[go: up one dir, main page]

CN110088501B - Torsional vibration damper arrangement for a drive train of a vehicle - Google Patents

Torsional vibration damper arrangement for a drive train of a vehicle Download PDF

Info

Publication number
CN110088501B
CN110088501B CN201780078767.8A CN201780078767A CN110088501B CN 110088501 B CN110088501 B CN 110088501B CN 201780078767 A CN201780078767 A CN 201780078767A CN 110088501 B CN110088501 B CN 110088501B
Authority
CN
China
Prior art keywords
torque
transmission path
piston
torsional vibration
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201780078767.8A
Other languages
Chinese (zh)
Other versions
CN110088501A (en
Inventor
U·格罗斯格鲍尔
C·卡尔森
M·科普
D·洛伦茨
T·戴克霍夫
M·特劳特
S·埃纳克尔
M·赖施
M·万德雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of CN110088501A publication Critical patent/CN110088501A/en
Application granted granted Critical
Publication of CN110088501B publication Critical patent/CN110088501B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • F16F15/162Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material with forced fluid circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种用于车辆的传动系的扭转减振装置,包括:能驱动以围绕转动轴线(A)转动的输入区域(50)和输出区域(55),其中在输入区域(50)和输出区域(55)之间设有第一扭矩传递路径(47)和与其平行的第二扭矩传递路径(48)以及耦联装置(51),其中在第一扭矩传递路径(47)中设有相移装置(44),其中耦联装置(51)构成为流体传动装置(60)。

Figure 201780078767

A torsional vibration damping device for a drive train of a vehicle, comprising: an input region (50) and an output region (55) drivable to rotate about an axis of rotation (A), wherein the input region (50) and the output region ( 55) between a first torque transmission path (47) and a second torque transmission path (48) parallel to it and a coupling device (51), wherein a phase shift device is provided in the first torque transmission path (47) (44), wherein the coupling device (51) is designed as a fluid transmission (60).

Figure 201780078767

Description

用于车辆的传动系的扭转减振装置Torsional vibration damping device for the drive train of a vehicle

技术领域technical field

本发明涉及一种用于车辆的传动系的扭转减振装置,其包括能驱动以围绕转动轴线转动的输入区域和输出区域,其中在输入区域和输出区域之间设有第一扭矩传递路径和与其平行设有第二扭矩传递路径以及用于叠加经由扭矩传递路径引导的扭矩的耦联装置,其中在第一扭矩传递路径中设有相移装置,所述相移装置用于产生经由第一扭矩传递路径引导的转动不均匀性相对于经由第二扭矩传递路径引导的转动不均匀性的相移。The invention relates to a torsional vibration damping device for a drive train of a vehicle, comprising an input region and an output region drivable for rotation about an axis of rotation, wherein between the input region and the output region a first torque transmission path and A second torque transmission path is provided parallel thereto, and a coupling device for superimposing the torque guided via the torque transmission path is provided, wherein a phase shift device is provided in the first torque transmission path for generating the first torque transmission path. The phase shift of the rotational non-uniformity directed by the torque transfer path relative to the rotational non-uniformity directed via the second torque transfer path.

背景技术Background technique

从德国专利申请DE 10 2011 007 118 A中已知一种扭转减振装置,其将例如通过内燃机的曲轴导入输入区域中的扭矩分配成经由第一扭矩传递路径传递的扭矩分量和经由第二扭矩传递路径引导的扭矩分量。在该扭矩分配的情况下,不仅分配静态的扭矩,而且也将包含在要传递的扭矩中的振动或转动不均匀性按比例分配到两个扭矩传递路径上,其中所述振动或转动不均匀性例如通过内燃机中周期出现的点火生成。耦联装置在此又将两个扭矩传递路径汇合并且将汇合的总扭矩导入输出区域中,例如摩擦离合器等中。From German patent application DE 10 2011 007 118 A a torsional vibration damping device is known, which divides the torque introduced, for example, by the crankshaft of an internal combustion engine into the input region into a torque component transmitted via a first torque transmission path and a second torque The torque component guided by the transfer path. In the case of this torque distribution, not only the static torque is distributed, but also the vibrations or rotational inhomogeneities contained in the torque to be transmitted are distributed proportionally to the two torque transmission paths, wherein the vibrations or rotational inhomogeneities are Properties are generated, for example, by cyclically occurring ignitions in internal combustion engines. The coupling device here again joins the two torque transmission paths and conducts the combined total torque into the output region, for example into the friction clutch or the like.

在扭矩传递路径的至少一个中设有相移装置,所述相移装置根据减振器的类型构造,即构成有初级元件和由于弹簧装置的可压缩性可相对于其转动的中间元件。尤其当所述振动系统过渡到超临界状态中时,即借助超过振动系统的共振频率的振动来激发时,出现直至180°的相移。这表示:在相移最大的情况下,由振动系统输出的振动分量相对于由振动系统吸收的振动分量相移180°。因为经由另一扭矩传递路径引导的振动分量不经受相移或必要时经受不同的相移,所以包含在汇合的扭矩分量中的且相对彼此随后相移的振动分量相对彼此削减性地叠加,使得在理想情况下导入输出区域中的总扭矩是基本上不包含振动分量的静态的扭矩。在此,耦联装置构成为行星传动装置。At least one of the torque transmission paths is provided with a phase shift device, which is designed according to the type of vibration damper, ie with a primary element and an intermediate element, which is rotatable relative to it due to the compressibility of the spring device. A phase shift of up to 180° occurs in particular when the vibratory system transitions into a supercritical state, ie is excited by means of vibrations exceeding the resonance frequency of the vibratory system. This means that with the maximum phase shift, the vibration component output by the vibration system is phase shifted by 180° relative to the vibration component absorbed by the vibration system. Since the vibration components conducted via the other torque transmission path are not subject to a phase shift or, if necessary, a different phase shift, the vibration components contained in the combined torque components and subsequently phase-shifted relative to one another are superimposed with respect to one another in a reduced manner, so that Ideally, the total torque introduced into the output region is a static torque substantially free of vibration components. In this case, the coupling device is designed as a planetary gear.

从DE 10 201 1 086 982 A1中已知如刚好描述的扭转减振装置,然而在此耦联装置构成为杠杆传动装置。A torsional vibration damping device as just described is known from DE 10 201 1 086 982 A1, but here the coupling device is designed as a lever gear.

发明内容SUMMARY OF THE INVENTION

本发明的目的是:提出一种扭转减振装置,其在结构简单的情况下具有改进的减振特性。The object of the present invention is to propose a torsional vibration damping device which has improved damping properties with a simple structure.

根据本发明,所述目的通过一种用于机动车的传动系的扭转减振装置实现,其包括:能驱动以围绕转动轴线(A)转动的输入区域和输出区域,其中在输入区域和输出区域之间彼此平行地设有第一扭矩传递路径和第二扭矩传递路径,所述第一扭矩传递路径用于传递可在输入区域和输出区域之间传递的总扭矩的第一扭矩分量并且第二扭矩传递路径用于传递第二扭矩分量;至少在第一扭矩传递路径中的相移装置,以产生经由第一扭矩传递路径引导的转动不均匀性相对于经由第二扭矩传递路径引导的转动不均匀性的相移,其中相移装置包括振动系统,所述振动系统具有初级元件和克服阻尼元件装置的复位作用能相对于初级元件围绕转动轴线(A)转动的中间质量;耦联装置,其用于将经由第一扭矩传递路径传递的第一扭矩分量和经由第二扭矩传递路径传递的第二扭矩分量汇合并且用于将汇合的扭矩传递给输出区域,其中耦联装置包括与第一扭矩传递路径连接的第一输入元件、与第二扭矩传递路径连接的第二输入元件和与输出区域连接的输出元件,其中耦联装置构成为流体传动装置。在此,流体传动装置包括:至少一个壳体元件、第一缸和第二缸,所述第一缸和第二缸两者设置在壳体元件中并且借助于连接开口彼此连接;以及活塞对,所述活塞对包括第一活塞和第二活塞,所述第一和第二活塞借助于作用介质在壳体元件的相应的缸中能彼此相反地移动。在此,两个活塞中的一个与相移装置的输出端连接并且为耦联装置的第一输入元件,而两个活塞中的另一个与直接的扭矩传递路径连接,所述扭矩传递路径因此为耦联装置的第二输入元件。壳体元件为耦联装置的输出元件并且有利地与输出区域连接、例如与起动离合器或传动装置连接。如果现在从输入区域导入具有扭转振动的扭矩,则扭矩分支到第一和第二扭矩传递路径上。在第一扭矩传递路径中设有相移装置,而第二扭矩传递路径直接地、即刚性地从输入侧起延伸。在扭矩从输入区域传递到输出区域的情况下,与直接的、即刚性的扭矩传递路径连接的第二活塞在壳体元件的第二缸中移动并且经由其活塞面将力施加到作用介质上。因为第二缸借助于连接开口与第一缸连接,所以作用介质将相反定向的力施加到第一活塞的面上,所述第一活塞实施相反于第二活塞的运动并且将主要由弹簧构成的振动系统预紧。如果在两个活塞面之间设定力平衡,则将输出元件处的所得出的力以及所得出的扭矩借助于壳体元件、更确切地说借助于缸后壁作用于输出元件上。因此,静态力矩从输入区域传递到输出区域。包含在静态扭矩中的动态分量、即扭转振动在理想情况下通过作用介质的振动相对于振动系统、即弹簧质量系统抵消并且不传递到输出区域上。According to the invention, the object is achieved by a torsional vibration damping device for a drive train of a motor vehicle, comprising: an input region and an output region drivable for rotation about an axis of rotation (A), wherein the input region and the output region A first torque transmission path and a second torque transmission path for transmitting a first torque component of the total torque transferable between the input and output regions and a second torque transmission path are provided parallel to each other between the regions. Two torque transfer paths for transferring a second torque component; phase shifting means in at least the first torque transfer path to create rotational non-uniformity directed via the first torque transfer path relative to rotation directed via the second torque transfer path A phase shift of inhomogeneities, wherein the phase shift device comprises a vibrating system having a primary element and an intermediate mass capable of rotating relative to the primary element about an axis of rotation (A) against the reset action of the damping element arrangement; coupling means, It is used for combining the first torque component transmitted via the first torque transmission path and the second torque component transmitted via the second torque transmission path and for transmitting the combined torque to the output region, wherein the coupling device comprises a A first input element connected to the torque transmission path, a second input element connected to the second torque transmission path, and an output element connected to the output region, wherein the coupling device is designed as a fluid transmission. Here, the fluid transmission comprises: at least one housing element, a first cylinder and a second cylinder, both of which are arranged in the housing element and are connected to each other by means of connecting openings; and a pair of pistons , the pair of pistons comprises a first piston and a second piston which are movable opposite each other by means of an action medium in corresponding cylinders of the housing element. Here, one of the two pistons is connected to the output of the phase shifting device and is the first input element of the coupling device, while the other of the two pistons is connected to a direct torque transmission path, which is thus is the second input element of the coupling device. The housing element is the output element of the coupling device and is advantageously connected with the output region, for example with the starting clutch or the transmission. If a torque with torsional vibrations is now introduced from the input region, the torque branches to the first and second torque transmission paths. A phase shifter is provided in the first torque transmission path, while the second torque transmission path extends directly, ie rigidly, from the input side. In the case of torque transmission from the input region to the output region, the second piston, which is connected to the direct, ie rigid, torque transmission path, moves in the second cylinder of the housing element and exerts a force on the action medium via its piston surface. Since the second cylinder is connected to the first cylinder by means of the connecting opening, the action medium exerts an oppositely directed force on the face of the first piston, which executes a movement opposite to the second piston and which will consist essentially of a spring The vibration system is preloaded. If a force balance is established between the two piston surfaces, the resulting force at the output element and the resulting torque act on the output element by means of the housing element, more precisely by means of the cylinder rear wall. Therefore, static torque is transferred from the input area to the output area. The dynamic components contained in the static torque, ie the torsional vibrations, are ideally counteracted by the vibrations of the action medium relative to the vibrating system, ie the spring-mass system, and are not transmitted to the output region.

通过第一和第二缸的活塞面的比例能够设定耦联装置的传动比。这种类型的传动改变与现有技术中已知的、耦联装置构成为行星传动装置或杠杆传动装置的实施形式相比可成本有利且快速地实现,因为仅必须改变有效的活塞面。The transmission ratio of the coupling device can be set by the ratio of the piston surfaces of the first and second cylinders. This type of gear change can be carried out cost-effectively and quickly compared to the embodiments known from the prior art in which the coupling is embodied as a planetary gear or as a lever gear, since only the effective piston surface has to be changed.

也能够有利的是:壳体元件中的缸具有弯曲的或直线的走向。It can also be advantageous for the cylinders in the housing element to have a curved or straight course.

此外,不可压缩的介质、即例如液压液体、油或任何其他已知的且适当的液体或还有粘性介质能够用作为作用介质。Furthermore, incompressible media, ie for example hydraulic fluids, oils or any other known and suitable liquids or also viscous media can be used as action media.

也能够有利的是:多个流体传动装置沿围绕转动轴线A的周向方向均匀地或不均匀地分布。It can also be advantageous for a plurality of fluid transmission devices to be distributed uniformly or non-uniformly in the circumferential direction around the axis of rotation A.

也能够通过第一和第二活塞的活塞面的比确定流体传动装置的传动比。The transmission ratio of the fluid transmission can also be determined by the ratio of the piston surfaces of the first and second pistons.

附图说明Description of drawings

下面,参考附图详细描述本发明。附图示出:Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. The attached figure shows:

图1示出现有技术的具有两个平行的扭矩传递路径的扭转减振装置的原理图。FIG. 1 shows a schematic diagram of a prior art torsional vibration damping device with two parallel torque transmission paths.

图2示出现有技术的具有行星传动装置作为耦联装置的扭转减振装置的原理图。FIG. 2 shows a schematic diagram of a prior art torsional vibration damping device with a planetary gear as a coupling device.

图3示出现有技术的在线性模型中的具有杠杆耦联装置的减振装置。FIG. 3 shows a prior art vibration damping device with a lever coupling in a linear model.

图4-8示出如图3中示出的现有技术的不同的传动比。FIGS. 4-8 show different transmission ratios of the prior art as shown in FIG. 3 .

图9示出在线性模型中的根据本发明的具有作为流体传动装置作为耦联装置的减振装置。FIG. 9 shows the damping device according to the invention with the coupling device as a fluid transmission device in a linear model.

图10示出根据本发明的具有流体传动装置的扭转减振装置的剖面图。FIG. 10 shows a sectional view of a torsional vibration damping device with a fluid transmission device according to the invention.

图11作为耦联装置的区域中的俯视图示出图10的扭转减振装置。FIG. 11 shows the torsional vibration damping device of FIG. 10 as a plan view in the region of the coupling device.

具体实施方式Detailed ways

下面参考图1描述一般性用10表示的扭转减振装置的第一实施方式,所述扭转减振装置根据功率或扭矩分支的原理工作。扭转减振装置10能够设置在例如车辆的传动系中、在驱动总成和传动系的以下部件之间,该部件例如是传动装置、摩擦离合器、流体动力学的扭矩变换器等。A first embodiment of a torsional vibration damping device, generally designated 10 , is described below with reference to FIG. 1 , which works according to the principle of power or torque branching. The torsional vibration damping device 10 can be provided, for example, in the driveline of a vehicle, between the drive assembly and components of the driveline, such as a transmission, a friction clutch, a hydrodynamic torque converter, or the like.

图1中示意示出的扭转减振装置10包括一般性设有附图标记50的输入区域。该输入区域50例如能够通过旋紧来接连到驱动总成61未示出的曲轴处。在输入区域50中,由驱动总成61吸收的扭矩分支到第一扭矩传递路径47和第二扭矩传递路径48中。在一般性设有附图标记51的耦联装置的区域中,经由两个扭矩传递路径47、48引导的扭矩分量Ma1和Ma2又汇合成输出扭矩Maus并且随后传递至输出区域55,所述输出区域例如能够如此处通过传动装置63构成。The torsional vibration damping device 10 shown schematically in FIG. 1 includes an input area generally provided with the reference numeral 50 . The input region 50 can be connected to a crankshaft (not shown) of the drive unit 61 , for example, by screwing. In the input region 50 , the torque absorbed by the drive assembly 61 is branched into the first torque transmission path 47 and the second torque transmission path 48 . In the region of the coupling device generally provided with the reference numeral 51 , the torque components Ma1 and Ma2 conducted via the two torque transmission paths 47 , 48 are combined again to form the output torque Maus and then transmitted to the output region 55 , which The region can be formed here, for example, by means of a gear 63 .

在第一扭矩传递路径47中集成一般性设有附图标记56的振动系统。振动系统56作为相移装置44并且包括例如要接连到驱动总成处的初级元件1以及传递扭矩的次级元件2。在此,初级元件1克服阻尼元件装置4能够相对于中间质量5转动。A vibration system, generally provided with the reference numeral 56 , is integrated in the first torque transmission path 47 . The vibration system 56 serves as the phase-shifting device 44 and comprises, for example, the primary element 1 to be connected to the drive assembly and the secondary element 2 that transmits torque. Here, the primary element 1 is rotatable relative to the intermediate mass 5 against the damping element arrangement 4 .

从之前的描述中可知:振动系统56根据扭转减振器的类型构造有如在此示出的一个或多个弹簧组4。通过选择中间质量5和初级元件1的质量以及一个或多个弹簧组4的刚性可行的是:振动系统56的共振频率处于期望的范围中,以便实现从第一扭矩传递路径47中的扭转振动至第二扭矩传递路径48中的扭转振动的有利的相移。为了使其实现,第一扭矩传递路径47超临界运行。同时,在弹簧组4之后的经相移的扭矩传递路径47中的振动幅度也减小。在第二扭矩传递路径48中应使扭转振动的相移尽可能保持不变。为了使其实现,所述路径尽可能刚性地实施并且实施成具有低的质量惯性。扭转减振装置10的耦联装置51将两个扭矩分量Ma1和Ma2又汇合。这通过如下方式进行:两个扭矩分量Ma1和Ma2以及扭转振动分量以如下形式叠加:即在最佳情况下在两个扭转振动分量相移180°的情况下并且在两个扭矩传递路径47、48中的两个扭转振动分量的幅度相同的情况下在耦联装置51中叠加之后将没有扭转振动分量的扭矩Maus传递给输出区域55。From the preceding description, the vibration system 56 is constructed with one or more spring packs 4 as shown here, depending on the type of torsional vibration damper. By selecting the masses of the intermediate mass 5 and of the primary element 1 and the stiffness of the one or more spring sets 4 it is possible that the resonance frequency of the vibration system 56 is in the desired range in order to achieve torsional vibrations from the first torque transmission path 47 . Favorable phase shift to the torsional vibrations in the second torque transfer path 48 . To make this happen, the first torque transfer path 47 operates supercritically. At the same time, the amplitude of the vibrations in the phase-shifted torque transfer path 47 after the spring set 4 is also reduced. The phase shift of the torsional vibrations should be kept as constant as possible in the second torque transmission path 48 . For this to happen, the path is designed as rigidly as possible and with low mass inertia. The coupling device 51 of the torsional vibration damping device 10 brings together the two torque components Ma1 and Ma2 again. This is done in that the two torque components Ma1 and Ma2 and the torsional vibration components are superimposed in such a way that in the best case the two torsional vibration components are phase-shifted by 180° and in the two torque transmission paths 47 , With the same amplitudes of the two torsional vibration components in 48 , after superimposing in the coupling device 51 , the torque Maus without the torsional vibration components is transmitted to the output region 55 .

在此,耦联装置的传动、弹簧特征曲线和中间质量5的惯性能够选择成,使得两个扭矩路径47;48的幅度比例相同并且振动分量相互抵消。通过传动比也确定:多少力矩经由相移的扭矩传递路径47以及经由弹簧组4引导,以及多少扭矩在直接的扭矩传递路径48上经过。In this case, the transmission of the coupling device, the spring characteristic curve and the inertia of the intermediate mass 5 can be selected such that the amplitude ratios of the two torque paths 47 ; 48 are the same and the vibration components cancel each other out. The transmission ratio also determines how much torque is guided via the phase-shifted torque transmission path 47 and via the spring set 4 , and how much torque travels through the direct torque transmission path 48 .

在图2中示出具有两个扭矩传递路径的扭转减振装置10的互联的标准方案。在此,耦联装置51构成为行星传动装置6。在此,行星传动装置6的行星轮支架8不可相对转动地与初级元件1连接。经相移的扭矩路径47借助于驱动空心轮9与初级元件1连接。驱动空心轮9与行星轮13啮合,所述行星轮可转动地支承在行星轮支架8上并且为中间质量5。另一从动侧的行星轮11不可相对转动地与行星轮13连接。从动侧的行星轮11又与从动空心轮12啮合,其中从动空心轮12形成次级元件2并且为耦联装置51的输出元件40。在该连接变型形式中,大于1.0至1.5的标准传动比最有意义,因为因此能够实现良好的脱耦结果。在此,行星轮支架8处于直接的扭矩传递路径48中。FIG. 2 shows a standard solution for the interconnection of torsional vibration damping devices 10 with two torque transmission paths. In this case, the coupling device 51 is designed as a planetary gear 6 . In this case, the planetary gear carrier 8 of the planetary gear 6 is connected to the primary element 1 in a rotationally fixed manner. The phase-shifted torque path 47 is connected to the primary element 1 by means of the drive ring gear 9 . The drive ring gear 9 meshes with the planet gears 13 , which are rotatably mounted on the planet gear carrier 8 and are the intermediate mass 5 . The other driven-side planetary gear 11 is connected to the planetary gear 13 in a rotationally fixed manner. The driven-side planetary gear 11 meshes again with the driven ring gear 12 , wherein the driven ring gear 12 forms the secondary element 2 and is the output element 40 of the coupling device 51 . In this connection variant, standard transmission ratios greater than 1.0 to 1.5 are most meaningful, since good decoupling results can thus be achieved. Here, the planet carrier 8 is in the direct torque transmission path 48 .

图3示出现有技术的在线性模型中的具有杠杆耦联装置的减振装置。为了更好地理解,在此将也使用在旋转的振动减小中的附图标记用于阐述,因为元件的功能类似。代替旋转的振动减小中的扭矩M,在线性的振动减小中传递力F。对此应根据输出元件40的接连的部位阐述耦联装置51的不同的传动比。在包括杠杆耦联传动装置的具有两个传递路径47;48的减振装置中,传递第一力分量的相移的传递路径47和传递第二力分量的直接的传递路径48经由耦联元件17借助于耦联铰链29铰接连接并因此将总力Fges从输入区域50传递到输出区域处。耦联装置51的输出元件40同样铰接地有利地借助于铰链连接28与耦联元件17连接,其中所述输出元件也是耦联装置51的聚集的力Faus的从动部。根据输出元件40的接连位置,能够将杠杆耦联传动装置的传动比划分成以下5种可行性方案,所述可行性方案在图4至8中单独示出。FIG. 3 shows a prior art vibration damping device with a lever coupling in a linear model. For better understanding, the reference numerals in the vibration reduction of rotation will also be used here for explanation, since the functions of the elements are similar. Instead of the torque M in the rotational vibration reduction, the force F is transmitted in the linear vibration reduction. For this purpose, the different transmission ratios of the coupling device 51 should be explained according to the successive locations of the output element 40 . In a vibration damping device with two transmission paths 47 ; 48 comprising a lever-coupling transmission, the transmission path 47 , which transmits the phase shift of the first force component, and the direct transmission path 48 , which transmits the second force component, are via the coupling element. 17 is articulated by means of the coupling hinge 29 and thus transmits the total force Fges from the input area 50 to the output area. The output element 40 of the coupling device 51 is likewise connected in an articulated manner, advantageously by means of the hinge connection 28 , to the coupling element 17 , wherein said output element is also the output of the concentrated force Faus of the coupling device 51 . Depending on the connecting position of the output element 40 , the transmission ratio of the lever-coupling transmission can be divided into the following five possibilities, which are shown individually in FIGS. 4 to 8 .

在此,还需具体化传动比i的定义。Here, the definition of the transmission ratio i also needs to be specified.

在旋转系统中,传动比表示:In a rotating system, the gear ratio is expressed as:

i=从动部处的扭矩/相移路径中的扭矩i=torque at follower/torque in phase shifted path

在线性系统中,传动比表示:In a linear system, the gear ratio is expressed as:

i=从动部处的力/相移路径中的力i = force at follower/force in phase-shifted path

在此,应忽略角度影响。该考量应适用于小的角度。Here, the angle effect should be ignored. This consideration should apply to small angles.

在此,如下内容适用于下述传动比。Here, the following applies to the following gear ratios.

0<i<1表示:在相移的传递路径47的那侧上在直接和间接的传递路径的耦联铰链29之外将输出元件40接连在耦联元件17处。0<i<1 means that the output element 40 is connected to the coupling element 17 on the side of the phase-shifted transmission path 47 outside the coupling hinge 29 of the direct and indirect transmission path.

i=1表示:直接在相移的传递路径47的耦联铰链29处将输出元件40接连在耦联元件17处。不进行力或力矩的分配。整个力或整个力矩经由弹簧组引导并且类似于在具有已知的双质量飞轮的旋转系统中。i=1 means that the output element 40 is connected to the coupling element 17 directly at the coupling hinge 29 of the phase-shifted transmission path 47 . No distribution of forces or moments takes place. The entire force or the entire moment is guided via a spring set and is similar to that in rotating systems with known dual-mass flywheels.

i>1表示:在直接的和相移的传递路径48;47的耦联铰链29之间将输出元件40接连在耦联元件17处。这对已知的具有两个扭矩传递路径的扭转减振装置是有利的设计范围。i>1 means that the output element 40 is connected to the coupling element 17 between the coupling hinges 29 of the direct and phase-shifted transmission paths 48 ; 47 . This is an advantageous design range for known torsional vibration damping devices with two torque transmission paths.

i=∞表示:直接在直接的传递路径48的耦联铰链29处将输出元件40接连在耦联元件17处。从输入区域50到输出区域55的传递路径没有被划分。整个力Fges或整个扭矩Mges经由直接的传递路径48引导。弹簧组4因此被跨接并且被切断。全部激励被直接引导通过。i=∞ means that the output element 40 is connected to the coupling element 17 directly at the coupling joint 29 of the direct transmission path 48 . The transfer path from the input area 50 to the output area 55 is not divided. The entire force Fges or the entire torque Mges is conducted via the direct transmission path 48 . The spring group 4 is thus bridged and cut off. All incentives are channeled directly through.

i<0表示在直接的传递路径48的那侧上在直接的和相移的传递路径的耦联铰链29之外将输出元件40接连在耦联元件17处。i<0 means that the output element 40 is connected to the coupling element 17 on the side of the direct transmission path 48 outside the coupling hinge 29 of the direct and phase-shifted transmission path.

因此,通过沿着耦联元件17移动输出元件40的铰接接连能够改变耦联装置51的传动比。Thus, the transmission ratio of the coupling device 51 can be changed by moving the articulated connection of the output element 40 along the coupling element 17 .

在理想设计传动比的情况下,输出元件40的铰接接连处于振动节点中。In the case of an ideally designed transmission ratio, the articulated connection of the output element 40 is in the node of vibration.

图9示出在线性模型中的具有流体传动装置60作为耦联装置61的根据本发明的减振装置,其中总力Fges经由第一传递路径47以第一力分量并且经由第二传递路径48以第二力分量Fa2作为输出力Faus借助于流体传动装置传递给流体传动装置60的输出元件。互联方案类似于杠杆耦联传动装置。但是在此,相移的和直接的传递路径47;48的耦联不是如从现有技术中已知的经由杠杆或行星轮进行,而是通过作用介质70、即例如液压液体71作为不可压缩的介质来进行。FIG. 9 shows the damping device according to the invention with a fluid transmission 60 as coupling device 61 in a linear model, wherein the total force Fges via the first transmission path 47 with the first force component and via the second transmission path 48 The output force Faus is transmitted to the output element of the fluid transmission 60 by means of the fluid transmission with the second force component Fa2 as the output force Faus. The interconnection scheme is similar to a lever-coupled transmission. In this case, however, the coupling of the phase-shifted and direct transmission paths 47 ; 48 takes place not via levers or planetary gears, as is known from the prior art, but via the action medium 70 , eg hydraulic fluid 71 , as incompressible medium to carry out.

经由第一活塞65以及经由第二活塞66进行操控,所述第一活塞与相移的传递路径47连接并且所述第一活塞能在壳体元件64的第一缸67中移动,所述第二活塞与直接的传递路径48连接并且所述第二活塞能在壳体元件64的第二缸68中移动。在此,第一缸与第二缸经由连接开口36彼此连接。在此实施成液压液体71的作用介质70在两个活塞65和66之间建立有效连接。在此,壳体元件64与输出元件40固定地连接。Actuated via a first piston 65 and via a second piston 66 , which is connected to the phase-shifting transmission path 47 and which can be moved in a first cylinder 67 of the housing element 64 , the second piston The piston is connected to the direct transmission path 48 and said second piston can move in the second cylinder 68 of the housing element 64 . Here, the first cylinder and the second cylinder are connected to each other via the connecting opening 36 . The action medium 70 , which is embodied here as hydraulic fluid 71 , establishes an operative connection between the two pistons 65 and 66 . In this case, the housing element 64 is fixedly connected to the output element 40 .

传动比通过直接的传递路径48的活塞面AK2与相移的传递路径47的活塞面AK1的比例表示,The transmission ratio is expressed by the ratio of the piston surface AK2 of the direct transmission path 48 to the piston surface AK1 of the phase-shifted transmission path 47,

i=1+(AK2_直接/AK1_相移)或者i=1+(AK2_direct/AK1_phase-shift) or

i=1+│(活塞路径_直接/活塞路径_相移)│i=1+│(piston path_direct/piston path_phase shift)│

在此,通过调节活塞面仅可实现根据上述限定的在>=1范围中的传动比i。所基于的原理是液压的力传动。因此活塞65;66必须如此设置,使得直接的传递路径48和相移的传递路径47相反地运动。原因是,由于在线性模式中的静态的力分量或者由于在旋转模型中的力矩分量以及相对于直接的传递路径48的同相的振动分量,弹簧组4的输出信号的振动分量为反相的,使得弹簧组4压缩。In this case, only the transmission ratio i in the range >=1 according to the above-mentioned definition can be achieved by adjusting the piston surface. The principle is based on hydraulic force transmission. The pistons 65; 66 must therefore be arranged such that the direct transmission path 48 and the phase-shifted transmission path 47 move in opposite directions. The reason is that, due to the static force component in the linear mode or due to the moment component in the rotational model and the in-phase vibration component with respect to the direct transmission path 48, the vibration component of the output signal of the spring set 4 is in antiphase, The spring group 4 is compressed.

图10与图11示出具有两个扭矩传递路径和一个流体传动装置60作为耦联装置51的扭转减振装置10的结构设计。在此,流体传动装置60包括第一和第二活塞65;66的液压单元,所述第一和第二活塞能够在第一和第二缸67;68中移动并且在此示例性地实施成弧形的形状。FIGS. 10 and 11 show the design of the torsional vibration damping device 10 with two torque transmission paths and a fluid transmission 60 as coupling device 51 . In this case, the fluid transmission 60 comprises a hydraulic unit of a first and a second piston 65; 66, which can be moved in a first and a second cylinder 67; shaped shape.

在施加扭矩Mges的情况下,直接的扭矩传递路径48的在运动方向上刚性地接连到初级元件1上的第二活塞66在第二缸68中移动并且经由活塞面AK2借助于作用介质70、在此为液压液体71将力作用于第一活塞65的活塞面AK1上,所述第一活塞借助于弹簧组4与初级元件1连接。由于输出元件40的惯性,所述输出元件一方面能与壳体元件64连接并且另一方面为扭转减振装置10的输出端并且例如能够与传动装置或起动离合器(这两者都未被示出)连接,输出元件40保留在相应的状态下并且不加速。通过作用于第一活塞的活塞面AK1上的力压缩弹簧组4。两个活塞65;66相互移动直至出现力平衡或力矩平衡。最迟此时,作为Maus,力矩Mges经由作用介质70经由缸后壁69传递到输出元件40上。在理想情况下,动态的振动分量通过作用介质70、在此为液压液体71克服相移的扭矩传递路径47中的弹簧质量系统的振动而被抵消,并且不传递到次级元件2、在此为输出元件40上。相移的和直接的扭矩传递路径47;48的第一和第二活塞65;66处的活塞密封件75;76将具有作用介质70的缸内部空间相对于环境密封。When the torque Mges is applied, the second piston 66 of the direct torque transmission path 48 , which is rigidly connected in the direction of movement to the primary element 1 , moves in the second cylinder 68 and via the piston surface AK2 with the aid of the action medium 70 , in the second cylinder 68 . This is the force of the hydraulic fluid 71 acting on the piston surface AK1 of the first piston 65 , which is connected to the primary element 1 by means of the spring set 4 . Due to the inertia of the output element 40 , it can be connected on the one hand to the housing element 64 and on the other hand is the output of the torsional vibration damping device 10 and can be connected, for example, to a transmission or a starting clutch (neither of which are shown). out) connection, the output element 40 remains in the corresponding state and is not accelerated. The spring pack 4 is compressed by the force acting on the piston surface AK1 of the first piston. The two pistons 65; 66 move relative to each other until a force or moment balance occurs. At the latest, as Maus, the torque Mges is transmitted via the action medium 70 via the cylinder rear wall 69 to the output element 40 . Ideally, the dynamic vibration components are counteracted by the vibrations of the spring-mass system in the action medium 70 , here the hydraulic fluid 71 , in the torque transmission path 47 , which overcomes the phase shift, and are not transmitted to the secondary element 2 , here on the output element 40. Piston seals 75; 76 at the first and second pistons 65; 66 of the phase-shifted and direct torque transmission paths 47; 48 seal the cylinder interior space with the action medium 70 from the environment.

附图标记列表List of reference signs

1 初级元件1 Primary element

2 次级元件2 secondary components

3 阻尼元件装置3 Damping element device

4 弹簧组4 spring set

5 中间质量5 Intermediate quality

6 行星传动装置6 Planetary gear

8 行星轮支架8 Planetary carrier

9 驱动空心轮9 drive ring wheel

10 扭转减振装置10 Torsional vibration damping device

11 从动侧的行星轮11 Planetary gear on the driven side

12 从动空心轮12 driven hollow wheel

13 行星轮13 Planetary gear

17 耦联元件17 Coupling elements

20 第一输入元件20 First input element

28 铰链连接28 Hinged connections

29 耦联铰链29 Coupling hinges

30 第二输入元件30 Second input element

36 连接开口36 Connection opening

40 输出元件40 output elements

44 相移装置44 Phase shifter

47 第一扭矩传递路径47 First torque transmission path

48 第二扭矩传递路径48 Second torque transmission path

50 输入区域50 input fields

51 耦联装置51 Coupling device

55 输出区域55 Output area

56 振动系统56 Vibration system

60 流体传动装置60 Fluid Transmission

61 驱动总成61 Drive assembly

62 活塞对62 Piston Pairs

63 传动装置63 Transmission

64 壳体元件64 Housing elements

65 第一活塞65 first piston

66 第二活塞66 Second piston

67 第一缸67 first cylinder

68 第二缸68 Second cylinder

69 缸后壁69 cylinder rear wall

70 作用介质70 Action medium

71 液压液体71 Hydraulic fluids

75 活塞密封件75 Piston seal

76 活塞密封件76 Piston seal

80 缸内部空间80 cylinder interior space

A 转动轴线A Rotation axis

AK1 第一缸的活塞面Piston face of the first cylinder of AK1

AK2 第二缸的活塞面Piston face of the second cylinder of AK2

d1 第一活塞的直径d1 diameter of the first piston

d2 第二活塞的直径d2 Diameter of the second piston

Mges 总扭矩Mges total torque

Mal 扭矩分量1Mal torque component 1

Mal 扭矩分量2Mal torque component 2

Maus 输出扭矩Maus output torque

Fges 总力Fges total power

Fa1 力分量1Fa1 Force component 1

Fa2 力分量2Fa2 Force component 2

Faus 输出力Faus output

Claims (10)

1.一种用于机动车的传动系的扭转减振装置(10),其包括:能被驱动以围绕转动轴线(A)转动的输入区域(50)和输出区域(55),其中在所述输入区域(50)和所述输出区域(55)之间彼此平行地设有第一扭矩传递路径(47)和第二扭矩传递路径(48),所述第一扭矩传递路径用于传递有待在所述输入区域(50)和所述输出区域(55)之间传递的总扭矩(Mges)的第一扭矩分量(Ma1);并且所述第二扭矩传递路径用于传递有待在所述输入区域(50)和所述输出区域(55)之间传递的总扭矩(Mges)的第二扭矩分量(Ma2),1. A torsional vibration damping device (10) for a drive train of a motor vehicle, comprising: an input region (50) and an output region (55) that can be driven to rotate about an axis of rotation (A), wherein the A first torque transmission path (47) and a second torque transmission path (48) are provided parallel to each other between the input region (50) and the output region (55), the first torque transmission path being used to transmit the torque to be transmitted. A first torque component (Ma1) of the total torque (Mges) transferred between the input region (50) and the output region (55); and the second torque transfer path is used to transfer to be at the input the second torque component (Ma2) of the total torque (Mges) transferred between zone (50) and said output zone (55), -至少在所述第一扭矩传递路径(47)中的相移装置(44),以产生经由第一扭矩传递路径(47)引导的转动不均匀性相对于经由第二扭矩传递路径(48)引导的转动不均匀性的相移,其中所述相移装置(44)包括振动系统(56),所述振动系统具有初级元件(1)和克服阻尼元件装置(3)的复位作用能相对于所述初级元件(1)围绕转动轴线(A)转动的中间质量(5),- a phase shifting device (44) at least in said first torque transmission path (47) to generate rotational inhomogeneities directed via the first torque transmission path (47) relative to via the second torque transmission path (48) Guided phase shift of rotational inhomogeneities, wherein the phase shift device (44) comprises a vibration system (56) having a primary element (1) and a reset action energy to overcome the damping element device (3) relative to the intermediate mass (5) of the primary element (1) rotating about the axis of rotation (A), -耦联装置(51),其用于将经由所述第一扭矩传递路径(47)传递的第一扭矩分量(Ma1)和经由所述第二扭矩传递路径(48)传递地第二扭矩分量(Ma2)汇合并且用于将所汇合的扭矩(Maus)传输给所述输出区域(55),其中所述耦联装置(51)包括与所述第一扭矩传递路径(47)连接的第一输入元件(20)、与所述第二扭矩传递路径(48)连接的第二输入元件(30)和与所述输出区域(55)连接的输出元件(40),其中,所述耦联装置(51)构造为流体传动装置(60),所述流体传动装置(60)包括至少一个活塞对(62)、壳体元件(64)和作用介质(70),所述活塞对(62)包括第一活塞(65)和第二活塞(66),其中所述壳体元件(64)包括第一缸(67)和第二缸(68),其中所述第一缸(67)和所述第二缸(68)借助连接开口(36)彼此连接,其特征在于,所述第一活塞(65)能移动地设置在所述第一缸(67)中并且所述第二活塞(66)能移动地设置在所述第二缸(68)中,其中这两个活塞(65;66)借助于作用介质(70)处于有效连接。- a coupling device (51) for connecting a first torque component (Ma1) transmitted via said first torque transmission path (47) and a second torque component transmitted via said second torque transmission path (48) (Ma2) merges and serves to transmit the merged torque (Maus) to the output region (55), wherein the coupling device (51) comprises a first torque transmission path (47) connected to the first an input element (20), a second input element (30) connected to the second torque transmission path (48), and an output element (40) connected to the output region (55), wherein the coupling device ( 51 ) is designed as a fluid transmission ( 60 ) comprising at least one piston pair ( 62 ), a housing element ( 64 ) and an action medium ( 70 ), the piston pair ( 62 ) comprising A first piston (65) and a second piston (66), wherein said housing element (64) comprises a first cylinder (67) and a second cylinder (68), wherein said first cylinder (67) and said Second cylinders (68) are connected to each other by means of connecting openings (36), characterized in that the first piston (65) is movably arranged in the first cylinder (67) and the second piston (66) Displaceably arranged in the second cylinder ( 68 ), the two pistons ( 65 ; 66 ) are operatively connected by means of an action medium ( 70 ). 2.根据权利要求1所述的扭转减振装置(10),其特征在于,这两个活塞(65;66)中的一个活塞与所述耦联装置(51)的所述第一输入元件(20)连接,并且这两个活塞(65;66)中的另一活塞与所述耦联装置(51)的所述第二输入元件(30)连接,并且其中所述壳体元件(64)与所述输出元件(40)连接。2 . The torsional vibration damping device ( 10 ) according to claim 1 , wherein one of the two pistons ( 65 ; 66 ) is connected to the first input element of the coupling device ( 51 ). 3 . (20) is connected and the other of the two pistons (65; 66) is connected to the second input element (30) of the coupling device (51) and wherein the housing element (64) ) is connected to the output element (40). 3.根据权利要求1或2所述的扭转减振装置(10),其特征在于,在这两个活塞(65;66)中的一个活塞相对于所述壳体元件(64)发生相对位置变化的情况下,这两个活塞(65;66)中的另一活塞反向地改变其位置。3 . The torsional vibration damping device ( 10 ) according to claim 1 , wherein a relative position of one of the two pistons ( 65 ; 66 ) with respect to the housing element ( 64 ) takes place. 4 . In case of change, the other of the two pistons (65; 66) changes its position in the opposite direction. 4.根据权利要求1或2所述的扭转减振装置(10),其特征在于,所述第一活塞(65)的直径d1大于或等于或小于所述第二活塞(66)的直径d2。4. The torsional vibration damping device (10) according to claim 1 or 2, wherein the diameter d1 of the first piston (65) is greater than or equal to or less than the diameter d2 of the second piston (66) . 5.根据权利要求1或2所述的扭转减振装置(10),其特征在于,所述第一缸和所述第二缸(67;68)具有弯曲的走向或直线的走向。5 . The torsional vibration damping device ( 10 ) according to claim 1 , wherein the first and second cylinders ( 67 ; 68 ) have a curved or straight course. 6 . 6.根据权利要求1或2所述的扭转减振装置(10),其特征在于,这两个缸(67;68)中的一个缸具有弯曲的走向并且这两个缸(67;68)中的另一缸具有直线的走向。6 . The torsional vibration damping device ( 10 ) according to claim 1 , wherein one of the two cylinders ( 67 ; 68 ) has a curved course and the two cylinders ( 67 ; 68 ) The other cylinder has a straight course. 7.根据权利要求1或2所述的扭转减振装置(10),其特征在于,所述作用介质(70)是不可压缩的介质。7. The torsional vibration damping device (10) according to claim 1 or 2, characterized in that the action medium (70) is an incompressible medium. 8.根据权利要求7所述的扭转减振装置(10),其特征在于,所述不可压缩的介质是流体。8. The torsional vibration damping device (10) according to claim 7, wherein the incompressible medium is a fluid. 9.根据权利要求1或2所述的扭转减振装置(10),其特征在于,两个或更多个流体传动装置(60)沿围绕所述转动轴线(A)的周向方向均匀地或不均匀地分布。9. Torsional vibration damping device (10) according to claim 1 or 2, characterized in that two or more fluid transmission devices (60) are uniformly distributed in a circumferential direction around the axis of rotation (A) or unevenly distributed. 10.根据权利要求1或2所述的扭转减振装置(10),其特征在于,通过所述第一活塞和所述第二活塞(65;66)的活塞面(AK1;AK2)的比例确定所述耦联装置(51)的传动比。10. Torsional vibration damping device (10) according to claim 1 or 2, characterized in that the ratio of the piston surfaces (AK1; AK2) of the first piston and the second piston (65; 66) is passed The transmission ratio of the coupling device (51) is determined.
CN201780078767.8A 2016-12-21 2017-11-21 Torsional vibration damper arrangement for a drive train of a vehicle Expired - Fee Related CN110088501B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016225865.6A DE102016225865A1 (en) 2016-12-21 2016-12-21 Torsional vibration damping arrangement for the drive train of a vehicle
DE102016225865.6 2016-12-21
PCT/EP2017/079830 WO2018114171A1 (en) 2016-12-21 2017-11-21 Torsional vibration damping arrangement for the drive train of a vehicle

Publications (2)

Publication Number Publication Date
CN110088501A CN110088501A (en) 2019-08-02
CN110088501B true CN110088501B (en) 2020-12-25

Family

ID=60515358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780078767.8A Expired - Fee Related CN110088501B (en) 2016-12-21 2017-11-21 Torsional vibration damper arrangement for a drive train of a vehicle

Country Status (4)

Country Link
EP (1) EP3559501A1 (en)
CN (1) CN110088501B (en)
DE (1) DE102016225865A1 (en)
WO (1) WO2018114171A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018222306A1 (en) 2018-12-19 2020-06-25 Zf Friedrichshafen Ag Torsional vibration damping arrangement for the drive train of a vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109828A (en) * 1993-09-17 1995-10-11 卢克驱动系统有限公司 Motor vehicle with hydrodynamic rotative moment changer and rotative moment transmiting system and controlling method
US5761969A (en) * 1994-02-25 1998-06-09 Simpson Industries, Inc. Torsional vibration damper
DE102006061342A1 (en) * 2006-12-22 2008-06-26 Zf Friedrichshafen Ag Torsion vibration damper system for a motor vehicle's drive/power train has a primary side interlinked via an absorbent-fluid system to a secondary side for rotating on an axis of rotation
CN101235872A (en) * 2007-01-31 2008-08-06 卢克摩擦片和离合器两合公司 Torsion vibration damper
CN101321970A (en) * 2005-12-08 2008-12-10 Zf腓特烈港股份公司 Torsional vibration damper
DE102011075244A1 (en) * 2010-05-25 2011-12-01 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement i.e. torque converter, for use in drive train of vehicle, has phase shifter arrangement for generating phase shift of rotational non-uniformity over torque transmission path
DE102012217171A1 (en) * 2012-09-24 2014-03-27 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular torque converter
DE102014201897A1 (en) * 2014-02-03 2015-08-06 Schaeffler Technologies AG & Co. KG torsional vibration dampers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2577104B1 (en) 2010-05-25 2019-06-12 ZF Friedrichshafen AG Hydrodynamic coupling device
DE102011007116A1 (en) * 2011-04-11 2012-10-11 Zf Friedrichshafen Ag Torsional vibration damping arrangement, in particular for a drive train of a vehicle
DE102011086982A1 (en) 2011-11-23 2013-05-23 Zf Friedrichshafen Ag Torsional vibration damping arrangement, in particular for the drive train of a vehicle
DE102012212593A1 (en) * 2012-07-18 2014-01-23 Zf Friedrichshafen Ag Torsional vibration damping arrangement for the drive train of a vehicle
DE102013201617A1 (en) * 2013-01-31 2014-07-31 Zf Friedrichshafen Ag Torsional vibration damping arrangement for the drive train of a vehicle
EP2908025B2 (en) * 2014-02-12 2022-07-13 Schaeffler Technologies AG & Co. KG Power-split damping system
DE102016202178B4 (en) * 2016-02-12 2024-04-25 Bayerische Motoren Werke Aktiengesellschaft Device for reducing torsional vibrations in a drive train and method for operating such a device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109828A (en) * 1993-09-17 1995-10-11 卢克驱动系统有限公司 Motor vehicle with hydrodynamic rotative moment changer and rotative moment transmiting system and controlling method
US5761969A (en) * 1994-02-25 1998-06-09 Simpson Industries, Inc. Torsional vibration damper
CN101321970A (en) * 2005-12-08 2008-12-10 Zf腓特烈港股份公司 Torsional vibration damper
DE102006061342A1 (en) * 2006-12-22 2008-06-26 Zf Friedrichshafen Ag Torsion vibration damper system for a motor vehicle's drive/power train has a primary side interlinked via an absorbent-fluid system to a secondary side for rotating on an axis of rotation
CN101235872A (en) * 2007-01-31 2008-08-06 卢克摩擦片和离合器两合公司 Torsion vibration damper
DE102011075244A1 (en) * 2010-05-25 2011-12-01 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement i.e. torque converter, for use in drive train of vehicle, has phase shifter arrangement for generating phase shift of rotational non-uniformity over torque transmission path
DE102012217171A1 (en) * 2012-09-24 2014-03-27 Zf Friedrichshafen Ag Hydrodynamic coupling arrangement, in particular torque converter
DE102014201897A1 (en) * 2014-02-03 2015-08-06 Schaeffler Technologies AG & Co. KG torsional vibration dampers

Also Published As

Publication number Publication date
DE102016225865A1 (en) 2018-06-21
CN110088501A (en) 2019-08-02
EP3559501A1 (en) 2019-10-30
WO2018114171A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US9303744B2 (en) Torsional vibration damping arrangement
CN105209781B (en) Damper device for a vehicle and method for constructing a damper device
JP5862767B2 (en) Vibration reduction device
US9834082B2 (en) Hybrid drive module and powertrain
CN105408663B (en) Turbine torsional vibration damper, converter and torque transmission device
US20140044523A1 (en) Torque converter
EP2631506B1 (en) Dynamic damper device
US10006517B2 (en) Torsional vibration damper with planetary gear enhanced by inertial mass
US20150369333A1 (en) Torsional Vibration Damping Arrangement For The DriveTrain Of A Vehicle
KR20150007308A (en) Torsional vibration damping arrangement, in particular for the powertrain of a vehicle
US10704621B2 (en) Method for transmitting and damping torques
CN103842687B (en) Vehicle vibration reduces device
CN106662208B (en) Torque transmission device and transmission
CN108291606B (en) Apparatus for reducing torsional vibrations in a powertrain system
CN104487735B (en) Torque transmission device
CN110088501B (en) Torsional vibration damper arrangement for a drive train of a vehicle
US11236801B2 (en) Crankshaft assembly comprising a torsional vibration damper
US10690218B2 (en) Torsional vibration damping assembly for a drive train of a vehicle
US20190024753A1 (en) Torsional Vibration Damping Assembly For A Drive Train Of A Vehicle
CN109027123B (en) Planetary damper structure with centrifugal pendulum type shock absorber
US10955025B2 (en) Vehicle powertrain variable vibration absorber assembly
RU2486385C1 (en) Shock absorber
CN106574686A (en) Rotary vibration damping arrangement for drivetrain of vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201225

CF01 Termination of patent right due to non-payment of annual fee