[go: up one dir, main page]

CN110070096B - Local frequency domain descriptor generation method and device for non-rigid shape matching - Google Patents

Local frequency domain descriptor generation method and device for non-rigid shape matching Download PDF

Info

Publication number
CN110070096B
CN110070096B CN201910282314.8A CN201910282314A CN110070096B CN 110070096 B CN110070096 B CN 110070096B CN 201910282314 A CN201910282314 A CN 201910282314A CN 110070096 B CN110070096 B CN 110070096B
Authority
CN
China
Prior art keywords
frequency domain
local
vertex
dimensional
discrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910282314.8A
Other languages
Chinese (zh)
Other versions
CN110070096A (en
Inventor
王逸群
郭建伟
严冬明
张晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN201910282314.8A priority Critical patent/CN110070096B/en
Publication of CN110070096A publication Critical patent/CN110070096A/en
Application granted granted Critical
Publication of CN110070096B publication Critical patent/CN110070096B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明属于计算机视觉领域,具体涉及一种针对非刚性形状匹配的局部频域描述子生成方法及装置,旨在为了解决不同空间分辨率、采样和各种变换影响下获取局部频域描述子鲁棒性差的问题。本发明方法包括:基于拉普拉斯-贝尔特拉米算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征;基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。本发明提取的局部点特征,对三维形状在各分辨率、三角剖分、尺度和旋转下都具有较好的鲁棒性,并基于此,通过本发明的三元神经网络可以准确的、鲁棒的获取用于非刚性形状匹配的局部频域描述子。

Figure 201910282314

The invention belongs to the field of computer vision, and in particular relates to a method and device for generating local frequency domain descriptors for non-rigid shape matching, aiming to solve the problem of obtaining local frequency domain descriptors under the influence of different spatial resolutions, sampling and various transformations. Bad stick problem. The method of the invention includes: based on the Laplace-Beltramian operator, for each vertex in the surface triangular mesh model, extracting the local point features of the three-dimensional shape in the frequency domain; A vertex frequency domain image corresponding to each vertex of the three-dimensional shape is obtained, and a local frequency domain descriptor for non-rigid shape matching is obtained through a ternary neural network. The local point features extracted by the present invention have good robustness to three-dimensional shapes under various resolutions, triangulations, scales and rotations, and based on this, the ternary neural network of the present invention can accurately and robustly Rod acquisition of local frequency-domain descriptors for non-rigid shape matching.

Figure 201910282314

Description

针对非刚性形状匹配的局部频域描述子生成方法及装置Method and device for generating local frequency-domain descriptors for non-rigid shape matching

技术领域technical field

本发明属于计算机视觉领域,具体涉及一种针对非刚性形状匹配的局部频域描述子生成方法及装置。The invention belongs to the field of computer vision, and in particular relates to a method and device for generating local frequency domain descriptors for non-rigid shape matching.

背景技术Background technique

因为三维形状(网格模型)的简易性、有效性和灵活性,在计算机视觉领域中已经成为三维数据离散表示中广泛应用的形式。随着三维扫描设备和计算机视觉重建技术的发展,获取详细的三维形状变得越来越容易。因此,三维形状分析(如形状匹配、分割、对应和检索)的重要性得到了显著提高。设计一个针对表面形状的局部描述子是计算机视觉中一个基本问题,并且是其他高级应用的关键和基础。Because of the simplicity, effectiveness, and flexibility of three-dimensional shapes (mesh models), they have become a widely used form of discrete representation of three-dimensional data in the field of computer vision. With the development of 3D scanning equipment and computer vision reconstruction technology, it has become easier to obtain detailed 3D shapes. Consequently, the importance of 3D shape analysis such as shape matching, segmentation, correspondence and retrieval has been significantly increased. Designing a local descriptor for surface shape is a fundamental problem in computer vision and is the key and foundation of other advanced applications.

现有技术中生成局部描述子的方法主要包括空间域的方法、基于嵌入的方法以及基于深度学习的方法。The methods for generating local descriptors in the prior art mainly include methods in the spatial domain, methods based on embedding, and methods based on deep learning.

空间域的方法主要通过统计局部空间中顶点特征信息(如数量、角度、方向等),从而得到一个统计的直方图来代表局部顶点特征。比如3DSC(3D shape context,三维形状环境)描述子统计每个直方图块中顶点的数量,SHOT(Signature of histogram oforientations,方向直方图特征)统计邻域点法向量的角度,Mesh-HOG(Mesh histogram oforiented gradients,网格方向梯度)描述子统计梯度的方向,RoPS(The rotationalprojection statistics,旋转投影统计)描述子统计投影二维平面的多个特征等。显然,这些传统的方法都是基于空间域特征,易受分辨率和形状各种变换和变形的影响。The method in the space domain mainly obtains a statistical histogram to represent the local vertex features by counting the vertex feature information (such as quantity, angle, direction, etc.) in the local space. For example, 3DSC (3D shape context, three-dimensional shape environment) descriptor counts the number of vertices in each histogram block, SHOT (Signature of histogram of orientations, orientation histogram feature) counts the angle of the normal vector of the neighborhood points, Mesh-HOG (Mesh-HOG (Mesh) Histogram of oriented gradients) describes the direction of the sub-statistic gradient, and RoPS (The rotational projection statistics) describes multiple features of the sub-statistic projection two-dimensional plane, etc. Obviously, these traditional methods are all based on spatial domain features, which are susceptible to various transformations and deformations of resolution and shape.

基于嵌入的方法大多提出的是内蕴的描述子,这种内蕴的描述子旨在解决等距变形的问题。生成嵌入描述子的方法普遍基于Laplace-Beltrami(拉普拉斯-贝尔特拉米)算子。Shape-DNA(形状DNA)利用Laplace-Beltrami(拉普拉斯-贝尔特拉米)算子的特征值作为特征。GPS(Global Point Signature,全局顶点特征)结合了特征值和特征函数来生成特征。HKS(Heat Kernel Signature,热核特征),scale-invariant HKS(scale-invariantHeat Kernel Signature,尺度不变热核特征)和OSD(optimal spectral descriptors,最优谱描述符)基于扩散几何被提出。然而,这些嵌入方法大多基于全局内蕴特性,对局部细节描述不够鲁棒,并且大多对尺度敏感。Most of the embedding-based methods propose intrinsic descriptors, which aim to solve the isometric deformation problem. The methods of generating embedded descriptors are generally based on the Laplace-Beltrami operator. Shape-DNA uses the eigenvalues of the Laplace-Beltrami operator as features. GPS (Global Point Signature) combines eigenvalues and eigenfunctions to generate features. HKS (Heat Kernel Signature), scale-invariant HKS (scale-invariant Heat Kernel Signature) and OSD (optimal spectral descriptors) are proposed based on diffusion geometry. However, most of these embedding methods are based on global intrinsic properties, are not robust to local detail descriptions, and are mostly scale-sensitive.

基于深度学习的方法近来被用于提取形状描述子,基于深度学习的方法主要包括多视图、体素化和直接在三维形状上学习的方法,然而,由于这些方法学习到的信息与形状的结构(如网格尺度、空间分辨率、采样等)是相关的,所以它们的泛化能力是有缺陷的。Deep learning-based methods have recently been used to extract shape descriptors. Deep learning-based methods mainly include multi-view, voxelization, and methods that learn directly on 3D shapes. However, due to the information learned by these methods and the structure of the shape (eg grid scale, spatial resolution, sampling, etc.) are correlated, so their generalization ability is flawed.

因此,如何提供一种解决上述问题(不同空间分辨率、采样和各种变换)的方法是本领域技术人员目前需要解决的问题。Therefore, how to provide a method to solve the above problems (different spatial resolutions, sampling and various transformations) is a problem that those skilled in the art need to solve at present.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术中的上述问题,即为了解决不同空间分辨率、采样和各种变换影响下获取局部频域描述子鲁棒性差的问题,本发明的第一方面,提出了一种针对非刚性形状匹配的局部频域描述子生成方法,该方法包括以下步骤:In order to solve the above problems in the prior art, that is, to solve the problem of poor robustness of the local frequency domain descriptors obtained under the influence of different spatial resolutions, sampling and various transformations, the first aspect of the present invention proposes a A local frequency-domain descriptor generation method for rigid shape matching, which includes the following steps:

步骤S10,基于拉普拉斯-贝尔特拉米算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征;Step S10, based on the Laplacian-Beltramian operator, for each vertex in the surface triangular mesh model, extract the three-dimensional shape local point feature in the frequency domain;

步骤S20,基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。Step S20, based on the local feature points, obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape, and obtain a local frequency domain descriptor for non-rigid shape matching through a ternary neural network.

在一些优选实施方式中,“基于拉普拉斯-贝尔特拉米算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征”,其方法为:In some preferred embodiments, "based on the Laplacian-Beltramian operator, for each vertex in the surface triangular mesh model, the local point features of the three-dimensional shape are extracted in the frequency domain", and the method is:

基于三维形状表面三角网格模型的表面连续函数f,计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L;Based on the surface continuous function f of the surface triangular mesh model of the three-dimensional shape, calculate the Laplace-Beltrium matrix L of the surface triangular mesh model;

对所述矩阵L进行特征分解,获取特征向量和特征值;Perform eigendecomposition on the matrix L to obtain eigenvectors and eigenvalues;

将所述表面连续函数f扩展到离散函数

Figure GDA0002812075560000031
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj;Extend the surface continuous function f to a discrete function
Figure GDA0002812075560000031
and expand it under the eigenvectors of the matrix L to obtain the frequency domain expansion coefficient σ j ;

根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量

Figure GDA0002812075560000032
According to the eigendecomposition of the matrix L and the frequency domain expansion coefficient σ j , the discrete Dirichlet energy is calculated
Figure GDA0002812075560000032

将基于表面连续函数f的高维连续函数F扩展到高维离散函数

Figure GDA0002812075560000033
计算离散狄利克雷能量
Figure GDA0002812075560000034
并将所述能量
Figure GDA0002812075560000035
在频域中展开得到通用的频域特征;Extend the high-dimensional continuous function F based on the surface continuous function f to high-dimensional discrete functions
Figure GDA0002812075560000033
Calculate discrete Dirichlet energies
Figure GDA0002812075560000034
and the energy
Figure GDA0002812075560000035
Expand in the frequency domain to obtain general frequency domain features;

将高维离散函数

Figure GDA0002812075560000036
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure GDA0002812075560000037
取所述离散能量
Figure GDA0002812075560000038
在频域中展开的前Q维得到所述局部点特征;其中Q为第一设定值。high-dimensional discrete functions
Figure GDA0002812075560000036
Set to the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure GDA0002812075560000037
Take the discrete energy
Figure GDA0002812075560000038
The first Q dimension expanded in the frequency domain obtains the local point feature; wherein Q is the first set value.

在一些优选实施方式中,“基于三维形状表面三角网格模型的表面连续函数f,计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L”,其方法为:In some preferred embodiments, "calculate the Laplacian-Beltramian matrix L of the surface triangular mesh model based on the surface continuous function f of the three-dimensional shape surface triangular mesh model", and the method is:

获取表面连续函数f的离散函数

Figure GDA0002812075560000039
通过下式计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L中的元素Lij:Get the discrete function of the surface continuous function f
Figure GDA0002812075560000039
Elements L ij in the Laplacian- Beltrami matrix L of the surface triangular mesh model are calculated by:

Figure GDA0002812075560000041
Figure GDA0002812075560000041

其中,αij和βij为表面三角网格模型中两个与边{i,j}相对的角,αi为顶点vi的Voronoi多边形面积,k为邻接顶点的个数。Among them, α ij and β ij are the two angles opposite to the edge {i, j} in the surface triangular mesh model, α i is the Voronoi polygon area of the vertex v i , and k is the number of adjacent vertices.

在一些优选实施方式中,“对所述矩阵L进行特征分解,获取特征向量和特征值”,其方法为:In some preferred embodiments, "decompose the matrix L to obtain eigenvectors and eigenvalues", the method is:

将矩阵L分解为两个对称的矩阵T和A,Decompose matrix L into two symmetric matrices T and A,

i=λii,i=0,1,...,N-1;iii ,i=0,1,...,N-1;

其中,in,

Aii=ai A ii =a i

Figure GDA0002812075560000042
Figure GDA0002812075560000042

采用ARPACK的方法求解,重新得到特征向量Φi和特征值λi,N为表面三角网格模型顶点个数。The ARPACK method is used to solve the problem, and the eigenvector Φ i and the eigenvalue λ i are obtained again, and N is the number of vertices of the surface triangular mesh model.

在一些优选实施方式中,“将所述表面连续函数f扩展到离散函数

Figure GDA0002812075560000043
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj”,其方法为:In some preferred embodiments, "extend the surface continuous function f to a discrete function
Figure GDA0002812075560000043
And expand it under the eigenvector of the matrix L to obtain the frequency domain expansion coefficient σ j ", the method is:

Figure GDA0002812075560000044
Figure GDA0002812075560000044

其中,Φj为所述矩阵L的第j个特征向量。Wherein, Φ j is the j-th eigenvector of the matrix L.

在一些优选实施方式中,“根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量

Figure GDA0002812075560000051
”,其方法为:In some preferred embodiments, "According to the eigendecomposition of the matrix L, the frequency domain expansion coefficient σ j , the discrete Dirichlet energy is calculated
Figure GDA0002812075560000051
", the method is:

Figure GDA0002812075560000052
Figure GDA0002812075560000052

其中,

Figure GDA0002812075560000053
为连续实函数f的狄利克雷能量对应的离散的能量形式,N为顶点的个数,λj为矩阵L的第j个特征值。in,
Figure GDA0002812075560000053
is the discrete energy form corresponding to the Dirichlet energy of the continuous real function f, N is the number of vertices, and λ j is the jth eigenvalue of the matrix L.

在一些优选实施方式中,“将基于表面连续函数f的高维连续函数F扩展到高维离散函数

Figure GDA0002812075560000054
计算离散狄利克雷能量
Figure GDA0002812075560000055
并将所述能量
Figure GDA0002812075560000056
在频域中展开得到通用的频域特征”,其方法为:In some preferred embodiments, "Extend a high-dimensional continuous function F based on a surface continuous function f to a high-dimensional discrete function
Figure GDA0002812075560000054
Calculate discrete Dirichlet energies
Figure GDA0002812075560000055
and the energy
Figure GDA0002812075560000056
Expand in the frequency domain to get general frequency domain features", the method is:

Figure GDA0002812075560000057
Figure GDA0002812075560000057

其中,sf为通用的频域特征,λN-1为特征值,σiN-1为高维频域展开系数。Among them, sf is a general frequency domain feature, λ N-1 is an eigenvalue, and σ iN-1 is a high-dimensional frequency domain expansion coefficient.

在一些优选实施方式中,“将高维离散函数

Figure GDA0002812075560000058
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure GDA0002812075560000059
取所述离散能量
Figure GDA00028120755600000510
在频域中展开的前Q维得到所述局部点特征”,其方法为:In some preferred embodiments, "the high-dimensional discrete function
Figure GDA0002812075560000058
Set to the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure GDA0002812075560000059
Take the discrete energy
Figure GDA00028120755600000510
The first Q-dimension unrolled in the frequency domain obtains the local point feature", and the method is:

Figure GDA00028120755600000511
Figure GDA00028120755600000511

其中,LPS为获得的局部点特征。Among them, LPS is the obtained local point feature.

在一些优选实施方式中,“基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子”,其方法为:In some preferred embodiments, "based on the local feature points, a vertex frequency domain image corresponding to each vertex of the three-dimensional shape is obtained, and a local frequency domain descriptor for non-rigid shape matching is obtained through a ternary neural network. ", the method is:

将所述局部点特征编码为Q个第一设定尺寸大小的图像;encoding the local point feature into Q images of the first set size;

对三维形状表面三角网格模型上每个顶点,生成对应的顶点频域图像,得到顶点频域图像集;For each vertex on the three-dimensional shape surface triangular mesh model, generate the corresponding vertex frequency domain image, and obtain the vertex frequency domain image set;

基于所述顶点频域图像集,通过预设的三元神经网络得到用于非刚性形状匹配的局部频域描述子。Based on the vertex frequency domain image set, a local frequency domain descriptor for non-rigid shape matching is obtained through a preset ternary neural network.

在一些优选实施方式中,“将所述局部点特征编码为Q个第一设定尺寸大小的图像”,其方法为:In some preferred embodiments, "encode the local point features into Q images of a first set size", the method is:

取Q为16,第一设定尺寸为8*8;Take Q as 16, and the first set size is 8*8;

利用几何图像方法将局部点特征编码为16个8*8大小的几何图像。The local point features are encoded into 16 geometric images of size 8*8 using the geometric image method.

在一些优选实施方式中,“对三维形状表面三角网格模型上每个顶点,生成对应的顶点频域图像”,其方法为:In some preferred embodiments, "for each vertex on the three-dimensional shape surface triangular mesh model, a corresponding vertex frequency domain image is generated", and the method is:

初始化32*32的空图像,将16个8*8大小的局部点特征的特征编码图像填充到该初始化的空图像,并在左上角和右下角分别放置最小特征值和最大特征值,生成32*32大小的顶点频域图像。Initialize a 32*32 empty image, fill 16 feature-encoded images of 8*8 local point features into the initialized empty image, and place the minimum and maximum eigenvalues in the upper left and lower right corners, respectively, to generate 32 *32 size vertex frequency domain image.

在一些优选实施方式中,所述三元神经网络由三个相同的ConvNet卷积网络组成,其训练样本包括三维形状及对应的描述子;所述三元神经网络训练时,训练样本中的三维形状采用步骤S10、步骤S20中的方法获取对应的顶点频域图像集输入所述三元神经网络。In some preferred embodiments, the ternary neural network is composed of three identical ConvNet convolutional networks, and the training samples include three-dimensional shapes and corresponding descriptors; when the ternary neural network is trained, the three-dimensional The shape adopts the method in step S10 and step S20 to obtain the corresponding vertex frequency domain image set and input it to the ternary neural network.

本发明的第二方面,提出了一种针对非刚性形状匹配的局部频域描述子生成装置,该装置包括局部点特征生成模块、局部频域描述子获取模块;In a second aspect of the present invention, a device for generating a local frequency domain descriptor for non-rigid shape matching is proposed, the device includes a local point feature generation module and a local frequency domain descriptor acquisition module;

所述局部点特征生成模块,配置为基于拉普拉斯-贝尔特拉米算子,获取三维形状表面三角网格模型中的每个顶点在频域中局部点特征;The local point feature generation module is configured to obtain the local point feature in the frequency domain of each vertex in the three-dimensional shape surface triangular mesh model based on the Laplace-Beltrami operator;

所述局部频域描述子获取模块,配置为基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。The local frequency domain descriptor obtaining module is configured to obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape based on the local feature points, and obtain a local frequency domain image for non-rigid shape matching through a ternary neural network. frequency domain descriptor.

本发明第三方面,提出了一种存储装置,其中存储有多条程序,所述程序适于由处理器加载并执行以实现上述的针对非刚性形状匹配的局部频域描述子生成方法。In a third aspect of the present invention, a storage device is provided, wherein a plurality of programs are stored, and the programs are adapted to be loaded and executed by a processor to realize the above-mentioned method for generating local frequency-domain descriptors for non-rigid shape matching.

本发明的第四方面,提出了一种处理装置,包括处理器、存储装置;处理器,适于执行各条程序;存储装置,适于存储多条程序;所述程序适于由处理器加载并执行以实现上述的针对非刚性形状匹配的局部频域描述子生成方法。In a fourth aspect of the present invention, a processing device is provided, including a processor and a storage device; the processor is adapted to execute various programs; the storage device is adapted to store multiple programs; the programs are adapted to be loaded by the processor And execute to achieve the above-mentioned local frequency-domain descriptor generation method for non-rigid shape matching.

本发明的有益效果:Beneficial effects of the present invention:

通过本发明方法提取的局部点特征,对三维形状在各分辨率、三角剖分(采样)、尺度和旋转下都具有较好的鲁棒性,并基于此,通过本发明的三元神经网络可以准确的、鲁棒的获取用于非刚性形状匹配的局部频域描述子。The local point features extracted by the method of the present invention have better robustness to three-dimensional shapes under various resolutions, triangulation (sampling), scales and rotations, and based on this, the ternary neural network of the present invention Local frequency-domain descriptors for non-rigid shape matching can be obtained accurately and robustly.

附图说明Description of drawings

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:

图1为本发明一种实施例的针对非刚性形状匹配的局部频域描述子生成方法流程示意图;1 is a schematic flowchart of a method for generating local frequency domain descriptors for non-rigid shape matching according to an embodiment of the present invention;

图2为采用本发明获取的描述子针对不同分辨率、采样、尺度和旋转的匹配结果示例图;Fig. 2 is an example diagram of matching results for different resolutions, samplings, scales and rotations of descriptors obtained by adopting the present invention;

图3为本发明一种实施例中离散Laplace-Beltrami算子中角度和Voronoi面积的示例图;3 is an example diagram of an angle and a Voronoi area in a discrete Laplace-Beltrami operator in an embodiment of the present invention;

图4为本发明一种实施例中生成的不同形状结构模型的示例图;FIG. 4 is an exemplary diagram of a structure model of different shapes generated in an embodiment of the present invention;

图5为本发明一种实施例中不同位置上顶点频域图像VSI的示例图;5 is an exemplary diagram of a vertex frequency domain image VSI at different positions in an embodiment of the present invention;

图6为本发明一种实施例中的LPS特征在不同分辨率和三角化模型上的结果曲线图;6 is a graph showing the results of LPS features at different resolutions and triangulation models in an embodiment of the present invention;

图7为本发明一种实施例中的描述子在不同分辨率和三角化模型上的结果曲线图;7 is a graph showing the results of descriptors in different resolutions and triangulation models in an embodiment of the present invention;

图8为本发明一种实施例中的描述子和LPS特征在6890和8K分辨率和其他方法的结果比较曲线图;8 is a graph showing the comparison of the results of descriptors and LPS features at 6890 and 8K resolutions and other methods in an embodiment of the present invention;

图9为本发明一种实施例中的描述子和LPS特征在6890和12K分辨率和其他方法的结果比较曲线图;FIG. 9 is a graph comparing the results of descriptors and LPS features at 6890 and 12K resolutions and other methods in an embodiment of the present invention;

图10为本发明一种实施例中的描述子和LPS特征在旋转模型集上和其他方法的结果比较曲线图;FIG. 10 is a graph comparing the results of descriptors and LPS features on the rotation model set and other methods in an embodiment of the present invention;

图11为本发明一种实施例中的描述子和LPS特征在不同尺度模型集上和其他方法的结果比较曲线图;FIG. 11 is a graph comparing the results of descriptors and LPS features on different scale model sets and other methods in an embodiment of the present invention;

图12为本发明一种实施例中的对应框架和其他对应框架的结果比较曲线图;FIG. 12 is a result comparison graph of a corresponding frame and other corresponding frames in an embodiment of the present invention;

图13为本发明一种实施例的针对非刚性形状匹配的局部频域描述子生成装置框架示意图。FIG. 13 is a schematic diagram of a framework of an apparatus for generating a local frequency domain descriptor for non-rigid shape matching according to an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, not All examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。The present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the related invention are shown in the drawings.

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict.

本发明的一种针对非刚性形状匹配的局部频域描述子生成方法,包括以下步骤:A method for generating local frequency domain descriptors for non-rigid shape matching of the present invention includes the following steps:

步骤S10,基于拉普拉斯-贝尔特拉米(Laplace-Beltrami)算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征;Step S10, based on the Laplace-Beltrami operator, for each vertex in the surface triangular mesh model, extract the local point feature of the three-dimensional shape in the frequency domain;

步骤S20,基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。Step S20, based on the local feature points, obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape, and obtain a local frequency domain descriptor for non-rigid shape matching through a ternary neural network.

如图1所示为本发明一种实施例的针对非刚性形状匹配的局部频域描述子生成方法流程示意图,该示意图中获取的描述子为256维。图2为采用本发明获取的描述子针对不同分辨率、采样、尺度和旋转的匹配结果示意图,最左边的模型为参考模型,点数6890点,之后依次为12K高分辨率且不同采样的模型、尺度缩放模型、旋转模型,可以看出本发明可以在不同形状结构之上进行鲁棒的匹配。FIG. 1 is a schematic flowchart of a method for generating a local frequency-domain descriptor for non-rigid shape matching according to an embodiment of the present invention, and the descriptor obtained in the schematic diagram has 256 dimensions. 2 is a schematic diagram of the matching results for different resolutions, sampling, scale and rotation of descriptors obtained by the present invention. The model on the far left is a reference model with 6890 points, followed by models with 12K high resolution and different samplings, From the scaling model and the rotation model, it can be seen that the present invention can perform robust matching on different shape structures.

为了更清晰地对本发明进行说明,下面结合附图对本方发明中各步骤进行展开详述。In order to describe the present invention more clearly, each step in the present invention will be described in detail below with reference to the accompanying drawings.

本发明的一种实施例的针对非刚性形状匹配的局部频域描述子生成方法,包括步骤S10、步骤S20。A method for generating local frequency domain descriptors for non-rigid shape matching according to an embodiment of the present invention includes steps S10 and S20.

步骤S10,基于拉普拉斯-贝尔特拉米算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征。通过该步骤方法获取的局部点特征对三维形状各分辨率、三角剖分(采样)、尺度和旋转都保持鲁棒。该步骤可以进一步细分为步骤S101-步骤S106。Step S10, based on the Laplacian-Beltrium operator, for each vertex in the surface triangular mesh model, extract the local point features of the three-dimensional shape in the frequency domain. The local point features obtained by this step method are robust to each resolution, triangulation (sampling), scale and rotation of the 3D shape. This step can be further subdivided into steps S101-S106.

步骤S101,基于三维形状表面三角网格模型的表面连续函数f,计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L。Step S101 , based on the surface continuous function f of the surface triangular mesh model of the three-dimensional shape, calculate the Laplacian-Beltrium matrix L of the surface triangular mesh model.

已知三维形状表面上的表面连续实函数f:

Figure GDA0002812075560000101
该函数中
Figure GDA0002812075560000102
为连续的表面、R为实数域,则可以求出该函数的Dirichlet(狄利克雷)能量,如式(1)所示:The surface continuous real function f on the surface of the known three-dimensional shape:
Figure GDA0002812075560000101
in this function
Figure GDA0002812075560000102
is a continuous surface and R is a real number field, then the Dirichlet energy of the function can be obtained, as shown in formula (1):

Figure GDA0002812075560000103
Figure GDA0002812075560000103

其中,

Figure GDA0002812075560000104
Figure GDA0002812075560000105
为梯度,f(v)为顶点v上的特征,v为连续表面上的点。in,
Figure GDA0002812075560000104
Figure GDA0002812075560000105
is the gradient, f(v) is the feature on the vertex v, and v is the point on the continuous surface.

如图3所示,在离散的网格

Figure GDA0002812075560000106
中,若存在表面形状的连续实函数f:
Figure GDA0002812075560000107
的离散形式
Figure GDA0002812075560000108
V→R,则Δf在顶点vi的离散形式如式(2)所示:As shown in Figure 3, in the discrete grid
Figure GDA0002812075560000106
, if there is a continuous real function f of the surface shape:
Figure GDA0002812075560000107
discrete form of
Figure GDA0002812075560000108
V →R, then the discrete form of Δf at vertex vi is shown in formula (2):

Figure GDA0002812075560000109
Figure GDA0002812075560000109

其中,V为离散的顶点,ai是顶点vi的Voronoi多边形面积,N(vi)表示顶点vi的一圈邻域点,αij和βij表示两个与边{i,j}相对的角;图3中的Vi、Vj为两个离散后的顶点。Among them, V is the discrete vertex, a i is the Voronoi polygon area of the vertex v i , N(vi ) represents a circle of neighborhood points of the vertex v i , α ij and β ij represent two and edges {i, j} Opposite angles; V i and V j in Fig. 3 are two discrete vertices.

所以,离散的拉普拉斯-贝尔特拉米(Laplace-Beltrami)矩阵L可以近似Laplace-Beltrami算子Δ,如式(3)所示:Therefore, the discrete Laplace-Beltrami matrix L can approximate the Laplace-Beltrami operator Δ, as shown in equation (3):

Figure GDA00028120755600001010
Figure GDA00028120755600001010

其中,k为邻接顶点的个数。where k is the number of adjacent vertices.

步骤S102,对所述矩阵L进行特征分解,得到特征值λi和特征向量ΦiStep S102, eigendecomposition is performed on the matrix L to obtain eigenvalues λ i and eigenvectors Φ i .

若存在连续的表面

Figure GDA0002812075560000111
上一组连续的正交基函数{φi|i=0,1,...,N-1}最小化Dirichlet(狄利克雷)能量,那么问题的解(这组正交基函数)是Laplace-Beltrami算子Δ的前N个特征函数(N为表面三角网格模型顶点个数),且满足式(4):If there is a continuous surface
Figure GDA0002812075560000111
The previous set of continuous orthonormal basis functions {φ i |i=0,1,...,N-1} minimizes the Dirichlet energy, then the solution to the problem (this set of orthonormal basis functions) is The first N characteristic functions of the Laplace-Beltrami operator Δ (N is the number of vertices of the surface triangular mesh model), and satisfy the formula (4):

Δφi=λiφi,i=0,1,...,N-1 (4)Δφ ii φ i ,i=0,1,...,N-1 (4)

式(4)中,Δ为Laplace-Beltrami算子,φi为第i个特征函数,{λi|i=0,1,...,N-1}是增序排列的前N个特征值,则对应于离散的情况如式(5)所示:In formula (4), Δ is the Laplace-Beltrami operator, φ i is the i-th feature function, {λ i |i=0,1,...,N-1} is the first N features arranged in increasing order value, it corresponds to the discrete case as shown in formula (5):

i=λiΦi,i=0,1,...,N-1 (5)ii Φ i ,i=0,1,...,N-1 (5)

其中,Φi为离散的正交基(也即特征向量),λi为分解后的特征值。Among them, Φ i is a discrete orthonormal basis (that is, an eigenvector), and λ i is a decomposed eigenvalue.

将Laplace-Beltrami矩阵L分解为两个对称的矩阵T和A,这样从式(5)得到式(6),The Laplace-Beltrami matrix L is decomposed into two symmetric matrices T and A, so that equation (6) is obtained from equation (5),

i=λii,i=0,1,...,N-1 (6)iii ,i=0,1,...,N-1 (6)

其中,Aii=ai,Tij如式(7)所示Among them, A ii =a i , and T ij is shown in formula (7)

Figure GDA0002812075560000112
Figure GDA0002812075560000112

采用求解,从而得到特征向量Φi和特征值λiThe solution is used to obtain the eigenvector Φ i and the eigenvalue λ i .

利用求解矩阵广义特征值的ARPACK方法计算特征向量Φi和特征值λi时,特征向量Φi是关于A正交的,具体表现为<Φij>A=Φi Tj,其中,Φi、Φj分别为两个不同的特征向量。When the eigenvector Φ i and the eigenvalue λ i are calculated by using the ARPACK method for solving the generalized eigenvalues of the matrix, the eigenvector Φ i is orthogonal to A, specifically <Φ ij > Ai Tj , Among them, Φ i and Φ j are two different eigenvectors respectively.

步骤S103,将所述表面连续函数f扩展到离散函数

Figure GDA0002812075560000121
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj。Step S103, extending the surface continuous function f to a discrete function
Figure GDA0002812075560000121
And expand it under the eigenvectors of the matrix L to obtain the frequency domain expansion coefficient σ j .

类似于傅里叶展开,连续函数f可以由基函数展开,如式(8)所示:Similar to the Fourier expansion, the continuous function f can be expanded by the basis function, as shown in equation (8):

Figure GDA0002812075560000122
Figure GDA0002812075560000122

其中,σj为频域展开系数,φj为第j个特征函数。扩展到离散的情况可得到展开系数σj,如式(9)所示。Among them, σ j is the frequency domain expansion coefficient, and φ j is the jth characteristic function. The expansion coefficient σ j can be obtained by extending to the discrete case, as shown in equation (9).

Figure GDA0002812075560000123
Figure GDA0002812075560000123

步骤S104,根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量

Figure GDA0002812075560000124
Step S104, according to the eigendecomposition of the matrix L and the frequency domain expansion coefficient σ j , calculate the discrete Dirichlet energy
Figure GDA0002812075560000124

根据连续的Dirichlet能量公式,得到连续实函数f的离散的能量形式为

Figure GDA0002812075560000125
根据矩阵L的特征分解和频域展开系数σj求得所述离散Dirichlet(狄利克雷)能量
Figure GDA0002812075560000126
的公式如式(10)所示。According to the continuous Dirichlet energy formula, the discrete energy form of the continuous real function f is obtained as
Figure GDA0002812075560000125
The discrete Dirichlet energy is obtained according to the eigendecomposition of the matrix L and the frequency domain expansion coefficient σ j
Figure GDA0002812075560000126
The formula is shown in formula (10).

Figure GDA0002812075560000127
Figure GDA0002812075560000127

其中,N为顶点个数,λj为第j个特征值。Among them, N is the number of vertices, and λj is the jth eigenvalue.

步骤S105,将基于表面连续函数f的高维连续函数F扩展到高维离散函数

Figure GDA0002812075560000128
计算离散狄利克雷能量
Figure GDA0002812075560000129
并将所述能量
Figure GDA00028120755600001210
在频域中展开得到通用的频域特征。Step S105, extending the high-dimensional continuous function F based on the surface continuous function f to a high-dimensional discrete function
Figure GDA0002812075560000128
Calculate discrete Dirichlet energies
Figure GDA0002812075560000129
and the energy
Figure GDA00028120755600001210
Expand in the frequency domain to get general frequency domain features.

对于高维连续函数F=(f1,f2,...,fd):S→Rd,其Dirichlet能量公式如式(11)所示:For a high-dimensional continuous function F=(f 1 , f 2 ,...,f d ):S→R d , the Dirichlet energy formula is shown in equation (11):

Figure GDA0002812075560000131
Figure GDA0002812075560000131

其中,f1,f2,...,fd分别为d个低维连续函数,

Figure GDA0002812075560000132
为高维函数的梯度,
Figure GDA0002812075560000133
为低维函数的梯度。Among them, f 1 , f 2 ,...,f d are respectively d low-dimensional continuous functions,
Figure GDA0002812075560000132
is the gradient of the high-dimensional function,
Figure GDA0002812075560000133
is the gradient of the low-dimensional function.

扩展到高维函数

Figure GDA0002812075560000134
其离散Dirichlet能量
Figure GDA00028120755600001311
如式(12)所示:extension to higher dimensional functions
Figure GDA0002812075560000134
its discrete Dirichlet energy
Figure GDA00028120755600001311
As shown in formula (12):

Figure GDA0002812075560000136
Figure GDA0002812075560000136

其中,σij为第i维度下第j个频域展开系数,λj为第j个特征值。Among them, σ ij is the j-th frequency domain expansion coefficient under the i-th dimension, and λ j is the j-th eigenvalue.

在频域中展开得到通用的频域特征的具体公式如式(13)所示:The specific formula of the general frequency domain feature obtained by expanding it in the frequency domain is shown in formula (13):

Figure GDA0002812075560000137
Figure GDA0002812075560000137

其中,sf为通用的频域特征,λN-1为第N个特征值,σiN-1为第i维度下第N个频域展开系数。Among them, sf is a general frequency domain feature, λ N-1 is the Nth eigenvalue, and σ iN-1 is the Nth frequency domain expansion coefficient under the ith dimension.

步骤S106,将高维离散函数

Figure GDA0002812075560000138
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure GDA0002812075560000139
取所述离散能量
Figure GDA00028120755600001310
在频域中展开的前Q维得到所述局部点特征;其中Q为第一设定值。Step S106, the high-dimensional discrete function
Figure GDA0002812075560000138
Set to the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure GDA0002812075560000139
Take the discrete energy
Figure GDA00028120755600001310
The first Q dimension expanded in the frequency domain obtains the local point feature; wherein Q is the first set value.

局部面片通过顶点的局部测地半径获得,局部三维坐标信息如式(14)所示,The local patch is obtained by the local geodesic radius of the vertex, and the local three-dimensional coordinate information is shown in equation (14),

X=(x1,x2,x3):V→R3 (14)X=(x 1 , x 2 , x 3 ): V→R 3 (14)

其中,x1,x2,x3为三维坐标。Among them, x 1 , x 2 , and x 3 are three-dimensional coordinates.

对于X函数连续的情况,连续的能量E(X)如式(15)所示,For the case where the X function is continuous, the continuous energy E(X) is shown in equation (15),

Figure GDA0002812075560000141
Figure GDA0002812075560000141

其中,

Figure GDA0002812075560000142
为X函数的梯度,
Figure GDA0002812075560000143
为x函数的梯度,P为局部面片。in,
Figure GDA0002812075560000142
is the gradient of the X function,
Figure GDA0002812075560000143
is the gradient of the x function, and P is the local patch.

将其扩展到离散的情况,如式(16)所示,Extending it to the discrete case, as shown in Eq. (16),

Figure GDA0002812075560000144
Figure GDA0002812075560000144

取离散能量在频域中展开的前Q维,得到LPS特征,如式(17)所示,该式中Q取值为16。Taking the first Q dimension of the discrete energy expansion in the frequency domain, the LPS feature is obtained, as shown in equation (17), where the value of Q is 16.

Figure GDA0002812075560000145
Figure GDA0002812075560000145

现有GPS、HKS等的频域特征的方法避免使用外蕴的特征以获得一个全局的内蕴的特征,局部描述性不强。虽然内蕴的特征是等距不变的,但是对于非等距变形却无法有效解决。通过实验发现,许多方法使用非内蕴的描述子如SHOT作为输入取得了更好的效果。在本发明中,有效的引入了顶点坐标信息,并通过Dirichlet框架设计了一个新的频域特征,所以本发明结合了内蕴和外蕴的信息,获得了一个更具有判别性的局部频域描述子。另外,一些外蕴(如SHOT)或者内蕴(如HKS)的方法对于尺度变换是极为敏感的,本发明的描述子在尺度变换上保持了不变性。Existing methods of frequency domain features such as GPS and HKS avoid using extrinsic features to obtain a global intrinsic feature, and the local descriptiveness is not strong. Although the intrinsic feature is isometric invariant, it cannot be effectively solved for non-isometric deformation. Through experiments, it is found that many methods use non-intrinsic descriptors such as SHOT as input to achieve better results. In the present invention, vertex coordinate information is effectively introduced, and a new frequency domain feature is designed through the Dirichlet framework, so the present invention combines the intrinsic and extrinsic information to obtain a more discriminative local frequency domain descriptor. In addition, some extrinsic (such as SHOT) or intrinsic (such as HKS) methods are extremely sensitive to scale transformation, and the descriptor of the present invention maintains invariance on scale transformation.

本实施例中,为了检验方法的有效性,生成了局部不同形状结构的模型,如图4所示,左边的三个单独的模型为不同分辨率(6890,8K,15K)和三角化的模型,右边的模型展示的为不同尺度和不同旋转方向的模型。In this embodiment, in order to test the effectiveness of the method, models of local structures with different shapes are generated. As shown in Figure 4, the three separate models on the left are models with different resolutions (6890, 8K, 15K) and triangulation. , the models on the right show models with different scales and different rotation directions.

FAUST模型库在形状匹配领域中一个广泛使用的标准数据集,该数据集具有丰富的细节和更准确的对应关系。本实施例基于该数据集生成不同形状结构(分辨率、三角化(采样)、尺度和旋转)的模型。The FAUST model library is a widely used standard dataset in the field of shape matching, which has rich details and more accurate correspondences. This example generates models of different shape structures (resolution, triangulation (sampling), scale, and rotation) based on this dataset.

由于所有的FAUST模型库具有相同的三角化和6890点数的分辨率,此外,大量的模型需要一种自动化的方法生成,本实施例参考现有的重新网格化方法,生成了一个具有不同三角化的多分辨率模型库,并保证了每一个形状包含用户指定的顶点数。重新网格化方法可以参阅:1、Marion Dunyach,David Vanderhaeghe,

Figure GDA0002812075560000151
Barthe,and MarioBotsch.Adaptive remeshing for real-time mesh deformation.Eurographics.2013;2、Yiqun Wang,Dong-Ming Yan,Xiaohan Liu,Chengcheng Tang,Jianwei Guo,XiaopengZhang,and Peter Wonka.Isotropic surface remeshing without large and smallangles.IEEE Trans.on Vis.and Comp.Graphics,2018.Since all FAUST model libraries have the same triangulation and resolution of 6890 points, in addition, a large number of models need an automated method to generate, this example refers to the existing remeshing method, and generates a The library of multi-resolution models is optimized and ensures that each shape contains a user-specified number of vertices. The remeshing method can be found in: 1. Marion Dunyach, David Vanderhaeghe,
Figure GDA0002812075560000151
Barthe,and MarioBotsch.Adaptive remeshing for real-time mesh deformation.Eurographics.2013; 2. Yiqun Wang,Dong-Ming Yan,Xiaohan Liu,Chengcheng Tang,Jianwei Guo,XiaopengZhang,and Peter Wonka.Isotropic surface remeshing without large and smallangles .IEEE Trans.on Vis.and Comp.Graphics, 2018.

为了准确的保持对应关系,本实施例中将每一个原始顶点标记为“锁定”,这意味着原始的顶点无法被移动或者删除。之后,通过边分裂和边折叠操作在迭代中来增加或者减少顶点。在迭代中,本实施例应用了一种随机的边翻转操作,以获取不规则的三角化模型。之后几步平滑操作以避免大多数三角形形状太差的情况。同时,这些操作将保持局部的细节不会被破坏。对于低分辨率模型的生成,本方法使用文献Jing Ren,AdrienPoulenard,Peter Wonka,and Maks Ovsjanikov.Continuous and orientation-preserving correspondences via functional maps.ACM Trans.on Graphics,37(6):248:1-248:16,Dec.2018中提供的5K的模型,这种模型独立的通过一种CVT(CentroidalVoronoi Tessellation,基于重心Voronoi图)方法生成。最终,获得了六种不同分辨率的模型(5K,6890,8K,10K,12K和15K)。本实施例采用的CVT方法可以参阅:Dong-Ming Yan,Guanbo Bao,Xiaopeng Zhang,and Peter Wonka.Low-resolution remeshing using thelocalized restricted voronoi diagram.IEEE Trans.on Vis.and Comp.Graphics,20(10):1418-1427,2014。In order to keep the corresponding relationship accurately, each original vertex is marked as "locked" in this embodiment, which means that the original vertex cannot be moved or deleted. Afterwards, vertices are added or subtracted in iterations through edge splitting and edge folding operations. In iterations, this embodiment applies a random edge flipping operation to obtain an irregular triangulation model. The next few steps of smoothing are done to avoid most cases where the triangle shape is too bad. At the same time, these operations will keep local details from being destroyed. For the generation of low-resolution models, this method uses Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovsjanikov. Continuous and orientation-preserving correspondences via functional maps. ACM Trans. on Graphics, 37(6):248:1-248 :16, the 5K model provided in Dec.2018, this model is independently generated by a CVT (Centroidal Voronoi Tessellation, based on the center of gravity Voronoi diagram) method. Ultimately, six different resolution models were obtained (5K, 6890, 8K, 10K, 12K and 15K). For the CVT method used in this example, please refer to: Dong-Ming Yan, Guanbo Bao, Xiaopeng Zhang, and Peter Wonka. Low-resolution remeshing using the localized restricted voronoi diagram. IEEE Trans.on Vis.and Comp.Graphics, 20(10) : 1418-1427, 2014.

对于不同尺度模型,本实施例随机的选择五种缩放因子(0.2,0.5,1.0,2.0和4.0)中的一个进行缩放。此外,本实施例还对模型进行了随机旋转,以生成不同旋转方向的模型库,效果如图4所示。For models with different scales, this embodiment randomly selects one of five scaling factors (0.2, 0.5, 1.0, 2.0 and 4.0) for scaling. In addition, this embodiment also randomly rotates the model to generate model libraries with different rotation directions, and the effect is shown in FIG. 4 .

步骤S20,基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。该步骤具体包括步骤S201-步骤S203。Step S20, based on the local feature points, obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape, and obtain a local frequency domain descriptor for non-rigid shape matching through a ternary neural network. This step specifically includes steps S201-S203.

基于获取的特征LPS,本发明设计了一种新型且紧凑的几何图像(geometryimage)—VSI(vertex spectral image,顶点频域图像),VSI可以有效的编码LPS并用于神经网络的训练,利用现有的triplet(三元)神经网络可以有效地利用VSI学习到用于非刚性匹配的局部描述子,在图2中显示为LPS特征到256维描述子的阶段。Based on the acquired characteristic LPS, the present invention designs a new and compact geometric image (geometry image)—VSI (vertex spectral image, vertex frequency domain image). VSI can effectively encode LPS and be used for neural network training, using existing The triplet (ternary) neural network can effectively use VSI to learn local descriptors for non-rigid matching, shown in Figure 2 as the stage of LPS features to 256-dimensional descriptors.

步骤S201,将所述局部点特征编码为Q个第一设定尺寸大小的图像。Step S201, encoding the local point features into Q images of a first set size.

取Q为16,第一设定尺寸为8*8;Take Q as 16, and the first set size is 8*8;

利用几何图像(geometry image)方法将局部点特征编码为16个8*8大小的几何图像。与以往方法不同,以往方法通常编码低级的信息(曲率,法向等),这种信息对不同的形状结构十分敏感,并且低级的特征需要大的尺寸(32*32)以获取足够的局部信息,而LPS特征是可以表示局部细节的高级特征,从而在不减少信息量的情况下减少数据量。The local point features are encoded into 16 geometric images of size 8*8 using the geometry image method. Different from previous methods, the previous methods usually encode low-level information (curvature, normal, etc.), which is very sensitive to different shape structures, and low-level features require large size (32*32) to obtain sufficient local information. , while LPS features are high-level features that can represent local details, thereby reducing the amount of data without reducing the amount of information.

步骤S202,对三维形状表面三角网格模型上每个顶点,生成对应的顶点频域图像,得到顶点频域图像集。Step S202, for each vertex on the three-dimensional shape surface triangular mesh model, generate a corresponding vertex frequency domain image, and obtain a vertex frequency domain image set.

初始化32*32的空图像,将16个8*8大小的局部点特征的特征编码图像填充到该初始化的空图像,并在左上角和右下角分别放置最小特征值和最大特征值,生成32*32大小的顶点频域图像。Initialize a 32*32 empty image, fill 16 feature-encoded images of 8*8 local point features into the initialized empty image, and place the minimum and maximum eigenvalues in the upper left and lower right corners, respectively, to generate 32 *32 size vertex frequency domain image.

如图5的示例中,显示了三个不同局部(指头、肚脐、膝盖)的顶点频域图像。每一个VSI都由16个小的几何图像组成。这种方法在卷积神经网络的训练过程中,可以充分利用卷积的特性,从16个不同频带之间学习到有用的信息。此外,这种方法也只能适用于与坐标无关的特征(如本发明中的LPS),如果特征与坐标相关,则在编码的过程中则会产生与顺序相关的问题。本实施例使用多尺度的VSI来作为输入,同时,本实施例生成12个不同旋转方向的VSI作为训练数据以学习到几何图像的旋转不变性。In the example of Fig. 5, vertex frequency domain images of three different parts (finger, navel, knee) are displayed. Each VSI consists of 16 small geometric images. This method can make full use of the characteristics of convolution in the training process of convolutional neural network, and learn useful information from 16 different frequency bands. In addition, this method can only be applied to features that are not related to coordinates (such as LPS in the present invention). If the features are related to coordinates, there will be problems related to the order in the encoding process. This embodiment uses multi-scale VSIs as input, and at the same time, this embodiment generates 12 VSIs with different rotation directions as training data to learn the rotational invariance of geometric images.

步骤S203,基于所述顶点频域图像集,通过预设的三元神经网络得到用于非刚性形状匹配的局部频域描述子。Step S203, based on the vertex frequency domain image set, obtain a local frequency domain descriptor for non-rigid shape matching through a preset ternary neural network.

本实施中,三元神经网络由三个相同的ConvNet卷积网络组成,每个ConvNet卷积网络由以下网络结构组成:CONV128-3x3-/2+CONV256-3x3-/2+CONV512-3x3-/2+FC512+FC256,其中,CONVx代表卷积层具有x维特征图的输出,3x3代表卷积核大小,/2代表池化操作的步幅,FCx代表输出为x维向量的全连接层。In this implementation, the ternary neural network consists of three identical ConvNet convolutional networks, and each ConvNet convolutional network consists of the following network structures: CONV128-3x3-/2+CONV256-3x3-/2+CONV512-3x3-/ 2+FC512+FC256, where CONVx represents the output of the convolutional layer with an x-dimensional feature map, 3x3 represents the size of the convolution kernel, /2 represents the stride of the pooling operation, and FCx represents a fully connected layer whose output is an x-dimensional vector.

本实施例中,三元神经网络的训练样本包括三维形状及对应的描述子;在三元神经网络训练时,训练样本中的三维形状采用步骤S10、步骤S20中的方法获取对应的顶点频域图像集输入所述三元神经网络。In this embodiment, the training samples of the ternary neural network include three-dimensional shapes and corresponding descriptors; during the training of the ternary neural network, the three-dimensional shapes in the training samples use the methods in steps S10 and S20 to obtain the corresponding vertex frequency domain The set of images is input to the ternary neural network.

在获得训练好的三元神经网络后,将生成的VSI图像数据集送入三元神经网络,即可得到256维的描述子。After the trained ternary neural network is obtained, the generated VSI image data set is sent to the ternary neural network to obtain a 256-dimensional descriptor.

现有的方法只能通过关键点数据进行学习,而本实施例通过VSI这种紧凑的几何图像表示方式,可以将所有顶点作为训练集,从而学习到更具有判别性的描述子。Existing methods can only learn through key point data, but in this embodiment, through VSI, a compact geometric image representation, all vertices can be used as a training set, thereby learning more discriminative descriptors.

在实际应用中,可以通过实验来评估本发明提供的描述子的鲁棒性,本实施例的实验平台为英特尔i7-7700 4.20GH的中央处理器,16GB RAM和64位windows 10操作系统的计算机,并在该平台使用开源软件设计非刚性形状匹配的局部频域描述子生成系统。离线训练运行在NVIDIA GeForce GTX 1080Ti(11GB内存)的GPU上。In practical applications, the robustness of the descriptor provided by the present invention can be evaluated through experiments. The experimental platform of this embodiment is an Intel i7-7700 4.20GH CPU, 16GB RAM and a computer with a 64-bit Windows 10 operating system. , and use open source software to design a non-rigid shape matching local frequency domain descriptor generation system on this platform. Offline training runs on an NVIDIA GeForce GTX 1080Ti (11GB RAM) GPU.

在实际应用中,可以使用标准的评估框架,即CMC(cumulative matchcharacteristic累计匹配特征)和PP(Princeton protocol普林斯顿协定)。CMC评估在k近邻中寻找一个正确匹配的概率。PP则通过画出最近邻匹配在r测地距离内的百分比以衡量匹配的质量。In practical applications, standard evaluation frameworks can be used, namely CMC (cumulative matchcharacteristic) and PP (Princeton protocol). CMC evaluates the probability of finding a correct match among the k-nearest neighbors. PP measures the quality of the match by plotting the percentage of nearest neighbor matches within r geodesic distance.

在阐述分辨率和三角化的不变性方面,为了展示本发明提出的频域特征对于分辨率和三角化的不变性,本实施例选择了四种类型的形状,分别为瘦男人、胖女人、胖男人和瘦女孩。每一个形状具有五个不同分辨率和不同三角化的模型。对每一个模型计算16维度的LPS频域特征,之后,使用经典的PCA(principal component analysis主成分分析)方法降维。降维结果如图6左所示的主成分分析结果,五种不同分辨率且相同类别的结果聚在了一起,显示了本发明的方法对空间分辨率和三角化是不敏感的。图6右显示了形状匹配的结果,在测地半径与正确率的二维图中,OUR-LPS、OUR-LPS Ori-8000、OUR-LPS Ori-10000、OUR-LPS Ori-12000、OUR-LPS Ori-15000分别为原始顶点的LPS特征匹配的结果、原始顶点与8000分辨率顶点的LPS特征匹配的结果、原始顶点与10000分辨率顶点的LPS特征匹配的结果、原始顶点与12000分辨率顶点的LPS特征匹配的结果、原始顶点与15000分辨率顶点的LPS特征匹配的结果,可以看出,不同分辨率和三角化的多条曲线重合在一起,展示了本发明所提出的频域特征的鲁棒性。In describing the invariance of resolution and triangulation, in order to demonstrate the invariance of the frequency domain feature proposed by the present invention to resolution and triangulation, this embodiment selects four types of shapes, namely thin man, fat woman, Fat men and skinny girls. Each shape has five models of different resolutions and different triangulations. The 16-dimensional LPS frequency domain features are calculated for each model, and then the classical PCA (principal component analysis) method is used to reduce the dimension. The dimensionality reduction results are shown in the PCA results on the left of Figure 6. Five different resolutions and the same category of results are clustered together, showing that the method of the present invention is insensitive to spatial resolution and triangulation. The right side of Figure 6 shows the results of shape matching. In the two-dimensional map of geodesic radius and accuracy, OUR-LPS, OUR-LPS Ori-8000, OUR-LPS Ori-10000, OUR-LPS Ori-12000, OUR-LPS LPS Ori-15000 is the result of matching the LPS feature of the original vertex, the matching result of the original vertex and the LPS feature of the 8000 resolution vertex, the matching result of the original vertex and the LPS feature of the 10000 resolution vertex, the original vertex and the 12000 resolution vertex It can be seen from the LPS feature matching results of the original vertices and the LPS feature matching results of the 15,000-resolution vertices that multiple curves of different resolutions and triangulations overlap, showing the frequency domain feature proposed by the present invention. robustness.

为了阐述学习到的描述子的判别性与分辨率和三角化鲁棒性,如图7所示,分别通过匹配次数与命中率二维图、测地半径与正确对应二维图展示了仅在原始6890分辨率上学习的描述子在低分辨率和高分辨率上测试的性能。图中,“OURS”表示形状在原始形状之间的匹配,“OURS Ori-8K”表示原始形状和高分辨率8K形状之间的匹配结果,以此类推。本实施例应用在两个极端的测试,即10K模型和100K模型的匹配和5K CVT模型和10K模型之间的匹配。对于CVT模型,本实施例选择了最近的测地距离作为真实匹配对应点。另外,与最新的几何图形方法LDGI进行了比较。图7中显示了在原始FAUST分辨率测试性能上高于LDGI方法,此外,对于低分辨率和其他高分辨率的测试,本发明的性能并没有下降很多,从而证明学习到的描述子的鲁棒性。几何图形方法LDGI可以参阅:Hanyu Wang,Jianwei Guo,Dong-Ming Yan,Weize Quan,and Xiaopeng Zhang.Learning 3d keypoint descriptors fornon-rigid shape matching.In European Conference on Computer Vision(ECCV),pages 3-20.Springer,2018。In order to illustrate the discriminative, resolution and triangulation robustness of the learned descriptors, as shown in Fig. 7, the two-dimensional maps of matching times and hit rates, the geodesic radius and the correct corresponding two-dimensional maps respectively show that only in The performance of descriptors learned at the original 6890 resolution tested at low and high resolutions. In the figure, "OURS" represents the matching of the shape between the original shape, "OURS Ori-8K" represents the matching result between the original shape and the high-resolution 8K shape, and so on. This embodiment is applied to two extreme tests, namely the matching between the 10K model and the 100K model and the matching between the 5K CVT model and the 10K model. For the CVT model, this embodiment selects the nearest geodesic distance as the true matching corresponding point. In addition, a comparison with the state-of-the-art geometry method LDGI is carried out. Figure 7 shows that the performance of the original FAUST resolution test is higher than that of the LDGI method, in addition, the performance of the present invention does not degrade much for low-resolution and other high-resolution tests, thus demonstrating the robustness of the learned descriptor. Awesomeness. For the geometry method LDGI, please refer to: Hanyu Wang,Jianwei Guo,Dong-Ming Yan,Weize Quan,and Xiaopeng Zhang.Learning 3d keypoint descriptors for non-rigid shape matching.In European Conference on Computer Vision(ECCV),pages 3-20. Springer, 2018.

进一步与多种最先进的方法做了比较,包括三种深度学习的描述子(OSD,CGF32和LDGI),四种手工的描述子(SI,SHOT,RoPS和HKS)。图8和图9分别展示了原始6890模型和8K、12K模型之间的匹配结果。所有的可训练的方法都是在原始数据集上训练,并应用在高分辨率模型上。实验结果表明许多方法无法处理不同分辨率上的情况,反之,本发明的方法展现出很好的性能。Further comparisons are made with multiple state-of-the-art methods, including three deep learning descriptors (OSD, CGF32, and LDGI), and four handcrafted descriptors (SI, SHOT, RoPS, and HKS). Figures 8 and 9 show the matching results between the original 6890 model and the 8K and 12K models, respectively. All trainable methods are trained on the original dataset and applied to high-resolution models. The experimental results show that many methods cannot handle the situation at different resolutions, on the contrary, the method of the present invention exhibits good performance.

为了阐述学习到的描述子的判别性与尺度和旋转鲁棒性,可以直接在不同的旋转,平移和不同尺度的模型下进行了测试。图10和图11分别显示出在旋转(Rotation)和尺度缩放(Scale)方面,本发明展现出超出目前最好方法的性能。In order to illustrate the discriminative and scale and rotation robustness of the learned descriptors, it can be directly tested under different rotation, translation and different scale models. Figures 10 and 11 show that the present invention exhibits performance that exceeds the state-of-the-art methods in terms of Rotation and Scale, respectively.

形状对应与匹配是两个不同的任务,许多方法(如GCNN、MoNet等)将对应问题转化为学习标签问题,本发明通过两种配置进行了比较,GCNN(OURS)配置表示利用LPS特征作为输入,而使用GCNN框架进行学习,这也显示了LPS可以作为其他框架的输入特征。此外,OURS-CORR配置表示本发明为了与其余方法比较,将学习的triplet损失转化为交叉熵损失以学习标签问题。图12展示了在FAUST数据集上进行形状对应的比较结果,结果显示两种配置与目前最先进方法的性能是不相上下的。Shape correspondence and matching are two different tasks. Many methods (such as GCNN, MoNet, etc.) transform the correspondence problem into a learning label problem. The present invention compares through two configurations. The GCNN(OURS) configuration means using LPS features as input , while using the GCNN framework for learning, which also shows that LPS can be used as input features for other frameworks. Furthermore, the OURS-CORR configuration indicates that the present invention transforms the learned triplet loss into a cross-entropy loss to learn the labeling problem in order to compare with the rest of the methods. Figure 12 shows the comparison results of shape correspondence on the FAUST dataset, showing that the performance of both configurations is on par with the current state-of-the-art methods.

如图13所示,本发明第二实施例的一种针对非刚性形状匹配的局部频域描述子生成装置100,该装置包括局部点特征生成模块101、局部频域描述子获取模块102;As shown in FIG. 13 , a device 100 for generating local frequency domain descriptors for non-rigid shape matching according to the second embodiment of the present invention includes a local point feature generation module 101 and a local frequency domain descriptor acquisition module 102;

所述局部点特征生成模块101,配置为基于拉普拉斯-贝尔特拉米算子,获取三维形状表面三角网格模型中的每个顶点在频域中局部点特征;The local point feature generation module 101 is configured to obtain the local point feature in the frequency domain of each vertex in the three-dimensional shape surface triangular mesh model based on the Laplace-Beltrumian operator;

所述局部频域描述子获取模块102,配置为基于所述局部特征点,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。The local frequency domain descriptor obtaining module 102 is configured to obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape based on the local feature points, and obtain a ternary neural network for non-rigid shape matching. Local frequency domain descriptor.

所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置的具体工作过程及有关说明,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, for the specific working process and related description of the device described above, reference may be made to the corresponding process in the foregoing method embodiments, which will not be repeated here.

需要说明的是,上述实施例提供的针对非刚性形状匹配的局部频域描述子生成装置,仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能模块来完成,即将本发明实施例中的模块或者步骤再分解或者组合,例如,上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块,以完成以上描述的全部或者部分功能。对于本发明实施例中涉及的模块、步骤的名称,仅仅是为了区分各个模块或者步骤,不视为对本发明的不当限定。It should be noted that the device for generating local frequency domain descriptors for non-rigid shape matching provided in the above embodiments is only illustrated by the division of the above functional modules. In practical applications, the above functions can be allocated by It can be completed by different functional modules, that is, the modules or steps in the embodiments of the present invention are decomposed or combined. For example, the modules in the above-mentioned embodiments can be combined into one module, and can also be further split into multiple sub-modules, so as to complete the above description. All or part of the functionality. The names of the modules and steps involved in the embodiments of the present invention are only for distinguishing each module or step, and should not be regarded as an improper limitation of the present invention.

本发明第三实施例的一种存储装置,其中存储有多条程序,所述程序适于由处理器加载并执行以实现上述的针对非刚性形状匹配的局部频域描述子生成方法。A storage device according to a third embodiment of the present invention stores a plurality of programs, wherein the programs are adapted to be loaded and executed by a processor to implement the above-mentioned method for generating local frequency domain descriptors for non-rigid shape matching.

本发明第四实施例的一种处理装置,包括处理器、存储装置;处理器,适于执行各条程序;存储装置,适于存储多条程序;所述程序适于由处理器加载并执行以实现上述的针对非刚性形状匹配的局部频域描述子生成方法。A processing device according to a fourth embodiment of the present invention includes a processor and a storage device; the processor is adapted to execute various programs; the storage device is adapted to store multiple programs; the programs are adapted to be loaded and executed by the processor In order to realize the above-mentioned local frequency-domain descriptor generation method for non-rigid shape matching.

所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的存储装置、处理装置的具体工作过程及有关说明,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process and relevant description of the storage device and processing device described above can refer to the corresponding process in the foregoing method embodiments, which is not repeated here. Repeat.

本领域技术人员应该能够意识到,结合本文中所公开的实施例描述的各示例的模块、方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,软件模块、方法步骤对应的程序可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。为了清楚地说明电子硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以电子硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those skilled in the art should be aware that the modules and method steps of each example described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two, and the programs corresponding to the software modules and method steps Can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or as known in the art in any other form of storage medium. In order to clearly illustrate the interchangeability of electronic hardware and software, the components and steps of each example have been described generally in terms of functionality in the foregoing description. Whether these functions are performed in electronic hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods of implementing the described functionality for each particular application, but such implementations should not be considered beyond the scope of the present invention.

术语“第一”、“第二”等是用于区别类似的对象,而不是用于描述或表示特定的顺序或先后次序。The terms "first," "second," etc. are used to distinguish between similar objects, and are not used to describe or indicate a particular order or sequence.

术语“包括”或者任何其它类似用语旨在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备/装置不仅包括那些要素,而且还包括没有明确列出的其它要素,或者还包括这些过程、方法、物品或者设备/装置所固有的要素。The term "comprising" or any other similar term is intended to encompass a non-exclusive inclusion such that a process, method, article or device/means comprising a list of elements includes not only those elements but also other elements not expressly listed, or Also included are elements inherent to these processes, methods, articles or devices/devices.

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described with reference to the preferred embodiments shown in the accompanying drawings, however, those skilled in the art can easily understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principle of the present invention, those skilled in the art can make equivalent changes or substitutions to the relevant technical features, and the technical solutions after these changes or substitutions will fall within the protection scope of the present invention.

Claims (14)

1.一种针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,该方法包括以下步骤:1. a local frequency domain descriptor generation method for non-rigid shape matching, is characterized in that, this method comprises the following steps: 步骤S10,基于三维形状表面三角网格模型的表面连续函数f,计算表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L;Step S10, based on the surface continuous function f of the surface triangular mesh model of the three-dimensional shape, calculate the Laplace-Beltram matrix L of the surface triangular mesh model; 对所述矩阵L进行特征分解,获取特征向量和特征值;Perform eigendecomposition on the matrix L to obtain eigenvectors and eigenvalues; 将所述表面连续函数f扩展到离散函数
Figure FDA0002812075550000011
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj
Extend the surface continuous function f to a discrete function
Figure FDA0002812075550000011
and expand it under the eigenvectors of the matrix L to obtain the frequency domain expansion coefficient σ j ;
根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量
Figure FDA0002812075550000012
According to the eigendecomposition of the matrix L and the frequency domain expansion coefficient σ j , the discrete Dirichlet energy is calculated
Figure FDA0002812075550000012
将基于表面连续函数f的高维连续函数F扩展到高维离散函数
Figure FDA0002812075550000013
计算离散狄利克雷能量
Figure FDA0002812075550000014
并将所述能量
Figure FDA0002812075550000015
在频域中展开得到通用的频域特征;
Extend the high-dimensional continuous function F based on the surface continuous function f to high-dimensional discrete functions
Figure FDA0002812075550000013
Calculate discrete Dirichlet energies
Figure FDA0002812075550000014
and the energy
Figure FDA0002812075550000015
Expand in the frequency domain to obtain general frequency domain features;
将高维离散函数
Figure FDA0002812075550000016
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure FDA0002812075550000017
取所述离散能量
Figure FDA0002812075550000018
在频域中展开的前Q维,得到局部点特征;其中Q为第一设定值;
high-dimensional discrete functions
Figure FDA0002812075550000016
Set to the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure FDA0002812075550000017
Take the discrete energy
Figure FDA0002812075550000018
The first Q dimension is expanded in the frequency domain, and the local point feature is obtained; wherein Q is the first set value;
步骤S20,基于所述局部点特征,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子。Step S20, based on the local point features, obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape, and obtain a local frequency domain descriptor for non-rigid shape matching through a ternary neural network.
2.根据权利要求1所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“基于三维形状表面三角网格模型的表面连续函数f,计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L”,其方法为:2. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 1, characterized in that, "calculate the surface triangular mesh model based on the surface continuous function f of the three-dimensional shape surface triangular mesh model. The Laplace-Beltrami matrix L", the method is: 获取表面连续函数f的离散函数
Figure FDA0002812075550000021
通过下式计算所述表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L中的元素Lij
Get the discrete function of the surface continuous function f
Figure FDA0002812075550000021
Elements L ij in the Laplacian- Beltrami matrix L of the surface triangular mesh model are calculated by:
Figure FDA0002812075550000022
Figure FDA0002812075550000022
其中,αij和βij为表面三角网格模型中两个与边{i,j}相对的角,αi为顶点vi的Voronoi多边形面积,k为邻接顶点的个数。Among them, α ij and β ij are the two angles opposite to the edge {i, j} in the surface triangular mesh model, α i is the Voronoi polygon area of the vertex v i , and k is the number of adjacent vertices.
3.根据权利要求2所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“对所述矩阵L进行特征分解,获取特征向量和特征值”,其方法为:3. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 2, characterized in that, "decomposing the matrix L to obtain eigenvectors and eigenvalues", the method is: 将矩阵L分解为两个对称的矩阵T和A,Decompose matrix L into two symmetric matrices T and A, i=λii,i=0,1,...,N-1;iii ,i=0,1,...,N-1; 其中,Aii=ai where, A ii =a i
Figure FDA0002812075550000023
Figure FDA0002812075550000023
采用ARPACK的方法求解,得到特征向量Φi和特征值λi,N为表面三角网格模型顶点个数。The ARPACK method is used to solve the problem, and the eigenvector Φ i and the eigenvalue λ i are obtained, and N is the number of vertices of the surface triangular mesh model.
4.根据权利要求3所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“将所述表面连续函数f扩展到离散函数
Figure FDA0002812075550000024
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj”,其方法为:
4. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 3, characterized in that "extend the surface continuous function f to a discrete function
Figure FDA0002812075550000024
And expand it under the eigenvector of the matrix L to obtain the frequency domain expansion coefficient σ j ", the method is:
Figure FDA0002812075550000031
Figure FDA0002812075550000031
其中,Φj为第j个特征向量。Among them, Φ j is the j-th eigenvector.
5.根据权利要求4所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量
Figure FDA0002812075550000032
”,其方法为:
5. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 4, characterized in that "According to the eigendecomposition of the matrix L and the frequency-domain expansion coefficient σ j , the discrete Dirichlet energy is calculated.
Figure FDA0002812075550000032
", the method is:
Figure FDA0002812075550000033
Figure FDA0002812075550000033
其中,
Figure FDA0002812075550000034
为连续实函数f的狄利克雷能量对应的离散的能量形式,N为顶点个数,λj为第j个特征值。
in,
Figure FDA0002812075550000034
is the discrete energy form corresponding to the Dirichlet energy of the continuous real function f, N is the number of vertices, and λ j is the jth eigenvalue.
6.根据权利要求5所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“将基于表面连续函数f的高维连续函数F扩展到高维离散函数
Figure FDA0002812075550000035
计算离散狄利克雷能量
Figure FDA0002812075550000036
并将所述能量
Figure FDA0002812075550000037
在频域中展开得到通用的频域特征”,其方法为:
6. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 5, characterized in that "expanding a high-dimensional continuous function F based on a surface continuous function f to a high-dimensional discrete function
Figure FDA0002812075550000035
Calculate discrete Dirichlet energies
Figure FDA0002812075550000036
and the energy
Figure FDA0002812075550000037
Expand in the frequency domain to get general frequency domain features", the method is:
Figure FDA0002812075550000038
Figure FDA0002812075550000038
其中,sf为通用的频域特征,λN-1为第N个特征值,σiN-1为第i维度下第N个频域展开系数。Among them, sf is a general frequency domain feature, λ N-1 is the Nth eigenvalue, and σ iN-1 is the Nth frequency domain expansion coefficient under the ith dimension.
7.根据权利要求6所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“将高维离散函数
Figure FDA0002812075550000039
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure FDA00028120755500000310
取所述离散能量
Figure FDA00028120755500000311
在频域中展开的前Q维得到所述局部点特征”,其方法为:
7. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 6, characterized in that "the high-dimensional discrete function is
Figure FDA0002812075550000039
Set to the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure FDA00028120755500000310
Take the discrete energy
Figure FDA00028120755500000311
The first Q-dimension unrolled in the frequency domain obtains the local point feature", and the method is:
Figure FDA0002812075550000041
Figure FDA0002812075550000041
其中,LPS为获得的局部点特征。Among them, LPS is the obtained local point feature.
8.根据权利要求1所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“基于所述局部点特征,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子”,其方法为:8. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 1, wherein "based on the local point features, a vertex frequency-domain image corresponding to each vertex of the three-dimensional shape is obtained. , and obtain a local frequency domain descriptor for non-rigid shape matching through a ternary neural network", the method is: 将所述局部点特征编码为Q个第一设定尺寸大小的图像;encoding the local point feature into Q images of the first set size; 对三维形状表面三角网格模型上每个顶点,生成对应的顶点频域图像,得到顶点频域图像集;For each vertex on the three-dimensional shape surface triangular mesh model, generate the corresponding vertex frequency domain image, and obtain the vertex frequency domain image set; 基于所述顶点频域图像集,通过预设的三元神经网络得到用于非刚性形状匹配的局部频域描述子。Based on the vertex frequency domain image set, a local frequency domain descriptor for non-rigid shape matching is obtained through a preset ternary neural network. 9.根据权利要求8所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“将所述局部点特征编码为Q个第一设定尺寸大小的图像”,其方法为:9. The method for generating local frequency-domain descriptors for non-rigid shape matching according to claim 8, characterized in that "encode the local point features into Q images of the first set size", the method of for: 取Q为16,第一设定尺寸为8*8;Take Q as 16, and the first set size is 8*8; 利用几何图像方法将局部点特征编码为16个8*8大小的几何图像。The local point features are encoded into 16 geometric images of size 8*8 using the geometric image method. 10.根据权利要求9所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,“对三维形状表面三角网格模型上每个顶点,生成对应的顶点频域图像”,其方法为:10. The method for generating local frequency domain descriptors for non-rigid shape matching according to claim 9, characterized in that "for each vertex on the three-dimensional shape surface triangular mesh model, a corresponding vertex frequency domain image is generated", Its method is: 初始化32*32的空图像,将16个8*8大小的局部点特征的特征编码图像填充到该初始化的空图像,并在左上角和右下角分别放置最小特征值和最大特征值,生成32*32大小的顶点频域图像。Initialize an empty image of 32*32, fill 16 feature-encoded images of local point features of size 8*8 into the initialized empty image, and place the minimum and maximum eigenvalues in the upper left and lower right corners, respectively, to generate 32 *32 size vertex frequency domain image. 11.根据权利要求1-10任一项所述的针对非刚性形状匹配的局部频域描述子生成方法,其特征在于,所述三元神经网络由三个相同的ConvNet卷积网络组成,其训练样本包括三维形状及对应的描述子;所述三元神经网络训练时,训练样本中的三维形状采用步骤S10、步骤S20中的方法获取对应的顶点频域图像集输入所述三元神经网络。11. The method for generating local frequency domain descriptors for non-rigid shape matching according to any one of claims 1-10, wherein the ternary neural network consists of three identical ConvNet convolutional networks, which The training samples include three-dimensional shapes and corresponding descriptors; during the training of the ternary neural network, the three-dimensional shapes in the training samples are obtained by using the methods in steps S10 and S20 to obtain the corresponding vertex frequency domain image set and input into the ternary neural network . 12.一种针对非刚性形状匹配的局部频域描述子生成装置,其特征在于,该装置包括局部点特征生成模块、局部频域描述子获取模块;12. A local frequency-domain descriptor generation device for non-rigid shape matching, characterized in that the device comprises a local point feature generation module and a local frequency-domain descriptor acquisition module; 所述局部点特征生成模块,配置为基于拉普拉斯-贝尔特拉米算子,获取三维形状表面三角网格模型中的每个顶点在频域中局部点特征;The local point feature generation module is configured to obtain the local point feature in the frequency domain of each vertex in the three-dimensional shape surface triangular mesh model based on the Laplace-Beltrami operator; 所述局部频域描述子获取模块,配置为基于所述局部点特征,获取所述三维形状的每个顶点对应的顶点频域图像,并通过三元神经网络得到用于非刚性形状匹配的局部频域描述子;The local frequency domain descriptor obtaining module is configured to obtain a vertex frequency domain image corresponding to each vertex of the three-dimensional shape based on the local point feature, and obtain a local frequency domain image for non-rigid shape matching through a ternary neural network. frequency domain descriptor; 其中,基于拉普拉斯-贝尔特拉米算子,对于表面三角网格模型中的每个顶点,在频域中提取三维形状局部点特征,其方法为:Among them, based on the Laplace-Beltramian operator, for each vertex in the surface triangular mesh model, the local point features of the three-dimensional shape are extracted in the frequency domain, and the method is as follows: 基于三维形状表面三角网格模型的表面连续函数f,计算表面三角网格模型的拉普拉斯-贝尔特拉米矩阵L;Based on the surface continuous function f of the three-dimensional shape surface triangular mesh model, calculate the Laplace-Beltrami matrix L of the surface triangular mesh model; 对所述矩阵L进行特征分解,获取特征向量和特征值;Perform eigendecomposition on the matrix L to obtain eigenvectors and eigenvalues; 将所述表面连续函数f扩展到离散函数
Figure FDA0002812075550000051
并将其在所述矩阵L的特征向量下展开,得到频域展开系数σj
Extend the surface continuous function f to a discrete function
Figure FDA0002812075550000051
and expand it under the eigenvectors of the matrix L to obtain the frequency domain expansion coefficient σ j ;
根据所述矩阵L的特征分解、频域展开系数σj,计算离散狄利克雷能量
Figure FDA0002812075550000052
According to the eigendecomposition of the matrix L and the frequency domain expansion coefficient σ j , the discrete Dirichlet energy is calculated
Figure FDA0002812075550000052
将基于表面连续函数f的高维连续函数F扩展到高维离散函数
Figure FDA0002812075550000053
计算离散狄利克雷能量
Figure FDA0002812075550000061
并将所述能量
Figure FDA0002812075550000062
在频域中展开得到通用的频域特征;
Extend the high-dimensional continuous function F based on the surface continuous function f to high-dimensional discrete functions
Figure FDA0002812075550000053
Computing discrete Dirichlet energies
Figure FDA0002812075550000061
and transfer the energy
Figure FDA0002812075550000062
Expand in the frequency domain to obtain general frequency domain features;
将高维离散函数
Figure FDA0002812075550000063
设置为局部面片三维坐标信息X,根据连续的能量E(X)求解离散能量
Figure FDA0002812075550000064
取所述离散能量
Figure FDA0002812075550000065
在频域中展开的前Q维,得到局部点特征;其中Q为第一设定值。
high-dimensional discrete function
Figure FDA0002812075550000063
Set as the three-dimensional coordinate information X of the local patch, and solve the discrete energy according to the continuous energy E(X)
Figure FDA0002812075550000064
Take the discrete energy
Figure FDA0002812075550000065
The first Q dimension is expanded in the frequency domain to obtain local point features; where Q is the first set value.
13.一种存储装置,其中存储有多条程序,其特征在于,所述程序适于由处理器加载并执行以实现权利要求1-11任一项所述的针对非刚性形状匹配的局部频域描述子生成方法。13. A storage device, wherein a plurality of programs are stored, wherein the programs are adapted to be loaded and executed by a processor to implement the local frequency matching for non-rigid shape matching according to any one of claims 1-11 Domain descriptor generation method. 14.一种处理装置,包括处理器、存储装置;处理器,适于执行各条程序;存储装置,适于存储多条程序;其特征在于,所述程序适于由处理器加载并执行以实现权利要求1-11任一项所述的针对非刚性形状匹配的局部频域描述子生成方法。14. A processing device, comprising a processor and a storage device; the processor is adapted to execute various programs; the storage device is adapted to store a plurality of programs; characterized in that the programs are adapted to be loaded and executed by the processor to The method for generating local frequency domain descriptors for non-rigid shape matching according to any one of claims 1 to 11 is implemented.
CN201910282314.8A 2019-05-31 2019-05-31 Local frequency domain descriptor generation method and device for non-rigid shape matching Active CN110070096B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910282314.8A CN110070096B (en) 2019-05-31 2019-05-31 Local frequency domain descriptor generation method and device for non-rigid shape matching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910282314.8A CN110070096B (en) 2019-05-31 2019-05-31 Local frequency domain descriptor generation method and device for non-rigid shape matching

Publications (2)

Publication Number Publication Date
CN110070096A CN110070096A (en) 2019-07-30
CN110070096B true CN110070096B (en) 2021-01-12

Family

ID=67367287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910282314.8A Active CN110070096B (en) 2019-05-31 2019-05-31 Local frequency domain descriptor generation method and device for non-rigid shape matching

Country Status (1)

Country Link
CN (1) CN110070096B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111340930B (en) * 2020-03-09 2024-03-19 北京工业大学 Three-dimensional geometric model shape mapping method integrating multi-scale neighborhood information
CN112037315B (en) * 2020-08-31 2025-03-28 中国科学院自动化研究所 A local descriptor generation method, model generation method and device
CN112766395B (en) * 2021-01-27 2023-11-28 中国地质大学(北京) Image matching method and device, electronic equipment and readable storage medium
CN113033099B (en) * 2021-03-26 2022-05-03 电子科技大学 Neural network modeling method of antenna shape based on computer vision
CN113362465B (en) * 2021-06-04 2022-07-15 中南大学 Non-rigid three-dimensional shape point-by-point correspondence method and human heart motion simulation method
CN113792859B (en) * 2021-09-13 2022-06-17 中南大学 An unsupervised shape correspondence method and a human body shape correspondence method
CN115239877B (en) * 2022-07-07 2023-05-09 青海师范大学 A 3D Model Matching Method Based on Moment-Invariant Spectral Shape Descriptor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655992A (en) * 2009-09-15 2010-02-24 中国科学院软件研究所 Reconstruction method of triangular mesh model
CN106909724A (en) * 2017-02-17 2017-06-30 中南大学 Anisotropy particular patient sclera finite element modeling method based on mediation field
US9934590B1 (en) * 2015-06-25 2018-04-03 The United States Of America As Represented By The Secretary Of The Air Force Tchebichef moment shape descriptor for partial point cloud characterization
CN107909099A (en) * 2017-11-10 2018-04-13 佛山科学技术学院 A kind of threedimensional model identification and search method based on thermonuclear
CN108280485A (en) * 2018-02-01 2018-07-13 北京科技大学 A kind of non-rigid method for searching three-dimension model based on spectrogram Wavelet Descriptor
CN109118589A (en) * 2018-09-07 2019-01-01 北京航空航天大学青岛研究院 Geometrical model full range details restorative procedure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842133B (en) * 2012-07-13 2019-05-14 电子科技大学 A kind of method for describing local characteristic
US20150074158A1 (en) * 2013-09-09 2015-03-12 Technion Research & Development Foundation Limited Method and system for principal component analysis
US20150100289A1 (en) * 2013-10-09 2015-04-09 Technion Research & Development Foundation Limited Method and system for shapewise comparison
CN103886560A (en) * 2014-04-08 2014-06-25 中国人民解放军国防科学技术大学 Robustness feature description method for images with noise
CN106095588B (en) * 2016-06-28 2019-03-15 北京大学深圳研究生院 An acceleration method of CDVS extraction process based on GPGPU platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655992A (en) * 2009-09-15 2010-02-24 中国科学院软件研究所 Reconstruction method of triangular mesh model
US9934590B1 (en) * 2015-06-25 2018-04-03 The United States Of America As Represented By The Secretary Of The Air Force Tchebichef moment shape descriptor for partial point cloud characterization
CN106909724A (en) * 2017-02-17 2017-06-30 中南大学 Anisotropy particular patient sclera finite element modeling method based on mediation field
CN107909099A (en) * 2017-11-10 2018-04-13 佛山科学技术学院 A kind of threedimensional model identification and search method based on thermonuclear
CN108280485A (en) * 2018-02-01 2018-07-13 北京科技大学 A kind of non-rigid method for searching three-dimension model based on spectrogram Wavelet Descriptor
CN109118589A (en) * 2018-09-07 2019-01-01 北京航空航天大学青岛研究院 Geometrical model full range details restorative procedure

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"A Dirichlet Energy Criterion for Graph-Based Image Segmentation";D. Zosso等;《2015 IEEE International Conference on Data Mining Workshop (ICDMW)》;20160204;全文 *
"Combination of bag-of-words descriptors for robust partial shape retrieval";G. Lavoué;《The Visual Computer》;20120524;第28卷;第931-942页 *
"Fast Approximation of Laplace‐Beltrami Eigenproblems";Ahmad Nasikun等;《Computer Graphics Forum》;20180831;第37卷(第5期);全文 *
"Learning 3D Keypoint Descriptors for Non-rigid Shape Matching";Wang H.等;《Computer Vision – ECCV 2018》;20181231;第3-20页 *
"Localized Manifold Harmonics for Spectral Shape Analysis";S. Melzi等;《Computer Graphics Forum》;20180930;第37卷(第6期);全文 *
"Salient spectral geometric features for shape matching and retrieval";Jiaxi Hu等;《The Visual Computer》;20090303;第25卷;全文 *
"Spectral shape classification: A deep learning approach";Majid Masoumi等;《Journal of Visual Communication and Image Representation》;20170228;第43卷;全文 *
"Stretching-Robust Laplace Spectral Descriptor for Non-rigid 3D Shape Retrieval";Y. Liu等;《2014 5th International Conference on Digital Home》;20141229;全文 *
"三维模型非刚体形变的匹配方法研究";晁志军等;《中国优秀硕士学位论文全文数据库·信息科技辑》;20150315;第2015年卷(第3期);全文 *
"数字几何处理中Laplace-Beltrami算子的离散化理论与应用研究综述";范典等;《计算机辅助设计与图形学学报》;20150415;第27卷(第4期);全文 *
"非刚性三维形状匹配中基于谱分析的形状描述符综述";张丹等;《软件学报》;20190409;全文 *

Also Published As

Publication number Publication date
CN110070096A (en) 2019-07-30

Similar Documents

Publication Publication Date Title
CN110070096B (en) Local frequency domain descriptor generation method and device for non-rigid shape matching
Boscaini et al. Learning shape correspondence with anisotropic convolutional neural networks
Wang et al. MARCH: Multiscale-arch-height description for mobile retrieval of leaf images
US8405659B2 (en) System and method for establishing correspondence, matching and repairing three dimensional surfaces of arbitrary genus and arbitrary topology in two dimensions using global parameterization
US20140226906A1 (en) Image matching method and apparatus
US11657630B2 (en) Methods and apparatus for testing multiple fields for machine vision
US11475593B2 (en) Methods and apparatus for processing image data for machine vision
Tabia et al. Compact vectors of locally aggregated tensors for 3D shape retrieval
Sun et al. 3D ear recognition using local salience and principal manifold
Vinay et al. ORB-PCA based feature extraction technique for face recognition
CN106447592A (en) Online personalized service of each feature descriptor
CN111461196B (en) Fast and Robust Image Recognition and Tracking Method and Device Based on Structural Features
Sun et al. Zernet: Convolutional neural networks on arbitrary surfaces via zernike local tangent space estimation
US10846563B2 (en) Methods and apparatus for generating a dense field of three dimensional data for machine vision
Wang et al. A robust local spectral descriptor for matching non-rigid shapes with incompatible shape structures
Gonzalez-Diaz et al. Neighborhood matching for image retrieval
Gasparetto et al. Non-parametric spectral model for shape retrieval
KR102617732B1 (en) Methods and apparatus for processing image data for machine vision
US10062187B1 (en) Systems and methods for reducing computer resources consumption to reconstruct shape of multi-object image
Jain et al. Content-based image retrieval using shape and depth from an engineering database
Bogacz et al. Feature descriptors for spotting 3D characters on triangular meshes
Pratikakis et al. Predictive digitisation of cultural heritage objects
Lin et al. Efficient shape classification using region descriptors
Fonseca et al. Generic shape classification for retrieval
Sasikumar et al. An Ensemble of Feature Extraction with Whale Optimization Algorithm for Content Based Image Retrieval System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant