CN110068330B - Autonomous positioning method of robot based on ARMA model - Google Patents
Autonomous positioning method of robot based on ARMA model Download PDFInfo
- Publication number
- CN110068330B CN110068330B CN201910041274.8A CN201910041274A CN110068330B CN 110068330 B CN110068330 B CN 110068330B CN 201910041274 A CN201910041274 A CN 201910041274A CN 110068330 B CN110068330 B CN 110068330B
- Authority
- CN
- China
- Prior art keywords
- map
- grid
- model
- parameter
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 241001123248 Arma Species 0.000 title claims 9
- 230000007774 longterm Effects 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims description 20
- 230000007613 environmental effect Effects 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 15
- 230000004927 fusion Effects 0.000 description 12
- 230000003068 static effect Effects 0.000 description 11
- 230000007704 transition Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012417 linear regression Methods 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种基于ARMA模型的机器人的自主定位的方法,通过自回归滑动平均模型(ARMA)对地图长期变化环境下的数据、状态进行参数估计,并最终建立该环境的变化的、概率栅格形式的地图模型;在建立的地图模型的栅格时间域上进行后续预测,并对预测置信度进行评估,得到带有预测置信度标签的预测后的栅格地图;最后采用贝叶斯法则将实时的观测信息融合到预测后的栅格地图,得到为机器人可用的更新后的环境地图,机器人在该地图下、结合粒子滤波算法实现在该变化的环境中自主长期定位。从而达到机器人长期变化的环境下具有较高定位精度和定位鲁棒性的效果。
The invention provides a method for autonomous positioning of a robot based on an ARMA model, which uses an autoregressive moving average model (ARMA) to estimate parameters for data and states in a long-term changing environment of a map, and finally establishes the change and probability of the environment. A map model in the form of a grid; follow-up predictions are performed in the grid time domain of the established map model, and the prediction confidence is evaluated to obtain a predicted grid map with a prediction confidence label; finally, the Bayesian The rule fuses the real-time observation information into the predicted grid map, and obtains an updated environment map available for the robot. Under the map, the robot realizes autonomous long-term positioning in the changing environment in combination with the particle filter algorithm. Thus, the effect of high positioning accuracy and positioning robustness in the long-term changing environment of the robot is achieved.
Description
技术领域technical field
本发明涉及机器人技术领域,具体地,涉及一种基于ARMA模型实现的机器人在长期变化环境下的自主定位方法。The invention relates to the field of robot technology, in particular to an autonomous positioning method of a robot in a long-term changing environment based on an ARMA model.
背景技术Background technique
定位问题一直是自主移动机器人领域研究的核心内容,定位层面的性能也将很大程度地影响机器人路径规划、自主导航等任务执行的表现。在静态的环境中,可以用经典的粒子滤波算法建立静态概率栅格地图,并在此基础上用激光雷达和里程计作为传感器进行自主定位。但在现实的很多实际场景中,环境往往不是一成不变的,而是受到人为的日常行动的影响,以一定的规律在发生变化。这时经典的粒子滤波算法由于建立在静态的地图之上,往往会因为环境改变导致先验地图信息的不准确而失效。例如停车场进进出出的车和来来往往的人,工业车间里被取放和搬运的货物等,都将通过环境的变化而影响粒子滤波的定位效果。The positioning problem has always been the core content of research in the field of autonomous mobile robots, and the performance at the positioning level will also greatly affect the performance of robot path planning, autonomous navigation and other tasks. In a static environment, the classical particle filter algorithm can be used to establish a static probability grid map, and on this basis, lidar and odometer can be used as sensors for autonomous positioning. However, in many practical scenarios in reality, the environment is often not static, but is affected by human daily actions and changes with certain rules. At this time, the classical particle filter algorithm is based on a static map, and often fails due to inaccurate prior map information due to changes in the environment. For example, the cars entering and leaving the parking lot, the people coming and going, the goods being picked and transported in the industrial workshop, etc., will affect the positioning effect of the particle filter through changes in the environment.
国外有基于动态定位能力矩阵进行定位的算法,并在地铁站、校园餐厅等人流量较大的动态环境下进行了测试,验证了该算法的有效性。但是以上的方法还是基于机器人所处环境静态不变的假设,这种假设使得这类方法在环境长期改变的状况下将不再适用。There is a positioning algorithm based on the dynamic positioning capability matrix in foreign countries, and it has been tested in a dynamic environment with large traffic such as subway stations and campus restaurants, which verifies the effectiveness of the algorithm. However, the above methods are still based on the assumption that the environment in which the robot is located is static, which makes such methods no longer applicable when the environment changes for a long time.
对于存在用临时地图和静态地图相结合的方式进行定位,当环境信息与地图信息不匹配时,会根据当前观测信息创建临时地图,并作为定位匹配的依据;而当环境信息与地图信息匹配时,临时地图会被释放,并采用静态地图进行定位匹配。这种建模的方法虽然考虑到了环境变化对定位所造成的影响并通过临时地图进行修正,但是当环境发生结构性和大范围变化时,静态地图将完全失效,长期依靠临时地图定位不能保证定位算法的长期鲁棒性。For the existence of positioning by combining the temporary map and the static map, when the environmental information does not match the map information, a temporary map will be created according to the current observation information and used as the basis for positioning matching; and when the environmental information matches the map information , the temporary map will be released, and the static map will be used for positioning and matching. Although this modeling method takes into account the impact of environmental changes on positioning and corrects it through temporary maps, when the environment undergoes structural and large-scale changes, the static map will completely fail, and long-term reliance on temporary map positioning cannot guarantee positioning. Long-term robustness of the algorithm.
对于使用动态概率栅格地图的模型,并用scan-matching的匹配方式计算匹配得分,在静态地图的基础上进行实时的地图更新。当匹配得分大于设定阈值且检测到环境变化后,就进行地图更新,从而得到与当前真实环境更为吻合的地图,提高定位的鲁棒性。该算法也存在相同的问题,当环境变化与预先的静态地图相差较大时,观测信息与地图信息匹配度太差,从而无法得到机器人当前的定位信息反馈,导致静态地图的更新失效。For models using dynamic probability grid maps, the matching score is calculated by scan-matching, and real-time map updates are performed on the basis of static maps. When the matching score is greater than the set threshold and the environment change is detected, the map is updated to obtain a map that is more consistent with the current real environment and improve the robustness of positioning. This algorithm also has the same problem. When the environmental change is quite different from the static map in advance, the matching degree between the observation information and the map information is too poor, so that the current positioning information feedback of the robot cannot be obtained, resulting in the failure of the update of the static map.
国外学者认为人类的许多日常活动带有周期性,有一定的规律可循,将未知的环境变化过程定义为周期性函数,利用频谱对环境的时空变化进行建模表述。同时将时域转化为频域,可高效地辨别分析并保存规律性的环境变化过程。这样机器人能在模型建立后,对环境的状态有一个预测,从而帮助机器人实现长期的定位。该方法的缺点是从方法层面而言,需要假设环境特征具有较强的周期性,建模过程相对复杂。Foreign scholars believe that many daily activities of human beings are periodic, and there are certain rules to follow. They define the unknown environmental change process as a periodic function, and use the frequency spectrum to model the spatial and temporal changes of the environment. At the same time, the time domain is converted into the frequency domain, which can efficiently identify, analyze and save the regular environmental change process. In this way, the robot can predict the state of the environment after the model is established, thereby helping the robot to achieve long-term positioning. The disadvantage of this method is that from the method level, it needs to assume that the environmental characteristics have strong periodicity, and the modeling process is relatively complicated.
基于前人的工作,本发明创新性地提出了一种能在长期变化的环境下,通过对环境建模,进行地图预测与更新,从而实现机器人长期定位的算法。Based on the work of the predecessors, the present invention innovatively proposes an algorithm that can predict and update the map by modeling the environment in a long-term changing environment, thereby realizing the long-term positioning of the robot.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种基于ARMA模型实现的机器人的自主定位方法。In view of the defects in the prior art, the purpose of the present invention is to provide an autonomous positioning method of a robot based on an ARMA model.
根据本发明提供的一种基于ARMA模型实现的机器人的自主定位方法,包括以下步骤:A kind of autonomous positioning method of robot based on ARMA model implementation provided according to the present invention, comprises the following steps:
步骤1:环境建模步骤:使用机器人自身携带的传感器采集地图数据,通过自回归滑动平均模型ARMA对地图数据进行参数估计与建模,得到地图模型。Step 1: Environment modeling step: use the sensors carried by the robot to collect map data, and perform parameter estimation and modeling on the map data through the autoregressive moving average model ARMA to obtain a map model.
步骤2:地图预测步骤:利用地图模型进行栅格在时间域上的预测,对预测置信度进行评估,得到带有预测置信度标签的栅格地图。Step 2: Map prediction step: use the map model to predict the grid in the time domain, evaluate the prediction confidence, and obtain a grid map with a prediction confidence label.
步骤3:地图更新步骤:针对栅格地图与实际地图的偏差,采用贝叶斯法则将实时的观测信息融合到预测信息中,进行实时的地图更新,得到更新地图。Step 3: Map update step: According to the deviation between the grid map and the actual map, the Bayesian rule is used to integrate the real-time observation information into the prediction information, and perform real-time map update to obtain an updated map.
步骤4:自主定位步骤:基于更新地图,利用粒子滤波实现机器人的自主长期定位。Step 4: Autonomous positioning step: Based on the updated map, particle filtering is used to realize the autonomous long-term positioning of the robot.
优选地,所述环境建模步骤包括:Preferably, the environment modeling step includes:
模型定阶步骤:根据环境特性确定ARMA模型的第一参数p和第二参数q,所述第一参数p表征物理环境特征状态在时间上的状态关联性,所述第二参数q表征地图预测状态误差项在时间序列上的序列相关性;Model order determination step: determine the first parameter p and the second parameter q of the ARMA model according to the environmental characteristics, the first parameter p represents the state correlation of the physical environment feature state in time, and the second parameter q represents the map prediction The serial correlation of the state error term on the time series;
参数估计步骤:基于ARMA模型的第一参数p和第二参数q,对第三参数(α,β)进行估计,所述第三参数(α,β)表征栅格状态在时间域上的前后状态关系,其中,α∈Rp且β∈Rq。Parameter estimation step: Based on the first parameter p and the second parameter q of the ARMA model, the third parameter (α, β) is estimated, and the third parameter (α, β) represents the grid state before and after in the time domain State relationship, where α∈Rp and β∈Rq .
优选地,所述环境建模步骤还包括:Preferably, the environment modeling step further includes:
建模步骤:选定第一参数p和第二参数q的公共上界P值,即0≤p≤P且0≤q≤P;由栅格样本数迭代求出σ2的最小二乘估计,即将代入得到A(0,0),A(0,1),A(1,1),……A(P,P),则有其中i表示地图数据中栅格的第i行,j表示地图数据中栅格的第j列,下标T表示样本个数,表示在第i行第j列的第T个样本,σ2表示最小二乘估计的值,k表示地图数据中栅格的第k行,表示第k行第j列的栅格样本的最小二乘估计值,表示栅格样本的均值,表示栅格样本最小二乘估计的回归系数a,表示栅格样本最小二乘估计的回归系数b,n表示时间序列的总数,表示第k行第j列的栅格样本的AIC准则值,A(p,q)表示模型定阶确定的p和q的值所对应的AIC准则值。Modeling step: Select the common upper bound P value of the first parameter p and the second parameter q, that is, 0≤p≤P and 0≤q≤P; Iteratively find the least squares estimate of σ2 , that is Will substitute Get A(0,0), A(0,1), A(1,1),...A(P,P), then we have where i represents the ith row of the grid in the map data, j represents the jth column of the grid in the map data, and the subscript T represents the number of samples, represents the T-th sample at the i-th row and the j-th column, σ 2 represents the least squares estimated value, k represents the k-th row of the raster in the map data, represents the least squares estimate of the raster sample at row k and column j, represents the mean of the raster samples, represents the regression coefficient a of the raster sample least squares estimate, represents the regression coefficient b of the raster sample least squares estimate, n represents the total number of time series, Represents the AIC criterion value of the grid sample in the kth row and the jth column, and A(p,q) indicates the AIC criterion value corresponding to the values of p and q determined by the model order.
优选地,所述参数估计步骤包括:Preferably, the parameter estimation step includes:
拟合步骤:利用栅格样本数作高阶自回归滑动模型AR(p)的拟合;Fitting Step: Using the Number of Raster Samples Fit the high-order autoregressive sliding model AR(p);
递推步骤:递推计算残差序列即Recursive step: recursively calculate the residual sequence which is
t=P+1,P+2,…Tt=P+1,P+2,…T
回归步骤:将残差序列作为独立序列,利用线性回归模型:Regression step: convert the residual sequence As independent series, use a linear regression model:
得到第三参数表示如下所示:The third parameter representation is obtained as follows:
下标t表示采样时间序列,t=P+1,P+2,…T;表示状态误差;表示p时刻栅格在ARMA模型下的回归参数;αi表示ARMA模型的回归参数;βj表示ARMA模型的误差滑动参数;Z′表示Z的转置,表示的转置,表示概率栅格地图的状态值;The subscript t represents the sampling time series, t=P+1, P+2,...T; Indicates state error; Represents the regression parameter of the grid at time p under the ARMA model; α i represents the regression parameter of the ARMA model; β j represents the error sliding parameter of the ARMA model; Z′ represents the transposition of Z, express transpose of , Represents the state value of the probability raster map;
模型更换步骤:设置模型参数检测,当参数变化大于设定阈值进行模型更换,即Model replacement step: set the model parameter detection, when the parameter change is greater than the set threshold, the model is replaced, that is
S=|p1-p2|+|q1-q2|>Sth S=|p 1 -p 2 |+|q 1 -q 2 |>S th
其中下标为1和2分别代表计算的两组参数模型;当其阶数差值或者参数大于设定值后认为模型发生改变,用当前模型参数替换前模型参数。 The subscripts 1 and 2 respectively represent the two groups of parameter models calculated; when the order difference or the parameter is greater than the set value, the model is considered to have changed, and the current model parameters are used to replace the previous model parameters.
优选地,所述地图预测步骤包括:Preferably, the map prediction step includes:
状态预测步骤:利用已有的地图数据进行栅格在时间域上的预测,得到每个栅格在t时刻的栅格状态,得到整张预测栅格地图。State prediction step: use the existing map data to predict the grid in the time domain, obtain the grid state of each grid at time t, and obtain the entire predicted grid map.
置信度评估步骤:通过预测状态与真实观测状态的比较,确定每个栅格状态的预测置信度,每次置信度评估前赋予初始的置信度,再通过数据库更新得到的真实地图状态进行比较,得到最终的预测置信度。最终输出带有预测置信度标签的栅格地图。Confidence evaluation step: Determine the prediction confidence of each grid state by comparing the predicted state with the actual observation state, assign the initial confidence before each confidence evaluation, and then compare the real map state obtained through the database update. Get the final prediction confidence. The final output is a raster map with prediction confidence labels.
优选地,所述地图更新步骤包括:Preferably, the map updating step includes:
引入步骤:引入定位能力矩阵以衡量不同位置处的可信度;Introducing steps: Introducing a positioning capability matrix to measure the reliability at different locations;
归一化步骤:对定位能力矩阵的求行列式并归一化后得到m2,m2反应了地图不同位置处对应的数据可信度的大小;修正后的匹配度作为有效观测数据的判别标准,即:Normalization step: find the determinant of the positioning capability matrix and normalize it to obtain m 2 , where m 2 reflects the reliability of the data corresponding to different positions on the map; the corrected matching degree is used as the judgment of valid observation data standard, namely:
m=λm1+(1-λ)m2 m=λm 1 +(1-λ)m 2
其中,λ是观测权重项,表示对观测匹配的可行度,λ值越大,代表观测匹配在整个匹配度的计算权重中所占的比例越大;m表示修正后的地图与观测数据的匹配度,m1表示地图与观测数据的匹配度,m2表示地图不同位置处对应的数据可信度;当m大于设定的阈值后,即m>mth,则定义观测得到的数据是有效的,从而将m作为可靠数据。Among them, λ is the observation weight item, which indicates the feasibility of the observation matching. The larger the value of λ, the larger the proportion of the observation matching in the calculation weight of the entire matching degree; m indicates the matching between the revised map and the observation data. m 1 represents the matching degree between the map and the observed data, and m 2 represents the reliability of the data corresponding to different positions on the map; when m is greater than the set threshold, that is, m > m th , the observed data is defined as valid , so that m is regarded as reliable data.
优选地,所述地图更新步骤包括:Preferably, the map updating step includes:
数据融合步骤:应用贝叶斯法则进行数据融合,将长期预测信息与短期观测信息相融合,获得实时准确的地图;使用动态概率栅格地图作为地图数据储存的形式,使用HMMs作为基本模型,融入长期信息中的置信度作为权重项,进行状态更新,得到t+1时刻的状态向量,融合公式如下所示:Data fusion steps: apply Bayesian rule for data fusion, integrate long-term prediction information and short-term observation information, and obtain real-time and accurate maps; use dynamic probability grid maps as the form of map data storage, use HMMs as the basic model, and integrate The confidence in the long-term information is used as a weight item to update the state to obtain the state vector at time t+1. The fusion formula is as follows:
其中Qt为融合数据后输出的地图栅格状态,Ac是状态转移矩阵,G是预测置信度,是预测状态,Bz是观测信息,η是归一化因子,I是单位矩阵;下标t表示时间序列t,下标k表示地图栅格的第k行,下标c表示矩阵,下标z表示观测where Q t is the map grid state output after fusing the data, A c is the state transition matrix, G is the prediction confidence, is the prediction state, B z is the observation information, η is the normalization factor, and I is the identity matrix; the subscript t represents the time series t, the subscript k represents the kth row of the map grid, the subscript c represents the matrix, and the subscript z stands for observation
所述自主定位步骤在得到实时更新的动态地图之后,结合动态定位能力来评估环境中未更新到地图中的动态属性,用基于定位能力的粒子滤波算法实现机器人的自主长期定位。In the autonomous positioning step, after obtaining the dynamic map updated in real time, combined with the dynamic positioning capability, the dynamic attributes in the environment that have not been updated to the map are evaluated, and the particle filtering algorithm based on the positioning capability is used to realize the autonomous long-term positioning of the robot.
优选地,环境建模步骤采用离线形式,地图预测步骤和地图更新步骤采用在线形式。Preferably, the environment modeling step is in an offline form, and the map prediction step and the map updating step are in an online form.
优选地,模型定阶步骤采用AIC准则确定,参数估计步骤采用自回归逼近。Preferably, the model order determination step adopts AIC criterion to determine, and the parameter estimation step adopts autoregressive approximation.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
能够使机器人在长期变化的环境下具有很好的定位精度和定位鲁棒性。It can make the robot have good positioning accuracy and positioning robustness in the long-term changing environment.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明的方法流程图。FIG. 1 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several changes and improvements can be made without departing from the inventive concept. These all belong to the protection scope of the present invention.
针对原有技术的不足,本文创新性地提出了一种基于ARMA模型实现的机器人的自主定位方法,适用于长期变化环境下的机器人自主定位问题。Aiming at the shortcomings of the original technology, this paper innovatively proposes an autonomous positioning method for robots based on the ARMA model, which is suitable for the autonomous positioning of robots in long-term changing environments.
本发明提出的基于ARMA模型实现的机器人在长期变化环境下的自主定位方法,主要包括以下步骤:The autonomous positioning method of the robot in the long-term changing environment based on the ARMA model proposed by the present invention mainly includes the following steps:
步骤1:建模,使用机器人自身携带的传感器采集地图数据,通过自回归滑动平均模型(ARMA)对地图数据进行参数估计与建模。Step 1: Modeling, use the sensors carried by the robot to collect map data, and perform parameter estimation and modeling on the map data through an autoregressive moving average model (ARMA).
步骤2:预测,利用建立好的模型进行栅格在时间域上的预测,并对预测置信度进行评估,最终输出带有预测置信度标签的栅格地图。Step 2: Predict, use the established model to predict the grid in the time domain, evaluate the prediction confidence, and finally output a grid map with the prediction confidence label.
步骤3:更新,针对一些不确定因素所导致的预测地图与实际地图的偏差,采用贝叶斯法则将实时的观测信息融合到预测信息中,进行实时的地图更新,作为粒子滤波定位的先验地图依据。使用粒子滤波算法实现机器人的自主长期定位。Step 3: Update, in view of the deviation between the predicted map and the actual map caused by some uncertain factors, the Bayesian rule is used to integrate the real-time observation information into the predicted information, and the real-time map update is performed as a priori for particle filter positioning. Map basis. Autonomous long-term localization of robots using particle filter algorithm.
具体地,所述步骤1的建模过程主要包括以下步骤:Specifically, the modeling process of step 1 mainly includes the following steps:
步骤1.1:模型定阶,在ARMA模型建立前,要确定模型的参数p和q。参数p表征的是物理环境特征状态在时间上的状态关联性,参数q表征的是地图预测状态误差项在时间序列上的相关性。对于地图中第i行,第j列的栅格,建模过程如下所示:Step 1.1: Determine the order of the model. Before the ARMA model is established, the parameters p and q of the model should be determined. The parameter p represents the state correlation of the physical environment feature state in time, and the parameter q represents the correlation of the map prediction state error term in the time series. For the i-th row, j-th column of the raster in the map, the modeling process is as follows:
步骤1.1.1选定阶数p和q的公共上界P值,即0≤p,q≤PStep 1.1.1 Select the common upper bound P value of order p and q, that is, 0≤p, q≤P
步骤1.1.2由样本数迭代求出σ2的最小二乘估计,即Step 1.1.2 by the number of samples Iteratively find the least squares estimate of σ2 , that is
步骤1.1.3将代入得到A(0,0),A(0,1),A(1,1),……A(P,P),则有Step 1.1.3 will substitute Get A(0,0), A(0,1), A(1,1),...A(P,P), then we have
则此时p,q即为需要的模型阶数。Then p and q are the required model order at this time.
步骤1.2:参数估计,当有了自回归滑动平均模型的参数p和q后,需要对其模型的参数进行估计。这里需要确定的参数是α以及β,其中,α∈Rp,β∈Rq,表征的物理意义是栅格状态在时间域上的前后状态关系。参数估计采用了自回归逼近的方法,具体的步骤如下所示:Step 1.2: Parameter estimation, when the parameters p and q of the autoregressive moving average model are available, the parameters of the model need to be estimated. The parameters to be determined here are α and β, where α∈R p , β∈R q , and the physical meaning of the representation is the relationship between the state before and after the grid state in the time domain. The parameter estimation adopts the method of autoregressive approximation, and the specific steps are as follows:
步骤1.2.1首先利用栅格原始数据作高阶自回归滑动模型AR(p)的拟合Step 1.2.1 First utilize raster raw data Fitting the higher-order autoregressive sliding model AR(p)
步骤1.2.2由上述估计的AR(p)模型递推计算残差序列即Step 1.2.2 Calculate the residual sequence recursively from the above estimated AR(p) model which is
t=P+1,P+2,…Tt=P+1,P+2,…T
步骤1.2.3将残差列为独立序列,利用线性回归模型:Step 1.2.3 put the residual column For independent series, use a linear regression model:
其中t=P+1,P+2,…Twhere t=P+1,P+2,…T
从而得到估计参数表示如下所示:As a result, the estimated parameter representation is as follows:
其中,in,
考虑到环境模型的变化,需要设置模型参数检测,当参数变化大于一定阈值进行模型更换,即Considering the change of the environmental model, it is necessary to set the model parameter detection. When the parameter change is greater than a certain threshold, the model is replaced, that is,
S=|p1-p2|+|q1-q2|>Sth S=|p 1 -p 2 |+|q 1 -q 2 |>S th
其中下标为1和2分别代表计算的两组参数模型。当其阶数差值或者参数大于设定值后都认为模型发生改变,用当前模型参数替换前模型参数。 The subscripts 1 and 2 represent the calculated two sets of parameter models, respectively. When the order difference or the parameter is greater than the set value, it is considered that the model has changed, and the previous model parameters are replaced with the current model parameters.
具体地,所述步骤2的预测过程主要包括以下步骤:Specifically, the prediction process of step 2 mainly includes the following steps:
步骤2.1:状态预测,利用已有的地图数据进行栅格在时间域上的预测,从而可以得到每个栅格在t时刻的栅格状态,从而可以得到整张预测栅格地图。Step 2.1: State prediction, use the existing map data to predict the grid in the time domain, so that the grid state of each grid at time t can be obtained, so that the entire predicted grid map can be obtained.
步骤2.2:置信度评估,对栅格状态的预测后,还需要对预测置信度进行评估,用来衡量每个栅格预测的准确性。通过预测状态与真实观测状态的比较,来确定每个栅格状态的预测置信度,每次置信度评估前都会为其赋予初始的置信度,再结合通过数据库更新得到的真实地图状态进行比较,得到最终的预测置信度。最终输出带有预测置信度标签的栅格地图。Step 2.2: Confidence evaluation. After the grid state is predicted, the prediction confidence needs to be evaluated to measure the accuracy of each grid prediction. The prediction confidence of each grid state is determined by comparing the predicted state with the actual observation state. Before each confidence evaluation, it will be given an initial confidence, and then compared with the real map state obtained through the database update. Get the final prediction confidence. The final output is a raster map with prediction confidence labels.
具体地,所述步骤3的更新过程主要包括以下步骤:Specifically, the update process of step 3 mainly includes the following steps:
步骤3.1:引入定位能力矩阵来衡量不同处位置处的可信度Step 3.1: Introduce a positioning capability matrix to measure the credibility of different locations
步骤3.2:对定位能力矩阵求行列式并归一化后得到m2,其反应了地图不同位置处对应的数据可信度的大小。修正后的匹配度作为有效观测数据的判别标准,即:Step 3.2: Calculate the determinant of the positioning capability matrix and normalize it to obtain m 2 , which reflects the reliability of the data corresponding to different positions on the map. The corrected matching degree is used as the criterion for valid observation data, namely:
m=λm1+(1-λ)m2 m=λm 1 +(1-λ)m 2
其中,λ是观测权重项,其值代表着对观测匹配的可行度,该值越大,代表观测匹配在整个匹配度的计算权重中所占的比例越大。只有当m当于设定的阈值后,即m>mth才认为观测得到的数据是有效的,从而将其作为可靠数据。Among them, λ is the observation weight item, and its value represents the feasibility of the observation matching. The larger the value, the larger the proportion of the observation matching in the calculation weight of the entire matching degree. Only when m is equal to the set threshold, that is, m>m th , the observed data is considered to be valid, and thus it is regarded as reliable data.
步骤3.3应用贝叶斯法则进行数据融合,将长期预测信息与短期观测信息相融合,获得实时、准确的地图。使用动态概率栅格地图作为地图数据储存的形式,并使用HMMs作为其基本模型。同时融入长期信息中的置信度作为权重项,进行状态更新,得到t+1时刻的状态向量,融合公式如下所示:Step 3.3 Apply Bayesian rule for data fusion, fuse long-term prediction information with short-term observation information, and obtain real-time and accurate maps. Use dynamic probabilistic raster maps as the form of map data storage, and use HMMs as its basic model. At the same time, the confidence in the long-term information is used as a weight item to update the state to obtain the state vector at time t+1. The fusion formula is as follows:
其中Qt为融合数据后输出的地图栅格状态,Ac是状态转移矩阵,G是预测置信度,是预测状态,Bz是观测信息,η是归一化因子,I是单位矩阵。where Q t is the map grid state output after fusing the data, A c is the state transition matrix, G is the prediction confidence, is the predicted state, B z is the observation information, η is the normalization factor, and I is the identity matrix.
在得到实时更新的动态地图之后,结合动态定位能力来评估环境中未更新到地图中的动态属性,用基于定位能力的粒子滤波算法实现机器人的自主长期定位。After obtaining the dynamic map updated in real time, combined with the dynamic positioning ability to evaluate the dynamic attributes in the environment that have not been updated to the map, the particle filter algorithm based on the positioning ability is used to realize the autonomous long-term positioning of the robot.
具体地,步骤1建模过程采用离线形式,步骤2预测过程和步骤3更新过程采用在线形式,所述传感器为激光雷达,所述环境特征数据保存在地图数据库中。Specifically, the modeling process in step 1 adopts an offline form, the prediction process in step 2 and the updating process in step 3 adopt an online form, the sensor is a lidar, and the environmental feature data is stored in a map database.
定阶过程采用AIC准则确定,参数估计采用自回归逼近的方法,状态预测所用的预测表达式如下式The order determination process is determined by the AIC criterion, the parameter estimation is by the method of autoregressive approximation, and the prediction expression used in the state prediction is as follows
具体地,只有当激光数据与地图的匹配吻合程度达到一定阈值时,才认为在当前的定位下获得的观测激光数据是有效的,才会将观测数据融合到预测信息中。Specifically, only when the matching degree between the laser data and the map reaches a certain threshold, the observed laser data obtained under the current positioning is considered valid, and the observed data is fused into the prediction information.
具体地,引入了定位能力矩阵来衡量不同处位置处的可信度,如下式所示:Specifically, a positioning capability matrix is introduced to measure the reliability of different locations, as shown in the following formula:
其中,p=(x,y,θ)是机器人的位姿。是在LRF模型中的激光束中的期望距离。N0是LRF模型激光束的总数量。而对于 表示机器人移动Δx后LRF模型的激光束返回值的改变。Among them, p=(x, y, θ) is the pose of the robot. is in the LRF model Desired distance in the laser beam. N0 is the total number of LRF model laser beams. And for Represents the change in the return value of the laser beam of the LRF model after the robot moves by Δx.
具体地,地图信息融合公式如下所示:Specifically, the map information fusion formula is as follows:
其中Qt为融合数据后输出的地图栅格状态,Ac是状态转移矩阵,G是预测置信度,X(t)是预测状态,Bz是观测信息,η是归一化因子,I是单位矩阵。where Q t is the map grid state output after the fusion data, A c is the state transition matrix, G is the prediction confidence, X (t) is the predicted state, B z is the observation information, η is the normalization factor, and I is the identity matrix.
具体地,最终机器人的坐标可以表示成下式Specifically, the coordinates of the final robot can be expressed as the following formula
在具体的实施过程中,如图1所示,本发明分为(1)建模(2)预测(3)更新三个部分进行,主要有以下步骤:In the specific implementation process, as shown in Figure 1, the present invention is divided into three parts (1) modeling (2) prediction (3) updating, mainly including the following steps:
步骤1:通过机器人自身携带的传感器对环境数据进行采集,建立时间维度上的环境特征数据库。通过自回归滑动平均模型(ARMA)进行参数估计与建模,对时间维度上的环境特征状态的关联性作评估,进而预测环境状态的未来变化和走向。Step 1: Collect environmental data through sensors carried by the robot itself, and establish an environmental feature database in the time dimension. Parameter estimation and modeling are carried out through the autoregressive moving average model (ARMA) to evaluate the correlation of the environmental feature states in the time dimension, and then predict the future changes and trends of the environmental state.
步骤1.1:模型定阶,进行ARMA模型的建立前,首先要确定的是模型的参数p和q。参数p表征的是物理环境特征状态在时间上的状态关联性,参数q表征的是地图预测状态误差项在时间序列上的相关性。定阶过程这里采用AIC准则进行确定,对于地图中第i行,第j列的栅格,建模过程如下所示:Step 1.1: Model ordering. Before establishing the ARMA model, the first thing to determine is the parameters p and q of the model. The parameter p represents the state correlation of the physical environment feature state in time, and the parameter q represents the correlation of the map prediction state error term in the time series. The order determination process is determined by the AIC criterion. For the grid in the i-th row and the j-th column in the map, the modeling process is as follows:
步骤1.1.1选定阶数p和q的公共上界P值,即0≤p,q≤PStep 1.1.1 Select the common upper bound P value of order p and q, that is, 0≤p, q≤P
步骤1.1.2由样本数迭代求出σ2的最小二乘估计,即Step 1.1.2 by the number of samples Iteratively find the least squares estimate of σ2 , that is
步骤1.1.3将代入得到A(0,0),A(0,1),A(1,1),……A(P,P),则有Step 1.1.3 will substitute Get A(0,0), A(0,1), A(1,1),...A(P,P), then we have
则此时p,q即为需要的模型阶数。Then p and q are the required model order at this time.
步骤1.2:参数估计,当有了自回归滑动平均模型的参数p和q后,需要对其模型的参数进行估计。这里需要确定的参数是α以及β,其中,α∈Rp,β∈Rq,表征的物理意义是栅格状态在时间域上的前后状态关系。参数估计采用了自回归逼近的方法,具体的步骤如下所示:Step 1.2: Parameter estimation, when the parameters p and q of the autoregressive moving average model are available, the parameters of the model need to be estimated. The parameters to be determined here are α and β, where α∈R p , β∈R q , and the physical meaning of the representation is the relationship between the state before and after the grid state in the time domain. The parameter estimation adopts the method of autoregressive approximation, and the specific steps are as follows:
步骤1.2.1首先利用栅格原始数据作高阶自回归滑动模型AR(p)的拟合Step 1.2.1 First utilize raster raw data Fitting the higher-order autoregressive sliding model AR(p)
步骤1.2.2由上述估计的AR(p)模型递推计算残差序列即Step 1.2.2 Calculate the residual sequence recursively from the above estimated AR(p) model which is
t=P+1,P+2,…T (3)t=P+1, P+2,...T (3)
步骤1.2.3将残差列为独立序列,利用线性回归模型:Step 1.2.3 put the residual column For independent series, use a linear regression model:
其中t=P+1,P+2,…Twhere t=P+1,P+2,…T
从而得到估计参数表示如下所示:As a result, the estimated parameter representation is as follows:
其中,in,
考虑到环境模型的变化,需要设置模型参数检测,当参数变化大于一定阈值进行模型更换,即Considering the change of the environmental model, it is necessary to set the model parameter detection. When the parameter change is greater than a certain threshold, the model is replaced, that is,
S=|p1-p2|+|q1-q2|>Sth S=|p 1 -p 2 |+|q 1 -q 2 |>S th
其中下标为1和2分别代表计算的两组参数模型。当其阶数差值或者参数大于设定值后都认为模型发生改变,用当前模型参数替换前模型参数。The subscripts 1 and 2 represent the calculated two sets of parameter models, respectively. When the order difference or the parameter is greater than the set value, it is considered that the model has changed, and the previous model parameters are replaced with the current model parameters.
步骤2:利用建立好的模型进行栅格在时间域上的预测,并对预测置信度进行评估,最终输出带有预测置信度标签的栅格地图。Step 2: Use the established model to predict the grid in the time domain, evaluate the prediction confidence, and finally output a grid map with the prediction confidence label.
步骤2.1:状态预测,利用已有的地图数据进行栅格在时间域上的预测,从而可以得到每个栅格在t时刻的栅格状态,从而可以得到整张预测栅格地图。预测表达式如下所示Step 2.1: State prediction, use the existing map data to predict the grid in the time domain, so that the grid state of each grid at time t can be obtained, so that the entire predicted grid map can be obtained. The prediction expression looks like this
步骤2.2:置信度评估,对栅格状态的预测后,还需要对预测置信度进行评估,用来衡量每个栅格预测的准确性。通过预测状态与真实观测状态的比较,来确定每个栅格状态的预测置信度,每次置信度评估前都会为其赋予初始的置信度,再结合通过数据库更新得到的真实地图状态进行比较,得到最终的预测置信度。最终输出带有预测置信度标签的栅格地图。具体实现过程如下所示:Step 2.2: Confidence evaluation. After the grid state is predicted, the prediction confidence needs to be evaluated to measure the accuracy of each grid prediction. The prediction confidence of each grid state is determined by comparing the predicted state with the actual observation state. Before each confidence evaluation, it will be given an initial confidence, and then compared with the real map state obtained through the database update. Get the final prediction confidence. The final output is a raster map with prediction confidence labels. The specific implementation process is as follows:
步骤3:针对一些不确定因素所导致的预测地图与实际地图的偏差,采用贝叶斯法则将实时的观测信息融合到预测信息中,进行实时的地图更新,作为粒子滤波定位的先验地图依据。具体步骤如下Step 3: In view of the deviation between the predicted map and the actual map caused by some uncertain factors, the Bayesian rule is used to integrate the real-time observation information into the predicted information, and the real-time map update is performed as the prior map basis for particle filter positioning. . Specific steps are as follows
步骤3.1引入定位能力矩阵来衡量不同处位置处的可信度,如下所示:Step 3.1 introduces a positioning capability matrix to measure the reliability of different locations, as follows:
其中,p=(x,y,θ)是机器人的位姿。是在LRF模型中的ith激光束中的期望距离。N0是LRF模型激光束的总数量。而对于 表示机器人移动Δx后LRF模型的激光束返回值的改变。Among them, p=(x, y, θ) is the pose of the robot. is the desired distance in the i th laser beam in the LRF model. N0 is the total number of LRF model laser beams. And for Represents the change in the return value of the laser beam of the LRF model after the robot moves by Δx.
步骤3.2对定位能力矩阵求行列式并归一化后得到m2,其反应了地图不同位置处对应的数据可信度的大小。当m2较大时,即地图信息特征丰富,数据可信度高;而当m2较小时,即地图信息特征少,数据可信度低。修正后的匹配度作为有效观测数据的判别标准,即:In step 3.2, the determinant of the positioning capability matrix is calculated and normalized to obtain m 2 , which reflects the reliability of the data corresponding to different positions on the map. When m 2 is large, the map information features are rich and the data reliability is high; while when m 2 is small, the map information features are few and the data reliability is low. The corrected matching degree is used as the criterion for valid observation data, namely:
m=λm1+(1-λ)m2 (9)m=λm 1 +(1-λ)m 2 (9)
其中,λ是观测权重项,其值代表着对观测匹配的可行度,该值越大,代表观测匹配在整个匹配度的计算权重中所占的比例越大。只有当m当于设定的阈值后,即m>mth才认为观测得到的数据是有效的,从而将其作为可靠数据。Among them, λ is the observation weight item, and its value represents the feasibility of the observation matching. The larger the value, the larger the proportion of the observation matching in the calculation weight of the entire matching degree. Only when m is equal to the set threshold, that is, m>m th , the observed data is considered to be valid, and thus it is regarded as reliable data.
步骤3.3应用贝叶斯法则进行数据融合,将长期预测信息与短期观测信息相融合,获得实时、准确的地图。使用动态概率栅格地图作为地图数据储存的形式,并使用HMMs作为其基本模型。同时融入长期信息中的置信度作为权重项,进行状态更新,得到t+1时刻的状态向量,融合公式如下所示:Step 3.3 Apply Bayesian rule for data fusion, fuse long-term prediction information with short-term observation information, and obtain real-time and accurate maps. Use dynamic probabilistic raster maps as the form of map data storage, and use HMMs as its basic model. At the same time, the confidence in the long-term information is used as a weight item to update the state to obtain the state vector at time t+1. The fusion formula is as follows:
其中Qt为融合数据后输出的地图栅格状态,Ac是状态转移矩阵,G是预测置信度,是预测状态,Bz是观测信息,η是归一化因子,I是单位矩阵。where Q t is the map grid state output after fusing the data, A c is the state transition matrix, G is the prediction confidence, is the predicted state, B z is the observation information, η is the normalization factor, and I is the identity matrix.
基于此,在置信度较高的栅格,将更多地依赖于预测的状态作为地图的最终形态;而对于置信度较低的栅格,将更多地依赖于实时的观测数据进行迭代更新。以此得到更符合真实环境的地图。Based on this, in a grid with a high confidence, the state of the map will be more dependent on the predicted state as the final shape of the map; while for a grid with a low confidence, it will rely more on the real-time observation data for iterative update . In this way, a map that is more in line with the real environment can be obtained.
步骤4:在得到实时更新的动态地图之后,结合动态定位能力来评估环境中未更新到地图中的动态属性,用基于定位能力的粒子滤波算法实现机器人的自主长期定位。具体实现如下:Step 4: After obtaining the dynamic map updated in real time, combine the dynamic positioning ability to evaluate the dynamic attributes in the environment that have not been updated to the map, and use the particle filtering algorithm based on the positioning ability to realize the autonomous long-term positioning of the robot. The specific implementation is as follows:
从初始地图中体现定位能力的动态定位能力矩阵表示如下:The dynamic positioning capability matrix that reflects the positioning capability from the initial map is expressed as follows:
其中si是激光束扫到未知障碍物的概率。是观测信息方差。p=(x,y,θ)是机器人的位姿。是在LRF模型中的ith激光束中的期望距离。N0是LRF模型激光束的总数量。而对于 表示机器人移动Δx后LRF模型的激光束返回值的改变。where s i is the probability that the laser beam sweeps to the unknown obstacle. is the observed information variance. p=(x, y, θ) is the pose of the robot. is the desired distance in the i th laser beam in the LRF model. N0 is the total number of LRF model laser beams. And for Represents the change in the return value of the laser beam of the LRF model after the robot moves by Δx.
通过采用经典的数据融合算法来融合观测信息和里程计信息来修正建议分布函数。之后,每个粒子的ΔO和p都会被ΔO(k)和替换。因此,融合过后的里程计增量将变成Fusion of observations by using classical data fusion algorithms and odometer information to modify the proposed distribution function. After that, the ΔO and p of each particle are divided by ΔO (k) and replace. Therefore, the odometer increment after fusion will become
其中h是比例因子,可通过经典的粒子滤波算法获得,而表示在只有里程计增量下算得的机器人坐标。where h is the scaling factor, can be obtained by the classical particle filter algorithm, while Indicated in odometer-only increments The robot coordinates calculated below.
当获得修正的里程计增量后,修正的采样粒子可以表示成When the corrected odometer increments are obtained, the corrected sampled particles can be expressed as
最后机器人的坐标可以表示成Finally, the coordinates of the robot can be expressed as
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。Those skilled in the art know that, in addition to implementing the system, device and each module provided by the present invention in the form of pure computer readable program code, the system, device and each module provided by the present invention can be completely implemented by logically programming the method steps. The same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a kind of hardware component, and the modules used for realizing various programs included in it can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program for realizing a method or a structure within a hardware component.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which do not affect the essential content of the present invention. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910041274.8A CN110068330B (en) | 2019-01-16 | 2019-01-16 | Autonomous positioning method of robot based on ARMA model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910041274.8A CN110068330B (en) | 2019-01-16 | 2019-01-16 | Autonomous positioning method of robot based on ARMA model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110068330A CN110068330A (en) | 2019-07-30 |
CN110068330B true CN110068330B (en) | 2021-04-13 |
Family
ID=67365918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910041274.8A Active CN110068330B (en) | 2019-01-16 | 2019-01-16 | Autonomous positioning method of robot based on ARMA model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110068330B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111207754A (en) * | 2020-02-28 | 2020-05-29 | 上海交通大学 | Multi-robot formation positioning method and robot equipment based on particle filter |
US11466992B2 (en) | 2020-03-02 | 2022-10-11 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method, apparatus, device and medium for detecting environmental change |
CN111928860A (en) * | 2020-07-24 | 2020-11-13 | 上海交通大学烟台信息技术研究院 | Autonomous vehicle active positioning method based on three-dimensional curved surface positioning capability |
CN112116656B (en) * | 2020-08-03 | 2024-05-31 | 歌尔股份有限公司 | Incremental mapping method and device in synchronous positioning and map construction slam |
CN112710312B (en) * | 2020-12-24 | 2023-12-01 | 长三角哈特机器人产业技术研究院 | Laser SLAM front end matching method integrating distance residual error and probability residual error |
CN113920137B (en) * | 2021-10-14 | 2024-06-18 | 平安科技(深圳)有限公司 | Lymph node metastasis prediction method, device, equipment and storage medium |
CN113970754A (en) * | 2021-10-25 | 2022-01-25 | 北京京东乾石科技有限公司 | Positioning method and device of autonomous travelable equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018048897A1 (en) * | 2016-09-06 | 2018-03-15 | The Charles Stark Draper Laboratory, Inc. | Fused sensor ensemble for navigation and calibration process therefor |
CN108732932A (en) * | 2018-06-01 | 2018-11-02 | 荷塘智能科技(固安)有限公司 | A kind of quadrotor drone Accurate Position Control method based on minimum variance regulator |
CN108896050A (en) * | 2018-06-26 | 2018-11-27 | 上海交通大学 | A kind of mobile robot long-term tillage system and method based on laser sensor |
-
2019
- 2019-01-16 CN CN201910041274.8A patent/CN110068330B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018048897A1 (en) * | 2016-09-06 | 2018-03-15 | The Charles Stark Draper Laboratory, Inc. | Fused sensor ensemble for navigation and calibration process therefor |
CN108732932A (en) * | 2018-06-01 | 2018-11-02 | 荷塘智能科技(固安)有限公司 | A kind of quadrotor drone Accurate Position Control method based on minimum variance regulator |
CN108896050A (en) * | 2018-06-26 | 2018-11-27 | 上海交通大学 | A kind of mobile robot long-term tillage system and method based on laser sensor |
Non-Patent Citations (2)
Title |
---|
现代时间序列分析在SLAM问题中的应用;邢远见,等;《中国科技论文在线》;20070709;正文第1-5页 * |
高精度高鲁棒性的轨道机器人全局定位方法;唐恒博,等;《机器人ROBOT》;20130930;第35卷(第5期);623-629 * |
Also Published As
Publication number | Publication date |
---|---|
CN110068330A (en) | 2019-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110068330B (en) | Autonomous positioning method of robot based on ARMA model | |
CN111429574B (en) | Mobile robot positioning method and system based on three-dimensional point cloud and vision fusion | |
Papadopoulos et al. | Short-term electricity load forecasting using time series and ensemble learning methods | |
CN107063264A (en) | A kind of robot map creating method suitable for extensive substation | |
CN108955679A (en) | A kind of robot used for intelligent substation patrol high-precision locating method | |
CN113129338B (en) | Image processing method, device, equipment and medium based on multi-target tracking algorithm | |
Habibi et al. | Context-aware pedestrian motion prediction in urban intersections | |
CN113159403B (en) | Intersection pedestrian track prediction method and device | |
CN115730637A (en) | Multi-mode vehicle trajectory prediction model training method and device and trajectory prediction method | |
Berrio et al. | Identifying robust landmarks in feature-based maps | |
Guo et al. | FlightBERT++: A non-autoregressive multi-horizon flight trajectory prediction framework | |
Garrote et al. | Mobile robot localization with reinforcement learning map update decision aided by an absolute indoor positioning system | |
CN113837148A (en) | Pedestrian trajectory prediction method based on self-adjusting sparse graph transform | |
CN116166642A (en) | Spatio-temporal data filling method, system, equipment and medium based on guide information | |
Sun et al. | Medium-fidelity evaluation and modeling for perception systems of intelligent and connected vehicles | |
CN119717864A (en) | Unmanned aerial vehicle power inspection autonomous flight obstacle avoidance method, equipment and storage medium based on laser radar | |
Gao et al. | Negl: Lightweight and efficient neighborhood encoding-based global localization for unmanned ground vehicles | |
Zheng et al. | Safety-quantifiable line feature-based monocular visual localization with 3d prior map | |
Thallas et al. | Particle filter—Scan matching hybrid SLAM employing topological information | |
Shahidi et al. | Hidden markov model based graph matching for calibration of localization maps | |
Sánchez et al. | Situation-aware drivable space estimation for automated driving | |
Wang et al. | A model stacking algorithm for indoor positioning system using WiFi fingerprinting | |
Chen et al. | Research on adaptive Monte Carlo location method based on fusion posture estimation | |
Wen et al. | OVL-MAP: An Online Visual Language Map Approach for Vision-and-Language Navigation in Continuous Environments | |
Zanichelli | Topological maps and robust localization for autonomous navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |