CN110063815A - A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall - Google Patents
A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall Download PDFInfo
- Publication number
- CN110063815A CN110063815A CN201810048994.2A CN201810048994A CN110063815A CN 110063815 A CN110063815 A CN 110063815A CN 201810048994 A CN201810048994 A CN 201810048994A CN 110063815 A CN110063815 A CN 110063815A
- Authority
- CN
- China
- Prior art keywords
- spiral
- blood vessel
- syringe needle
- artificial blood
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 29
- 239000002473 artificial blood Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000001125 extrusion Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000835 fiber Substances 0.000 claims abstract description 6
- 238000004132 cross linking Methods 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 16
- 239000003431 cross linking reagent Substances 0.000 claims description 7
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims 4
- 235000012489 doughnuts Nutrition 0.000 claims 1
- 230000026683 transduction Effects 0.000 claims 1
- 238000010361 transduction Methods 0.000 claims 1
- 239000000017 hydrogel Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 2
- 238000012876 topography Methods 0.000 abstract 1
- 239000012510 hollow fiber Substances 0.000 description 11
- 239000011550 stock solution Substances 0.000 description 9
- 239000012620 biological material Substances 0.000 description 7
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 235000010413 sodium alginate Nutrition 0.000 description 5
- 239000000661 sodium alginate Substances 0.000 description 5
- 229940005550 sodium alginate Drugs 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000008279 sol Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 1
- 238000013406 biomanufacturing process Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
- A61F2240/002—Designing or making customized prostheses
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种施加纵波制备血管支架的超声喷头制备方法,属于机械学科,生物制造领域。The invention relates to a method for preparing an ultrasonic nozzle for preparing a vascular stent by applying longitudinal waves, and belongs to the field of mechanical science and biological manufacturing.
背景技术Background technique
传统方法(如静电纺丝技术,倒模技术灌注或传统3D打印技术堆积而成)制备的人工血管,内壁表面无真实血管的褶皱特征,移植作用后易形成血栓。与普通制备人工血管的方法与设备相比,通过超声螺旋振动喷头,利用同轴直写方式制备小口径人工血管,且人工血管表面可形成螺旋褶皱,使之更接近真实血管表面生理结构,当血液流经血管形成螺旋流对血管内壁进行冲刷,从而起到抑制血栓形成的作用。The artificial blood vessels prepared by traditional methods (such as electrospinning technology, pouring technology infusion or traditional 3D printing technology) do not have the fold characteristics of real blood vessels on the inner wall surface, and are prone to thrombosis after transplantation. Compared with ordinary methods and equipment for preparing artificial blood vessels, small-diameter artificial blood vessels can be prepared by coaxial direct writing through ultrasonic spiral vibration nozzles, and the surface of artificial blood vessels can form spiral folds, making it closer to the physiological structure of the real blood vessel surface. The blood flows through the blood vessel to form a spiral flow to scour the inner wall of the blood vessel, thereby inhibiting the formation of thrombosis.
目前,随着生物3D打印的兴起,利用海藻酸钠、壳聚糖等可快速反应交联固化的水凝胶作为药物与细胞的载体材料,以同轴直写的方式直接成形中空纤维,作为人工血管或以其为基本单元沉积成一定几何形状的生物支架,在组织工程、制药及临床医学等领域具有很好的应用前景。利用此方法制备人工血管已经成为生物制造领域一大研究热点。通过在直写挤出装置上合理地施加超声螺旋振动,使得水凝胶挤出时,与振动芯部接触的人工血管材料受到沿挤出方向上的纵扭复合振动应力,形成一定层厚的微尺度的螺旋流,并最终在交联固化管状纤维内壁上复映出螺旋褶皱的表面形貌。At present, with the rise of bio-3D printing, the use of sodium alginate, chitosan and other hydrogels that can be quickly reacted and cross-linked and cured are used as carrier materials for drugs and cells, and hollow fibers are directly formed by coaxial direct writing. Artificial blood vessels or biological scaffolds deposited with them as basic units have a certain geometric shape, and have good application prospects in the fields of tissue engineering, pharmacy and clinical medicine. The preparation of artificial blood vessels by this method has become a research hotspot in the field of biomanufacturing. By reasonably applying ultrasonic spiral vibration on the direct writing extrusion device, when the hydrogel is extruded, the artificial blood vessel material in contact with the vibrating core is subjected to longitudinal-torsional compound vibration stress along the extrusion direction, forming a certain layer thickness. Micro-scale helical flow, and finally reflected the surface morphology of helical folds on the inner wall of the cross-linked and solidified tubular fibers.
国际专利文献(申请号PCT/CN2014/078238)涉及一种医用生物组织结构及其制备方法和专用设备的制作方法和专用设备,基于粘附交联固化原理,利用同轴喷头挤出中空管,再将生物材料喷涂粘附到中空管上形成功能层,然后逐层堆积形成复合形成体,最后将合成高分子溶液喷在复合成形体外表面,最终形成三维结构体,该装置工艺过程较复杂。而在此专利的基础上,中国专利文献(申请号CN201410589938.1)涉及一种血管化生命结构体一站式制备方法,其定位于生命结构体的集成制造,实现细胞、结构材料、生长因子等多尺度对象的同时加工,从而大大降低传统生物制造的复杂程度。制备系统由注射泵、两个医用活塞式注射器、同轴喷头组成,通过生物材料原液与交联剂原液在注射泵的推动下分别通入同轴喷头,随着两流体的接触,由同轴喷头挤出交联固化的中空纤维,此种设计方法具备多目标、多尺度、工艺简单等优点。但以上两专利均不能挤出具有螺旋褶皱的交联固化的中空纤维,与上述两专利装置不同,本设计芯部采用超声变幅杆与不锈钢针头或相连接,且变幅杆上有螺旋槽分布,通过安装超声螺旋振动喷头,使水凝胶挤出时沿挤出方向有一个纵扭复合的振动从而挤出内壁具有螺旋褶皱的交联固化的中空纤维使水凝胶挤出时沿挤出方向有一个纵扭复合的振动从而挤出内壁具有螺旋褶皱的交联固化的中空纤维。The international patent document (application number PCT/CN2014/078238) relates to a medical biological tissue structure and its preparation method and special equipment. Then, the biological material is sprayed and adhered to the hollow tube to form a functional layer, and then stacked layer by layer to form a composite body, and finally the synthetic polymer solution is sprayed on the outer surface of the composite body to form a three-dimensional structure. complex. On the basis of this patent, the Chinese patent document (application number CN201410589938.1) relates to a one-stop preparation method for vascularized life structures, which is positioned in the integrated manufacturing of life structures and realizes the realization of cells, structural materials, and growth factors. Simultaneous processing of other multi-scale objects, thereby greatly reducing the complexity of traditional biofabrication. The preparation system consists of a syringe pump, two medical piston syringes, and a coaxial nozzle. The biological material stock solution and the cross-linking agent stock solution are respectively introduced into the coaxial nozzle under the push of the syringe pump. The nozzle extrudes the cross-linked and solidified hollow fiber. This design method has the advantages of multi-objective, multi-scale and simple process. However, neither of the above two patents can extrude cross-linked and solidified hollow fibers with spiral folds. Different from the above two patent devices, the core of this design adopts an ultrasonic horn to connect with a stainless steel needle, and there is a spiral groove on the horn. Distribution, by installing the ultrasonic spiral vibration nozzle, the hydrogel has a longitudinal torsional composite vibration along the extrusion direction when extruding, so as to extrude the cross-linked and solidified hollow fibers with spiral wrinkles on the inner wall, so that the hydrogel is extruded along the extrusion direction. There is a longitudinal-torsional composite vibration in the outgoing direction to extrude the cross-linked and solidified hollow fibers with spiral folds on the inner wall.
发明内容SUMMARY OF THE INVENTION
本专利为了解决现有设备和方法制备的人工血管不能形成血管内表面螺旋褶皱的缺点,采用超声螺旋振动喷头,使交联固化的水凝胶挤出时会有一个沿挤出方向上的纵扭复合振动,与之接触的人工血管材料则会在其作用下复映出螺旋褶皱的表面形貌,使之更加接近血管生理特征。In order to solve the disadvantage that the artificial blood vessel prepared by the existing equipment and method cannot form helical folds on the inner surface of the blood vessel, an ultrasonic spiral vibration nozzle is used, so that when the cross-linked and solidified hydrogel is extruded, there will be a longitudinal direction along the extrusion direction. Torsional composite vibration, the artificial blood vessel material in contact with it will reflect the surface morphology of the spiral folds under the action, making it closer to the physiological characteristics of blood vessels.
为了实现上述目的,本专利采用如下方案:一种利用超声喷头制备具有螺旋褶皱内壁的人工血管的直写制备方法,包括超声换能器(101),中空的螺旋沟槽式超声变幅杆(102),固定支架(103),内针头或实心针头(104),外针头(105),换能器外壳(106),固定螺栓(107),法兰盘(108),特制三通(109),塔型防倒吸橡胶垫(110),加热棒(111)如图1。其特征在于:换能器外壳(106),超声换能器(101),变幅杆和内针头或实心针头(104),外针头(105)同轴安装,外针头(105)与内针头或细实心针棒(104)的同轴度通过各自与特制三通(109)的内外圆柱面的配合来保障,外针头(105)与特制三通(109)采用过盈配合。换能器外壳(106)下端通过固定螺栓(107)连接到法兰盘(108),特制三通(109)的上端也通过固定螺栓(107)连接到法兰盘(108),内针头或实心针头(104)与螺旋沟槽式超声变幅杆(102)下端螺旋连接, 中空的螺旋沟槽式超声变幅杆(102)表面有均匀分布的螺旋沟槽,加热棒(111)嵌在特制三通(109)里;所需特制三通(109),其材料选用铝合金,其与变幅杆的同轴度,通过上部圆形面与法兰盘(108)圆形面相互接触,用多个螺栓紧密连接保证,在特制三通(109)壁厚中装入小型圆柱形的加热棒(111),用于挤出过程中的加热;所需加热棒(111),选用加热棒大要与特制三通(109)壁厚相适应,所以选用体积较小型的,便于安装;所选加热棒通过耐热导线与电子显示器连接,且工作过程中必须与热电偶配合使用,直至达到所需温度。In order to achieve the above purpose, the present patent adopts the following scheme: a direct writing method for preparing an artificial blood vessel with a spiral folded inner wall using an ultrasonic nozzle, comprising an ultrasonic transducer (101), a hollow spiral groove ultrasonic horn ( 102), fixing bracket (103), inner needle or solid needle (104), outer needle (105), transducer housing (106), fixing bolt (107), flange plate (108), special tee (109) ), tower type anti-suck back rubber pad (110), heating rod (111) as shown in Figure 1. It is characterized in that: a transducer housing (106), an ultrasonic transducer (101), a horn and an inner needle or a solid needle (104), the outer needle (105) is coaxially installed, and the outer needle (105) and the inner needle Or the coaxiality of the thin solid needle bar (104) is ensured by the cooperation with the inner and outer cylindrical surfaces of the special tee (109), and the outer needle (105) and the special tee (109) adopt an interference fit. The lower end of the transducer housing (106) is connected to the flange (108) through fixing bolts (107), and the upper end of the special tee (109) is also connected to the flange (108) through fixing bolts (107). The solid needle (104) is helically connected to the lower end of the helical groove type ultrasonic horn (102), the surface of the hollow helical groove type ultrasonic horn (102) has evenly distributed helical grooves, and the heating rod (111) is embedded in the surface. In the special tee (109); the required special tee (109) is made of aluminum alloy, and its coaxiality with the horn is in contact with the circular surface of the flange (108) through the upper circular surface , ensure the tight connection with multiple bolts, and install a small cylindrical heating rod (111) in the wall thickness of the special tee (109) for heating during the extrusion process; the required heating rod (111), choose heating The size of the rod must be compatible with the wall thickness of the special tee (109), so the smaller size is used for easy installation; the selected heating rod is connected to the electronic display through heat-resistant wires, and must be used in conjunction with the thermocouple in the working process until it reaches the desired temperature.
一种利用超声喷头制备具有螺旋褶皱内壁的人工血管的直写制备方法,其特征在于:如图2,制备中空纤维操作如下,将材料原液通过三通凸台(201)流入内腔,交联剂通过内针头内腔(202)或实心针头在底部与材料原液接触,并立即交联固化,由于存在纵扭复合的振动,最终复映出内壁上有螺旋褶皱表面形貌的交联固化管状纤维(203)。A direct-writing preparation method for preparing artificial blood vessels with a spirally folded inner wall by using an ultrasonic nozzle, characterized in that: as shown in Figure 2, the preparation of hollow fibers is as follows, and the raw material liquid flows into the lumen through the three-way boss (201), cross-linking The agent is in contact with the raw material solution at the bottom through the inner needle cavity (202) or the solid needle, and is immediately cross-linked and solidified. Due to the vibration of the longitudinal-torsion compound, the cross-linked solidified tubular shape with the surface morphology of the spiral folds on the inner wall is finally reflected. Fiber (203).
一种利用超声喷头制备具有螺旋褶皱内壁的人工血管的直写制备方法,其具体制备操作步骤如下:A direct-writing preparation method for preparing an artificial blood vessel with a spirally folded inner wall using an ultrasonic nozzle, the specific preparation steps are as follows:
1.原液制备:将生物材料及其交联剂以相应的溶剂按设定比例分别配制成生物材料原液和交联剂原液,本专利中生物材料原液和交联剂原液分别采用交联剂选用4%的海藻酸钠溶胶和3%氯化钙溶液;1. Preparation of stock solution: The biological material and its cross-linking agent are respectively prepared into a biological material stock solution and a cross-linking agent stock solution with a corresponding solvent according to a set ratio. 4% sodium alginate sol and 3% calcium chloride solution;
2.设备连接:将超声波发生器与超声换能器连接,不锈刚内针头或实心针头与变幅杆螺旋连接,外针头与特制三通连接,最后三通与法兰盘连接,以上皆是同轴安装;2. Equipment connection: connect the ultrasonic generator to the ultrasonic transducer, the stainless steel inner needle or solid needle is screwed with the horn, the outer needle is connected to the special tee, and the last tee is connected to the flange, all of the above is a coaxial installation;
3.交联剂与生物材料原液的释放:4%的海藻酸钠溶胶从三通凸台处流入,并沿内针头下流,3%氯化钙溶液从内针头流出,出口处与生物材料原液交联,此过程由注射泵提供挤压动力,同时通过超声换能器的转换将机械波传递给螺旋沟槽式超声变幅杆,从而给不锈刚内针头或实心针头一个纵扭复合的振动;3. Release of cross-linking agent and biological material stock solution: 4% sodium alginate sol flows in from the tee boss and flows down the inner needle, 3% calcium chloride solution flows out from the inner needle, and the outlet is mixed with the biological material stock solution. Cross-linking, in this process, the extrusion power is provided by the syringe pump, and at the same time, the mechanical wave is transmitted to the spiral groove ultrasonic horn through the conversion of the ultrasonic transducer, so as to give the stainless steel inner needle or solid needle a longitudinal torsion compound vibration ;
4.中空纤维制备:4%的海藻酸钠溶胶和3%氯化钙溶液交联在外针头内形成同轴流体,所形成的环形生物材料原液被芯部的交联剂原液交联固化,出离外针头后即形成带有螺旋褶皱的管状的中空纤维;4. Preparation of hollow fibers: 4% sodium alginate sol and 3% calcium chloride solution are cross-linked in the outer needle to form a coaxial fluid, and the formed annular biomaterial stock solution is cross-linked and solidified by the cross-linking agent stock solution in the core, and the solution is released. After leaving the outer needle, a tubular hollow fiber with spiral folds is formed;
5.试验结束关闭注射泵,断开与超声发生器的连接。5. At the end of the test, turn off the syringe pump and disconnect the ultrasonic generator.
本发明与现有技术相比较具有以下突出实质性特点和显著技术进步Compared with the prior art, the present invention has the following outstanding substantive features and remarkable technical progress
1.本专利中,中空的螺旋式变幅杆配合特制三通既可满足单一材料的挤出也可满足两种材料的交联挤出;1. In this patent, the hollow spiral horn and the special tee can satisfy the extrusion of a single material or the cross-linked extrusion of two materials;
2.现有制备的人工血管多为无表面螺旋褶皱形态,本专利利用螺旋沟槽式超声振子,纵向分量和扭转分量得以增大,制备的带有螺旋褶皱的人工血管更接近生理环境下的血管结构;2. The existing artificial blood vessels are mostly in the form of no surface helical folds. This patent uses a helical groove ultrasonic vibrator, the longitudinal component and the torsional component are increased, and the prepared artificial blood vessels with helical folds are closer to the physiological environment. vascular structure;
3.本专利中在特制三通中嵌入发热棒,可以在单一材料挤出过程中对其加热使其保持熔融状态;3. In this patent, a heating rod is embedded in a special tee, which can be heated to keep it in a molten state during the extrusion of a single material;
4.本专利中换能器外壳起保护作用,其结构上又开出多个孔,在其工作时起到散热的作用;4. In this patent, the transducer shell plays a protective role, and a plurality of holes are opened in its structure to dissipate heat during its operation;
5.塔型防倒吸橡胶垫可以阻挡实验材料涌入三通上半段,防止对变幅杆产生影响。5. The tower-type anti-suckback rubber pad can block the influx of experimental materials into the upper half of the tee to prevent the impact on the horn.
附图说明Description of drawings
图1是结构示意图;Fig. 1 is a structural schematic diagram;
图2是挤出表面螺旋形态的中空纤维示意图Figure 2 is a schematic diagram of a hollow fiber with a spiral shape on the extruded surface
图3 是结构俯视图Figure 3 is a top view of the structure
图1中,超声振动换能器(101),螺旋沟槽式超声变幅杆(102),固定支架(103),内针头或细实心针棒(104),外针头(105),换能器外壳(106),固定螺栓(107),法兰盘(108),特制三通(109),防倒吸海绵(110),加热棒(111);In Fig. 1, ultrasonic vibration transducer (101), helical groove ultrasonic horn (102), fixing bracket (103), inner needle or thin solid needle bar (104), outer needle (105), transducer housing (106), fixing bolts (107), flanges (108), special tee (109), anti-sucking sponge (110), heating rod (111);
图2中三通凸台(201),内针头内腔(202),有螺旋褶皱表面形貌的交联固化管状纤维(203)。In Fig. 2, the tee boss (201), the inner needle lumen (202), and the cross-linked and solidified tubular fibers (203) with the surface morphology of the spiral folds.
具体实施例specific embodiment
实施例一:制备带有螺旋纹理的海藻酸钠-氯化钙中空纤维Example 1: Preparation of sodium alginate-calcium chloride hollow fibers with spiral texture
1.将内针头或实心针头(104)绕螺纹螺旋拧紧在螺旋沟槽式超声变幅杆(102)下端;1. Screw the inner needle or solid needle (104) around the thread to the lower end of the helical groove ultrasonic horn (102);
2.将保护超声换能器(101)的换能器外壳(106)通过固定螺栓(107)连接到法兰盘(108);2. Connect the transducer housing (106) protecting the ultrasonic transducer (101) to the flange (108) through fixing bolts (107);
3.特制三通(109)上端固定于法兰盘(108),同时将固定装置的支架也固定于法兰盘之上;3. The upper end of the special tee (109) is fixed on the flange (108), and the bracket of the fixing device is also fixed on the flange;
4.将盛有氯化钙溶液的注射器连接至换能器上部中空处,盛有海藻酸钠的注射器用相应皮管连接至三通凸台(201)上,通过固定支架(103)将装置整体安装在3D生物打印机上;4. Connect the syringe filled with calcium chloride solution to the hollow part of the upper part of the transducer, connect the syringe filled with sodium alginate to the tee boss (201) with the corresponding leather tube, and fix the device through the fixing bracket (103). The whole is installed on the 3D bioprinter;
5.超声换能器(101)两极连接超声发生器,同时挤出挤出得到带有螺旋纹理的海藻酸钠-氯化钙中空纤维。5. The two poles of the ultrasonic transducer (101) are connected to the ultrasonic generator, and at the same time, the sodium alginate-calcium chloride hollow fibers with spiral texture are obtained by extrusion.
实施例二:直接挤出表面具有螺旋纹理的PLA材料Example 2: Direct extrusion of PLA material with spiral texture on the surface
1.将内针头或细实心针棒(104)绕螺纹螺旋拧紧在螺旋沟槽式超声变幅杆(102)下端;1. Screw the inner needle or thin solid needle bar (104) around the thread to the lower end of the helical groove ultrasonic horn (102);
2.将保护超声换能器(101)的换能器外壳(106)通过固定螺栓(107)连接到法兰盘(108);2. Connect the transducer housing (106) protecting the ultrasonic transducer (101) to the flange (108) through fixing bolts (107);
3.特制三通(109)上端固定于法兰盘(108),同时将固定支架(103)也固定于法兰盘(108)之上;3. The upper end of the special tee (109) is fixed on the flange (108), and the fixing bracket (103) is also fixed on the flange (108);
4.将熔融的PLA通过管具连接至三通凸台上(201),整体安装在3D生物 打印机上;4. Connect the molten PLA to the tee boss (201) through a pipe, and install it on the 3D bioprinter as a whole;
5.加热棒(111)首先进行加热,待温度达到PLA熔融所修温度;5. The heating rod (111) is heated first, until the temperature reaches the melting temperature of PLA;
6.超声换能器(101)两极连接超声发生器,挤出表面具有螺旋纹理的PLA材料,使其自然冷却。6. The two poles of the ultrasonic transducer (101) are connected to the ultrasonic generator, and the PLA material with the spiral texture on the surface is extruded and cooled naturally.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810048994.2A CN110063815A (en) | 2018-01-18 | 2018-01-18 | A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810048994.2A CN110063815A (en) | 2018-01-18 | 2018-01-18 | A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110063815A true CN110063815A (en) | 2019-07-30 |
Family
ID=67364714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810048994.2A Pending CN110063815A (en) | 2018-01-18 | 2018-01-18 | A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110063815A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113546218A (en) * | 2021-07-21 | 2021-10-26 | 南昌大学第二附属医院 | Methods and formulations for in situ construction of PRP gel tissue engineering complexes for different tissue regeneration |
CN114948332A (en) * | 2022-05-20 | 2022-08-30 | 苏州大学 | A kind of preparation method and application of PTFE artificial blood vessel and covered stent |
CN115232782A (en) * | 2022-07-16 | 2022-10-25 | 南昌大学 | Coaxial microfluid-based double-exposure micro-wrinkle blood vessel processing platform and method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060233953A1 (en) * | 1998-09-30 | 2006-10-19 | Optomec Design Company | Apparatuses and methods for maskless mesoscale material deposition |
WO2014197027A2 (en) * | 2013-03-14 | 2014-12-11 | Ndsu Research Foundation | Method and apparatus for aerosol direct write printing |
CN104383604A (en) * | 2014-10-29 | 2015-03-04 | 上海大学 | One-stop preparation method of vascularized life structure body |
CN105666546A (en) * | 2016-04-15 | 2016-06-15 | 苏州科技学院 | High-frequency longitudinal-torsional composite vibratory sponge bar taking device and application |
CN205521557U (en) * | 2016-04-15 | 2016-08-31 | 苏州科技学院 | High frequency longitudinal -torsional composite vibration sponge perforating device |
CN106553341A (en) * | 2016-11-15 | 2017-04-05 | 哈尔滨工业大学 | Shower nozzle based on ultrasonically enhanced continuous fiber reinforced composite materials 3D printing |
CN106671408A (en) * | 2017-03-11 | 2017-05-17 | 河南理工大学 | Novel flexible 3D bio-printing coaxial spray head and manufacturing and use method thereof |
CN106725999A (en) * | 2017-01-12 | 2017-05-31 | 吉林大学 | The anti-blocking multicellular organism increasing material manufacturing method and device of high-precision ultrasound |
CN107199338A (en) * | 2017-05-02 | 2017-09-26 | 武汉理工大学 | A kind of 3D printing shower nozzle |
CN107244072A (en) * | 2017-07-28 | 2017-10-13 | 李桂伟 | Ultrasound melting composite deposition increasing material manufacturing device and method |
CN208447851U (en) * | 2018-01-18 | 2019-02-01 | 河南理工大学 | A kind of ultrasonic Coaxial nozzle preparing artificial blood vessel of the inner wall with spiral fold |
-
2018
- 2018-01-18 CN CN201810048994.2A patent/CN110063815A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060233953A1 (en) * | 1998-09-30 | 2006-10-19 | Optomec Design Company | Apparatuses and methods for maskless mesoscale material deposition |
WO2014197027A2 (en) * | 2013-03-14 | 2014-12-11 | Ndsu Research Foundation | Method and apparatus for aerosol direct write printing |
CN104383604A (en) * | 2014-10-29 | 2015-03-04 | 上海大学 | One-stop preparation method of vascularized life structure body |
CN105666546A (en) * | 2016-04-15 | 2016-06-15 | 苏州科技学院 | High-frequency longitudinal-torsional composite vibratory sponge bar taking device and application |
CN205521557U (en) * | 2016-04-15 | 2016-08-31 | 苏州科技学院 | High frequency longitudinal -torsional composite vibration sponge perforating device |
CN106553341A (en) * | 2016-11-15 | 2017-04-05 | 哈尔滨工业大学 | Shower nozzle based on ultrasonically enhanced continuous fiber reinforced composite materials 3D printing |
CN106725999A (en) * | 2017-01-12 | 2017-05-31 | 吉林大学 | The anti-blocking multicellular organism increasing material manufacturing method and device of high-precision ultrasound |
CN106671408A (en) * | 2017-03-11 | 2017-05-17 | 河南理工大学 | Novel flexible 3D bio-printing coaxial spray head and manufacturing and use method thereof |
CN107199338A (en) * | 2017-05-02 | 2017-09-26 | 武汉理工大学 | A kind of 3D printing shower nozzle |
CN107244072A (en) * | 2017-07-28 | 2017-10-13 | 李桂伟 | Ultrasound melting composite deposition increasing material manufacturing device and method |
CN208447851U (en) * | 2018-01-18 | 2019-02-01 | 河南理工大学 | A kind of ultrasonic Coaxial nozzle preparing artificial blood vessel of the inner wall with spiral fold |
Non-Patent Citations (1)
Title |
---|
陈益明: "气助式低频超声雾化喷头的设计及喷雾试验", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113546218A (en) * | 2021-07-21 | 2021-10-26 | 南昌大学第二附属医院 | Methods and formulations for in situ construction of PRP gel tissue engineering complexes for different tissue regeneration |
CN114948332A (en) * | 2022-05-20 | 2022-08-30 | 苏州大学 | A kind of preparation method and application of PTFE artificial blood vessel and covered stent |
CN115232782A (en) * | 2022-07-16 | 2022-10-25 | 南昌大学 | Coaxial microfluid-based double-exposure micro-wrinkle blood vessel processing platform and method |
CN115232782B (en) * | 2022-07-16 | 2023-10-31 | 南昌大学 | Double-exposure micro-fold vascular processing platform and method based on coaxial microfluid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110063815A (en) | A kind of direct write preparation method of the artificial blood vessel using ultrasonic nozzle preparation with spiral fold inwall | |
CN110507637A (en) | A kind of intelligent capsule with gradual controlled release, preparation method and 3D printing system | |
WO2022143100A1 (en) | Microfluidic spinning device, spiral core-shell structure conductive fiber and preparation method therefor and application therefof | |
CN106584852B (en) | A kind of the 3D printing method and printing equipment of extrusion molding | |
CN208447851U (en) | A kind of ultrasonic Coaxial nozzle preparing artificial blood vessel of the inner wall with spiral fold | |
CN111485296A (en) | Preparation method and application of bionic multi-component fiber | |
CN104117128A (en) | Balloon catheter for mild hypothermia therapy | |
CN110331453B (en) | A centrifugal spinning nozzle for spinning skin-core structure fibers | |
WO2020134690A1 (en) | Medical tubing and manufacturing method therefor | |
CN111763996A (en) | Codable hydrogel microfiber preparation device and method based on dynamic interfacial extrusion | |
CN212669868U (en) | Codable hydrogel microfiber fabrication device based on dynamic interfacial extrusion | |
CN201253349Y (en) | Ultrasonic atomization method medicine micro-spheres preparation method | |
Habib et al. | Design and fabrication of in-house nozzle system to extrude multi-hydrogels for 3D bioprinting process | |
CN106108945B (en) | Far-field ultrasonic probe for sonodynamic therapy | |
CN108032517A (en) | A kind of two section independent temperature biology 3D printing nozzles | |
CN110820065B (en) | Method for continuously preparing high-strength hydrogel fiber | |
CN210673551U (en) | Magnesium sulfate application | |
CN108908816A (en) | A kind of individuation antimicrobial coating rack integral forming method | |
CN210541623U (en) | TCD monitoring probe with water bag for cooling and coupling ultrasonic cerebrovascular blood flow detection | |
CN115721315A (en) | Flexible photoelectrode and preparation method thereof | |
CN109880349A (en) | A kind of medical material and preparation method thereof | |
CN113616817A (en) | 3D printing sound guide pad material, sound guide pad, and method and device for 3D printing sound guide pad | |
CN207682907U (en) | A kind of mesohigh connecting tube extruded mould | |
CN209500523U (en) | A kind of preparation facilities that micropin is administered | |
CN208958803U (en) | A kind of automatic suppository molding machine of pharmaceutical purpose with cleaning function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190730 |
|
WD01 | Invention patent application deemed withdrawn after publication |