CN110086376B - Small wind energy collector with frequency and displacement amplification function - Google Patents
Small wind energy collector with frequency and displacement amplification function Download PDFInfo
- Publication number
- CN110086376B CN110086376B CN201910374037.3A CN201910374037A CN110086376B CN 110086376 B CN110086376 B CN 110086376B CN 201910374037 A CN201910374037 A CN 201910374037A CN 110086376 B CN110086376 B CN 110086376B
- Authority
- CN
- China
- Prior art keywords
- fishbone
- fishbone beam
- frequency
- comb teeth
- wind energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
- H02N2/188—Vibration harvesters adapted for resonant operation
Landscapes
- Wind Motors (AREA)
Abstract
本发明涉及一种具有频率和位移放大作用的小型风能采集器,包括鱼骨梁、基座、旋转激励组件,鱼骨梁的固定端与基座固定连接,旋转激励组件通过支座与基座固定连接,旋转激励组件与鱼骨梁的自由端无接触式磁力耦合或接触式耦合,鱼骨梁的上下两侧对称粘贴有压电片,鱼骨梁由鱼骨梁中轴、鱼骨梁梳齿和尾梁组成,鱼骨梁梳齿设置在鱼骨梁中轴上,尾梁与鱼骨梁中轴连接,鱼骨梁梳齿纵向长度从固定端到自由端线性减小,且减小比率与鱼骨梁中轴挠度增大比率之积近似为常数,鱼骨梁梳齿所有齿末端表面在同一平面;本发明同现有技术相比,能够提高输出功率,并且可以在低风速下起振,在高风速下也不会变形过大损坏压电片,适合宽速度域工作。
The invention relates to a small wind energy collector with frequency and displacement amplifying functions, comprising a fishbone beam, a base and a rotating excitation component, the fixed end of the fishbone beam is fixedly connected with the base, and the rotating excitation component is connected to the base through the support Fixed connection, non-contact magnetic coupling or contact coupling between the rotating excitation component and the free end of the fishbone beam. Piezoelectric sheets are symmetrically pasted on the upper and lower sides of the fishbone beam. The fishbone beam consists of the central axis of the fishbone beam, the fishbone beam The comb teeth and the tail beam are composed. The comb teeth of the fishbone beam are arranged on the central axis of the fishbone beam, and the tail beam is connected with the central axis of the fishbone beam. The longitudinal length of the comb teeth of the fishbone beam decreases linearly from the fixed end to the free end, and decreases. The product of the small ratio and the increase ratio of the deflection of the central axis of the fishbone beam is approximately a constant, and the end surfaces of all the teeth of the fishbone beam comb teeth are in the same plane; It starts vibrating under high wind speed, and will not deform too much and damage the piezoelectric sheet. It is suitable for working in a wide speed range.
Description
[技术领域][Technical field]
本发明涉及能量采集技术领域,具体地说是一种具有频率和位移放大作用的小型风能采集器。The invention relates to the technical field of energy collection, in particular to a small wind energy collector with frequency and displacement amplification.
[背景技术][Background technique]
能量采集设备可以从流体中采集能量。传统的风力发电和水力发电装置大多采用转动涡轮式装置,装置能量密度低、体积大,并不适用小型化工作。基于压电材料的流致振动能量采集是一种能量密度较高的小型流体能量采集方式。流致振动是指流体绕流钝体时,钝体由于受到周期性流动力而产生振动,如颤振、涡激振动、驰振、尾流驰振等。但流致振动存在很多局限,如:涡激振动在振动系统固有频率附近才有较大的振幅,并不能在宽速度域范围有效采集能量;流致振动在低流速下,不能有效工作;即使流速较大,流致振动频率也较低,严重影响输出功率。Energy harvesting devices can harvest energy from fluids. Most of the traditional wind power generation and hydropower generation devices use rotating turbine devices, which have low energy density and large volume, and are not suitable for miniaturization work. Flow-induced vibration energy harvesting based on piezoelectric materials is a small-scale fluid energy harvesting method with high energy density. Flow-induced vibration means that when the fluid flows around the bluff body, the bluff body vibrates due to periodic flow force, such as flutter, vortex-induced vibration, galloping vibration, and wake galloping vibration. However, flow-induced vibration has many limitations, such as: vortex-induced vibration has a large amplitude near the natural frequency of the vibration system, and cannot effectively collect energy in a wide range of velocity domains; flow-induced vibration cannot work effectively at low flow rates; even if The higher the flow rate, the lower the vibration frequency caused by the flow, which seriously affects the output power.
[发明内容][Content of the Invention]
本发明的目的就是要解决上述的不足而提供一种具有频率和位移放大作用的小型风能采集器,能够提高输出功率,并且可以在低风速下起振,在高风速下也不会变形过大损坏压电片,适合宽速度域工作,解决了现有流致振动能量采集技术能量密度低,低风速下变形量小,起振风速较高,有效工作风速范围窄等问题。The purpose of the present invention is to solve the above deficiencies and provide a small wind energy harvester with frequency and displacement amplification, which can increase the output power, and can vibrate at low wind speeds without excessive deformation at high wind speeds. It is suitable for working in a wide speed range, and solves the problems of low energy density of the existing flow-induced vibration energy harvesting technology, small deformation at low wind speed, high starting wind speed, and narrow effective working wind speed range.
为实现上述目的设计一种具有频率和位移放大作用的小型风能采集器,包括鱼骨梁1、基座2、旋转激励组件3,所述鱼骨梁1设置在基座2与旋转激励组件3之间位置处,所述鱼骨梁1的固定端与基座2固定连接,所述旋转激励组件3可旋转式连接在支座4上,所述支座4另一端固定连接在基座2上,所述旋转激励组件3与鱼骨梁1的自由端无接触式磁力耦合,所述鱼骨梁1的上下两侧对称粘贴有压电片5。In order to achieve the above purpose, a small wind energy collector with frequency and displacement amplification is designed, comprising a
进一步地,所述鱼骨梁1由鱼骨梁中轴6、鱼骨梁梳齿7和尾梁8组成,所述鱼骨梁梳齿7上下对称、间隔布置在鱼骨梁中轴6上,所述尾梁8设置在鱼骨梁1的自由端,并与鱼骨梁中轴6连接为一体,所述鱼骨梁梳齿7纵向长度从固定端到自由端线性减小,且减小比率与鱼骨梁中轴6挠度增大比率之积近似为常数,所述鱼骨梁梳齿7所有齿末端表面在同一平面。Further, the
进一步地,所述旋转激励组件3包括叶片9、旋转轴10、一对轴承11、旋转臂12,所述叶片9与旋转臂12固定在旋转轴10上,所述旋转轴10通过一对轴承11与支座4可转动式连接,所述旋转臂12末端与尾梁8末端分别固定有激励永磁体13、被激励永磁体14,所述激励永磁体13与被激励永磁体14之间进行无接触式磁力耦合。Further, the
进一步地,所述旋转臂12与尾梁8的末端均设有T型永磁体安装板。Further, T-shaped permanent magnet mounting plates are provided at the ends of the rotating
进一步地,所述鱼骨梁梳齿7末端固定有调频质量块17,所述鱼骨梁梳齿7、调频质量块17的系统固有频率与尾梁8、被激励永磁体14的系统固有频率之比为2:1或3:1。Further, a frequency
本发明还提供了一种具有频率和位移放大作用的小型风能采集器,包括鱼骨梁1、基座2、旋转激励组件3,所述鱼骨梁1设置在基座2与旋转激励组件3之间位置处,所述鱼骨梁1的固定端与基座2固定连接,所述旋转激励组件3可旋转式连接在支座4上,所述支座4另一端固定连接在基座2上,所述旋转激励组件3与鱼骨梁1的自由端接触式耦合,所述鱼骨梁1的上下两侧对称粘贴有压电片5。The present invention also provides a small wind energy harvester with frequency and displacement amplification, comprising a
进一步地,所述鱼骨梁1由鱼骨梁中轴6、鱼骨梁梳齿7和尾梁8组成,所述鱼骨梁梳齿7上下对称、间隔布置在鱼骨梁中轴6上,所述尾梁8设置在鱼骨梁1的自由端,并与鱼骨梁中轴6连接为一体,所述鱼骨梁梳齿7纵向长度从固定端到自由端线性减小,且减小比率与鱼骨梁中轴6挠度增大比率之积近似为常数,所述鱼骨梁梳齿7所有齿末端表面在同一平面。Further, the
进一步地,所述旋转激励组件3包括叶片9、旋转轴10、一对轴承11、旋转臂12,所述叶片9与旋转臂12固定在旋转轴10上,所述旋转轴10通过一对轴承11与支座4可转动式连接,所述旋转臂12末端与尾梁8末端分别设置有半球形激励头15、被激励头16,所述半球形激励头15与被激励头16之间进行接触式耦合。Further, the
进一步地,所述鱼骨梁梳齿7末端固定有调频质量块17,所述鱼骨梁梳齿7、调频质量块17的系统固有频率与尾梁8、被激励头16的系统固有频率之比为2:1或3:1。Further, a frequency
进一步地,所述鱼骨梁1采用弹性材料并采用3D打印方式加工而成,所述旋转臂12为阵列式旋转臂结构并选择刚度较低的材料制成。Further, the
本发明同现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明结构新颖、简单,设计合理,利用具有梳齿结构的鱼骨梁放大悬臂梁的弯曲变形,从而放大粘贴于梳齿结构的压电片的形变,提高输出电压和功率;(1) The present invention has a novel, simple structure and reasonable design, and utilizes the fishbone beam with a comb-tooth structure to amplify the bending deformation of the cantilever beam, thereby amplifying the deformation of the piezoelectric sheet pasted on the comb-tooth structure, and improving the output voltage and power;
(2)本发明结合旋转与振动的优点,通过磁力耦合或接触将旋转运动转换为鱼骨梁振动,使鱼骨梁更容易起振,在低风速下,压电鱼骨梁可以有效工作,并且在高风速下,鱼骨梁也不会产生过大的变形而损坏压电片,可以在宽速度范围有效工作;(2) The present invention combines the advantages of rotation and vibration, and converts the rotational motion into the vibration of the fishbone beam through magnetic coupling or contact, so that the fishbone beam is easier to vibrate, and under low wind speed, the piezoelectric fishbone beam can work effectively, And under high wind speed, the fishbone beam will not cause excessive deformation and damage the piezoelectric sheet, and can work effectively in a wide speed range;
(3)本发明采用阵列式激励方式,可以放大激励频率,以及低频尾梁起振与高频梳齿结构发电,也可以通过谐振方式提升发电频率,提高输出平均功率;(3) The present invention adopts an array excitation mode, which can amplify the excitation frequency, generate power from low-frequency tail beam start-up and high-frequency comb-tooth structure, and can also increase the power generation frequency and increase the average output power by means of resonance;
(4)本发明避免了现有流致振动能量采集技术能量密度低,低风速下变形量小,起振风速较高,有效工作风速范围窄等缺点。(4) The present invention avoids the shortcomings of the existing flow-induced vibration energy harvesting technology, such as low energy density, small deformation at low wind speed, high starting wind speed, and narrow effective working wind speed range.
[附图说明][Description of drawings]
图1为本发明实施例1立体结构示意图;1 is a schematic diagram of the three-dimensional structure of
图2为本发明实施例2立体结构示意图;FIG. 2 is a schematic diagram of the three-dimensional structure of
图3为本发明实施例1中压电片及鱼骨梁结构示意图;3 is a schematic structural diagram of a piezoelectric sheet and a fishbone beam in
图4为本发明实施例2中压电片及鱼骨梁结构示意图;4 is a schematic structural diagram of a piezoelectric sheet and a fishbone beam in
图5为本发明中鱼骨梁梳齿结构示意图;5 is a schematic diagram of the comb tooth structure of the fishbone beam in the present invention;
图6为本发明实施例1中旋转激励组件结构示意图;6 is a schematic structural diagram of a rotary excitation assembly in
图7为本发明实施例2中旋转激励组件结构示意图;7 is a schematic structural diagram of a rotary excitation assembly in
图8为本发明实施例1中无接触激励示意图;8 is a schematic diagram of contactless excitation in
图9为本发明实施例2中接触激励示意图;9 is a schematic diagram of contact excitation in
图10为本发明工作流程示意图;10 is a schematic diagram of the work flow of the present invention;
图中:1、鱼骨梁2、基座3、旋转激励组件4、支座5、压电片6、鱼骨梁中轴7、鱼骨梁梳齿8、尾梁9、叶片10、旋转轴11、轴承12、旋转臂13、激励永磁体14、被激励永磁体15、半球形激励头16、被激励头17、调频质量块。In the figure: 1,
[具体实施方式][Detailed ways]
下面结合附图对本发明作以下进一步说明:Below in conjunction with accompanying drawing, the present invention is described further below:
本发明提供了一种具有频率和位移放大作用的小型风能采集器,包括鱼骨梁1、基座2、旋转激励组件3,鱼骨梁1设置在基座2与旋转激励组件3之间位置处,鱼骨梁1固定端与基座2固定连接,旋转激励组件3通过支座4与基座2固定连接,即旋转激励组件3可旋转式连接在支座4上,支座4另一端固定连接在基座2上,旋转激励组件3与鱼骨梁1自由端无接触式磁力耦合或接触式耦合,其中,附图1为无接触式结构,附图2为接触式结构,鱼骨梁1的两侧对称粘贴有压电片5。The present invention provides a small wind energy harvester with frequency and displacement amplification, comprising a
如附图3至附图5所示,鱼骨梁1由鱼骨梁中轴6、鱼骨梁梳齿7和尾梁8组成,鱼骨梁梳齿7上下对称、间隔布置在鱼骨梁中轴6上,尾梁8设置在鱼骨梁1的自由端,并与鱼骨梁中轴6连接为一体,鱼骨梁梳齿7长度从固定端到自由端线性减小,且减小比率与鱼骨梁中轴6挠度增大比率之积近似为常数,使得鱼骨梁1弯曲时鱼骨梁梳齿7的所有相邻齿间距变化程度近似相同,鱼骨梁梳齿7所有齿末端表面在同一平面。As shown in the accompanying
如附图6和附图7所示,旋转激励组件3包括叶片9、旋转轴10、一对轴承11、旋转臂12,其中:叶片9与旋转臂12固定于旋转轴10上,旋转轴10通过一对轴承11与支座4可转动式连接。As shown in FIG. 6 and FIG. 7 , the
如附图8所示,为无接触式结构,旋转激励组件3旋转臂12末端的与鱼骨梁1的尾梁8末端分别固定激励永磁体13和被激励永磁体14,激励永磁体13与被激励永磁体14之间进行无接触式磁力耦合。如附图9所示,为接触式结构,旋转激励组件3旋转臂12末端的与鱼骨梁1的尾梁8末端分别设有半球形激励头15和被激励头16,半球形激励头15与被激励头16之间进行接触式耦合。如选择无接触磁力耦合方式,旋转臂12与尾梁8末端设有T型永磁体安装板。As shown in FIG. 8, it is a non-contact structure, the end of the rotating
其中,鱼骨梁梳齿7末端固定有调频质量块17,使得鱼骨梁梳齿7、调频质量块17系统固有频率与尾梁8、被激励永磁体14(或被激励头16)系统固有频率之比为2:1或3:1。鱼骨梁1可以采用3D打印方式加工,采用弹性较好的材料,旋转臂12为阵列式旋转臂结构并选择刚度较低的材料。根据应用环境选择合适的旋转臂12长度与激励永磁体13(或激励头15)质量,二者之积越大,风速与激励强度的相关性越大。Among them, a frequency
如附图10所示,本发明的工作原理是:宽速度域风驱动叶片旋转,叶片带动旋转臂旋转,旋转臂通过磁力耦合或接触激励鱼骨梁的尾梁,通过磁力耦合或接触式激励,使鱼骨梁尾梁振动,粘贴于鱼骨梁外侧的压电片产生压缩与拉伸,通过压电效应产生较大的电压,可以储存或直接使用。旋转臂刚度较小,使得在低风速下,由鱼骨梁产生反作用阻尼力较小,叶片可以低风速下旋转;旋转产生的离心力可以改变旋转臂的刚度,当风速增加,叶片转速增加,离心力增加,旋转臂刚度增加,从而可以提高激励强度,即实现自调节激励强度,并且这种激励强度不会超过一个限定值,在高风速下,鱼骨梁不会产生过大的变形损坏压电片,可以在宽速度范围有效工作;同时,阵列式旋转臂结构可以放大激励频率,若采用4根旋转臂,激励频率为旋转频率的4倍;通过磁力耦合或接触式激励,使鱼骨梁尾梁振动,固有频率较低的尾梁与被激励永磁体(或被激励头)系统更容易被激振,可以俘获更多能量,尾梁与被激励永磁体(或被激励头)系统通过谐振将能量传递到固有频率较高的鱼骨梁梳齿、调频质量块系统;在间歇风环境下,将使得压电片工作频率更高,可以将更多机械能转换为电能,鱼骨梁梳齿结构可以放大鱼骨梁中轴的弯曲变形,使粘贴于梳齿结构两侧的压电片产生更大的拉伸与压缩变形,通过压电效应产生较大的电压,可以储存或直接使用;鱼骨梁梳齿长度从固定端到自由端线性减小,且减小比率与鱼骨梁中轴挠度增大比率之积近似为常数,使得鱼骨梁弯曲时鱼骨梁梳齿的所有相邻齿间距变化程度近似相同,压电片变形更加均匀,提高压电片耐受度。As shown in Figure 10, the working principle of the present invention is: the wide speed domain wind drives the blade to rotate, the blade drives the rotating arm to rotate, and the rotating arm is magnetically coupled or contacted to excite the tail beam of the fishbone beam, and the magnetic coupling or contact excitation , make the tail beam of the fishbone beam vibrate, the piezoelectric sheet pasted on the outside of the fishbone beam produces compression and tension, and generates a large voltage through the piezoelectric effect, which can be stored or used directly. The rigidity of the rotating arm is small, so that at low wind speed, the reaction damping force generated by the fishbone beam is small, and the blade can rotate at low wind speed; the centrifugal force generated by the rotation can change the rigidity of the rotating arm. When the wind speed increases, the speed of the blade increases, and the centrifugal force Increase, the rigidity of the rotating arm increases, so that the excitation strength can be improved, that is, the self-adjusting excitation strength can be realized, and the excitation strength will not exceed a limit value. Under high wind speed, the fishbone beam will not produce excessive deformation and damage the piezoelectric At the same time, the array type rotating arm structure can amplify the excitation frequency, if four rotating arms are used, the excitation frequency is 4 times the rotation frequency; through magnetic coupling or contact excitation, the fishbone beam Tail boom vibration, the tail boom and the excited permanent magnet (or excited head) system with lower natural frequency are more easily excited and can capture more energy, the tail boom and the excited permanent magnet (or excited head) system pass through The resonance transmits energy to the fishbone beam comb teeth and frequency modulated mass block system with higher natural frequency; in the intermittent wind environment, the piezoelectric sheet will work at a higher frequency, and more mechanical energy can be converted into electrical energy, the fishbone beam comb The tooth structure can amplify the bending deformation of the central axis of the fishbone beam, so that the piezoelectric sheets pasted on both sides of the comb tooth structure produce greater tensile and compressive deformation, and generate a large voltage through the piezoelectric effect, which can be stored or used directly ; The length of the comb teeth of the fishbone beam decreases linearly from the fixed end to the free end, and the product of the reduction ratio and the increase ratio of the deflection of the central axis of the fishbone beam is approximately constant, so that all the comb teeth of the fishbone beam are bent when the fishbone beam is bent. The change degree of the adjacent teeth spacing is approximately the same, the deformation of the piezoelectric sheet is more uniform, and the tolerance of the piezoelectric sheet is improved.
本发明利用梳齿结构放大梁的弯曲变形,即放大压电片变形程度,在同一工况下可以产生更大的电压;通过磁力耦合或接触式将旋转运动转换为振动,使鱼骨梁在低风速下更容易起振,并且高风速下也不会产生过大的变形损坏压电片,扩大了其有效工作频域;通过阵列式激励和谐振式传递提升激励频率,提高能量采集器的输出平均功率。The invention uses the comb tooth structure to amplify the bending deformation of the beam, that is, to amplify the deformation degree of the piezoelectric sheet, and can generate a larger voltage under the same working condition; the rotary motion is converted into vibration through magnetic coupling or contact type, so that the fishbone beam is It is easier to start vibrating at low wind speed, and it will not cause excessive deformation to damage the piezoelectric sheet at high wind speed, which expands its effective working frequency domain; through array excitation and resonance transmission, the excitation frequency is increased, and the performance of the energy harvester is improved. output average power.
本发明并不受上述实施方式的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The present invention is not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principle of the present invention should be equivalent replacement methods, which are included in the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910374037.3A CN110086376B (en) | 2019-05-07 | 2019-05-07 | Small wind energy collector with frequency and displacement amplification function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910374037.3A CN110086376B (en) | 2019-05-07 | 2019-05-07 | Small wind energy collector with frequency and displacement amplification function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110086376A CN110086376A (en) | 2019-08-02 |
CN110086376B true CN110086376B (en) | 2020-03-17 |
Family
ID=67418878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910374037.3A Active CN110086376B (en) | 2019-05-07 | 2019-05-07 | Small wind energy collector with frequency and displacement amplification function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110086376B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI749526B (en) * | 2020-04-16 | 2021-12-11 | 國立陽明交通大學 | Vortex-induced vibration wind energy harvesting device |
CN113612408B (en) * | 2021-08-03 | 2023-07-04 | 西北工业大学太仓长三角研究院 | Self-control speed non-contact type magnetic coupling piezoelectric wind energy collector |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107395063A (en) * | 2017-09-13 | 2017-11-24 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Energy collecting device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202652103U (en) * | 2012-06-14 | 2013-01-02 | 扬州大学 | Multilayer Cantilever Piezoelectric Generating Device |
CN203416192U (en) * | 2013-07-22 | 2014-01-29 | 杭州电子科技大学 | Piezoelectric and electromagnetic coupling-based composite broadband vibration energy acquisition device |
CN103792268B (en) * | 2014-02-19 | 2015-12-09 | 苏州能斯达电子科技有限公司 | A kind of differential capacitance type hydrogen gas sensor |
CN105258629B (en) * | 2015-11-06 | 2018-04-10 | 扬州大学 | A kind of multi-electrode piezopolymer containing core amplifying device |
CN105680720B (en) * | 2016-02-01 | 2018-04-13 | 南京航空航天大学 | The multi-direction wideband kinetic energy collector of multiple degrees of freedom piezoelectricity electromagnetism combined type |
CN106050570A (en) * | 2016-06-04 | 2016-10-26 | 上海大学 | Wind energy collector based on flexible polymer piezoelectric material |
CN106849752B (en) * | 2017-04-13 | 2018-08-17 | 上海交通大学 | Flow vibration electricity energy harvester based on Biomimetic Fish |
CN107453647B (en) * | 2017-07-31 | 2019-08-23 | 上海交通大学 | Wide speed domain magnetic coupling piezoelectricity wind energy collector |
-
2019
- 2019-05-07 CN CN201910374037.3A patent/CN110086376B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107395063A (en) * | 2017-09-13 | 2017-11-24 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | Energy collecting device |
Also Published As
Publication number | Publication date |
---|---|
CN110086376A (en) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107453647B (en) | Wide speed domain magnetic coupling piezoelectricity wind energy collector | |
CN207033643U (en) | A kind of Wave energy collecting device | |
CN107218171B (en) | A wave energy collection device | |
JPH11303726A (en) | Piezoelectric wind power generator | |
CN112713807B (en) | A Bistable Vortex Vibration Energy Capture Device Based on Internal Resonance | |
CN110086376B (en) | Small wind energy collector with frequency and displacement amplification function | |
CN110112954B (en) | Wind power rotary type piezoelectric-electromagnetic composite power generation device | |
CN104993737B (en) | A kind of bidirectional energy harvester based on Flow vibration | |
Lu et al. | Wind energy harvester using piezoelectric materials | |
CN106382191B (en) | A kind of wind-induced vibration piezoelectric energy collecting device | |
CN110034704A (en) | A kind of non-linear piezoelectric generating device of wind-force array magnetic force | |
CN112737407B (en) | Piezoelectric power generation system for capturing wave energy | |
CN108347193A (en) | A kind of wind energy collector using local resonance phonon crystal slab | |
CN114844392B (en) | A Blunt Body Non-rotating Flow-induced Vibration Energy Harvesting Device | |
CN109728746B (en) | Bistable nonlinear energy collecting device using lever | |
CN114542371A (en) | Wind power generation device utilizing vortex-induced vibration | |
CN112737411B (en) | A piezoelectric power generation device | |
CN104270034A (en) | Curved surface piezoelectric power generation cantilever beam | |
CN205283430U (en) | A rigid-flexible composite beam wind power generation device | |
CN110649762A (en) | Rotation type electromagnetism energy accumulator of hawser driven | |
CN206302353U (en) | A Surface Acoustic Wave Rotary Motor | |
CN204206024U (en) | A kind of curved surface piezoelectric generating cantilever beam | |
CN210167982U (en) | An energy harvesting device based on gas-acoustic-solid multiphysics coupling | |
CN115664253A (en) | Swing type friction nano generator with high space utilization rate and wide frequency band | |
Giri et al. | Energy harvesting using piezoelectric sheet fixed on a flexible plate attached to a cylinder in free stream flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |