast, in some embodiments, source node 111-1 may determine that packets to be sent to target node 111-2 only include packets that have not been acknowledged by UE 101. For example, continuing with the example where source node 111-1 sends packets 1-10 to UE 101, and UE 101 has acknowledged receipt of packets 1-3 and 6-7 (but not 4, 5, or 8-10), Then since packets 1-3 and 6-7 have been acknowledged by UE 101, target node 111-2 can determine to send only packets 4, 5 and 8-10 to target node 111-2.

源节点111-1可以向目标节点111-2发送层3(L3)HO请求(路线515)。该请求可以包括DRB映射信息,该DRB映射信息可以包括UE101的指示和被源节点111-1用来与UE 101通信的DRB。作为响应,目标节点111-2可以执行准入控制操作(框520),该准入控制操作可以包括确定是接受还是拒绝HO请求。该确定可以是基于各种因素,诸如与UE 101通信的无线资源的可用性、与目标节点111-2相关联的拥塞水平等。假设目标节点111-2确定接受HO请求。如图所示,目标节点111-2可以通过传输L3 HO请求确认消息来响应源节点111-1(路线525),并且作为响应,源节点111-1可以向UE 101发送L3 RRC连接重新配置消息。(路线530)。L3 RRC连接重新配置消息可以包括移动性控制信息,其可以包括用于UE 101与目标节点111-2通信的指令。Source node 111-1 may send a Layer 3 (L3) HO request to target node 111-2 (route 515). The request may include DRB mapping information, which may include an indication of the UE 101 and the DRB used by the source node 111 - 1 to communicate with the UE 101 . In response, target node 111-2 may perform admission control operations (block 520), which may include determining whether to accept or reject the HO request. This determination may be based on various factors, such as the availability of radio resources to communicate with the UE 101, the congestion level associated with the target node 111-2, and the like. Assume that the target node 111-2 determines to accept the HO request. As shown, target node 111-2 may respond to source node 111-1 by transmitting an L3 HO request acknowledgement message (route 525), and in response, source node 111-1 may send UE 101 an L3 RRC connection reconfiguration message . (Route 530). The L3 RRC connection reconfiguration message may include mobility control information, which may include instructions for the UE 101 to communicate with the target node 111-2.

响应于L3 RRC连接重新配置消息,UE 101可以从源节点111-1分离并且同步到目标节点111-2(框535)。在一些实施例中,其中源节点111-1被配置为确定要发送到目标节点111-2的分组包括自尚未被UE 101确认的最旧分组以来发送到UE 101的所有分组,UE 101可以通过基于由源节点111-1发送的UE 101尚未成功接收到(并且因此尚未确认)的最旧分组来丢弃分组进行类似地操作(框540)。例如,如果源节点111-1向UE 101发送分组1-10,并且UE 101仅接收到分组1-3和6-7(但未接收到4、5或8-10),则因为分组4是UE 101仍未接收/确认的最旧分组,所以UE 101可以丢弃分组4-10。与之相比,在源节点111-1仅将未确认的分组(例如,分组4、5和8-10)发送到目标节点111-2使得目标节点111-2可以仅将未确认的分组发送到UE 101的实施例中,UE 101可以处理从源节点111-1成功接收到的分组(例如,分组1-3和6-7),并将其发送到上层(例如,IP层或另一类型的层3协议)等,而不等待来自目标节点111-2的丢失分组(例如,分组4、5和8-10)(框545)。In response to the L3 RRC connection reconfiguration message, the UE 101 may detach from the source node 111-1 and synchronize to the target node 111-2 (block 535). In some embodiments, where the source node 111-1 is configured to determine that the packets to be sent to the target node 111-2 include all packets sent to the UE 101 since the oldest packet not yet acknowledged by the UE 101, the UE 101 may pass Operates similarly (block 540), dropping packets based on the oldest packet sent by source node 111-1 that UE 101 has not successfully received (and therefore not acknowledged). For example, if source node 111-1 sends packets 1-10 to UE 101, and UE 101 only receives packets 1-3 and 6-7 (but not 4, 5, or 8-10), then because packet 4 is The oldest packet that UE 101 has not yet received/acknowledged, so UE 101 may discard packets 4-10. In contrast, sending only unacknowledged packets (eg, packets 4, 5, and 8-10) at source node 111-1 to destination node 111-2 allows destination node 111-2 to send only unacknowledged packets In embodiments to UE 101, UE 101 may process packets (eg, packets 1-3 and 6-7) successfully received from source node 111-1 and send them to upper layers (eg, IP layer or another type of Layer 3 protocol), etc., without waiting for lost packets (eg, packets 4, 5, and 8-10) from target node 111-2 (block 545).

源节点111-1可以向目标节点111-2发送L3 SN状态转移信息(路线550),其可以包括用于执行切换过程的通信标准信息。源节点111-1可以向目标节点111-2发送用于转发目的的UD分组数据(路线555)。如上所述,这可以包括自仍然未被UE 101确认的最旧分组以来发送到UE101的所有缓冲分组(例如,分组1-3和6-7而不是4、5或8-10)。替代地,这可以仅包括由源节点111-1缓冲并且未被UE 101确认的分组(例如,分组4、5和8-10而不是1-3、6和7)。在从源节点111-1接收到分组时,目标节点111-2可以缓冲分组(例如,用于处理和/或后续发送到UE 101)。Source node 111-1 may send L3 SN state transition information (route 550) to target node 111-2, which may include communication standard information for performing the handover procedure. The source node 111-1 may send the UD packet data for forwarding purposes to the target node 111-2 (route 555). As mentioned above, this may include all buffered packets sent to UE 101 since the oldest packet still unacknowledged by UE 101 (eg, packets 1-3 and 6-7 instead of 4, 5 or 8-10). Alternatively, this may include only packets buffered by source node 111-1 and not acknowledged by UE 101 (eg, packets 4, 5 and 8-10 instead of 1-3, 6 and 7). Upon receipt of the packet from source node 111-1, target node 111-2 may buffer the packet (eg, for processing and/or subsequent transmission to UE 101).

根据实施方式,目标节点111-2可以基于正在实现的分组数据转发技术来处理所接收的分组。例如,目标节点111-2可以将分组映射和/或分配给由源节点111-1使用的相同DRB以将分组发送到UE 101(参见例如,图2)。替代地,目标节点可以将所接收的分组映射到由源节点111-1使用的QoS以将分组发送到UE 101,然后将所接收的分组分配给由目标节点111-2优选的DRB(其可以是与由源节点111-1用来将分组发送到UE 101的DRB相同或不同的DRB)(参见例如,图3)。又一个替代方案,目标节点111-2可以确定并分配用于将分组转发到UE 101的优选DRB(其可以是与由源节点111-1用来将分组发送到UE 101的DRB相同或不同的DRB),基于所确定的DRB将新SN分派(例如,插入)到分组,并且对于每个接收到的分组,创建将由源节点111-1分派的SN映射到由目标节点111-2分派的新SN的记录(参见例如,图4)。Depending on the embodiment, the target node 111-2 may process the received packets based on the packet data forwarding technique being implemented. For example, target node 111-2 may map and/or assign the packet to the same DRB used by source node 111-1 to send the packet to UE 101 (see, eg, FIG. 2). Alternatively, the target node may map the received packet to the QoS used by the source node 111-1 to send the packet to the UE 101, and then assign the received packet to the DRB preferred by the target node 111-2 (which may is the same or a different DRB than the DRB used by the source node 111-1 to send the packet to the UE 101) (see eg, Figure 3). Yet another alternative, the target node 111-2 may determine and assign a preferred DRB for forwarding the packet to the UE 101 (which may be the same or different than the DRB used by the source node 111-1 to send the packet to the UE 101). DRB), assign (eg, insert) a new SN to the packet based on the determined DRB, and for each received packet, create a mapping of the SN assigned by the source node 111-1 to the new SN assigned by the target node 111-2 A record of the SN (see eg, Figure 4).

现在参考图6,基于来自源节点111-1的RRC连接重新配置消息,UE 101可以为切换过程重新配置其自身并且向目标节点111-2发送L3RRC连接重新配置完成消息(路线605)。作为响应,目标节点111-2和UE 101可以将用户数据分组传输给彼此(路线610)。例如,目标节点111-2可以沿下行链路(DL)方向将从源节点111-1接收的分组转发给UE 101。另外或替代地,UE 101可以沿上行链路(UL)方向将分组发送给目标节点111-2。目标节点111-2可以处理从UE 101接收的分组,和/或将从UE 101接收的分组转发给目标节点111-2的SGW 122(路线615)。Referring now to Figure 6, based on the RRC connection reconfiguration message from source node 111-1, UE 101 may reconfigure itself for the handover procedure and send an L3 RRC connection reconfiguration complete message to target node 111-2 (route 605). In response, target node 111-2 and UE 101 may transmit user data packets to each other (route 610). For example, the target node 111-2 may forward packets received from the source node 111-1 to the UE 101 in the downlink (DL) direction. Additionally or alternatively, the UE 101 may send the packet to the target node 111-2 in the uplink (UL) direction. Target node 111-2 may process packets received from UE 101 and/or forward packets received from UE 101 to SGW 122 of target node 111-2 (route 615).

目标节点111-2还可以向(多个)用户平面功能设备510发送L3路径切换请求消息(路线620),并且(多个)用户平面功能设备510可以通过向SGW 122发送L3修改承载请求消息来进行响应(路线625)。这些消息可以使能/使得CN 120的设备根据切换过程切换到用于经由目标节点111-2向UE 101传输分组的DL路径。另外,响应于L3修改承载响应消息,SGW112可以基于切换过程(例如,包括目标节点111-2)来切换DL路径信息(例如,指示DL路径从CN 120到UE 101的信息),并且可以将UD结束标记分组发送到源节点111-1(框和路线630)。结束标记分组可以包括由CN 120提供给源节点111-1的用于UE 101的最后分组的指示。The target node 111-2 may also send an L3 path switch request message (route 620) to the user plane function device(s) 510, and the user plane function device(s) 510 may send an L3 modify bearer request message to the SGW 122. Respond (Route 625). These messages may enable/cause the equipment of CN 120 to switch to the DL path for transmitting packets to UE 101 via target node 111-2 according to the handover procedure. Additionally, in response to the L3 Modify Bearer Response message, the SGW 112 may switch the DL path information (eg, information indicating the DL path from the CN 120 to the UE 101) based on the handover procedure (eg, including the target node 111-2), and may transfer the UD An end marker packet is sent to source node 111-1 (block and route 630). The end marker packet may include an indication of the last packet for UE 101 provided by CN 120 to source node 111-1.

源节点111-1可以将UD结束标记分组转发到目标节点111-2(路线635),并且目标节点111-2和SGW 122可以向彼此传输分组(路线640)。UD结束标记分组可以向目标节点111-2通知由CN 120提供给源节点111-1的用于UE 101的最后分组。如此,目标节点111-2可以使用结束标记分组来确定来自源节点111-1的分组是否包括从CN 120发送到源节点111-1的最后分组,和/或目标节点111-2从CN 120接收的用于UE 101的后续分组是否从结束标记分组开始(例如,沿DL方向从CN 120提供的分组在切换过程期间是否丢失)。如果/当目标节点111-2确定来自CN120的分组已经丢失时,目标节点111-2可以请求重新发送所丢失的分组。Source node 111-1 may forward the UD end marker packet to destination node 111-2 (route 635), and destination node 111-2 and SGW 122 may transmit the packet to each other (route 640). The UD end marker packet may inform the target node 111-2 of the last packet for the UE 101 provided by the CN 120 to the source node 111-1. As such, destination node 111-2 can use the end marker packet to determine whether the packet from source node 111-1 includes the last packet sent from CN 120 to source node 111-1, and/or received by destination node 111-2 from CN 120 Whether subsequent packets for UE 101 start with end marker packets (eg, whether packets provided from CN 120 in the DL direction are lost during the handover procedure). If/when target node 111-2 determines that a packet from CN 120 has been lost, target node 111-2 may request retransmission of the lost packet.

SGW 122可以将L3修改承载响应消息发送到(多个)用户平面功能设备510(路线645),其可以对应于先前的L3修改承载请求消息(参见路线625)。作为响应,(多个)用户平面功能设备510可以将L3路径切换请求确认消息发送到目标节点111-2(路线650),其可以对应于先前的L3切换请求消息(参见路线620)。反过来,目标节点111-2可以将L3 UE上下文释放消息发送到源节点111-1(路线655),并且源节点111-1可以通过释放由源节点111-1使用来与UE 101进行通信的无线资源来进行响应(方框660)。SGW 122 may send an L3 Modify Bearer Response message to user plane function device(s) 510 (route 645), which may correspond to the previous L3 Modify Bearer Request message (see route 625). In response, user plane functional device(s) 510 may send an L3 path handover request confirmation message to target node 111-2 (route 650), which may correspond to the previous L3 handover request message (see route 620). In turn, the target node 111-2 may send the L3 UE context release message to the source node 111-1 (route 655), and the source node 111-1 may communicate with the UE 101 by releasing the radio resources to respond (block 660).

如本文所使用的,术语“电路”、“处理电路”或“逻辑”可以指代,是部分或者包括专用集成电路(ASIC)、电子电路、处理器(共享的、专用的或组)、和/或执行一个或多个软件或固件程序的存储器(共享的、专用或的组)、组合逻辑电路和/或提供所描述的功能性的其他合适的硬件组件。在一些实施例中,电路可以在一个或多个软件或固件模块中实现,或者与电路相关联的功能可以由一个或多个软件或固件模块实现。在一些实施例中,电路可以包括至少部分可在硬件中操作的逻辑。As used herein, the terms "circuit," "processing circuit," or "logic" may refer to, being part of, or including an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and and/or memory (shared, dedicated or grouped) executing one or more software or firmware programs, combinational logic circuits, and/or other suitable hardware components that provide the described functionality. In some embodiments, a circuit may be implemented in one or more software or firmware modules, or functionality associated with a circuit may be implemented in one or more software or firmware modules. In some embodiments, a circuit may include logic that is at least partially operable in hardware.

本文描述的实施例可以被实现在使用任何适当配置的硬件和/或软件的系统中。图7示出了根据一些实施例的设备700的示例组件。在一些实施例中,设备700可以包括应用电路702、基带电路704、射频(RF)电路706、前端模块(FEM)电路708、一个或多个天线710以及电源管理电路(PMC)712,至少如所示那样耦合在一起。所示的设备700的组件可以包括在UE或RAN节点中。在一些实施例中,设备700可以包括更少的元件(例如,RAN节点可以不利用应用电路702,改为包括处理器/控制器以处理从EPC接收的IP数据)。在一些实施例中,设备700可以包括附加元件,例如存储器/存储、显示器、相机、传感器或输入/输出(I/O)接口。在其他实施例中,下面描述的组件可以包括在多于一个设备中(例如,对于云RAN(C-RAN)实现方式,所述电路可以单独地包括在多于一个设备中)。The embodiments described herein may be implemented in a system using any suitably configured hardware and/or software. FIG. 7 illustrates example components of a device 700 in accordance with some embodiments. In some embodiments, device 700 may include application circuitry 702, baseband circuitry 704, radio frequency (RF) circuitry 706, front end module (FEM) circuitry 708, one or more antennas 710, and power management circuitry (PMC) 712, at least as coupled together as shown. The illustrated components of apparatus 700 may be included in a UE or a RAN node. In some embodiments, the apparatus 700 may include fewer elements (eg, the RAN node may not utilize the application circuit 702, but instead include a processor/controller to process IP data received from the EPC). In some embodiments, device 700 may include additional elements, such as memory/storage, display, camera, sensors, or input/output (I/O) interfaces. In other embodiments, the components described below may be included in more than one device (eg, for cloud RAN (C-RAN) implementations, the circuits may be included separately in more than one device).

应用电路702可以包括一个或多个应用处理器。例如,应用电路702可以包括例如但不限于一个或多个单核或多核处理器的电路。处理器可以包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任何组合。处理器可以与存储器/存储耦合或者可以包括它们,并且可以被配置为:执行存储在存储器/存储中的指令,以使得各种应用或操作系统能够在设备700上运行。在一些实施例中,应用电路702的处理器可以处理从EPC接收的IP数据分组。Application circuitry 702 may include one or more application processors. For example, application circuitry 702 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. A processor may include any combination of general-purpose processors and special-purpose processors (eg, graphics processors, application processors, etc.). The processor may be coupled to or include memory/storage, and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on device 700 . In some embodiments, the processor of the application circuit 702 may process IP data packets received from the EPC.

基带电路704可以包括例如但不限于一个或多个单核或多核处理器的电路。基带电路704可以包括一个或多个基带处理器或控制逻辑,以处理从RF电路706的接收信号路径接收的基带信号,并生成用于RF电路706的发送信号路径的基带信号。基带电路704可以与应用电路702接口,用于生成和处理基带信号,并控制RF电路706的操作。例如,在一些实施例中,基带电路704可以包括第三代(3G)基带处理器704A、第四代(4G)基带处理器704B、第五代(5G)基带处理器704C或用于其他现有代、开发中的代或未来开发的代(例如,第二代(2G)、第六代(6G)等)的其他基带处理器704D。基带电路704(例如,基带处理器704A-D中的一个或多个)可以处理使得经由RF电路706与一个或多个无线电网络进行通信成为可能的各种无线电控制功能。在其他实施例中,基带处理器704A-D的一些或全部功能可以包括在存储于存储器704G中并经由中央处理单元(CPU)704E执行的模块中。无线电控制功能可以包括但不限于信号调制/解调、编码/解码、无线电频移等。在一些实施例中,基带电路704的调制/解调电路可以包括快速傅里叶变换(FFT)、预编码或星座映射/解映射功能。在一些实施例中,基带电路704的编码/解码电路可以包括卷积、咬尾卷积、turbo、维特比或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施例不限于这些示例,并且在其他实施例中可以包括其他合适的功能。Baseband circuitry 704 may include circuitry such as, but not limited to, one or more single-core or multi-core processors. Baseband circuitry 704 may include one or more baseband processors or control logic to process baseband signals received from the receive signal path of RF circuitry 706 and generate baseband signals for the transmit signal path of RF circuitry 706 . Baseband circuitry 704 may interface with application circuitry 702 for generating and processing baseband signals and controlling the operation of RF circuitry 706 . For example, in some embodiments, the baseband circuitry 704 may include a third generation (3G) baseband processor 704A, a fourth generation (4G) baseband processor 704B, a fifth generation (5G) baseband processor 704C, or for other existing There are other baseband processors 704D of a generation, a generation in development, or a generation to be developed in the future (eg, second generation (2G), sixth generation (6G), etc.). Baseband circuitry 704 (eg, one or more of baseband processors 704A-D) may handle various radio control functions that enable communication via RF circuitry 706 with one or more radio networks. In other embodiments, some or all of the functions of baseband processors 704A-D may be included in modules stored in memory 704G and executed via central processing unit (CPU) 704E. Radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, and the like. In some embodiments, the modulation/demodulation circuitry of baseband circuitry 704 may include Fast Fourier Transform (FFT), precoding, or constellation mapping/demapping functionality. In some embodiments, the encoding/decoding circuitry of baseband circuitry 704 may include convolution, tail-biting convolution, turbo, Viterbi, or low density parity check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functions are not limited to these examples, and other suitable functions may be included in other embodiments.

在一些实施例中,基带电路704可以包括一个或多个音频数字信号处理器(DSP)704F。音频DSP 704F可以包括用于压缩/解压缩和回声消除的元件,并且在其他实施例中可以包括其他合适的处理元件。在一些实施例中,基带电路的组件可以合适地组合在单个芯片、单个芯片组中,或者设置在同一电路板上。在一些实施例中,基带电路704和应用电路702的一些或所有构成组件可以一起实现在例如片上系统(SOC)上。In some embodiments, baseband circuitry 704 may include one or more audio digital signal processors (DSPs) 704F. Audio DSP 704F may include elements for compression/decompression and echo cancellation, and may include other suitable processing elements in other embodiments. In some embodiments, the components of the baseband circuitry may be suitably combined in a single chip, a single chipset, or provided on the same circuit board. In some embodiments, some or all of the constituent components of the baseband circuit 704 and the application circuit 702 may be implemented together, eg, on a system on a chip (SOC).

在一些实施例中,基带电路704可以提供与一种或多种无线电技术兼容的通信。例如,在一些实施例中,基带电路704可以支持与演进通用陆地无线接入网(EUTRAN)或其他无线城域网(WMAN)、无线局域网(WLAN)、无线个域网(WPAN)的通信。基带电路704被配置为支持多于一种无线协议的无线电通信的实施例可以被称为多模基带电路。In some embodiments, baseband circuitry 704 may provide communications compatible with one or more radio technologies. For example, in some embodiments, baseband circuitry 704 may support communication with an Evolved Universal Terrestrial Radio Access Network (EUTRAN) or other Wireless Metropolitan Area Network (WMAN), Wireless Local Area Network (WLAN), Wireless Personal Area Network (WPAN). Embodiments in which the baseband circuit 704 is configured to support radio communications of more than one wireless protocol may be referred to as a multimode baseband circuit.

RF电路706可以通过非固体介质使用调制电磁辐射来实现与无线网络的通信。在各种实施例中,RF电路706可以包括开关、滤波器、放大器等,以促进与无线网络的通信。RF电路706可以包括接收信号路径,其可以包括用于下变频从FEM电路708接收的RF信号并向基带电路704提供基带信号的电路。RF电路706还可以包括发送信号路径,其可以包括用于上变频基带电路704提供的基带信号并将RF输出信号提供给FEM电路708以用于传输的电路。RF circuitry 706 may use modulated electromagnetic radiation through a non-solid medium to enable communication with a wireless network. In various embodiments, RF circuitry 706 may include switches, filters, amplifiers, etc. to facilitate communication with wireless networks. RF circuitry 706 may include a receive signal path, which may include circuitry for downconverting RF signals received from FEM circuitry 708 and providing baseband signals to baseband circuitry 704 . RF circuit 706 may also include a transmit signal path, which may include circuitry for upconverting the baseband signal provided by baseband circuit 704 and providing the RF output signal to FEM circuit 708 for transmission.

在一些实施例中,RF电路706的接收信号路径可以包括混频器电路706A、放大器电路706B和滤波器电路706C。在一些实施例中,RF电路706的发送信号路径可以包括滤波器电路706C和混频器电路706A。RF电路706还可以包括综合器电路706D,用于合成由接收信号路径和发送信号路径的混频器电路706A使用的频率。在一些实施例中,接收信号路径的混频器电路706A可以被配置为:基于综合器电路706D提供的合成频率对从FEM电路708接收的RF信号进行下变频。放大器电路706B可以被配置为放大下变频后的信号,并且滤波器电路706C可以是低通滤波器(LPF)或带通滤波器(BPF),被配置为:从下变频后的信号中去除不想要的信号,以生成输出基带信号。可以将输出基带信号提供给基带电路704,以用于进一步处理。在一些实施例中,输出基带信号可以是零频率基带信号,但这并非要求。在一些实施例中,接收信号路径的混频器电路706A可以包括无源混频器,但是实施例的范围不限于此。In some embodiments, the receive signal path of RF circuit 706 may include mixer circuit 706A, amplifier circuit 706B, and filter circuit 706C. In some embodiments, the transmit signal path of RF circuit 706 may include filter circuit 706C and mixer circuit 706A. The RF circuit 706 may also include a synthesizer circuit 706D for synthesizing the frequencies used by the mixer circuit 706A of the receive signal path and the transmit signal path. In some embodiments, the mixer circuit 706A of the receive signal path may be configured to downconvert the RF signal received from the FEM circuit 708 based on the synthesis frequency provided by the synthesizer circuit 706D. Amplifier circuit 706B may be configured to amplify the down-converted signal, and filter circuit 706C may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signal to generate the output baseband signal. The output baseband signal may be provided to baseband circuitry 704 for further processing. In some embodiments, the output baseband signal may be a zero frequency baseband signal, but this is not a requirement. In some embodiments, the mixer circuit 706A of the receive signal path may comprise a passive mixer, although the scope of embodiments is not limited in this regard.

在一些实施例中,发送信号路径的混频器电路706A可以被配置为:基于综合器电路706D提供的合成频率对输入基带信号进行上变频,以生成用于FEM电路708的RF输出信号。基带信号可以是由基带电路704提供,并且可以由滤波器电路706C滤波。In some embodiments, the mixer circuit 706A of the transmit signal path may be configured to upconvert the input baseband signal based on the synthesis frequency provided by the synthesizer circuit 706D to generate the RF output signal for the FEM circuit 708 . The baseband signal may be provided by baseband circuit 704 and may be filtered by filter circuit 706C.

在一些实施例中,接收信号路径的混频器电路706A和发送信号路径的混频器电路706A可以包括两个或更多个混频器,并且可以分别被布置用于正交下变频和上变频。在一些实施例中,接收信号路径的混频器电路706A和发送信号路径的混频器电路706A可以包括两个或更多个混频器,并且可以被布置用于镜像抑制(例如,Hartley镜像抑制)。在一些实施例中,接收信号路径的混频器电路706A和发送信号路径的混频器电路706A可以被分别布置用于直接下变频和直接上变频。在一些实施例中,接收信号路径的混频器电路706A和发送信号路径的混频器电路706A可以被配置用于超外差操作。In some embodiments, the mixer circuit 706A of the receive signal path and the mixer circuit 706A of the transmit signal path may include two or more mixers, and may be arranged for quadrature down-conversion and up-conversion, respectively frequency conversion. In some embodiments, the mixer circuit 706A of the receive signal path and the mixer circuit 706A of the transmit signal path may include two or more mixers, and may be arranged for image rejection (eg, Hartley image inhibition). In some embodiments, the mixer circuit 706A of the receive signal path and the mixer circuit 706A of the transmit signal path may be arranged for direct downconversion and direct upconversion, respectively. In some embodiments, the mixer circuit 706A of the receive signal path and the mixer circuit 706A of the transmit signal path may be configured for superheterodyne operation.

在一些实施例中,输出基带信号和输入基带信号可以是模拟基带信号,但是实施例的范围不限于此。在一些替换实施例中,输出基带信号和输入基带信号可以是数字基带信号。在这些替换实施例中,RF电路706可以包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路704可以包括数字基带接口,以与RF电路706通信。In some embodiments, the output baseband signal and the input baseband signal may be analog baseband signals, although the scope of embodiments is not limited in this regard. In some alternative embodiments, the output baseband signal and the input baseband signal may be digital baseband signals. In these alternative embodiments, RF circuitry 706 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuits, and baseband circuitry 704 may include a digital baseband interface to communicate with RF circuitry 706 .

在一些双模实施例中,可以提供单独的无线电IC电路,以用于处理每个频谱的信号,但是实施例的范围不限于此。In some dual-mode embodiments, separate radio IC circuits may be provided for processing signals in each spectrum, although the scope of embodiments is not limited in this regard.

在一些实施例中,综合器电路706D可以是小数N综合器或小数N/N+1综合器,但是实施例的范围不限于此,因为其他类型的频率综合器可以是合适的。例如,综合器电路706D可以是Δ-Σ综合器、倍频器或包括具有分频器的锁相环的综合器。In some embodiments, synthesizer circuit 706D may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of embodiments is not limited in this regard, as other types of frequency synthesizers may be suitable. For example, synthesizer circuit 706D may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer including a phase locked loop with frequency dividers.

综合器电路706D可以被配置为:基于频率输入和除法器控制输入来合成输出频率以供RF电路706的混频器电路706A使用。在一些实施例中,综合器电路706D可以是小数N/N+1综合器。Synthesizer circuit 706D may be configured to synthesize an output frequency for use by mixer circuit 706A of RF circuit 706 based on the frequency input and the divider control input. In some embodiments, synthesizer circuit 706D may be a fractional N/N+1 synthesizer.

在一些实施例中,频率输入可以由压控振荡器(VCO)提供,但这并非要求。除法器控制输入可以由基带电路704或应用处理器702提供,这取决于期望的输出频率。在一些实施例中,可以基于由应用处理器702指示的信道,从查找表确定除法器控制输入(例如,N)。In some embodiments, the frequency input may be provided by a voltage controlled oscillator (VCO), but this is not a requirement. The divider control input may be provided by the baseband circuit 704 or the application processor 702, depending on the desired output frequency. In some embodiments, the divider control input (eg, N) may be determined from a lookup table based on the channel indicated by the application processor 702 .

RF电路706的综合器电路706D可以包括除法器、延迟锁相环(DLL)、复用器和相位累加器。在一些实施例中,除法器可以是双模除法器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些实施例中,DMD可以被配置为:将输入信号除以N或N+1(例如,基于进位),以提供小数除法比率。在一些示例实施例中,DLL可以包括一组级联的可调谐的延迟元件、相位检测器、电荷泵和D触发器。在这些实施例中,延迟元件可以被配置为将VCO周期分解为Nd个相等的相位分组,其中Nd是延迟线中的延迟元件的数量。以此方式,DLL提供负反馈,以帮助确保通过延迟线的总延迟是一个VCO周期。The synthesizer circuit 706D of the RF circuit 706 may include a divider, a delay locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider may be a dual modulo divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD may be configured to divide the input signal by N or N+1 (eg, based on carry) to provide a fractional division ratio. In some example embodiments, the DLL may include a cascaded set of tunable delay elements, phase detectors, charge pumps, and D flip-flops. In these embodiments, the delay elements may be configured to decompose the VCO cycle into Nd equal phase groupings, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.

在一些实施例中,综合器电路706D可以被配置为生成载波频率作为输出频率,而在其他实施例中,输出频率可以是载波频率的倍数(例如,载波频率的两倍、载波频率的四倍),并与正交发生器和除法器电路结合使用,以在载波频率下生成相对于彼此具有多个不同相位的多个信号。在一些实施例中,输出频率可以是LO频率(fLO)。在一些实施例中,RF电路706可以包括IQ/极坐标转换器。In some embodiments, the synthesizer circuit 706D may be configured to generate the carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (eg, twice the carrier frequency, four times the carrier frequency ) and used in conjunction with a quadrature generator and divider circuit to generate multiple signals at the carrier frequency with multiple different phases relative to each other. In some embodiments, the output frequency may be the LO frequency (fLO). In some embodiments, RF circuitry 706 may include an IQ/polar converter.

FEM电路708可以包括接收信号路径,其可以包括被配置为对从一个或多个天线710接收的RF信号进行操作,放大接收的信号并将接收的信号的放大版本提供给RF电路706以用于进一步处理的电路。FEM电路708还可以包括发送信号路径,其可以包括被配置为放大由RF电路706提供的用于发送的信号以用于由一个或多个天线710中的一个或多个发送的电路。在各种实施例中,通过发送信号路径或接收信号路径的放大可以仅在RF电路706中完成,仅在FEM 708中完成,或者在RF电路706和FEM 708中完成。FEM circuit 708 may include a receive signal path, which may include a path configured to operate on RF signals received from one or more antennas 710, amplify the received signals and provide an amplified version of the received signals to RF circuit 706 for use circuit for further processing. FEM circuit 708 may also include a transmit signal path, which may include circuitry configured to amplify signals provided by RF circuit 706 for transmission for transmission by one or more of one or more antennas 710 . In various embodiments, the amplification through the transmit signal path or the receive signal path may be done only in RF circuit 706 , only in FEM 708 , or in both RF circuit 706 and FEM 708 .

在一些实施例中,FEM电路708可以包括TX/RX切换器,以在发送模式和接收模式操作之间切换。FEM电路可以包括接收信号路径和发送信号路径。FEM电路的接收信号路径可以包括LNA,用于放大接收的RF信号,并将放大的接收RF信号作为输出提供(例如,给RF电路706)。FEM电路708的发送信号路径可以包括:功率放大器(PA),用于放大(例如,由RF电路706提供的)输入RF信号;以及一个或多个滤波器,用于生成RF信号,以用于(例如,由一个或多个天线710中的一个或多个进行)后续发送。In some embodiments, the FEM circuit 708 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuit may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuit may include an LNA for amplifying the received RF signal and providing the amplified receive RF signal as an output (eg, to RF circuit 706). The transmit signal path of FEM circuit 708 may include: a power amplifier (PA) for amplifying the input RF signal (eg, provided by RF circuit 706 ); and one or more filters for generating the RF signal for use in Subsequent transmissions (eg, by one or more of the one or more antennas 710).

在一些实施例中,PMC 712可以管理提供给基带电路704的功率。特别地,PMC 712可以控制电源选择、电压缩放、电池充电或DC-DC转换。当设备700能够由电池供电时,例如当设备被包括在UE中时,通常可以包括PMC 712。PMC 712可以提高功率转换效率,同时提供期望的实现尺寸和散热特性。In some embodiments, PMC 712 may manage the power provided to baseband circuitry 704 . In particular, PMC 712 may control power selection, voltage scaling, battery charging, or DC-DC conversion. The PMC 712 may typically be included when the device 700 can be powered by a battery, such as when the device is included in a UE. PMC 712 can improve power conversion efficiency while providing desired implementation size and thermal dissipation characteristics.

虽然图7示出了PMC 712仅与基带电路704耦合,但是在其他实施例中,PMC 712可以附加地或替换地与其他组件耦合,并且为其他组件执行类似的电源管理操作,例如但不限于应用电路702、RF电路706或FEM 708。Although FIG. 7 shows PMC 712 coupled only to baseband circuitry 704, in other embodiments, PMC 712 may additionally or alternatively be coupled to other components and perform similar power management operations for the other components, such as but not limited to Application circuit 702 , RF circuit 706 or FEM 708 .

在一些实施例中,PMC 712可以控制设备700的各种省电机构,或者为其一部分。例如,如果设备700处于RRC_Connected状态(其中,它仍然连接到RAN节点,因为它预期不久之后将接收业务),则它可以在一不活动时段之后进入称为不连续接收模式(DRX)的状态。在该状态期间,设备700可以下电达短暂的时间间隔,从而节省电力。In some embodiments, PMC 712 may control, or be part of, various power saving mechanisms of device 700 . For example, if the device 700 is in the RRC_Connected state (where it is still connected to the RAN node because it expects to receive traffic shortly), it may enter a state called discontinuous reception mode (DRX) after a period of inactivity. During this state, the device 700 may be powered down for brief intervals, thereby conserving power.

如果在延长的时间段内没有数据业务活动,则设备700可以转换到RRC_Idle状态(其中,它与网络断开连接,并且不执行诸如信道质量反馈、切换等操作)。设备700进入非常低功率的状态,并且它执行寻呼,其中它再次周期性地唤醒以侦听网络,然后再次下电。设备700在该状态下不可以接收数据,为了接收数据,它必须转换回RRC_Connected状态。If there is no data traffic activity for an extended period of time, the device 700 may transition to the RRC_Idle state (where it is disconnected from the network and does not perform operations such as channel quality feedback, handover, etc.). The device 700 enters a very low power state, and it performs paging, where it periodically wakes up again to listen to the network, and then powers down again. Device 700 cannot receive data in this state, in order to receive data it must transition back to the RRC_Connected state.

附加省电模式可以允许设备对网络不可用达比寻呼间隔长的时段(范围从几秒到几小时)。在此时间期间,设备完全不可达网络并且可以完全下电。在此时间期间发送的任何数据都会产生大的延迟,并且假设该延迟是可接受的。Additional power saving modes may allow the device to be unavailable to the network for periods longer than the paging interval (ranging from seconds to hours). During this time, the device is completely unreachable from the network and can be powered down completely. Any data sent during this time incurs a large delay and is assumed to be acceptable.

应用电路702的处理器和基带电路704的处理器可以用于执行协议栈的一个或多个实例的元素。例如,基带电路704的处理器(单独地或组合地)可以用于执行层3、层2或层1功能,而应用电路704的处理器可以利用从这些层接收的数据(例如,分组数据),并进一步执行层4层功能(例如,传输通信协议(TCP)和用户数据报协议(UDP)层)。如本文所提到的,层3可以包括无线资源控制(RRC)层,下面将进一步详细描述。如本文所提到的,层2可以包括介质接入控制(MAC)层、无线链路控制(RLC)层和分组数据汇聚协议(PDCP)层,下面将进一步详细描述。如本文所提到的,层1可以包括UE/RAN节点的物理(PHY)层,下面将进一步详细描述。The processor of the application circuit 702 and the processor of the baseband circuit 704 may be used to execute elements of one or more instances of the protocol stack. For example, the processors of the baseband circuitry 704 (alone or in combination) may be used to perform Layer 3, Layer 2, or Layer 1 functions, while the processors of the application circuitry 704 may utilize data (eg, packetized data) received from these layers. , and further perform Layer 4 functions (eg, Transport Communication Protocol (TCP) and User Datagram Protocol (UDP) layers). As mentioned herein, layer 3 may include a radio resource control (RRC) layer, which will be described in further detail below. As mentioned herein, Layer 2 may include a Medium Access Control (MAC) layer, a Radio Link Control (RLC) layer, and a Packet Data Convergence Protocol (PDCP) layer, which will be described in further detail below. As mentioned herein, layer 1 may include the physical (PHY) layer of the UE/RAN node, which will be described in further detail below.

图8示出了根据一些实施例的基带电路的示例接口。如上所讨论的,图7的基带电路704可以包括处理器704A-704E和由所述处理器使用的存储器704G。处理器704A-704E中的每一个可以分别包括存储器接口,以向/从存储器704G发送/接收数据。Figure 8 shows an example interface for a baseband circuit in accordance with some embodiments. As discussed above, the baseband circuit 704 of FIG. 7 may include processors 704A-704E and memory 704G used by the processors. Each of the processors 704A-704E may respectively include a memory interface to send/receive data to/from the memory 704G.

基带电路704还可以包括用于以通信方式耦合到其他电路/设备的一个或多个接口,例如存储器接口812(例如,用于向/从基带电路704外部的存储器发送/接收数据的接口)、应用电路接口814(例如,用于向/从图7的应用电路702发送/接收数据的接口)、RF电路接口816(例如,用于向/从图7的RF电路706发送/接收数据的接口)、无线硬件连接接口819(例如,用于向/从近场通信(NFC)组件、

Figure GDA0003189881600000291
组件(例如,低功耗
Figure GDA0003189881600000292
)、
Figure GDA0003189881600000293
组件和其他通信组件发送/接收数据的接口)和电源管理接口820(例如,用于向/从PMC 712发送/接收功率或控制信号的接口)。Baseband circuitry 704 may also include one or more interfaces for communicatively coupling to other circuits/devices, such as memory interface 812 (eg, an interface for sending/receiving data to/from memory external to baseband circuitry 704), Application circuit interface 814 (eg, an interface for sending/receiving data to/from the application circuit 702 of FIG. 7 ), RF circuit interface 816 (eg, an interface for sending/receiving data to/from the RF circuit 706 of FIG. 7 ) ), wireless hardware connection interface 819 (for example, to/from Near Field Communication (NFC) components,
Figure GDA0003189881600000291
components (e.g., low power
Figure GDA0003189881600000292
),
Figure GDA0003189881600000293
components and other communication components to send/receive data) and a power management interface 820 (eg, an interface for sending/receiving power or control signals to/from the PMC 712).

图9是示出根据一些示例实施例的能够从机器可读或计算机可读介质(例如,非瞬时性机器可读存储介质)中读取指令并执行本文讨论的任何一种或多种方法的组件的框图。具体地,图9示出了硬件资源900的图形表示,包括一个或多个处理器(或处理器核)910、一个或多个存储器/存储设备920以及一个或多个通信资源930,其中的每一个可以经由总线940以通信方式耦合。对于利用节点虚拟化(例如,NFV)的实施例,可以执行管理程序902,从而为一个或多个网络切片/子切片提供执行环境,以利用硬件资源900。9 is a diagram illustrating the ability to read instructions from a machine-readable or computer-readable medium (eg, a non-transitory machine-readable storage medium) and perform any one or more of the methods discussed herein, according to some example embodiments Block diagram of components. Specifically, FIG. 9 shows a graphical representation of hardware resources 900, including one or more processors (or processor cores) 910, one or more memory/storage devices 920, and one or more communication resources 930, among which Each may be communicatively coupled via bus 940 . For embodiments utilizing node virtualization (eg, NFV), hypervisor 902 may be executed to provide an execution environment for one or more network slices/sub-slices to utilize hardware resources 900 .

处理器910(例如,中央处理单元(CPU)、精简指令集计算(RISC)处理器、复杂指令集计算(CISC)处理器、图形处理单元(GPU)、数字信号处理器(DSP),例如基带处理器、专用集成电路(ASIC)、射频集成电路(RFIC)、另一处理器或其任何合适的组合)可以包括例如处理器912和处理器914。Processor 910 (eg, central processing unit (CPU), reduced instruction set computing (RISC) processor, complex instruction set computing (CISC) processor, graphics processing unit (GPU), digital signal processor (DSP), eg, baseband A processor, an application specific integrated circuit (ASIC), a radio frequency integrated circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, processor 912 and processor 914 .

存储器/存储设备920可以包括主存储器、磁盘存储器或其任何合适的组合。存储器/存储设备920可以包括但不限于任何类型的易失性或非易失性存储器,例如动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存、固态存储等。Memory/storage 920 may include main memory, disk storage, or any suitable combination thereof. Memory/storage 920 may include, but is not limited to, any type of volatile or non-volatile memory, such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read only memory (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory, Solid State Storage, etc.

通信资源930可以包括互连或网络接口组件或其他合适的设备,以经由网络908与一个或多个外围设备904或者一个或多个数据库906通信。例如,通信资源930可以包括有线通信组件(例如,用于经由通用串行总线(USB)耦合)、蜂窝通信组件、NFC组件、

Figure GDA0003189881600000301
组件(例如,低功耗
Figure GDA0003189881600000302
)、
Figure GDA0003189881600000303
组件和其他通信组件。Communication resources 930 may include interconnect or network interface components or other suitable devices to communicate with one or more peripheral devices 904 or one or more databases 906 via network 908 . For example, communication resources 930 may include wired communication components (eg, for coupling via Universal Serial Bus (USB)), cellular communication components, NFC components,
Figure GDA0003189881600000301
components (e.g., low power
Figure GDA0003189881600000302
),
Figure GDA0003189881600000303
components and other communication components.

指令950可以包括软件、程序、应用、小应用程序、app或用于使至少任一处理器910执行本文所讨论的任何一种或多种方法的其他可执行代码。指令950可以完全或部分地驻留在处理器910(例如,在处理器的高速缓存内)、存储器/存储设备920或其任何合适的组合中的至少一个内。此外,指令950的任何部分可以从外围设备904或数据库906的任何组合传输到硬件资源900。因此,处理器910的存储器、存储器/存储设备920、外围设备904和数据库906是计算机可读和机器可读介质的示例。Instructions 950 may include software, programs, applications, applets, apps, or other executable code for causing at least any processor 910 to perform any one or more of the methods discussed herein. Instructions 950 may reside fully or partially within at least one of processor 910 (eg, within the processor's cache), memory/storage device 920, or any suitable combination thereof. Furthermore, any portion of instructions 950 may be transmitted to hardware resource 900 from any combination of peripheral device 904 or database 906 . Accordingly, the memory of the processor 910, the memory/storage devices 920, the peripheral devices 904, and the database 906 are examples of computer-readable and machine-readable media.

接下来将给出与上述技术的实施例有关的许多示例。A number of examples related to embodiments of the above-described techniques will be given next.

在第一示例中,无线接入网(RAN)节点的装置可以包括:射频(RF)电路的接口;以及一个或多个处理器,用于:将序列号(SN)插入到多个用户数据分组的每个用户数据分组中,所述多个用户数据分组指向连接到RAN节点的用户设备(UE),所述SN基于所述多个用户数据分组的每个用户数据分组的相对顺序位置;并且在使所述多个用户数据分组中的至少一个用户数据分组经由所述RF电路传输到所述UE之前,作为切换过程的一部分,确定所述UE要被转移到目标RAN节点,并且使所述至少一个用户数据分组与至少一个数据分组在所述切换过程之前原本将如何被所述RAN节点传输到所述UE的指示一起,在所述切换过程期间被转移到所述目标RAN节点。In a first example, the apparatus of a radio access network (RAN) node may include: an interface to a radio frequency (RF) circuit; and one or more processors for inserting a serial number (SN) into a plurality of user data in each user data packet of the packet, the plurality of user data packets are directed to a user equipment (UE) connected to the RAN node, the SN is based on the relative sequential position of each user data packet of the plurality of user data packets; And before causing at least one user data packet of the plurality of user data packets to be transmitted to the UE via the RF circuit, as part of a handover procedure, it is determined that the UE is to be transferred to a target RAN node, and all The at least one user data packet is transferred to the target RAN node during the handover procedure together with an indication of how the at least one data packet would have been transmitted by the RAN node to the UE prior to the handover procedure.

在示例2中,示例1的主题或本文的任何示例,其中,所述每个用户数据分组的SN还基于由所述RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 2, the subject matter of Example 1 or any examples herein, wherein the SN of each user data packet is further based on an SN allocated by the RAN node for transmitting the plurality of user data packets to the UE Data Radio Bearer (DRB).

在示例3中,示例2的主题或本文的任何示例,其中,所述指示包括所述DRB的标识符。In Example 3, the subject matter of Example 2 or any example herein, wherein the indication includes an identifier of the DRB.

在示例4中,示例1的主题或本文的任何示例,其中,每个用户数据分组的SN还基于与将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 4, the subject matter of Example 1 or any examples herein, wherein the SN of each user data packet is further based on a quality of service (QoS) associated with transmitting the plurality of user data packets to the UE.

在示例5中,示例4的主题或本文的任何示例,其中,所述指示包括与将所述多个用户数据分组传输到所述UE相关联的QoS等级的标识符。In Example 5, the subject matter of Example 4 or any examples herein, wherein the indication includes an identifier of a QoS level associated with transmitting the plurality of user data packets to the UE.

在示例6中,示例1的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未使所述至少一个用户数据分组被发送到所述UE,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 6, the subject matter of Example 1 or any examples herein, wherein the one or more processors cause the at least one user data packet to be sent to the UE based on the RAN node not already causing the at least one user data packet to be sent to the UE. A user data packet is transferred to the target RAN node.

在示例7中,示例1的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 7, the subject matter of Example 1 or any of the examples herein, wherein the one or more processors cause the RAN node to have not received an acknowledgment message from the UE for the at least one user data packet based on the The at least one user data packet is transferred to the target RAN node.

在示例8中,示例1的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组之前的用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 8, the subject matter of Example 1 or any examples herein, wherein the one or more processors are based on the RAN node having not received from the UE a user data packet prior to the at least one user data packet an acknowledgment message, causing the at least one user data packet to be transferred to the target RAN node.

在示例9中,无线接入网(RAN)节点的装置可以包括:射频(RF)电路的接口;以及一个或多个处理器,用于:从切换过程的源RAN节点接收多个用户数据分组,所述多个用户数据分组指向与所述切换过程相对应的用户设备(UE),所述多个用户数据分组的每个用户数据分组包括基于所述多个用户数据分组的每个用户数据分组的相对顺序位置的序列号(SN);确定用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB);作为所述切换过程的一部分,经由所述RF电路的接口接收所述UE准备好与所述RAN节点通信的指示;以及使用所述DRB,经由所述RF电路的接口,使所述多个用户数据分组被传输到所述UE。In Example 9, the apparatus of a radio access network (RAN) node may include: an interface to a radio frequency (RF) circuit; and one or more processors for receiving a plurality of user data packets from a source RAN node of a handover procedure , the multiple user data packets are directed to a user equipment (UE) corresponding to the handover process, and each user data packet of the multiple user data packets includes each user data packet based on the multiple user data packets a sequence number (SN) of a relative sequential position of the packet; determining a data radio bearer (DRB) used to transmit the plurality of user data packets to the UE; as part of the handover procedure via the RF circuit An interface receives an indication that the UE is ready to communicate with the RAN node; and causes the plurality of user data packets to be transmitted to the UE via the interface of the RF circuit using the DRB.

在示例10中,示例9的主题或本文的任何示例,其中,每个用户数据分组的SN还基于由所述源RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 10, the subject matter of Example 9 or any examples herein, wherein the SN of each user data packet is further based on a SN assigned by the source RAN node for transmitting the plurality of user data packets to the UE Data Radio Bearer (DRB).

在示例11中,示例10的主题或本文的任何示例,其中,所述多个用户数据分组的每个用户数据分组包括与由所述源RAN节点分配的DRB相关联的标识符。In Example 11, the subject matter of Example 10 or any examples herein, wherein each user data packet of the plurality of user data packets includes an identifier associated with a DRB allocated by the source RAN node.

在示例12中,示例11的主题或本文的任何示例,其中,所述一个或多个处理器基于所述标识符来确定所述DRB,使得所述一个或多个处理器使用由所述源RAN节点分配的DRB使所述多个用户数据分组被传输到所述UE。In Example 12, the subject matter of Example 11 or any of the examples herein, wherein the one or more processors determine the DRB based on the identifier such that the one or more processors use the data generated by the source The DRB allocated by the RAN node causes the plurality of user data packets to be transmitted to the UE.

在示例13中,示例11的主题或本文的任何示例,其中:用于将所述多个用户数据分组传输到所述UE的DRB与由所述源RAN节点分配的DRB不同,并且所述一个或多个处理器还用于:将所述SN映射到另一序列号(SN),所述另一序列号基于用于传输所述多个用户数据分组的DRB;以及将所述另一序列号(SN)插入到所述多个用户数据分组的每个用户数据分组中。In Example 13, the subject matter of Example 11 or any examples herein, wherein: the DRB used to transmit the plurality of user data packets to the UE is different from the DRB allocated by the source RAN node, and the one or more processors are further configured to: map the SN to another sequence number (SN) based on the DRB used to transmit the plurality of user data packets; and map the other sequence A number (SN) is inserted into each user data packet of the plurality of user data packets.

在示例14中,示例9的主题或本文的任何示例,其中,每个用户数据分组的SN基于与源RAN节点将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 14, the subject matter of Example 9 or any examples herein, wherein the SN of each user data packet is based on a quality of service (QoS) associated with the source RAN node transmitting the plurality of user data packets to the UE .

在示例15中,示例14的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定RAN节点要将所述多个用户数据分组传输到所述UE所利用的服务质量(QoS);以及将所述多个用户数据分组中包括的与所述QoS相关联的标识符映射到RAN节点要将所述多个用户数据分组传输到所述UE所利用的QoS。In Example 15, the subject matter of Example 14 or any examples herein, wherein the one or more processors are further configured to: determine a service utilized by a RAN node to transmit the plurality of user data packets to the UE quality (QoS); and mapping an identifier associated with the QoS included in the plurality of user data packets to a QoS with which the RAN node is to transmit the plurality of user data packets to the UE.

在示例16中,示例9的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定所述UE已经接收到所述多个用户数据分组;确定用于与所述UE通信且与所述DRB不同的另一DRB;以及使所述另一DRB代替所述DRB来用于与所述UE通信。In Example 16, the subject matter of Example 9 or any examples herein, wherein the one or more processors are further configured to: determine that the UE has received the plurality of user data packets; The UE communicates with another DRB that is different from the DRB; and causing the other DRB to be used in place of the DRB for communicating with the UE.

在示例17中,示例9的主题或本文的任何示例,其中,在使所述多个用户数据分组被传输到所述UE之前,所述一个或多个处理器还用于:确定所述另一DRB;使用于切换到所述另一DRB的配置信息被发送到所述UE;以及在将所述多个用户数据分组传输到所述UE之后,使用所述另一DRB与所述UE进行通信。In Example 17, the subject matter of Example 9 or any of the examples herein, wherein before causing the plurality of user data packets to be transmitted to the UE, the one or more processors are further configured to: determine the further a DRB; causing configuration information for handover to the other DRB to be sent to the UE; and using the other DRB to communicate with the UE after transmitting the plurality of user data packets to the UE communication.

在示例18中,示例9的主题或本文的任何示例,其中,所述一个或多个处理器还从所述UE接收关于所述多个用户数据分组的至少一个用户数据分组的确认,并且排除所述至少一个用户数据分组被发送到所述UE。In Example 18, the subject matter of Example 9 or any examples herein, wherein the one or more processors further receive an acknowledgement from the UE for at least one user data packet of the plurality of user data packets, and excludes The at least one user data packet is sent to the UE.

在示例19中,示例9的主题或本文的任何示例,其中,所述一个或多个处理器还接收指示所述UE已经接收到所述多个用户数据分组的结束标记分组。In Example 19, the subject matter of Example 9 or any examples herein, wherein the one or more processors further receive an end marker packet indicating that the UE has received the plurality of user data packets.

在示例20中,示例1或9的主题或本文的任何示例,其中,所述RAN节点包括新空口(NR)基站。In Example 20, the subject matter of Examples 1 or 9 or any of the examples herein, wherein the RAN node comprises a New Radio (NR) base station.

在示例21中,示例1或9的主题或本文的任何示例,其中,所述多个用户数据分组经由无线电信网络的用户平面传输。In Example 21, the subject matter of Examples 1 or 9 or any examples herein, wherein the plurality of user data packets are transmitted via a user plane of the wireless telecommunications network.

在示例22中,用户设备(UE)的装置可以包括:射频(RF)电路的接口;以及一个或多个处理器,用于:经由所述RF电路的接口从第一无线接入网(RAN)节点接收多个第一用户数据分组,所述多个第一用户数据分组的每个用户数据分组包括基于所述多个第一用户数据分组的每个用户数据分组的顺序位置的序列号(SN);经由所述RF电路的接口接收参与涉及所述第一RAN节点和第二RAN节点的切换过程的指令;作为切换过程的一部分,经由所述RF电路的接口从所述第二RAN节点接收多个第二用户数据分组,所述多个第二用户数据分组的每个用户数据分组包括基于每个用户数据分组相对于所述多个第一用户数据分组和所述多个第二用户数据分组的顺序位置的SN;以及基于所述多个第一用户数据分组和所述多个第二用户数据分组的每个用户数据分组的SN,将所述多个第一用户数据分组与所述多个第二用户数据分组合并。In Example 22, the apparatus of a user equipment (UE) may include: an interface to a radio frequency (RF) circuit; and one or more processors for: from a first radio access network (RAN) via the interface of the RF circuit ) node receives a plurality of first user data packets, each user data packet of the plurality of first user data packets including a sequence number ( SN); receive via the interface of the RF circuit an instruction to participate in a handover procedure involving the first RAN node and the second RAN node; as part of the handover procedure from the second RAN node via the interface of the RF circuit receiving a plurality of second user data packets, each user data packet of the plurality of second user data packets comprising relative to the plurality of first user data packets and the plurality of second user data packets on a per user data packet basis an SN of a sequential position of the data packet; and based on the SN of each user data packet of the plurality of first user data packets and the plurality of second user data packets, associating the plurality of first user data packets with the all user data packets The plurality of second user data packets are combined.

在示例23中,示例22的主题或本文的任何示例,其中,所述一个或多个处理器还被配置为:基于所述指令,使消息经由所述RF电路的接口被传输到所述第二RAN节点,指示所述UE被配置为与所述第二RAN节点通信。In Example 23, the subject matter of Example 22 or any examples herein, wherein the one or more processors are further configured to: based on the instructions, cause a message to be transmitted to the first via the interface of the RF circuit A second RAN node indicating that the UE is configured to communicate with the second RAN node.

在示例24中,示例22的主题或本文的任何示例,其中,所述一个或多个处理器还用于:基于所述多个第一用户数据分组和所述多个第二用户数据分组的每个用户数据分组的SN,确定是否发生传输失败;以及向所述第二RAN节点传输与所述传输失败对应的用户数据分组的重新发送请求。In Example 24, the subject matter of Example 22 or any examples herein, wherein the one or more processors are further configured to: based on the plurality of first user data packets and the plurality of second user data packets The SN of each user data packet, determining whether a transmission failure occurs; and transmitting a retransmission request of the user data packet corresponding to the transmission failure to the second RAN node.

在示例25中,示例22的主题或本文的任何示例,其中,所述一个或多个处理器还用于:对于所述多个第一用户数据分组中的至少一个用户数据分组,基于所述至少一个用户数据分组,根据所述UE未将确认消息发送到所述第一RAN节点,删除所述至少一个用户数据分组;以及接收所述至少一个用户数据分组的另一副本作为来自所述第二RAN节点的多个第二用户数据分组的一部分。In Example 25, the subject matter of Example 22 or any examples herein, wherein the one or more processors are further configured to: for at least one user data packet of the plurality of first user data packets, based on the at least one user data packet, deleting the at least one user data packet based on the UE not sending an acknowledgment message to the first RAN node; and receiving another copy of the at least one user data packet as a source from the first RAN node; A portion of a plurality of second user data packets of two RAN nodes.

在示例26中,示例25的主题或本文的任何示例,其中,所述一个或多个处理器还用于:基于所述第一多个用户数据分组中的另一用户数据分组具有在所述至少一个用户数据分组的SN之后的SN,删除所述另一用户数据分组。In Example 26, the subject matter of Example 25 or any examples herein, wherein the one or more processors are further configured to: based on another user data packet of the first plurality of user data packets having the The SN following the SN of at least one user data packet, the other user data packet is deleted.

在示例27中,示例22的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定已经接收到所有所述多个第一用户数据分组和所述多个第二用户数据分组,并且使结束标记分组被传输到所述第二RAN节点,指示已经接收到所有所述多个第一用户数据分组和所述多个第二用户数据分组。In Example 27, the subject matter of Example 22 or any of the examples herein, wherein the one or more processors are further configured to: determine that all of the plurality of first user data packets and the plurality of second user data packets have been received user data packets, and cause an end marker packet to be transmitted to the second RAN node, indicating that all of the plurality of first user data packets and the plurality of second user data packets have been received.

在示例28中,计算机可读介质可以包含程序指令,该程序指令用于使与无线接入网(RAN)节点相关联的一个或多个处理器执行以下操作:将序列号(SN)插入到多个用户数据分组的每个用户数据分组中,所述多个用户数据分组指向连接到RAN节点的用户设备(UE),所述SN基于所述多个用户数据分组的每个用户数据分组的相对顺序位置;以及在使所述多个用户数据分组中的至少一个用户数据分组传输到所述UE之前,作为切换过程的一部分,确定所述UE要被转移到目标RAN节点,并且使所述至少一个用户数据分组与至少一个数据分组在所述切换过程之前原本将如何被所述RAN节点传输到所述UE的指示一起,在所述切换过程期间被转移到所述目标RAN节点。In Example 28, a computer-readable medium may contain program instructions for causing one or more processors associated with a radio access network (RAN) node to insert a serial number (SN) into a In each user data packet of a plurality of user data packets directed to a user equipment (UE) connected to a RAN node, the SN is based on the SN of each user data packet of the plurality of user data packets. a relative sequential position; and prior to causing at least one user data packet of the plurality of user data packets to be transmitted to the UE, as part of a handover procedure, determining that the UE is to be transferred to a target RAN node, and causing the UE to At least one user data packet is transferred to the target RAN node during the handover procedure, together with an indication of how the at least one data packet would have been transmitted by the RAN node to the UE prior to the handover procedure.

在示例29中,示例28的主题或本文的任何示例,其中,每个用户数据分组的SN还基于由所述RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 29, the subject matter of Example 28 or any examples herein, wherein the SN of each user data packet is further based on data allocated by the RAN node for transmitting the plurality of user data packets to the UE Radio Bearer (DRB).

在示例30中,示例29的主题或本文的任何示例,其中,所述指示包括所述DRB的标识符。In Example 30, the subject matter of Example 29 or any example herein, wherein the indication includes an identifier of the DRB.

在示例31中,示例28的主题或本文的任何示例,其中,每个用户数据分组的SN还基于与将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 31, the subject matter of Example 28 or any examples herein, wherein the SN of each user data packet is further based on a quality of service (QoS) associated with transmitting the plurality of user data packets to the UE.

在示例32中,示例31的主题或本文的任何示例,其中,所述指示包括与将所述多个用户数据分组传输到所述UE相关联的QoS等级的标识符。In Example 32, the subject matter of Example 31 or any examples herein, wherein the indication includes an identifier of a QoS level associated with transmitting the plurality of user data packets to the UE.

在示例33中,示例28的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未使所述至少一个用户数据分组被发送到所述UE,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 33, the subject matter of Example 28 or any examples herein, wherein the one or more processors cause the at least one user data packet to be sent to the UE based on the RAN node not already causing the at least one user data packet to be sent to the UE. A user data packet is transferred to the target RAN node.

在示例34中,示例28的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 34, the subject matter of Example 28 or any of the examples herein, wherein the one or more processors cause the RAN node to have not received an acknowledgment message for the at least one user data packet from the UE based on the The at least one user data packet is transferred to the target RAN node.

在示例35中,示例28的主题或本文的任何示例,其中,所述一个或多个处理器基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组之前的用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 35, the subject matter of Example 28 or any examples herein, wherein the one or more processors are based on the RAN node having not received from the UE a user data packet prior to the at least one user data packet an acknowledgment message, causing the at least one user data packet to be transferred to the target RAN node.

在示例36中,计算机可读介质可以包含程序指令,该程序指令用于使与无线接入网(RAN)节点相关联的一个或多个处理器执行以下操作:从切换过程的源RAN节点接收多个用户数据分组,所述多个用户数据分组指向与所述切换过程相对应的用户设备(UE),所述多个用户数据分组的每个用户数据分组包括基于所述多个用户数据分组的每个用户数据分组的相对顺序位置的序列号(SN);确定用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB);作为所述切换过程的一部分,接收所述UE准备好与所述RAN节点通信的指示;以及使用所述DRB,使所述多个用户数据分组被传输到所述UE。In Example 36, a computer-readable medium may contain program instructions for causing one or more processors associated with a radio access network (RAN) node to perform the following operations: receive from a source RAN node of a handover procedure a plurality of user data packets, the plurality of user data packets directed to a user equipment (UE) corresponding to the handover procedure, each user data packet of the plurality of user data packets comprising a plurality of user data packets based on the plurality of user data packets the sequence number (SN) of the relative sequential position of each user data packet of an indication that the UE is ready to communicate with the RAN node; and using the DRB, causing the plurality of user data packets to be transmitted to the UE.

在示例37中,示例36的主题或本文的任何示例,其中,每个用户数据分组的SN还基于由所述源RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 37, the subject matter of Example 36 or any examples herein, wherein the SN of each user data packet is further based on a SN assigned by the source RAN node for transmitting the plurality of user data packets to the UE Data Radio Bearer (DRB).

在示例38中,示例37的主题或本文的任何示例,其中,所述多个用户数据分组的每个用户数据分组包括与由所述源RAN节点分配的DRB相关联的标识符。In Example 38, the subject matter of Example 37 or any examples herein, wherein each user data packet of the plurality of user data packets includes an identifier associated with a DRB allocated by the source RAN node.

在示例39中,示例38的主题或本文的任何示例,其中,所述一个或多个处理器基于所述标识符来确定所述DRB,使得所述一个或多个处理器使用由所述源RAN节点分配的DRB使所述多个用户数据分组被传输到所述UE。In Example 39, the subject matter of Example 38 or any of the examples herein, wherein the one or more processors determine the DRB based on the identifier such that the one or more processors use the data generated by the source The DRB allocated by the RAN node causes the plurality of user data packets to be transmitted to the UE.

在示例40中,示例38的主题或本文的任何示例,其中:用于将所述多个用户数据分组传输到所述UE的DRB与由所述源RAN节点分配的DRB不同,并且所述一个或多个处理器还被配置为:将所述SN映射到另一序列号(SN),所述另一序列号基于用于传输所述多个用户数据分组的DRB;以及将所述另一序列号(SN)插入到所述多个用户数据分组的每个用户数据分组中。In Example 40, the subject matter of Example 38 or any examples herein, wherein: the DRB used to transmit the plurality of user data packets to the UE is different from the DRB allocated by the source RAN node, and the one or more processors are further configured to: map the SN to another sequence number (SN) based on the DRB used to transmit the plurality of user data packets; and to map the other A sequence number (SN) is inserted into each user data packet of the plurality of user data packets.

在示例41中,示例36的主题或本文的任何示例,其中,每个用户数据分组的SN基于与源RAN节点将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 41, the subject matter of Example 36 or any examples herein, wherein the SN of each user data packet is based on a quality of service (QoS) associated with a source RAN node transmitting the plurality of user data packets to the UE .

在示例42中,示例41的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定RAN节点要将所述多个用户数据分组传输到所述UE所利用的服务质量(QoS);以及将所述多个用户数据分组中包括的与所述QoS相关联的标识符映射到RAN节点要将所述多个用户数据分组传输到所述UE所利用的QoS。In Example 42, the subject matter of Example 41 or any examples herein, wherein the one or more processors are further configured to determine a service utilized by a RAN node to transmit the plurality of user data packets to the UE quality (QoS); and mapping an identifier associated with the QoS included in the plurality of user data packets to a QoS with which the RAN node is to transmit the plurality of user data packets to the UE.

在示例43中,示例36的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定所述UE已经接收到所述多个用户数据分组;确定用于与所述UE通信且与所述DRB不同的另一DRB;以及使所述另一DRB代替所述DRB来用于与所述UE通信。In Example 43, the subject matter of Example 36 or any examples herein, wherein the one or more processors are further configured to: determine that the UE has received the plurality of user data packets; The UE communicates with another DRB that is different from the DRB; and causing the other DRB to be used in place of the DRB for communicating with the UE.

在示例44中,示例36的主题或本文的任何示例,其中,在使所述多个用户数据分组被传输到所述UE之前,所述一个或多个处理器还用于:确定所述另一DRB;使用于切换到所述另一DRB的配置信息被发送到所述UE;以及在将所述多个用户数据分组传输到所述UE之后,使用所述另一DRB与所述UE进行通信。In Example 44, the subject matter of Example 36 or any of the examples herein, wherein before causing the plurality of user data packets to be transmitted to the UE, the one or more processors are further configured to: determine the further a DRB; causing configuration information for handover to the other DRB to be sent to the UE; and using the other DRB to communicate with the UE after transmitting the plurality of user data packets to the UE communication.

在示例45中,示例36的主题或本文的任何示例,其中,所述一个或多个处理器还从所述UE接收关于所述多个用户数据分组的至少一个用户数据分组的确认,并且排除所述至少一个用户数据分组被发送到所述UE。In Example 45, the subject matter of Example 36 or any examples herein, wherein the one or more processors further receive an acknowledgement from the UE for at least one user data packet of the plurality of user data packets, and excludes The at least one user data packet is sent to the UE.

在示例46中,示例36的主题或本文的任何示例,其中,所述一个或多个处理器还接收指示所述UE已经接收到所述多个用户数据分组的结束标记分组。In Example 46, the subject matter of Example 36 or any examples herein, wherein the one or more processors further receive an end marker packet indicating that the UE has received the plurality of user data packets.

在示例47中,示例28或36的主题或本文的任何示例,其中,所述RAN节点包括新空口(NR)基站。In Example 47, the subject matter of Examples 28 or 36 or any of the examples herein, wherein the RAN node comprises a New Radio (NR) base station.

在示例48中,示例28或36的主题或本文的任何示例,其中,所述多个用户数据分组经由无线电信网络的用户平面传输。In Example 48, the subject matter of Examples 28 or 36 or any example herein, wherein the plurality of user data packets are transmitted via a user plane of the wireless telecommunications network.

在示例49中,计算机可读介质可以包含程序指令,该程序指令用于使与用户设备(UE)相关联的一个或多个处理器执行以下操作:从第一无线接入网(RAN)节点接收多个第一用户数据分组,所述多个第一用户数据分组的每个用户数据分组包括基于所述多个第一用户数据分组的每个用户数据分组的顺序位置的序列号(SN);接收参与涉及所述第一RAN节点和第二RAN节点的切换过程的指令;作为所述切换过程的一部分,从所述第二RAN节点接收多个第二用户数据分组,所述多个第二用户数据分组的每个用户数据分组包括基于每个用户数据分组相对于所述多个第一用户数据分组和所述多个第二用户数据分组的顺序位置的SN;以及基于所述多个第一用户数据分组和所述多个第二用户数据分组的每个用户数据分组的SN,将所述多个第一用户数据分组与所述多个第二用户数据分组合并。In Example 49, a computer-readable medium may contain program instructions for causing one or more processors associated with a user equipment (UE) to perform the following operations: from a first radio access network (RAN) node receiving a plurality of first user data packets, each user data packet of the plurality of first user data packets including a sequence number (SN) based on a sequential position of each user data packet of the plurality of first user data packets receiving an instruction to participate in a handover procedure involving the first RAN node and a second RAN node; receiving, as part of the handover procedure, a plurality of second user data packets from the second RAN node, the plurality of first Each user data packet of the two user data packets includes an SN based on the ordinal position of each user data packet relative to the plurality of first user data packets and the plurality of second user data packets; and based on the plurality of user data packets The SN of each of the first user data packets and the plurality of second user data packets, combining the plurality of first user data packets and the plurality of second user data packets.

在示例50中,示例49的主题或本文的任何示例,其中,所述一个或多个处理器还用于:基于所述指令,使消息被传输到所述第二RAN节点,指示所述UE被配置为与所述第二RAN节点通信。In Example 50, the subject matter of Example 49 or any of the examples herein, wherein the one or more processors are further configured to: based on the instructions, cause a message to be transmitted to the second RAN node indicating the UE is configured to communicate with the second RAN node.

在示例51中,示例49的主题或本文的任何示例,其中,所述一个或多个处理器还用于:基于所述多个第一用户数据分组和所述多个第二用户数据分组的每个用户数据分组的SN,确定是否发生传输失败;以及向所述第二RAN节点传输与所述传输失败对应的用户数据分组的重新发送请求。In Example 51, the subject matter of Example 49 or any examples herein, wherein the one or more processors are further configured to: based on the plurality of first user data packets and the plurality of second user data packets The SN of each user data packet, determining whether a transmission failure occurs; and transmitting a retransmission request of the user data packet corresponding to the transmission failure to the second RAN node.

在示例52中,示例49的主题或本文的任何示例,其中,所述一个或多个处理器还用于:对于所述多个第一用户数据分组中的至少一个用户数据分组,基于所述至少一个用户数据分组,根据所述UE未将确认消息发送到所述第一RAN节点,删除所述至少一个用户数据分组;以及接收所述至少一个用户数据分组的另一副本作为来自所述第二RAN节点的多个第二用户数据分组的一部分。In Example 52, the subject matter of Example 49 or any examples herein, wherein the one or more processors are further configured to: for at least one user data packet of the plurality of first user data packets, based on the at least one user data packet, deleting the at least one user data packet based on the UE not sending an acknowledgment message to the first RAN node; and receiving another copy of the at least one user data packet as a source from the first RAN node; A portion of a plurality of second user data packets of two RAN nodes.

在示例53中,示例52的主题或本文的任何示例,其中,所述一个或多个处理器还用于:基于所述多个第一用户数据分组中的另一用户数据分组具有在所述至少一个用户数据分组的SN之后的SN,删除所述另一用户数据分组。In Example 53, the subject matter of Example 52 or any of the examples herein, wherein the one or more processors are further configured to: based on another user data packet of the plurality of first user data packets having the The SN following the SN of at least one user data packet, the other user data packet is deleted.

在示例54中,示例49的主题或本文的任何示例,其中,所述一个或多个处理器还用于:确定已经接收到所有所述多个第一用户数据分组和所述多个第二用户数据分组,并且使结束标记分组被传输到所述第二RAN节点,指示已经接收到所有所述多个第一用户数据分组和所述多个第二用户数据分组。In Example 54, the subject matter of Example 49 or any examples herein, wherein the one or more processors are further configured to: determine that all of the plurality of first user data packets and the plurality of second user data packets have been received user data packets, and cause an end marker packet to be transmitted to the second RAN node, indicating that all of the plurality of first user data packets and the plurality of second user data packets have been received.

在示例55中,无线接入网(RAN)节点的装置可以包括:用于将序列号(SN)插入到多个用户数据分组的每个用户数据分组中的模块,所述多个用户数据分组指向连接到RAN节点的用户设备(UE),所述SN基于所述多个用户数据分组的每个用户数据分组的相对顺序位置;在使所述多个用户数据分组中的至少一个用户数据分组传输到所述UE之前,用于作为切换过程的一部分确定所述UE要被转移到目标RAN节点的模块;以及用于使所述至少一个用户数据分组与至少一个数据分组在所述切换过程之前原本将如何被所述RAN节点传输到所述UE的指示一起,在所述切换过程期间被转移到所述目标RAN节点的模块。In Example 55, the apparatus of a radio access network (RAN) node can include means for inserting a sequence number (SN) into each user data packet of a plurality of user data packets, the plurality of user data packets pointing to a user equipment (UE) connected to a RAN node, the SN is based on the relative sequential position of each user data packet of the plurality of user data packets; in making at least one user data packet of the plurality of user data packets means for determining, as part of a handover procedure, that the UE is to be transferred to a target RAN node prior to transmission to the UE; and for causing the at least one user data packet to precede the handover procedure with at least one data packet Together with an indication of how it would otherwise be transmitted by the RAN node to the UE, the module is transferred to the target RAN node during the handover procedure.

在示例56中,示例55的主题或本文的任何示例,其中,每个用户数据分组的SN还基于由所述RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 56, the subject matter of Example 55 or any examples herein, wherein the SN of each user data packet is further based on data allocated by the RAN node for transmitting the plurality of user data packets to the UE Radio Bearer (DRB).

在示例57中,示例56的主题或本文的任何示例,其中,所述指示包括所述DRB的标识符。In Example 57, the subject matter of Example 56 or any example herein, wherein the indication includes an identifier of the DRB.

在示例58中,示例55的主题或本文的任何示例,其中,每个用户数据分组的SN还基于与将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 58, the subject matter of Example 55 or any examples herein, wherein the SN of each user data packet is further based on a quality of service (QoS) associated with transmitting the plurality of user data packets to the UE.

在示例59中,示例58的主题或本文的任何示例,其中,所述指示包括与将所述多个用户数据分组传输到所述UE相关联的QoS等级的标识符。In Example 59, the subject matter of Example 58 or any example herein, wherein the indication includes an identifier of a QoS level associated with transmitting the plurality of user data packets to the UE.

在示例60中,示例55的主题或本文的任何示例,还包括:用于基于所述RAN节点尚未使所述至少一个用户数据分组被发送到所述UE,使所述至少一个用户数据分组被转移到所述目标RAN节点的模块。In Example 60, the subject matter of Example 55 or any of the examples herein, further comprising: for causing the at least one user data packet to be sent to the UE based on the RAN node not having caused the at least one user data packet to be sent to the UE A module transferred to the target RAN node.

在示例61中,示例55的主题或本文的任何示例,还包括:用于基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点的模块。In Example 61, the subject matter of Example 55 or any of the examples herein, further comprising causing the at least one user The data packets are transferred to the module of the target RAN node.

在示例62中,示例55的主题或本文的任何示例,还包括:用于基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组之前的用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点的模块。In Example 62, the subject matter of Example 55 or any of the examples herein, further comprising for causing the RAN node to have not received an acknowledgement message from the UE for a user data packet preceding the at least one user data packet The at least one user data packet is transferred to the module of the target RAN node.

在示例63中,无线接入网(RAN)节点的装置可以包括:用于从切换过程的源RAN节点接收多个用户数据分组的模块,所述多个用户数据分组指向与所述切换过程相对应的用户设备(UE),所述多个用户数据分组的每个用户数据分组包括基于所述多个用户数据分组的每个用户数据分组的相对顺序位置的序列号(SN);用于确定用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)的模块;用于作为所述切换过程的一部分接收所述UE准备好与所述RAN节点通信的指示的模块;以及用于使用所述DRB使所述多个用户数据分组被传输到所述UE的模块。In Example 63, the apparatus for a radio access network (RAN) node can include means for receiving a plurality of user data packets from a source RAN node of a handover procedure, the plurality of user data packets directed to a phase associated with the handover procedure a corresponding user equipment (UE), each user data packet of the plurality of user data packets includes a sequence number (SN) based on a relative sequential position of each user data packet of the plurality of user data packets; for determining means for transmitting the plurality of user data packets to a data radio bearer (DRB) of the UE; means for receiving an indication that the UE is ready to communicate with the RAN node as part of the handover procedure and means for causing the plurality of user data packets to be transmitted to the UE using the DRB.

在示例64中,示例63的主题或本文的任何示例,其中,每个用户数据分组的SN还基于由所述源RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 64, the subject matter of Example 63 or any examples herein, wherein the SN of each user data packet is further based on a SN assigned by the source RAN node for transmitting the plurality of user data packets to the UE Data Radio Bearer (DRB).

在示例65中,示例64的主题或本文的任何示例,其中,所述多个用户数据分组的每个用户数据分组包括与由所述源RAN节点分配的DRB相关联的标识符。In Example 65, the subject matter of Example 64 or any examples herein, wherein each user data packet of the plurality of user data packets includes an identifier associated with a DRB allocated by the source RAN node.

在示例66中,示例65的主题或本文的任何示例,还包括:用于基于所述标识符来确定所述DRB,使得所述一个或多个处理器使用由所述源RAN节点分配的DRB使所述多个用户数据分组被传输到所述UE的模块。In Example 66, the subject matter of Example 65 or any of the examples herein, further comprising: for determining the DRB based on the identifier such that the one or more processors use the DRB allocated by the source RAN node means for causing the plurality of user data packets to be transmitted to the UE.

在示例67中,示例65的主题或本文的任何示例,其中:用于将所述多个用户数据分组传输到所述UE的DRB与由所述源RAN节点分配的DRB不同,并且所述装置还包括:用于将所述SN映射到另一序列号(SN)的模块,所述另一序列号基于用于传输所述多个用户数据分组的DRB;以及用于将所述另一序列号(SN)插入到所述多个用户数据分组的每个用户数据分组中的模块。In Example 67, the subject matter of Example 65 or any examples herein, wherein: the DRB used to transmit the plurality of user data packets to the UE is different from the DRB allocated by the source RAN node, and the apparatus Also comprising: means for mapping the SN to another sequence number (SN) based on the DRB used to transmit the plurality of user data packets; and for mapping the another sequence number A number (SN) is inserted into the module of each user data packet of the plurality of user data packets.

在示例68中,示例63的主题或本文的任何示例,其中,每个用户数据分组的SN基于与源RAN节点将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 68, the subject matter of Example 63 or any examples herein, wherein the SN of each user data packet is based on a quality of service (QoS) associated with a source RAN node transmitting the plurality of user data packets to the UE .

在示例69中,示例68的主题或本文的任何示例,还包括:用于确定RAN节点要将所述多个用户数据分组传输到所述UE所利用的服务质量(QoS)的模块;以及用于将所述多个用户数据分组中包括的与所述QoS相关联的标识符映射到RAN节点要将所述多个用户数据分组传输到所述UE所利用的QoS的模块。In Example 69, the subject matter of Example 68 or any of the examples herein, further comprising: means for determining a quality of service (QoS) with which a RAN node is to transmit the plurality of user data packets to the UE; and means for mapping the identifiers associated with the QoS included in the plurality of user data packets to the QoS utilized by the RAN node to transmit the plurality of user data packets to the UE.

在示例70中,示例63的主题或本文的任何示例,还包括:用于确定所述UE已经接收到所述多个用户数据分组的模块;用于确定用于与所述UE通信且与所述DRB不同的另一DRB的模块;以及用于使所述另一DRB代替所述DRB来用于与所述UE通信的模块。In Example 70, the subject matter of Example 63 or any of the examples herein, further comprising: means for determining that the UE has received the plurality of user data packets; means for another DRB that is different from the DRB; and means for causing the another DRB to be used in place of the DRB for communicating with the UE.

在示例71中,示例63的主题或本文的任何示例,还包括:用于在使所述多个用户数据分组被传输到所述UE之前,确定所述另一DRB的模块;用于使用于切换到所述另一DRB的配置信息被发送到所述UE的模块;以及用于在将所述多个用户数据分组传输到所述UE之后,使用所述另一BRD与所述UE进行通信的模块。In Example 71, the subject matter of Example 63 or any examples herein, further comprising: means for determining the other DRB prior to causing the plurality of user data packets to be transmitted to the UE; for using for configuration information for switching to the other DRB is sent to the UE; and means for communicating with the UE using the another BRD after the plurality of user data packets are transmitted to the UE module.

在示例72中,示例63的主题或本文的任何示例,还包括:用于从所述UE接收关于所述多个用户数据分组的至少一个用户数据分组的确认,并且排除所述至少一个用户数据分组被发送到所述UE的模块。In Example 72, the subject matter of Example 63 or any examples herein, further comprising: for receiving an acknowledgement from the UE for at least one user data packet of the plurality of user data packets, and excluding the at least one user data packet The packets are sent to the modules of the UE.

在示例73中,示例63的主题或本文的任何示例,还包括:用于接收指示所述UE已经接收到所述多个用户数据分组的结束标记分组的模块。In Example 73, the subject matter of Example 63 or any examples herein, further comprising means for receiving an end marker packet indicating that the UE has received the plurality of user data packets.

在示例74中,示例55或66的主题或本文的任何示例,其中,所述RAN节点包括新空口(NR)基站。In Example 74, the subject matter of Examples 55 or 66 or any of the examples herein, wherein the RAN node comprises a New Radio (NR) base station.

在示例75中,示例55或66的主题或本文的任何示例,其中,所述多个用户数据分组经由无线电信网络的用户平面传输。In Example 75, the subject matter of Examples 55 or 66 or any examples herein, wherein the plurality of user data packets are transmitted via a user plane of the wireless telecommunications network.

在示例76中,由无线接入网(RAN)节点执行的方法可以包括:将序列号(SN)插入到多个用户数据分组的每个用户数据分组中,所述多个用户数据分组指向连接到RAN节点的用户设备(UE),所述SN基于所述多个用户数据分组的每个用户数据分组的相对顺序位置;以及在使所述多个用户数据分组中的至少一个用户数据分组传输到所述UE之前,作为切换过程的一部分,确定所述UE要被转移到目标RAN节点,并且使所述至少一个用户数据分组与至少一个数据分组在所述切换过程之前原本将如何被所述RAN节点传输到所述UE的指示一起,在所述切换过程期间被转移到所述目标RAN节点。In Example 76, a method performed by a radio access network (RAN) node may include inserting a sequence number (SN) into each user data packet of a plurality of user data packets directed to a connection to a user equipment (UE) of a RAN node, the SN is based on a relative sequential position of each user data packet of the plurality of user data packets; and transmitting at least one user data packet of the plurality of user data packets before the UE, as part of the handover procedure, determine that the UE is to be transferred to a target RAN node and make the at least one user data packet and the at least one data packet how it would have been before the handover procedure The indication transmitted by the RAN node to the UE is transferred to the target RAN node during the handover procedure.

在示例77中,示例76的主题或本文的任何示例,其中,所述每个用户数据分组的SN还基于由所述RAN节点分配的用于将所述多个用户数据分组传输到所述UE的数据无线承载(DRB)。In Example 77, the subject matter of Example 76 or any examples herein, wherein the SN of each user data packet is further based on an SN allocated by the RAN node for transmitting the plurality of user data packets to the UE Data Radio Bearer (DRB).

在示例78中,示例77的主题或本文的任何示例,其中,所述指示包括所述DRB的标识符。In Example 78, the subject matter of Example 77 or any example herein, wherein the indication includes an identifier of the DRB.

在示例79中,示例76的主题或本文的任何示例,其中,每个用户数据分组的SN还基于与将所述多个用户数据分组传输到所述UE相关联的服务质量(QoS)。In Example 79, the subject matter of Example 76 or any examples herein, wherein the SN of each user data packet is further based on a quality of service (QoS) associated with transmitting the plurality of user data packets to the UE.

在示例80中,示例79的主题或本文的任何示例,其中,所述指示包括与将所述多个用户数据分组传输到所述UE相关联的QoS等级的标识符。In Example 80, the subject matter of Example 79 or any examples herein, wherein the indication includes an identifier of a QoS level associated with transmitting the plurality of user data packets to the UE.

在示例81中,示例76的主题或本文的任何示例,还包括:基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 81, the subject matter of Example 76 or any of the examples herein, further comprising causing the at least one user data packet based on the RAN node not having received an acknowledgement message from the UE for the at least one user data packet is transferred to the target RAN node.

在示例82中,示例76的主题或本文的任何示例,还包括:基于所述RAN节点尚未从所述UE接收到关于所述至少一个用户数据分组之前的用户数据分组的确认消息,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 82, the subject matter of Example 76 or any of the examples herein, further comprising: based on the RAN node having not received an acknowledgement message from the UE for a user data packet preceding the at least one user data packet, causing the at least one user data packet At least one user data packet is transferred to the target RAN node.

在示例83中,示例76的主题或本文的任何示例,还包括:基于所述RAN节点尚未使所述至少一个用户数据分组被发送到所述UE,使所述至少一个用户数据分组被转移到所述目标RAN节点。In Example 83, the subject matter of Example 76 or any of the examples herein, further comprising causing the at least one user data packet to be transferred to the UE based on the RAN node not having caused the at least one user data packet to be sent to the UE the target RAN node.

在前面的说明书中,已经参考附图描述了各种实施例。然而,显而易见的是,在不脱离如在所附权利要求中阐述的更宽范围的情况下,可以对其进行各种修改和改变,并且可以实现另外的实施例。因此,说明书和附图被认为是说明性的而不是限制性的。In the foregoing specification, various embodiments have been described with reference to the accompanying drawings. It will, however, be evident that various modifications and changes may be made thereto, and further embodiments may be practiced, without departing from the broader scope as set forth in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

例如,虽然已经关于图2至图6描述了一系列信号和/或操作,但是可以在其他实现中修改信号/操作的顺序。此外,可以并行执行非依赖性的信号。For example, although a series of signals and/or operations have been described with respect to Figures 2-6, the order of the signals/operations may be modified in other implementations. Furthermore, independent signals can be executed in parallel.

显而易见的是,如上所述的示例方面可以在图中所示的实施方式中以许多不同形式的软件、固件和硬件来实现。用于实现这些方面的实际软件代码或专用控制硬件不应被解释为限制。因此,在不参考特定软件代码的情况下描述了各方面的操作和行为——应理解可以将软件和控制硬件设计为基于本文的描述来实现这些方面。It will be apparent that the example aspects described above may be implemented in many different forms of software, firmware and hardware in the embodiments shown in the figures. The actual software code or dedicated control hardware used to implement these aspects should not be construed as limiting. Accordingly, the operation and behavior of the various aspects have been described without reference to the specific software code - it being understood that software and control hardware can be designed to implement the aspects based on the description herein.

即使在权利要求中陈述和/或在说明书中公开了特征的特定组合,但是这些组合也不旨在是限制性的。实际上,许多这些特征可以以未在权利要求中具体陈述和/或在说明书中公开的方式组合。Even if specific combinations of features are stated in the claims and/or disclosed in the specification, these combinations are not intended to be limiting. Indeed, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification.

除非明确说明,否则本申请中使用的元件、动作或指令不应被解释为关键或必要的。本文使用的词语“和”的使用的实例不一定排除在该实例中的短语“和/或”的解释。类似地,如本文所使用的词语“或”的使用的实例不一定排除在该实例中的短语“和/或”的解释。此外,如本文所使用的,冠词“一”旨在包括一个或多个项目,并且可以与短语“一个或多个”互换使用。在仅有一个项目的情况下,使用词语“一个”、“单个”、“仅”或类似语言。No element, act, or instruction used in the present application should be construed as critical or essential unless explicitly stated otherwise. As used herein, instances of use of the word "and" do not necessarily preclude construction of the phrase "and/or" in that instance. Similarly, use of the word "or" as used herein does not necessarily preclude construction of the phrase "and/or" in that instance. Also, as used herein, the article "a" is intended to include one or more items, and can be used interchangeably with the phrase "one or more." Where there is only one item, the words "a", "single", "only" or similar language are used.

Claims (24)

1. An apparatus of a radio access network, RAN, node, the apparatus comprising:
an interface to a radio frequency RF circuit; and
one or more processors configured to:
inserting a sequence number, SN, into at least one of a plurality of user data packets directed to a user equipment, UE, connected to a RAN node, the SN being based on a relative sequential position of the plurality of user data packets; and is
Prior to causing the at least one of the plurality of user data packets to be transmitted to the UE via the RF circuitry,
determining, as part of a handover procedure, that the UE is to be transferred to a target RAN node,
causing the at least one user data packet to be transferred to the target RAN node during the handover procedure, along with an indication of how the at least one user data packet would have been transmitted to the UE by the RAN node via the interface prior to the handover procedure, wherein the indication comprises an identifier of a data radio bearer, DRB, allocated by the RAN node for transmission of the plurality of user data packets to the UE, and wherein the target RAN node determines whether to use the DRB or another DRB different from the DRB for transmission of the at least one user data packet to the UE.
2. The apparatus of claim 1, wherein the SN of the at least one user data packet is further based on the DRB.
3. The apparatus of claim 1, wherein the SN of the at least one user data packet is further based on a quality of service (QoS) associated with transmitting the plurality of user data packets to the UE.
4. The apparatus of claim 3, wherein the indication comprises an identifier of a QoS class associated with transmitting the plurality of user data packets to the UE.
5. The apparatus of claim 1 or 4, wherein the one or more processors cause the at least one user data packet to be transferred to the target RAN node based on the RAN node not having caused the at least one user data packet to be transmitted to the UE.
6. The apparatus of claim 1 or 4, wherein the one or more processors cause the at least one user data packet to be transferred to the target RAN node based on the RAN node not having received an acknowledgement message from the UE regarding the at least one user data packet.
7. The apparatus of claim 1 or 4, wherein the one or more processors cause the at least one user data packet to be transferred to the target RAN node based on the RAN node not having received an acknowledgement message from the UE regarding a user data packet preceding the at least one user data packet.
8. The apparatus of claim 1, wherein the RAN node comprises a new air interface, NR, base station.
9. The apparatus of claim 1 or 8, wherein the plurality of user data packets are transmitted via a user plane of a wireless telecommunications network.
10. An apparatus of a radio access network, RAN, node, the apparatus comprising:
an interface to a Radio Frequency (RF) circuit; and
one or more processors configured to:
receiving a plurality of user data packets from a source RAN node of a handover procedure, the plurality of user data packets being directed to a user equipment, UE, corresponding to the handover procedure, at least one of the plurality of user data packets comprising a sequence number, SN, based on a relative sequential position of the plurality of user data packets;
receiving, from the source RAN node, an indication of how the at least one of the plurality of user data packets would otherwise be transmitted by the source RAN node to the UE prior to the handover procedure, wherein the indication comprises an identifier of a data radio bearer, DRB, allocated by the RAN node for transmission of the plurality of user data packets to the UE;
determining, based on the indication, whether to use the DRB or another DRB different from the DRB for transmitting the plurality of user data packets to the UE;
receiving, via the interface, an indication that the UE is ready to communicate with the RAN node as part of the handover procedure; and is
Causing the plurality of user data packets to be transmitted to the UE via the interface using the DRB.
11. The apparatus of claim 10, wherein the SN of the at least one user data packet is further based on the DRB.
12. The apparatus of claim 10, wherein:
the one or more processors are further to:
mapping the SN to another Sequence Number (SN) that is based on the DRB used to transmit the plurality of user data packets; and
inserting the further sequence number SN into the at least one of the plurality of user data packets.
13. The apparatus of claim 10, wherein the SN of the at least one user data packet is based on a quality of service, QoS, associated with the source RAN node transmitting the plurality of user data packets to the UE.
14. The apparatus of claim 13, wherein the one or more processors are further configured to:
determining a quality of service, QoS, with which the RAN node is to transmit the plurality of user data packets to the UE; and
mapping an identifier associated with the QoS included in the plurality of user data packets to the QoS with which the RAN node is to transmit the plurality of user data packets to the UE.
15. The apparatus of claim 10 or 14, wherein the one or more processors are further configured to:
determining that the UE has received the plurality of user data packets;
determining another DRB different from the DRB for communication with the UE; and
causing the other DRB to be used in place of the DRB for communication with the UE.
16. The apparatus of claim 10 or 14, wherein prior to causing the plurality of user data packets to be transmitted to the UE, the one or more processors are further to:
determining another DRB;
configuration information for handover to the other DRB is transmitted to the UE; and
communicating with the UE using the other DRB after transmitting the plurality of user data packets to the UE.
17. The apparatus of claim 10 or 14, wherein the one or more processors are further to receive an acknowledgement from the UE regarding at least one user data packet of the plurality of user data packets and exclude the at least one user data packet from being sent to the UE.
18. The apparatus of claim 10 or 14, wherein the one or more processors are further to receive an end-marker packet indicating that the UE has received the plurality of user data packets.
19. The apparatus of claim 10, wherein the RAN node comprises a new air interface, NR, base station.
20. The apparatus of claim 10, wherein the plurality of user data packets are transmitted via a user plane of a wireless telecommunications network.
21. An apparatus of a User Equipment (UE), the apparatus comprising:
an interface to a radio frequency RF circuit; and
one or more processors configured to:
receiving a plurality of first user data packets from a first radio access network, RAN, node via the interface, at least one of the plurality of first user data packets comprising a sequence number, SN, based on an order position of the at least one of the plurality of first user data packets;
receiving, via the interface, an instruction to participate in a handover procedure involving the first RAN node and a second RAN node;
receiving, as part of the handover procedure, a plurality of second user data packets from the second RAN node via the interface, at least one of the plurality of second user data packets comprising a SN based on a sequential position of the at least one user data packet relative to the plurality of first user data packets and the plurality of second user data packets, wherein the second RAN node receives the plurality of second user data packets from the first RAN node and an indication of how the at least one of the plurality of second user data packets would otherwise be transmitted to the UE by the first RAN node prior to the handover procedure, wherein the indication comprises an identifier of a Data Radio Bearer (DRB) allocated by the RAN node for transmission of the plurality of user data packets to the UE, and wherein the second RAN node sends the at least one of the plurality of second user data packets to the UE based on the indication by determining whether to use the DRB or another DRB different from the DRB; and is
Merging the plurality of first user data packets with the plurality of second user data packets based on the SN of the at least one of the plurality of first user data packets and the plurality of second user data packets.
22. The apparatus of claim 21, wherein the one or more processors are further configured to:
based on the instruction, cause a message to be transmitted to the second RAN node via the interface, the message indicating that the UE is configured to communicate with the second RAN node.
23. The apparatus of claim 21, wherein the one or more processors are further configured to:
determining whether a transmission failure occurs based on a SN of the at least one of the plurality of first user data packets and the plurality of second user data packets; and
transmitting a retransmission request for a user data packet corresponding to the transmission failure to the second RAN node.
24. The apparatus of claim 21, wherein the one or more processors are further configured to:
for at least one user data packet of the plurality of first user data packets, deleting the at least one user data packet based on the at least one user data packet in accordance with the UE not sending an acknowledgement message to the first RAN node; and
receiving another copy of the at least one user data packet as part of the plurality of second user data packets from the second RAN node.
CN201780079141.9A 2016-12-20 2017-12-20 System and method for packet forwarding during handover procedure Active CN110089151B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662436900P 2016-12-20 2016-12-20
US62/436,900 2016-12-20
PCT/US2017/067685 WO2018119123A1 (en) 2016-12-20 2017-12-20 Systems and methods for packet forwarding during handover procedures

Publications (2)

Publication Number Publication Date
CN110089151A CN110089151A (en) 2019-08-02
CN110089151B true CN110089151B (en) 2022-05-31

Family

ID=61231304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780079141.9A Active CN110089151B (en) 2016-12-20 2017-12-20 System and method for packet forwarding during handover procedure

Country Status (2)

Country Link
CN (1) CN110089151B (en)
WO (1) WO2018119123A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230292185A1 (en) * 2020-07-31 2023-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Ei signalling for group handover
CN114079870B (en) * 2020-08-13 2023-06-02 华为技术有限公司 Communication method and device
US11997528B2 (en) * 2020-10-21 2024-05-28 Samsung Electronics Co., Ltd. Communication method, apparatus, electronic device and computer readable storage medium
WO2022141548A1 (en) * 2020-12-31 2022-07-07 华为技术有限公司 Data transmission method and apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436984A (en) * 2007-11-13 2009-05-20 华为技术有限公司 Data transmission method and apparatus
CN101874387A (en) * 2007-11-27 2010-10-27 高通股份有限公司 Method and apparatus for handling out-of-order packets during handover in a wireless communication system
CN102036228A (en) * 2009-09-29 2011-04-27 中兴通讯股份有限公司 Method and system for realizing terminal handover
CN102056226A (en) * 2009-11-10 2011-05-11 中兴通讯股份有限公司 Method for acquiring PDCP (packet data convergence protocol) status report and PDCP entity
WO2013181421A2 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Method and apparatus for device-to-device (d2d) mobility in wireless systems
WO2014022974A1 (en) * 2012-08-07 2014-02-13 华为技术有限公司 Method, device, and system for data transmission
CN103888232A (en) * 2006-10-19 2014-06-25 三星电子株式会社 Method and device for receiving and transmitting data, and method and device for data communication
EP2765804A1 (en) * 2008-01-25 2014-08-13 LG Electronics, Inc. Method for performing handover procedure and creating data

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7546124B1 (en) * 2004-12-07 2009-06-09 Nortel Networks Limited Support for handoffs in high rate packet data systems
US8660085B2 (en) * 2006-12-04 2014-02-25 Qualcomm Incorporated Methods and apparatus for transferring a mobile device from a source eNB to a target eNB
US8451795B2 (en) * 2007-08-08 2013-05-28 Qualcomm Incorporated Handover in a wireless data packet communication system that avoid user data loss
CN101646212B (en) * 2008-08-06 2012-01-11 电信科学技术研究院 Cell switching control method, device and communication system
CN102405683B (en) * 2010-08-20 2014-04-30 华为技术有限公司 Bearer processing method and system, and mobility management network elements
CN102612163A (en) * 2011-01-22 2012-07-25 华为技术有限公司 Bearing process method, bearing process device and bearing process system
CN102547897A (en) * 2012-01-16 2012-07-04 中国联合网络通信集团有限公司 Cell switching method and access network equipment
CN102833802B (en) * 2012-08-15 2015-09-23 电信科学技术研究院 A kind of data forwarding method and equipment
US20140254551A1 (en) * 2013-03-11 2014-09-11 Qualcomm Incorporated Method and apparatus for media access control -based fast cell switching for high-speed packet access
US9999086B2 (en) * 2013-05-08 2018-06-12 Telefonaktiebolaget L M Ericsson (Publ) Packet data transfer re-establishment
US20150109927A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Base station to access point interface for data bearer routing
CN104202778B (en) * 2014-08-05 2017-12-19 电信科学技术研究院 One kind carrying acceptance controlling method and device
CN105472659B (en) * 2014-08-07 2019-02-22 中国电信股份有限公司 Wireless resource allocation methods and system between node

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103888232A (en) * 2006-10-19 2014-06-25 三星电子株式会社 Method and device for receiving and transmitting data, and method and device for data communication
CN101436984A (en) * 2007-11-13 2009-05-20 华为技术有限公司 Data transmission method and apparatus
CN101874387A (en) * 2007-11-27 2010-10-27 高通股份有限公司 Method and apparatus for handling out-of-order packets during handover in a wireless communication system
EP2765804A1 (en) * 2008-01-25 2014-08-13 LG Electronics, Inc. Method for performing handover procedure and creating data
CN102036228A (en) * 2009-09-29 2011-04-27 中兴通讯股份有限公司 Method and system for realizing terminal handover
CN102056226A (en) * 2009-11-10 2011-05-11 中兴通讯股份有限公司 Method for acquiring PDCP (packet data convergence protocol) status report and PDCP entity
WO2013181421A2 (en) * 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Method and apparatus for device-to-device (d2d) mobility in wireless systems
WO2014022974A1 (en) * 2012-08-07 2014-02-13 华为技术有限公司 Method, device, and system for data transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Motorola.Data forwarding at HO.《TSG-RAN WG2 Meeting #64bis R2-090442》.2009,全文. *
RAN aspects of QoS framework for Next Gen Core;Intel Corporation;《3GPP TSG-RAN WG2 Meeting #95 R2-165011》;20160813;全文 *

Also Published As

Publication number Publication date
CN110089151A (en) 2019-08-02
WO2018119123A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US11622397B2 (en) Enhancing user plane contexts management in new radio (NR)
US20220394749A1 (en) Timing determination techniques for 5g radio access network cells
US11272391B2 (en) Concatenation of service data units above a packet data convergence protocol layer
US11457503B2 (en) Re-transmission of PDCP PDUS by centralized nodes of a RAN architecture
CN111095848B (en) Channel state information reporting on physical uplink shared channel in new radio
US20220416986A1 (en) Physical Resource Block Indexing for Coexistence of Narrow Band, Carrier Aggregation, and Wide Band User Equipment in New Radio
US11082901B2 (en) Signaling of support for network controlled small gap, NCSG, for interruption control
CN112602374B (en) Apparatus and method for supporting make-before-break (MBB) handover in next generation radio access network (NG-RAN)
US12256264B2 (en) Latency management for integrated access and backhaul
CN109792363B (en) Method to avoid HFN desynchronization in uplink over WLAN in LTE-WLAN aggregation
US11991087B2 (en) Enhancement of user plane flow control for retransmitted packets
CN110089151B (en) System and method for packet forwarding during handover procedure
US11375558B2 (en) LWIP (LTE/WLAN radio level integration using IPSEC tunnel) packet acknowledgement using GRE (generic routing encapsulation) header
CN110351856A (en) The device and method for determining the wave beam for PDCCH
WO2018063943A1 (en) Uplink (ul) measurement configuration
US20220345953A1 (en) Apparatuses for partially offloading protocol processing
CN109076479B (en) Tracking user equipment at radio access network level
CN110401969A (en) Apparatus and method for controlling measurement report triggering in wireless communication
WO2018031395A1 (en) Common uplink message for user equipment initiated scenarios
WO2018085727A1 (en) Bi-casting information to user equipment of a wireless telecommunication network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200407

Address after: California, USA

Applicant after: Apple Inc.

Address before: California, USA

Applicant before: INTEL Corp.

Effective date of registration: 20200407

Address after: California, USA

Applicant after: INTEL Corp.

Address before: California, USA

Applicant before: INTEL IP Corp.

GR01 Patent grant
GR01 Patent grant