CN110071113A - Three dimensional nonvolatile memory and its manufacturing method - Google Patents
Three dimensional nonvolatile memory and its manufacturing method Download PDFInfo
- Publication number
- CN110071113A CN110071113A CN201810063404.3A CN201810063404A CN110071113A CN 110071113 A CN110071113 A CN 110071113A CN 201810063404 A CN201810063404 A CN 201810063404A CN 110071113 A CN110071113 A CN 110071113A
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- charge storage
- buffer
- insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
- H10B43/35—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/031—Manufacture or treatment of data-storage electrodes
- H10D64/037—Manufacture or treatment of data-storage electrodes comprising charge-trapping insulators
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
一种三维非易失性存储器及其制造方法。三维非易失性存储器包括基底、电荷储存结构、叠层结构以及通道层。电荷储存结构配置于基底上。叠层结构配置于电荷储存结构的一侧,且包括多个绝缘层、多个栅极、缓冲层以及势垒层。绝缘层与栅极交替地叠层。缓冲层配置于各栅极与电荷储存结构之间且配置于绝缘层的表面上。势垒层配置于各栅极与缓冲层之间。栅极的端部相对于势垒层的端部在远离通道层的方向上是凸出的。
A three-dimensional non-volatile memory and a manufacturing method thereof. The three-dimensional non-volatile memory comprises a substrate, a charge storage structure, a stacked structure and a channel layer. The charge storage structure is arranged on the substrate. The stacked structure is arranged on one side of the charge storage structure and comprises a plurality of insulating layers, a plurality of gates, a buffer layer and a barrier layer. The insulating layers and the gates are stacked alternately. The buffer layer is arranged between each gate and the charge storage structure and arranged on the surface of the insulating layer. The barrier layer is arranged between each gate and the buffer layer. The end of the gate is convex relative to the end of the barrier layer in a direction away from the channel layer.
Description
技术领域technical field
本发明是有关于一种存储器及其制造方法,且特别是有关于一种三维非易失性存储器及其制造方法。The present invention relates to a memory and a method of manufacturing the same, and more particularly, to a three-dimensional nonvolatile memory and a method of manufacturing the same.
背景技术Background technique
非易失性存储器元件(如,闪存)由于具有使存入的数据在断电后也不会消失的优点,因此成为个人计算机和其他电子设备所广泛采用的一种存储器元件。Non-volatile memory elements (eg, flash memory) are widely used as memory elements in personal computers and other electronic devices because of the advantage that stored data does not disappear even after a power failure.
目前业界较常使用的闪存阵列包括或非门(NOR)闪存与与非门 (NAND)闪存。由于NAND闪存的结构是使各存储单元串接在一起,其集成度与面积利用率较NOR闪存有效率,因此NAND闪存的存储密度比 NOR闪存的存储密度高得多。因此,NAND闪存已经广泛地应用在多种电子产品中,特别是大量数据存储领域。Flash memory arrays commonly used in the industry today include NOR flash memory and NAND flash memory. Since the structure of NAND flash memory is to connect the memory cells in series, its integration and area utilization are more efficient than NOR flash memory, so the storage density of NAND flash memory is much higher than that of NOR flash memory. Therefore, NAND flash memory has been widely used in various electronic products, especially in the field of mass data storage.
此外,为了进一步地提升存储器元件的存储密度以及集成度,发展出一种三维NAND闪存。然而,在目前三维NAND闪存进行操作过程中,存储单元的干扰为三维NAND闪存中主要的挑战之一,特别是存在微量的残留物。In addition, in order to further improve the storage density and integration of memory elements, a three-dimensional NAND flash memory has been developed. However, during the current operation of 3D NAND flash memory, the interference of memory cells is one of the main challenges in 3D NAND flash memory, especially the existence of trace residues.
发明内容SUMMARY OF THE INVENTION
本发明提供一种三维非易失性存储器及其制造方法,其可消除在进行操作期间栅极之间例如电连接/电桥的干扰现象。The present invention provides a three-dimensional non-volatile memory and a method of fabricating the same, which can eliminate interference phenomena such as electrical connections/bridges between gates during operation.
本发明的提出一种三维非易失性存储器,包括基底、电荷储存结构、叠层结构以及通道层。电荷储存结构配置于基底上。叠层结构配置于电荷储存结构的一侧,且包括多个绝缘层、多个栅极、缓冲层以及势垒层。绝缘层与栅极交替地叠层。缓冲层配置于各栅极与电荷储存结构之间且配置于绝缘层的表面上。势垒层配置于各栅极与缓冲层之间。通道层配置于所述电荷储存结构另一侧。栅极的端部相对于势垒层的端部在远离通道层的方向上是凸出的。The present invention provides a three-dimensional non-volatile memory including a substrate, a charge storage structure, a stacked structure and a channel layer. The charge storage structure is configured on the substrate. The stacked structure is disposed on one side of the charge storage structure and includes a plurality of insulating layers, a plurality of gate electrodes, a buffer layer and a barrier layer. The insulating layer and the gate electrode are alternately stacked. The buffer layer is disposed between each gate and the charge storage structure and is disposed on the surface of the insulating layer. The barrier layer is disposed between each gate and the buffer layer. The channel layer is disposed on the other side of the charge storage structure. The end of the gate electrode is convex in a direction away from the channel layer with respect to the end of the barrier layer.
在本发明的一些实施例中,绝缘层102a的端部E1在垂直于通道层的方向上至栅极124a的端部E2的距离为L1,绝缘层102a的端部E1在垂直于通道层的方向上至势垒层122a的端部E3的距离为L2,且1<L2/L1 <2。In some embodiments of the present invention, the distance from the end E1 of the insulating layer 102a to the end E2 of the gate 124a in the direction perpendicular to the channel layer is L1, and the end E1 of the insulating layer 102a is perpendicular to the channel layer. The distance in the direction to the end E3 of the barrier layer 122a is L2, and 1<L2/L1<2.
在本发明的一些实施例中,上述的缓冲层的与势垒层接触的第一部分的厚度为T1,缓冲层的不与势垒层接触的第二部分的厚度为T2,且0< T1-T2≤30埃 In some embodiments of the present invention, the thickness of the first portion of the buffer layer that is in contact with the barrier layer is T1, the thickness of the second portion of the buffer layer that is not in contact with the barrier layer is T2, and 0< T1- T2≤30 angstroms
在本发明的一些实施例中,上述的缓冲层的第二部分为不连续的。In some embodiments of the present invention, the second portion of the buffer layer described above is discontinuous.
在本发明的一些实施例中,上述的第二部分中含有所述势垒层的原子的原子浓度可小于1原子%。In some embodiments of the present invention, the atomic concentration of the atoms containing the barrier layer in the above-mentioned second part may be less than 1 atomic %.
在本发明的一些实施例中,上述的势垒层的材料例如是钛、氮化钛、钽、氮化钽或其组合。In some embodiments of the present invention, the material of the above-mentioned barrier layer is, for example, titanium, titanium nitride, tantalum, tantalum nitride or a combination thereof.
在本发明的一些实施例中,上述的缓冲层的材料例如是高介电常数的材料。In some embodiments of the present invention, the material of the aforementioned buffer layer is, for example, a material with a high dielectric constant.
本发明提出一种三维非易失性存储器的制造方法,包括下列步骤。于基底上形成电荷储存结构以及叠层结构。电荷储存结构配置于叠层结构的侧壁上。叠层结构包括多个绝缘层、多个栅极、缓冲层以及势垒层。绝缘层与栅极交替地叠层。缓冲层配置于各栅极与电荷储存结构之间且配置于绝缘层的表面上。势垒层配置于各栅极与缓冲层之间。于电荷储存结构上形成通道层。栅极的端部相对于势垒层的端部在远离通道层的方向上是凸出的。The present invention provides a manufacturing method of a three-dimensional non-volatile memory, which includes the following steps. A charge storage structure and a stacked structure are formed on the substrate. The charge storage structure is disposed on the sidewall of the stacked structure. The stacked structure includes a plurality of insulating layers, a plurality of gates, a buffer layer and a barrier layer. The insulating layer and the gate electrode are alternately stacked. The buffer layer is disposed between each gate and the charge storage structure and is disposed on the surface of the insulating layer. The barrier layer is disposed between each gate and the buffer layer. A channel layer is formed on the charge storage structure. The end of the gate electrode is convex in a direction away from the channel layer with respect to the end of the barrier layer.
在本发明的一些实施例中,绝缘层102a的端部E1在垂直于通道层的方向上至栅极124a的端部E2的距离为L1,绝缘层102a的端部E1在垂直于通道层的方向上至势垒层122a的端部E3的距离为L2,且1<L2/L1 <2。In some embodiments of the present invention, the distance from the end E1 of the insulating layer 102a to the end E2 of the gate 124a in the direction perpendicular to the channel layer is L1, and the end E1 of the insulating layer 102a is perpendicular to the channel layer. The distance in the direction to the end E3 of the barrier layer 122a is L2, and 1<L2/L1<2.
在本发明的一些实施例中,上述的缓冲层的与势垒层接触的第一部分的厚度为T1,缓冲层的不与势垒层接触的第二部分的厚度为T2,且0< T1-T2≤30埃。In some embodiments of the present invention, the thickness of the first portion of the buffer layer that is in contact with the barrier layer is T1, the thickness of the second portion of the buffer layer that is not in contact with the barrier layer is T2, and 0< T1- T2≤30 angstroms.
在本发明的一些实施例中,上述的缓冲层的第二部分为不连续的。In some embodiments of the present invention, the second portion of the buffer layer described above is discontinuous.
在本发明的一些实施例中,上述的第二部分中含有所述势垒层的原子的原子浓度可小于1原子%。In some embodiments of the present invention, the atomic concentration of the atoms containing the barrier layer in the above-mentioned second part may be less than 1 atomic %.
在本发明的一些实施例中,上述的叠层结构的形成方法包括下列步骤。于基底上形成交替叠层的多个绝缘材料层与多个牺牲层。对绝缘材料层与牺牲层进行图案化工艺,以形成第一开口。移除第一开口所暴露的牺牲层,以形成暴露部分电荷储存结构的第二开口。于第一开口的表面上形成栅极层且于第二开口中填入栅极层,栅极层包括依序形成的缓冲材料层、势垒材料层以与栅极材料层。移除部分的栅极材料层、部分的缓冲材料层以及部分的势垒材料层,以形成栅极、缓冲层以及势垒层。In some embodiments of the present invention, the above-mentioned method for forming the laminated structure includes the following steps. A plurality of alternately stacked insulating material layers and a plurality of sacrificial layers are formed on the substrate. A patterning process is performed on the insulating material layer and the sacrificial layer to form the first opening. The sacrificial layer exposed by the first opening is removed to form a second opening exposing a portion of the charge storage structure. A gate layer is formed on the surface of the first opening and filled in the second opening. The gate layer includes a buffer material layer, a barrier material layer and a gate material layer formed in sequence. A portion of the gate material layer, a portion of the buffer material layer, and a portion of the barrier material layer are removed to form a gate electrode, a buffer layer, and a barrier layer.
在本发明的一些实施例中,上述移除部分的栅极材料层、部分的势垒材料层以及部分的缓冲材料层的方法包括下列步骤。进行第一刻蚀工艺,移除部分的栅极材料层,以暴露势垒材料层。进行第二刻蚀工艺,移除部分的势垒材料层,以暴露缓冲材料层。进行第三刻蚀工艺,移除部分的缓冲材料层,以形成缓冲层。In some embodiments of the present invention, the above-described method of removing a portion of the gate material layer, a portion of the barrier material layer, and a portion of the buffer material layer includes the following steps. A first etching process is performed to remove part of the gate material layer to expose the barrier material layer. A second etching process is performed to remove part of the barrier material layer to expose the buffer material layer. A third etching process is performed to remove part of the buffer material layer to form a buffer layer.
在本发明的一些实施例中,上述的第一刻蚀工艺例如是回刻蚀工艺。In some embodiments of the present invention, the above-mentioned first etching process is, for example, an etch-back process.
在本发明的一些实施例中,上述的第二刻蚀工艺例如是干式刻蚀工艺或湿式刻蚀工艺。In some embodiments of the present invention, the above-mentioned second etching process is, for example, a dry etching process or a wet etching process.
在本发明的一些实施例中,上述的第三刻蚀工艺例如是交替进行干式处理以及湿式处理。In some embodiments of the present invention, the above-mentioned third etching process is, for example, alternately performing dry processing and wet processing.
在本发明的一些实施例中,上述的干式处理例如是等离子体处理。In some embodiments of the present invention, the above-mentioned dry treatment is, for example, plasma treatment.
在本发明的一些实施例中,上述的湿式处理例如是使用含氟溶剂做为刻蚀液的湿式处理。In some embodiments of the present invention, the above-mentioned wet treatment is, for example, a wet treatment using a fluorine-containing solvent as an etching solution.
基于上述,在本发明所提出的三维非易失性存储器及其制造方法中,通过移除部分栅极之间的绝缘层而同时移除位于绝缘层中的阶梯残留,因此可大大地降低在进行操作时栅极之间的干扰(例如是金属残留物)以及短路问题。Based on the above, in the three-dimensional non-volatile memory and the manufacturing method thereof proposed by the present invention, by removing part of the insulating layer between the gates, the step residue in the insulating layer is simultaneously removed, so that the Interference between gates (eg metal residues) and short circuit problems during operation.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1A、图1B、图1B-1、图1C至图1I为本发明一些实施例的三维非易失性存储器的制造流程剖面图。1A , FIG. 1B , FIG. 1B-1 , and FIGS. 1C to 1I are cross-sectional views of the manufacturing process of the three-dimensional non-volatile memory according to some embodiments of the present invention.
图2为图1B的上视图。FIG. 2 is a top view of FIG. 1B .
图3为图1I的区域A的局部放大图。FIG. 3 is a partial enlarged view of area A of FIG. 1I .
图4为另一实施例的区域A的局部放大图。FIG. 4 is a partial enlarged view of area A of another embodiment.
【符号说明】【Symbol Description】
100:基底100: base
101、127:叠层结构101, 127: Laminated structure
102、121:绝缘材料层102, 121: insulating material layer
102a、117:绝缘层102a, 117: insulating layer
104:牺牲层104: Sacrificial Layer
106、118:开口106, 118: Opening
109、111、135、137、139:氧化硅层109, 111, 135, 137, 139: Silicon oxide layer
110、136、138:氮化硅层110, 136, 138: silicon nitride layer
112:电荷储存结构112: Charge Storage Structure
114:通道层114: channel layer
115:介电层115: Dielectric layer
116:导体插塞116: Conductor plug
120:侧向开口120: side opening
121:缓冲材料层121: Buffer material layer
121a:缓冲层121a: Buffer layer
122:势垒材料层122: Barrier material layer
122a:势垒层122a: Barrier layer
123:第一部分123: Part One
124:栅极材料层124: Gate material layer
124a:栅极124a: Gate
125:第二部分125: Part Two
126:栅极层126: Gate layer
128:绝缘层128: Insulation layer
130:势垒层130: Barrier Layer
132:金属层132: Metal Layer
A:区域A: area
E1、E2、E3:端部E1, E2, E3: End
L1、L2:长度L1, L2: length
T1、T2:厚度T1, T2: Thickness
具体实施方式Detailed ways
图1A至图1I为本发明一些实施例的三维非易失性存储器的制造流程剖面图。图2为图1B的上视图。1A to FIG. 1I are cross-sectional views of the manufacturing process of the three-dimensional non-volatile memory according to some embodiments of the present invention. FIG. 2 is a top view of FIG. 1B .
请参照图1A,于基底100上形成叠层结构101。基底100例如是硅基底。在一些实施例中,可依据设计需求而于基底100中形成掺杂区(如,N+掺杂区)(未绘示)。叠层结构101包括交替地叠层的多个绝缘材料层 102与多个牺牲层104。绝缘材料层102的材料包括介电材料,例如是氧化硅。牺牲层104的材料与绝缘材料层102不同,且与绝缘材料层102具有足够的刻蚀选择比,此外并无特别限制。在一些实施例中,牺牲层104 的材料例如是氮化硅。绝缘材料层102与牺牲层104例如是通过进行多次化学气相沉积工艺所形成。叠层结构101中绝缘材料层102以及牺牲层104 的层数可以大于16。然而,本发明并不以此为限,叠层结构101中绝缘材料层102以及牺牲层104的层数可取决于存储器装置的设计及密度。Referring to FIG. 1A , a stacked structure 101 is formed on a substrate 100 . The substrate 100 is, for example, a silicon substrate. In some embodiments, doped regions (eg, N+ doped regions) (not shown) may be formed in the substrate 100 according to design requirements. The stacked structure 101 includes a plurality of insulating material layers 102 and a plurality of sacrificial layers 104 which are alternately stacked. The material of the insulating material layer 102 includes a dielectric material such as silicon oxide. The material of the sacrificial layer 104 is different from that of the insulating material layer 102 , and has a sufficient etching selectivity ratio with that of the insulating material layer 102 , and is not particularly limited. In some embodiments, the material of the sacrificial layer 104 is, for example, silicon nitride. The insulating material layer 102 and the sacrificial layer 104 are formed by performing multiple chemical vapor deposition processes, for example. The number of layers of insulating material layers 102 and sacrificial layers 104 in the stacked structure 101 may be greater than 16. However, the present invention is not limited thereto, and the number of layers of the insulating material layer 102 and the sacrificial layer 104 in the stacked structure 101 may depend on the design and density of the memory device.
接着,对叠层结构101进行刻蚀,以形成穿过叠层结构101的开口106。在一些实施例中,在上述刻蚀工艺中,可选择性地移除部分基底100,使得开口106延伸至基底100中。开口106例如是孔,如图2所示。Next, the stacked structure 101 is etched to form openings 106 through the stacked structure 101 . In some embodiments, in the etching process described above, a portion of the substrate 100 may be selectively removed such that the openings 106 extend into the substrate 100 . The openings 106 are, for example, holes, as shown in FIG. 2 .
请同时参照图1B以及图2,于开口106的侧壁上形成电荷储存结构 112。电荷储存结构112覆盖绝缘材料层102与牺牲层104。电荷储存结构 112可以是氧化物、氮化物或其组合。在一些实施例中,电荷储存结构112 包括氧化物-氮化物-氧化物(ONO)复合层。在一例示实施例中,电荷储存结构112包括氧化硅层109、氮化硅层110以及氧化硅层111。在一些实施例中,电荷储存结构112包括氧化物-氮化物-氧化物-氮化物-氧化物 (ONONO)复合层。在一例示实施例中,电荷储存结构112包括氧化硅层135、氮化硅层136、氧化硅层137、氮化硅层138以及氧化硅层139,如图1B-1所示。更具体地说,电荷储存结构112以间隙壁的形式形成于开口106的侧壁上,而裸露出开口106的底面的基底100。Referring to FIG. 1B and FIG. 2 simultaneously, charge storage structures 112 are formed on the sidewalls of the openings 106 . The charge storage structure 112 covers the insulating material layer 102 and the sacrificial layer 104 . The charge storage structure 112 may be an oxide, a nitride, or a combination thereof. In some embodiments, the charge storage structure 112 includes an oxide-nitride-oxide (ONO) composite layer. In an exemplary embodiment, the charge storage structure 112 includes a silicon oxide layer 109 , a silicon nitride layer 110 , and a silicon oxide layer 111 . In some embodiments, the charge storage structure 112 includes an oxide-nitride-oxide-nitride-oxide (ONONO) composite layer. In an exemplary embodiment, the charge storage structure 112 includes a silicon oxide layer 135, a silicon nitride layer 136, a silicon oxide layer 137, a silicon nitride layer 138, and a silicon oxide layer 139, as shown in FIG. 1B-1. More specifically, the charge storage structure 112 is formed on the sidewall of the opening 106 in the form of a spacer, and the substrate 100 on the bottom surface of the opening 106 is exposed.
在本实施例中,图2中的开口106为阵列排列,但本发明不限于此。在一些实施例中,开口106为随机排列,只要开口106之间的距离大于100 埃即可。In this embodiment, the openings 106 in FIG. 2 are arranged in an array, but the present invention is not limited thereto. In some embodiments, the openings 106 are randomly arranged as long as the distance between the openings 106 is greater than 100 angstroms.
接着,于电荷储存结构112上形成通道层114。具体地说,通道层114 覆盖开口106的侧面上的电荷储存结构112,并与开口106的底面所裸露出的基底100接触。在一些实施例中,通道层114可做为位线。通道层114 的材料例如是半导体材料,如多晶硅或掺杂多晶硅等。可通过原位掺杂来进行掺杂,或是通过离子植入工艺来进行掺杂。Next, a channel layer 114 is formed on the charge storage structure 112 . Specifically, the channel layer 114 covers the charge storage structure 112 on the side surface of the opening 106 and is in contact with the substrate 100 exposed by the bottom surface of the opening 106 . In some embodiments, the channel layer 114 may function as a bit line. The material of the channel layer 114 is, for example, a semiconductor material, such as polysilicon or doped polysilicon. Doping can be done by in-situ doping, or by an ion implantation process.
请参照图1C,于开口106中形成介电层115。介电层115的形成方法例如是利用化学气相沉积法或旋涂法形成填满开口106的介电材料层(未绘示),再对介电材料层进行回刻蚀工艺,以使所形成的介电层115的上表面低于叠层结构101的顶表面。Referring to FIG. 1C , a dielectric layer 115 is formed in the opening 106 . The dielectric layer 115 is formed by, for example, chemical vapor deposition or spin coating to form a dielectric material layer (not shown) that fills the opening 106 , and then perform an etch back process on the dielectric material layer, so as to form a dielectric material layer (not shown). The upper surface of the dielectric layer 115 is lower than the top surface of the stacked structure 101 .
接着,于介电层115上形成导体插塞116。导体插塞116与通道层114 接触。在一些实施例中,导体插塞116的材料例如是多晶硅或掺杂多晶硅。导体插塞116的形成方法例如是先形成填满开口106的导体材料层(未绘示),再对导体材料层进行化学机械研磨工艺及/或回刻蚀工艺,以移除开口106外的导体材料层。Next, conductor plugs 116 are formed on the dielectric layer 115 . Conductor plugs 116 are in contact with channel layer 114 . In some embodiments, the material of the conductor plug 116 is, for example, polysilicon or doped polysilicon. The formation method of the conductor plug 116 is, for example, firstly forming a conductor material layer (not shown) filling the opening 106 , and then performing a chemical mechanical polishing process and/or an etch-back process on the conductor material layer to remove the outside of the opening 106 . layer of conductor material.
然后,于叠层结构101上形成绝缘层117。绝缘层117覆盖电荷储存结构112、通道层114、导体插塞116以及叠层结构101。在一些实施例中,绝缘层117的材料例如是氧化硅或其他绝缘材料。Then, an insulating layer 117 is formed on the stacked structure 101 . The insulating layer 117 covers the charge storage structure 112 , the channel layer 114 , the conductor plug 116 and the stacked structure 101 . In some embodiments, the material of the insulating layer 117 is, for example, silicon oxide or other insulating materials.
请参照图1D,对绝缘层117、绝缘材料层102与牺牲层104进行图案化工艺,以形成穿过绝缘层117、绝缘材料层102与牺牲层104的开口(也称作沟渠)118。在一些实施例中,在进行所述图案化工艺期间,也会同时移除部分基底100,使得开口118延伸至基底100。此外,在对绝缘材料层102进行图案化工艺之后,绝缘材料层102的剩余部分形成绝缘层 102a。1D , the insulating layer 117 , the insulating material layer 102 and the sacrificial layer 104 are patterned to form openings (also referred to as trenches) 118 through the insulating layer 117 , the insulating material layer 102 and the sacrificial layer 104 . In some embodiments, during the patterning process, portions of the substrate 100 are also removed simultaneously, so that the openings 118 extend to the substrate 100 . In addition, after the patterning process is performed on the insulating material layer 102, the remaining portion of the insulating material layer 102 forms the insulating layer 102a.
接着,移除开口118所暴露的牺牲层104,以形成暴露出部分电荷储存结构112的侧向开口120。移除开口118所暴露的牺牲层104的方法例如是干式刻蚀法或湿式刻蚀法。使用在干式刻蚀法中的刻蚀剂例如是NF3、 H2、HBr、O2、N2或He。上述湿式刻蚀法所使用的刻蚀液例如是磷酸(H3PO4) 溶液。Next, the sacrificial layer 104 exposed by the opening 118 is removed to form a lateral opening 120 exposing a portion of the charge storage structure 112 . The method of removing the sacrificial layer 104 exposed by the opening 118 is, for example, a dry etching method or a wet etching method. The etchant used in the dry etching method is, for example, NF 3 , H 2 , HBr, O 2 , N 2 or He. The etching liquid used in the above wet etching method is, for example, a phosphoric acid (H 3 PO 4 ) solution.
请参照图1E,于开口118的表面上形成栅极层126且于侧向开口120 中填入栅极层126。栅极层126包括依序形成的缓冲材料层121、势垒材料层122以与栅极导体材料层124。在一些实施例中,缓冲材料层121形成于势垒材料层122与电荷储存结构112之间以及绝缘层102a的表面上。缓冲材料层121的材料例如是介电常数大于7的高介电常数的材料,如氧化铝(Al2O3)、HfO2、La2O5、过渡金属氧化物、镧系元素氧化物或其组合等。在一些实施例中,缓冲材料层121的形成方法需要良好的阶梯覆盖,在整个结构上获得良好的膜厚均匀性。所述方法例如是化学气相沉积法或原子层沉积法(ALD)。缓冲材料层121可用以提升擦除以及编程特性。势垒材料层122的材料例如是钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽 (TaN)或其组合。势垒材料层122的形成方法例如是化学气相沉积法。栅极导体材料层124的材料例如是多晶硅、非晶硅、钨(W)、钴(Co) 铝(Al)、硅化钨(WSix)或硅化钴(CoSix)。栅极导体材料层124的形成方法例如是化学气相沉积法。Referring to FIG. 1E , a gate layer 126 is formed on the surface of the opening 118 and the gate layer 126 is filled in the lateral opening 120 . The gate layer 126 includes a buffer material layer 121 , a barrier material layer 122 and a gate conductor material layer 124 formed in sequence. In some embodiments, the buffer material layer 121 is formed between the barrier material layer 122 and the charge storage structure 112 and on the surface of the insulating layer 102a. The material of the buffer material layer 121 is, for example, a high dielectric constant material with a dielectric constant greater than 7, such as aluminum oxide (Al 2 O 3 ), HfO 2 , La 2 O 5 , transition metal oxide, lanthanide oxide or its combination, etc. In some embodiments, the formation method of the buffer material layer 121 requires good step coverage to obtain good film thickness uniformity on the entire structure. The method is, for example, chemical vapor deposition or atomic layer deposition (ALD). The buffer material layer 121 can be used to improve erase and program characteristics. The material of the barrier material layer 122 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof. The formation method of the barrier material layer 122 is, for example, a chemical vapor deposition method. The material of the gate conductor material layer 124 is, for example, polysilicon, amorphous silicon, tungsten (W), cobalt (Co), aluminum (Al), tungsten silicide (WSix) or cobalt silicide (CoSix). The formation method of the gate conductor material layer 124 is, for example, a chemical vapor deposition method.
请参照图1F至图1H,移除部分的栅极导体材料层124、部分的势垒材料层122以及部分的缓冲材料层121,以形成栅极124a、缓冲层121a 以及势垒层122a。Referring to FIGS. 1F to 1H , part of the gate conductor material layer 124 , part of the barrier material layer 122 and part of the buffer material layer 121 are removed to form the gate electrode 124 a , the buffer layer 121 a and the barrier layer 122 a .
在一些实施例中,如图1F所示,进行第一刻蚀工艺,移除部分的栅极导体材料层124,以暴露势垒材料层122。第一刻蚀工艺可以是回刻蚀工艺,例如湿式刻蚀工艺或干式刻蚀工艺。干式刻蚀工艺或湿式刻蚀工艺都是可行的。在一些实施例中,可以在等离子体系统下进行干式刻蚀,等离子体系统包括感应耦合等离子体(inductively coupled plasma,ICP)、远程等离子体、电容式射频等离子体(capacitive coupled plasma,CCP)或电子回旋共振等离子体(electron cyclotron resonance,ECR)系统。且可以应用例如是NF3、SF6或CF4的氟类化合物。在一些实施例中,在湿式刻蚀的情况下,可以施加NH4OH、H2O2、H2SO4、HNO3或醋酸。在一些实施例中,在进行第一刻蚀工艺期间,除了移除开口118中的栅极导体材料层124外,也会移除掉侧向开口120中部分的栅极导体材料层124。此外,在对栅极导体材料层124进行第一刻蚀工艺之后,栅极导体材料层124 的剩余部分形成栅极124a。在一些实施例中,栅极124a可做为字线。在一些实施例中,绝缘层102a的端部E1相对于侧向开口120中所暴露的栅极124a的端部E2是凸出的。具体来说,绝缘层102a的端部E1相对于栅极124a的端部E2在远离通道层114的方向上是凸出的。在本实施例中,相邻两个栅极124a通过位于其间的绝缘层102a而隔离,而且由于绝缘层 102a凸出于相邻的侧向开口120(上、下)中两个栅极124a,因此,可避免相邻的栅极124a彼此接触。在本实施例中,栅极124a的端部E2具有实质上平坦表面,但本发明不限于此。在另一些实施例中,栅极124a的端部E2具有圆弧状表面。在一些实施例中,栅极124a的端部E2在接近开口120中心处的表面比栅极124a的端部E2在靠近开口120边缘(即靠近势垒材料层122)的表面凸出(如虚线所示)。In some embodiments, as shown in FIG. 1F , a first etching process is performed to remove a portion of the gate conductor material layer 124 to expose the barrier material layer 122 . The first etching process may be an etch-back process, such as a wet etching process or a dry etching process. Either a dry etching process or a wet etching process is possible. In some embodiments, dry etching may be performed under a plasma system including inductively coupled plasma (ICP), remote plasma, capacitive coupled plasma (CCP) Or electron cyclotron resonance (ECR) system. And a fluorine-based compound such as NF 3 , SF 6 or CF 4 can be applied. In some embodiments, in the case of wet etching, NH4OH , H2O2, H2SO4 , HNO3 , or acetic acid may be applied . In some embodiments, during the first etch process, in addition to removing the gate conductor material layer 124 in the openings 118 , portions of the gate conductor material layer 124 in the lateral openings 120 are also removed. In addition, after the first etching process is performed on the gate conductor material layer 124, the remaining portion of the gate conductor material layer 124 forms the gate electrode 124a. In some embodiments, gate 124a may function as a word line. In some embodiments, the end E1 of the insulating layer 102a is convex relative to the end E2 of the gate electrode 124a exposed in the lateral opening 120 . Specifically, the end E1 of the insulating layer 102a is convex in a direction away from the channel layer 114 with respect to the end E2 of the gate electrode 124a. In this embodiment, two adjacent gate electrodes 124a are separated by the insulating layer 102a therebetween, and since the insulating layer 102a protrudes from the two gate electrodes 124a in the adjacent lateral openings 120 (upper and lower), Therefore, adjacent gate electrodes 124a can be prevented from coming into contact with each other. In this embodiment, the end E2 of the gate electrode 124a has a substantially flat surface, but the present invention is not limited thereto. In other embodiments, the end E2 of the gate electrode 124a has an arc-shaped surface. In some embodiments, the surface of the end E2 of the gate 124a near the center of the opening 120 is more protruding (such as the dotted line) than the surface of the end E2 of the gate 124a near the edge of the opening 120 (ie, near the barrier material layer 122 ). shown).
接着,请参照图1G,进行第二刻蚀工艺,移除部分的势垒材料层122,以暴露缓冲材料层121。第二刻蚀工艺例如是干式刻蚀工艺或湿式刻蚀工艺。在一些实施例中,在进行第二刻蚀工艺期间,除了移除开口118上的势垒材料层122外,也会移除掉侧向开口120中暴露的势垒材料层122以与栅极124a与缓冲材料层121之间部分的势垒材料层122。在对势垒材料层122进行第二刻蚀工艺之后,势垒材料层122的剩余部分形成势垒层 122a。在一些实施例中,侧向开口120中所暴露的栅极124a的端部E2相对于侧向开口120中所暴露的势垒层122a的端部E3是凸出的。具体来说,栅极124a的端部E2相对于势垒层122a的端部E3在远离通道层114的方向上是凸出的。在本实施例中,通过移除开口118上的势垒材料层122且甚至移除侧向开口120中的势垒材料层122至低于栅极124a的端部E2,可有助于相邻侧向开口120中的栅极124a之间的隔离,并减少相邻侧向开口120之间的阶梯残留(stringer)(即势垒材料层的残留物)。在本实施例中,势垒层122a的端部E3具有实质上平坦表面,但本发明不限于此。在另一些实施例中,势垒层122a的端部E3具有倾斜的表面。具体来说,势垒层122a的端部E3具有自与缓冲材料层121接触的点向通道层114的倾斜的表面。Next, referring to FIG. 1G , a second etching process is performed to remove part of the barrier material layer 122 to expose the buffer material layer 121 . The second etching process is, for example, a dry etching process or a wet etching process. In some embodiments, during the second etching process, in addition to removing the barrier material layer 122 on the openings 118 , the barrier material layer 122 exposed in the lateral openings 120 is also removed to connect with the gate electrode. The portion of the barrier material layer 122 between the buffer material layer 121 and 124a. After the second etching process is performed on the barrier material layer 122, the remaining portion of the barrier material layer 122 forms a barrier layer 122a. In some embodiments, the end E2 of the gate electrode 124 a exposed in the lateral opening 120 is convex relative to the end E3 of the barrier layer 122 a exposed in the lateral opening 120 . Specifically, the end E2 of the gate electrode 124a is convex in a direction away from the channel layer 114 relative to the end E3 of the barrier layer 122a. In the present embodiment, by removing the barrier material layer 122 on the opening 118 and even removing the barrier material layer 122 in the lateral opening 120 to the end E2 below the gate 124a, the adjacent The isolation between the gates 124a in the lateral openings 120 and reduce the stringer (ie the residue of the barrier material layer) between adjacent lateral openings 120 . In this embodiment, the end E3 of the barrier layer 122a has a substantially flat surface, but the present invention is not limited thereto. In other embodiments, the end E3 of the barrier layer 122a has a sloped surface. Specifically, the end portion E3 of the barrier layer 122 a has an inclined surface from the point of contact with the buffer material layer 121 toward the channel layer 114 .
在一些实施例中,可通过单一刻蚀工艺来同时移除部分的栅极导体材料层124以及部分的势垒材料层122。In some embodiments, portions of gate conductor material layer 124 and portions of barrier material layer 122 may be removed simultaneously by a single etch process.
请参照图1H,进行第三刻蚀工艺,移除部分的所暴露的缓冲材料层121,以形成缓冲层121a。在一些实施例中,第三刻蚀工艺可以是交替进行干式处理以及湿式处理。干式处理例如是等离子体处理。在一些实施例中,可以在等离子体系统下进行干式处理,等离子体系统包括感应耦合等离子体(inductively coupled plasma,ICP)、远程等离子体、电容式射频等离子体(capacitive coupled plasma,CCP)或电子回旋共振等离子体(electroncyclotron resonance,ECR)系统。在一些实施例中,可使用氧化气体、惰性气体或其组合进行等离子体处理。氧化气体几乎不能与半导体材料以与栅极材料产生反应。氧化气体例如是氧气、惰性气体。惰性气体例如是氮气、氪气或氩气。在一些实施例中,湿式处理例如是使用含氟溶剂做为刻蚀液的湿式处理,例如是稀释的氢氟酸(diluted hydrofluoric acid,DHF) 或缓冲氧化硅刻蚀剂(buffered oxide etch,BOE),但本发明不限于此,也可使用其他刻蚀液来进行湿式处理。在一些实施例中,在进行第三刻蚀工艺期间,除了移除开口118上的部分的缓冲材料层121外,也会移除掉部分侧向开口120中暴露的缓冲材料层121。具体来说,在对所暴露的缓冲材料层121进行干式处理之后,经干式处理后的缓冲材料层121的表面相较于未经等离子体处理的缓冲材料层121变得更加松散或无定形。接着,对经干式处理后的缓冲材料层121进行湿式处理,以移除部分的缓冲材料层121。Referring to FIG. 1H, a third etching process is performed to remove part of the exposed buffer material layer 121 to form a buffer layer 121a. In some embodiments, the third etching process may alternately perform dry processing and wet processing. The dry treatment is, for example, plasma treatment. In some embodiments, dry processing may be performed under a plasma system including inductively coupled plasma (ICP), remote plasma, capacitive coupled plasma (CCP) or Electron cyclotron resonance (ECR) system. In some embodiments, the plasma treatment may be performed using an oxidizing gas, an inert gas, or a combination thereof. The oxidizing gas hardly reacts with the semiconductor material and thus with the gate material. The oxidizing gas is, for example, oxygen and an inert gas. The inert gas is, for example, nitrogen, krypton or argon. In some embodiments, the wet processing is, for example, a wet processing using a fluorine-containing solvent as an etching solution, such as diluted hydrofluoric acid (DHF) or buffered oxide etch (BOE) ), but the present invention is not limited to this, and other etching solutions can also be used for wet processing. In some embodiments, during the third etching process, in addition to removing a portion of the buffer material layer 121 on the opening 118 , a portion of the buffer material layer 121 exposed in the lateral opening 120 is also removed. Specifically, after dry-processing the exposed buffer material layer 121 , the surface of the dry-processed buffer material layer 121 becomes looser or free from the surface of the buffer material layer 121 that has not been plasma-treated. shape. Next, wet processing is performed on the dry-processed buffer material layer 121 to remove part of the buffer material layer 121 .
特别要说明的是,在已知避免栅极之间干扰的工艺中,虽然会移除栅极之间的势垒材料层以减少相邻栅极之间的阶梯残留(即势垒材料层的残留物),但仍然会有少量的阶梯残留埋在缓冲材料层的与势垒材料层接触的表面。上述的阶梯残留会容易形成遗漏路径(leakage path)以与栅极桥 (gate bridge),进而引起栅极之间的干扰以及短路的问题。然而,在本发明中,通过对所暴露的缓冲材料层进行第三刻蚀工艺,以移除部分的缓冲材料层,同时移除位于缓冲材料层中的阶梯残留。It should be noted that, in the known process of avoiding interference between gates, although the barrier material layer between the gates is removed to reduce the step residue between adjacent gates (that is, the barrier material layer residue), but there will still be a small amount of step residue buried in the surface of the buffer material layer in contact with the barrier material layer. The above-mentioned step residues may easily form leakage paths and gate bridges, thereby causing interference between gates and short circuit problems. However, in the present invention, a third etching process is performed on the exposed buffer material layer to remove part of the buffer material layer, and at the same time, the step residues in the buffer material layer are removed.
在一些实施例中,可重复交替进行干式处理以及湿式处理直至完全移除所暴露的缓冲材料层121中的阶梯残留(stringer)。此外,在对所暴露的缓冲材料层121进行第三刻蚀工艺之后,缓冲材料层121的剩余部分形成缓冲层121a。在一些实施例中,每一次交替进行干式处理以及湿式处理可移除大于1埃的量的栅极124a、势垒层122a、缓冲层121a。In some embodiments, alternate dry processing and wet processing may be repeated until the exposed stringer in the buffer material layer 121 is completely removed. In addition, after the third etching process is performed on the exposed buffer material layer 121, the remaining portion of the buffer material layer 121 forms a buffer layer 121a. In some embodiments, each alternating dry process and wet process may remove gate 124a, barrier layer 122a, and buffer layer 121a in an amount greater than 1 angstrom.
在一些实施例中,如图1H所示,在对所暴露的缓冲材料层121进行第三刻蚀工艺之后,所形成的缓冲层121a仍连续地覆盖在绝缘层102a的表面上。在一些实施例中,在对所暴露的缓冲材料层121进行第三刻蚀工艺之后,所形成的缓冲层121a不连续地覆盖在绝缘层102a的表面上。在另一些实施例中,在对所暴露的缓冲材料层121进行第三刻蚀工艺之后,所形成的缓冲层121a暴露绝缘层102a的角落(未绘示),藉此可阻断金属/金属氧化物之间的实体连接(physical connection)。In some embodiments, as shown in FIG. 1H , after the third etching process is performed on the exposed buffer material layer 121 , the formed buffer layer 121 a still continuously covers the surface of the insulating layer 102 a. In some embodiments, after the third etching process is performed on the exposed buffer material layer 121, the formed buffer layer 121a discontinuously covers the surface of the insulating layer 102a. In other embodiments, after the third etching process is performed on the exposed buffer material layer 121, the formed buffer layer 121a exposes corners (not shown) of the insulating layer 102a, thereby blocking metal/metal A physical connection between oxides.
请参照图1I,形成覆盖开口118的侧壁且填充侧向开口120的绝缘层 128。在一些实施例中,绝缘层128的材料例如是氧化硅。形成绝缘层128 的方法例如是化学气相沉积法或原子层沉积法(ALD)。接着,进行刻蚀工艺以移除位于开口118的底部的绝缘层128。在一些实施例中,在对绝缘层128进行刻蚀工艺之后,部分的基板100可被选择性地移除。于开口118中依序填入势垒层130以及金属层132。势垒层130的材料例如是钛 (Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)或其组合。形成势垒层 130的方法例如是化学气相沉积法。金属层132的材料例如是钨(W)、多晶硅、钴、硅化钨(WSix)或硅化钴(CoSix)。形成金属层132的方法例如是化学气相沉积法。在一些实施例中,金属层132可做为共享源极线 (common sourceline)。至此,完成本发明的三维非易失性存储器的制作。Referring to FIG. 1I, an insulating layer 128 covering the sidewalls of the openings 118 and filling the lateral openings 120 is formed. In some embodiments, the material of the insulating layer 128 is, for example, silicon oxide. The method of forming the insulating layer 128 is, for example, chemical vapor deposition or atomic layer deposition (ALD). Next, an etching process is performed to remove the insulating layer 128 at the bottom of the opening 118 . In some embodiments, portions of the substrate 100 may be selectively removed after the etching process of the insulating layer 128 . The barrier layer 130 and the metal layer 132 are sequentially filled in the opening 118 . The material of the barrier layer 130 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN) or a combination thereof. A method of forming the barrier layer 130 is, for example, a chemical vapor deposition method. The material of the metal layer 132 is, for example, tungsten (W), polysilicon, cobalt, tungsten silicide (WSix) or cobalt silicide (CoSix). A method of forming the metal layer 132 is, for example, a chemical vapor deposition method. In some embodiments, the metal layer 132 may serve as a common source line. So far, the fabrication of the three-dimensional nonvolatile memory of the present invention is completed.
以下,将参照图1I说明本发明的三维非易失性存储器的结构。此外,本实施例的三维非易失性存储器的制造方法虽然是以上述方法为例进行说明,然而本发明的三维非易失性存储器的形成方法并不以此为限。图3 为图1I的区域A的局部放大图。图4为另一实施例的区域A的局部放大图。Hereinafter, the structure of the three-dimensional nonvolatile memory of the present invention will be described with reference to FIG. 1I. In addition, although the manufacturing method of the three-dimensional nonvolatile memory of this embodiment is described by taking the above method as an example, the method of forming the three-dimensional nonvolatile memory of the present invention is not limited to this. FIG. 3 is a partial enlarged view of area A of FIG. 1I . FIG. 4 is a partial enlarged view of area A of another embodiment.
请参照图1I、图3以及图4,三维非易失性存储器包括基底100、电荷储存结构112、叠层结构127以及通道层114。叠层结构127与电荷储存结构112配置基底100上,且叠层结构127配置于电荷储存结构112的一侧。叠层结构127包括多个绝缘层102a、多个栅极124a、缓冲层121a 以及势垒层122a。绝缘层102a与栅极124a交替地叠层。缓冲层121a配置于各栅极124a与电荷储存结构112之间且配置于绝缘层102a的表面上。势垒层122a配置于各栅极124a与缓冲层121a之间。通道层114配置于电荷储存结构112上。Referring to FIGS. 1I , 3 and 4 , the three-dimensional non-volatile memory includes a substrate 100 , a charge storage structure 112 , a stacked structure 127 and a channel layer 114 . The stacked structure 127 and the charge storage structure 112 are disposed on the substrate 100 , and the stacked structure 127 is disposed on one side of the charge storage structure 112 . The stacked structure 127 includes a plurality of insulating layers 102a, a plurality of gate electrodes 124a, a buffer layer 121a, and a barrier layer 122a. The insulating layers 102a and the gate electrodes 124a are alternately stacked. The buffer layer 121a is disposed between each gate 124a and the charge storage structure 112 and is disposed on the surface of the insulating layer 102a. The barrier layer 122a is disposed between each gate electrode 124a and the buffer layer 121a. The channel layer 114 is disposed on the charge storage structure 112 .
在一些实施例中,栅极124a的端部E2相对于势垒层122a的端部E3 在远离通道层114的方向上是凸出的。在一些实施例中,绝缘层102a的端部E1在垂直于通道层的方向上至栅极124a的端部E2的距离为L1,绝缘层102a的端部E1在垂直于通道层的方向上至势垒层122a的端部E3的距离为L2,且1<L2/L1<2。在一些实施例中,50埃<L2-L1<400埃。在一些实施例中,L1一般大于50埃。在另一些实施例中,势垒层122a 的端部E3具有倾斜的表面。具体来说,势垒层122a的端部E3具有自与缓冲材料层121接触的点向通道层114的倾斜的表面,如图4所示。在此情况下,绝缘层102a的端部E1在垂直于通道层的方向上至端部E3的与缓冲材料层121接触的点的距离为L2。In some embodiments, the end E2 of the gate electrode 124a is convex in a direction away from the channel layer 114 relative to the end E3 of the barrier layer 122a. In some embodiments, the distance L1 from the end E1 of the insulating layer 102a to the end E2 of the gate 124a in the direction perpendicular to the channel layer is L1, and the end E1 of the insulating layer 102a to the end E2 of the insulating layer 102a in the direction perpendicular to the channel layer The distance between the end portion E3 of the barrier layer 122a is L2, and 1<L2/L1<2. In some embodiments, 50 angstroms < L2-L1 < 400 angstroms. In some embodiments, L1 is generally greater than 50 angstroms. In other embodiments, the end E3 of the barrier layer 122a has a sloped surface. Specifically, the end portion E3 of the barrier layer 122a has an inclined surface from the point of contact with the buffer material layer 121 toward the channel layer 114, as shown in FIG. 4 . In this case, the distance from the end E1 of the insulating layer 102a to the point of contact with the buffer material layer 121 of the end E3 in the direction perpendicular to the channel layer is L2.
在一些实施例中,缓冲层121a包括与势垒层122a接触的第一部分123 以及不与势垒层122a接触的第二部分125,其中缓冲层121a的第一部分 123的厚度为T1,缓冲层121a的第二部分125的厚度为T2,且0<T1-T2 ≤30埃。在一些实施例中,缓冲层121a的第二部分125为不连续的。具体来说,缓冲层121a的第二部分125暴露绝缘层102a的角落(未绘示),藉此可阻断金属/金属氧化物之间的实体连接(physical connection)。In some embodiments, the buffer layer 121a includes a first portion 123 in contact with the barrier layer 122a and a second portion 125 not in contact with the barrier layer 122a, wherein the thickness of the first portion 123 of the buffer layer 121a is T1, and the buffer layer 121a The thickness of the second portion 125 is T2, and 0<T1-T2≤30 angstroms. In some embodiments, the second portion 125 of the buffer layer 121a is discontinuous. Specifically, the second portion 125 of the buffer layer 121a exposes a corner (not shown) of the insulating layer 102a, thereby blocking the physical connection between the metal/metal oxide.
在一些实施例中,缓冲层121a的第二部分125中含有缓冲层121a的原子的原子浓度小于1原子%。In some embodiments, the atomic concentration of atoms in the second portion 125 of the buffer layer 121a containing the buffer layer 121a is less than 1 atomic %.
在一些实施例中,三维非易失性存储器可更包括介电层115以及导体插塞116。介电层115位于开口106的下部,且通道层114环绕介电层115。导体插塞116位于开口106的上部且与通道层114接触。In some embodiments, the three-dimensional non-volatile memory may further include a dielectric layer 115 and a conductor plug 116 . The dielectric layer 115 is located below the opening 106 , and the channel layer 114 surrounds the dielectric layer 115 . Conductor plugs 116 are located above the openings 106 and are in contact with the channel layer 114 .
综上所述,在上述实施例的三维非易失性存储器及其制造方法中,通过移除部分栅极之间的绝缘层而同时移除位于绝缘层中的阶梯残留,因此可改善在进行操作时栅极之间的干扰以及短路问题。To sum up, in the three-dimensional nonvolatile memory and the method for fabricating the same in the above-mentioned embodiments, by removing part of the insulating layer between the gates, the step residues in the insulating layer are simultaneously removed, so that it is possible to improve the performance of the Interference between gates and short circuit problems during operation.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当以权利要求所界定的为准。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person of ordinary skill in the art can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810063404.3A CN110071113B (en) | 2018-01-23 | 2018-01-23 | Three-dimensional nonvolatile memory and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810063404.3A CN110071113B (en) | 2018-01-23 | 2018-01-23 | Three-dimensional nonvolatile memory and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110071113A true CN110071113A (en) | 2019-07-30 |
CN110071113B CN110071113B (en) | 2021-04-02 |
Family
ID=67365068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810063404.3A Active CN110071113B (en) | 2018-01-23 | 2018-01-23 | Three-dimensional nonvolatile memory and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110071113B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114388513A (en) * | 2020-10-22 | 2022-04-22 | 旺宏电子股份有限公司 | flash |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150243675A1 (en) * | 2014-02-24 | 2015-08-27 | Tai-Soo Lim | Semiconductor memory device and method of fabricating the same |
CN105679761A (en) * | 2016-01-26 | 2016-06-15 | 中国科学院微电子研究所 | Three-dimensional semiconductor device and method for manufacturing the same |
US20170148806A1 (en) * | 2015-11-19 | 2017-05-25 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
CN107017261A (en) * | 2015-11-02 | 2017-08-04 | 三星电子株式会社 | Semiconductor devices |
-
2018
- 2018-01-23 CN CN201810063404.3A patent/CN110071113B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150243675A1 (en) * | 2014-02-24 | 2015-08-27 | Tai-Soo Lim | Semiconductor memory device and method of fabricating the same |
CN107017261A (en) * | 2015-11-02 | 2017-08-04 | 三星电子株式会社 | Semiconductor devices |
US20170148806A1 (en) * | 2015-11-19 | 2017-05-25 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
CN105679761A (en) * | 2016-01-26 | 2016-06-15 | 中国科学院微电子研究所 | Three-dimensional semiconductor device and method for manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114388513A (en) * | 2020-10-22 | 2022-04-22 | 旺宏电子股份有限公司 | flash |
Also Published As
Publication number | Publication date |
---|---|
CN110071113B (en) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114203717B (en) | Memory device | |
CN107611129B (en) | Three-dimensional nonvolatile memory and method of making the same | |
JP2009212218A (en) | Semiconductor storage device and method for manufacturing the same | |
EP3087605B1 (en) | Memory structure with self-aligned floating and control gates and associated methods | |
JP7524192B2 (en) | Three-dimensional memory device and method for fabricating same | |
JP2009010088A (en) | Semiconductor device and manufacturing method thereof | |
TWI647822B (en) | Three-dimensional non-volatile memory and manufacturing method thereof | |
CN108091562B (en) | ONO etching method of SONOS memory | |
US11004863B2 (en) | Non-volatile memory with gate all around thin film transistor and method of manufacturing the same | |
US10910402B1 (en) | Three-dimensional and flash memory and manufacturing method thereof | |
US10424593B2 (en) | Three-dimensional non-volatile memory and manufacturing method thereof | |
TW202117934A (en) | Three-dimensional and type flash memory and manufacturing method thereof | |
CN100414687C (en) | Manufacturing method of NAND type flash memory device | |
CN101197395B (en) | Semiconductor memory device and manufacturing method thereof | |
CN110071113B (en) | Three-dimensional nonvolatile memory and method of making the same | |
TWI615949B (en) | Three-dimensional memory device and method of forming the same | |
TWI571975B (en) | Semiconductor device and method of forming the same | |
JP2010225916A (en) | Semiconductor device, and method of manufacturing the same | |
TW201624622A (en) | Non-volatile memory cell, NAND type non-volatile memory and manufacturing method thereof | |
TWI775534B (en) | Three-dimensional and flash memory and method of forming the same | |
TWI493660B (en) | Non-volatile memory and manufacturing method thereof | |
CN115938917A (en) | Fabrication method of semiconductor structure | |
TWI517302B (en) | Method of fabricating semiconductor device | |
TWI559455B (en) | Method for manufacturing non-volatile memory | |
US9431406B1 (en) | Semiconductor device and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |