CN110061559A - 离线式不间断电源及其控制方法 - Google Patents
离线式不间断电源及其控制方法 Download PDFInfo
- Publication number
- CN110061559A CN110061559A CN201910439590.0A CN201910439590A CN110061559A CN 110061559 A CN110061559 A CN 110061559A CN 201910439590 A CN201910439590 A CN 201910439590A CN 110061559 A CN110061559 A CN 110061559A
- Authority
- CN
- China
- Prior art keywords
- switch
- controls
- transformer
- rechargeable battery
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000002441 reversible effect Effects 0.000 claims abstract description 49
- 230000005611 electricity Effects 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 14
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052924 anglesite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
- H02J7/0049—Detection of fully charged condition
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
本发明提供了一种离线式不间断电源及其控制方法,所述离线式不间断电源包括:连接在交流输入端和交流输出端之间的安全开关;变压器,其一次侧的一端连接至所述交流输出端的一个端子;在所述安全开关和所述交流输出端的另一个端子之间依次连接的第一开关、第二开关和输出开关,所述第一开关可操作地使得所述安全开关连接至所述变压器的一次侧的另一端和抽头之一,所述第二开关可操作地使得所述输出开关连接至所述变压器的一次侧的另一端和抽头之一;第三开关,其可操作地使得所述安全开关连接至所述第一开关和交流输出端的另一个端子之一;以及双向变换器。本发明的离线式不间断电源具有较高的电能传输效率。
Description
技术领域
本发明涉及电子线路领域,具体涉及一种离线式不间断电源及其控制方法。
背景技术
离线式不间断电源,在市电电压在正常范围内时直接由市电向负载供电,且可充电电池处于充电状态;当市电电压异常或停电时,逆变器切换到工作状态,将可充电电池中的直流电转换为稳定的交流电输出;当市电电压偏低或偏高时,连接在交流输入端的变压器用于调节市电的电压,从而使得交流输出端具有稳定的输出电压。
图1是现有技术中的一种离线式不间断电源的电路图。如图1所示,离线式不间断电源1包括在其交流输入端10和交流输出端10’之间连接的电磁兼容性(EMC)滤波器11;安全开关12,其被构造为双刀单掷继电器或包括安全开关单元121和安全开关单元122;在安全开关12和交流输出端10’的端子L之间依次连接的第一开关131、第二开关132和输出开关14;变压器Tr1,变压器Tr1的一次侧的一端T1连接在安全开关12和交流输出端10’的端子N之间,其中第一开关131可操作地使得安全开关12连接至变压器Tr1的一次侧的另一端T2和抽头T3之一,第二开关132可操作地使得输出开关14连接至变压器Tr1的一次侧的另一端T2和抽头T3之一;以及可充电电池16,双向变换器15和辅助供电系统17,可充电电池16通过双向变换器15连接至变压器Tr1的二次侧,辅助供电系统17的输入端连接至可充电电池16两端,其用于给离线式不间断电源1提供各种所需的电压。其中为了简化电路图,图1并未示出用于检测市电电压的市电检测装置,用于检测可充电电池16的充电状态的电池检测装置,以及用于控制双向变换器15的工作状态,以及控制安全开关12、第一开关131、第二开关132、和输出开关14的开关状态的控制装置。
当市电电压偏高时,离线式不间断电源1被控制为处于自动电压降压调节模式,其中,安全开关12和输出开关14被控制为导通,第一开关131被控制为连接至变压器Tr1的一次侧的端子T2,第二开关132被控制为连接至变压器Tr1的一次侧的抽头T3,由此交流输出端10’输出电压降低的交流电。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
当市电电压偏低时,离线式不间断电源1被控制为处于自动电压升压调节模式,其中,安全开关12和输出开关14被控制为导通,第一开关131被控制为连接至变压器Tr1的一次侧的抽头T3,第二开关132被控制为连接至变压器Tr1的一次侧的端子T2,由此交流输出端10’输出电压升高的交流电。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
当市电电压异常(例如电压过高)或停电时,离线式不间断电源1被控制为处于电池模式。其中,安全开关12被控制为断开,输出开关14被控制为导通,第二开关132被控制连接至变压器Tr1的一次侧的端子T2,双向变换器15被控制为工作,以将可充电电池16的直流电转换为交流电,经过变压器Tr1变压后,在交流输出端10’得到所需的交流电。同时,可充电电池16给辅助供电系统17提供直流电。
当市电电压在正常范围内时,离线式不间断电源1被控制为处于正常模式。安全开关12和输出开关14被控制为导通,第一开关131和第二开关132被控制为都连接至变压器Tr1的一次侧的端子T2。同时双向变换器15被控制为将变压器Tr1的二次侧的交流电转换为直流电,以对可充电电池16进行充电,且给辅助供电系统17提供直流电。
图2是图1所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。如图2所示,交流输入端10的市电通过EMC滤波器11,以及导通的安全开关12、第一开关131、第二开关132和输出开关14后传输至交流输出端10’。一方面,安全开关12和交流输出端10’的端子L之间的3个开关的触点降低电能效率。另一方面,变压器Tr1的一次侧与交流输出端10’电连接,因此变压器Tr1具有较大的空载损耗。再者,变压器Tr1一直工作,且双向变换器15被控制为一直工作,可充电电池16充满电后一直处于浮充电状态。当可充电电池16一直处于浮充电状态时,可充电电池16的正极板会失活,产生大量的PbSO4并被吸收到负极板上。这将导致其活性降低,且内阻升高,进而可充电电池16的容量将迅速下降,寿命将大大减少。
发明内容
针对现有技术存在的上述技术问题,本发明提供了一种离线式不间断电源,包括:
连接在交流输入端和交流输出端之间的安全开关;
变压器,其一次侧的一端连接至所述交流输出端的一个端子;
在所述安全开关和所述交流输出端的另一个端子之间依次连接的第一开关、第二开关和输出开关,所述第一开关可操作地使得所述安全开关连接至所述变压器的一次侧的另一端和抽头之一,所述第二开关可操作地使得所述输出开关连接至所述变压器的一次侧的另一端和抽头之一;
第三开关,其可操作地使得所述安全开关连接至所述第一开关和交流输出端的另一个端子之一;以及
双向变换器,其可控地将所述变压器的二次侧的交流电转换为直流电以对可充电电池进行充电,以及将所述可充电电池的直流电转换为交流电。
优选的,所述离线式不间断电源还包括:
充电器,其输入端通过所述安全开关连接至所述交流输入端,且可控地将所述交流输入端的交流电转换为直流电;以及
辅助供电系统,其输入端连接至所述充电器的输出端。
优选的,所述第三开关包括:
与所述安全开关连接的公共端子;
连接至所述输出开关和所述交流输出端的另一个端子之间的第一切换端子;以及
连接至所述第一开关的第二切换端子。
优选的,所述充电器的输出端连接至所述可充电电池的两端。
优选的,所述离线式不间断电源还包括二极管,其阳极连接至所述可充电电池的正极,其阴极连接至所述充电器的输出端的正极端子。
优选的,所述充电器的输出功率小于所述可充电电池的最大充电功率,且所述充电器的输出电压大于所述可充电电池两端的电压。
优选的,所述离线式不间断电源还包括:
市电检测装置,其被配置为检测所述交流输出端的市电电压;
电池检测装置,其被配置为检测所述可充电电池的充电状态;以及
控制装置,其被配置为根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
优选的,当第一阈值电压≤所述市电电压<第二阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,所述控制装置控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当第二阈值电压≤所述市电电压<第三阈值电压时,所述控制装置控制所述安全开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
优选的,当第三阈值电压≤所述市电电压<第四阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当所述市电电压<第一阈值电压或≥第四阈值电压时,所述控制装置控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
本发明还提供了一种用于上述离线式不间断电源的控制方法,包括下列步骤:检测所述交流输出端的市电电压,检测所述可充电电池的充电状态,根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
优选的,当第一阈值电压≤所述市电电压<第二阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当第二阈值电压≤所述市电电压<第三阈值电压时,控制所述安全开关导通;其中,当所述可充电电池未被充满电时,控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
优选的,当第三阈值电压≤所述市电电压<第四阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
优选的,当所述市电电压<第一阈值电压或≥第四阈值电压时,控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
本发明的离线式不间断电源具有较高的电能传输效率,可以选择小型的、输入耐压较小的充电器,降低充电器的成本,还能够避免可充电电池处于浮充电状态,并且延长可充电电池的寿命以及降低可充电电池的成本。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1是现有技术中的一种离线式不间断电源的电路图。
图2是图1所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
图3是根据本发明第一个实施例的离线式不间断电源的电路图。
图4是图3所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
图5是根据本发明第二个实施例的离线式不间断电源的电路图。
图6是图5所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。
图3是根据本发明第一个实施例的离线式不间断电源的电路图。如图3所示,其与图1基本相同,区别在于,离线式不间断电源2还包括充电器28和第三开关29。第三开关29包括与安全开关22的第二安全开关单元222连接的公共端子,电连接在输出开关24和交流输出端20’的端子L之间的第一切换端子S1,以及与第一开关231的公共端子连接的第二切换端子S2。第三开关29可操作地使得安全开关22连接至第一开关231和交流输出端20’的端子L之一,安全开关22用于实现反馈保护功能。充电器28的输入端通过安全开关22连接至交流输入端20,即其输入端的一个端子连接至第一安全开关单元221和交流输出端20’的一个端子N之间,输入端的另一个端子连接至第二安全开关单元222和第三开关29之间,充电器28的输出端连接至辅助供电系统27的输入端。其中为了简化电路图,图3同样未示出用于检测市电电压的市电检测装置,用于检测可充电电池26的充电状态的电池检测装置,以及控制装置,其用于控制充电器28和双向变换器25的工作状态,以及控制安全开关22、第一开关231、第二开关232、第三开关29和输出开关24的开关状态。
以下将分情况介绍离线式不间断电源2的工作模式。
(1)当市电电压在正常范围内时,离线式不间断电源2被控制为处于正常模式。其中,安全开关22(即第一安全开关单元221和第二安全开关单元222)被控制为导通。如果可充电电池26未被充满电,控制第三开关29的公共端子与第二切换端子S2连接(即使得第三开关29连接至第一开关231),第一开关231和第二开关232被控制为都连接至变压器Tr2的一次侧的端子T22,以及输出开关24被控制为导通,交流输入端20的交流电将传输至交流输出端20’。同时双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26被充满电,此时第三开关29被控制为使其公共端子连接至第一切换端子S1(即第三开关29连接至交流输出端20’的端子L),输出开关24被控制为断开,双向变换器25被控制为停止给可充电电池26充电,同时充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26充电,且给辅助供电系统27提供所需的直流电。图4是图3所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。图4所示的等效电路与图2所示的等效电路相比可知:第一,变压器Tr2的一次侧并未连接在电路中,因此不存在变压器空载损耗,且双向变换器25停止工作。第二,安全开关22通过第三开关29直接连接至交流输出端20’的端子L,减少了2个开关的触点损耗。第三,第三开关29处于常闭状态,且输出开关24处于常开状态,因此减少了输出开关24的电磁线圈(图3未示出)损耗。发明人在相同的条件进行测试,图2所示的等效电路的电能传输效率为95.62%,图4所示的等效电路的电能传输效率升高到了98.75%,因此提高了电能传输效率,由此满足美国环境保护局和能源部实施的能源之星认证标准。
(2)当市电电压偏高时,离线式不间断电源2被控制为处于自动电压降压调节模式。其中,安全开关22被控制为导通,第三开关29被控制为使其公共端子连接至第二切换端子S2(即第三开关29连接至第一开关231),第一开关231被控制为连接至变压器Tr2的一次侧的端子T22,第二开关232被控制为连接至变压器Tr2的一次侧的抽头T23,且输出开关24被控制为导通。
其中,如果可充电电池26未被充满电,充电器28停止工作,双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26已充满电,双向变换器25停止工作,且充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26进行充电,且给辅助供电系统27提供所需的直流电。
(3)当市电电压偏低时,离线式不间断电源2被控制为处于自动电压升压调节模式。其中,安全开关22被控制为导通,第三开关29被控制为使其公共端子连接至第二切换端子S2(即将第二安全开关单元222连接至第一开关231),第一开关231被控制为连接至变压器Tr2的一次侧的抽头T23,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,且输出开关24被控制为导通。
如果可充电电池26未被充满电,充电器28停止工作,双向变换器25被控制为将变压器Tr2的二次侧的交流电转换为直流电,以对可充电电池26进行快速充电,且给辅助供电系统27提供直流电。
如果可充电电池26已充满电,双向变换器25停止工作,且充电器28被控制为将交流输入端20的交流电转换为直流电,以对可充电电池26进行充电,且给辅助供电系统27提供所需的直流电。
(4)当市电电压异常(例如电压过高)或停电时,离线式不间断电源2被控制为处于电池模式,其中,安全开关22被控制为断开,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,且输出开关24被控制为导通,同时双向变换器25被控制为将可充电电池26的直流电转换为交流电,经过变压器Tr2变压后,从而在交流输出端20’得到所需的交流电。同时可充电电池26给辅助供电系统27提供直流电。
当市电电压过高时,由于安全开关22被控制为断开,交流输入端20的市电并不会通过处于断开状态的安全开关22传输至充电器28的输入端,因此充电器28可以选择输入耐压较小的充电器,以降低电路的成本。
结合上述工作模式可知,在可充电电池26充满电后,充电器28被控制为工作以对辅助供电系统27进行供电。由于在不间断电源中,辅助供电系统27的功率远小于可充电电池26的最大充电功率,因此可以选择与辅助供电系统27的功率相适配的小型充电器,即充电器28的输出功率小于可充电电池26的最大充电功率,以降低电路的成本。
在正常模式中,当可充电电池26未被充满电时,第一开关231和第二开关232被控制为都连接至变压器Tr2的一次侧的端子T22,由此变压器Tr2的一次侧的全部绕组电连接至交流输入端20,能够有效防止变压器Tr2饱和。
在电池模式中,第二开关232被控制为连接至变压器Tr2的一次侧的端子T22,由此变压器Tr2的一次侧的全部绕组电连接至交流输出端20’,在双向变换器25的占空比不变的情况下,能够在交流输出端20’获得尽可能大的交流电压。与第二开关232被控制为连接至变压器Tr2的一次侧的抽头T23相比较,可以选择输出电压较小的可充电电池26,由此降低了可充电电池26的成本。
图5是根据本发明第二个实施例的离线式不间断电源的电路图。其中图5同样未示出市电检测装置、电池检测装置和控制装置。如图5所示,离线式不间断电源3与图3所述的离线式不间断电源2基本相同,区别在于,离线式不间断电源3还包括连接在可充电电池36的正极和充电器38的输出端的正极端子之间的二极管D3,其中二极管D3的阳极连接至可充电电池36的正极,其阴极连接至充电器38的输出端的正极端子。
以下将分情况介绍离线式不间断电源3的工作模式。
(1)当市电电压在正常范围内时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。图6是图5所示的离线式不间断电源在正常模式下可充电电池被充满电后的等效电路图。如图6所示,充电器38被控制为给辅助供电系统37提供所需的直流电。充电器38的充电电压大于可充电电池36两端的电压,可充电电池36并不会通过二极管D3对辅助供电系统37进行供电,而且由于二极管D3的反向截止功能,充电器38也不会对处于充满电的可充电电池36继续充电。因此可充电电池36此时处于休眠模式,这样可以延长使用寿命。
(2)当市电电压偏高时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。同样可充电电池36充满电之后处于休眠模式,这样可以延长使用寿命。
(3)当市电电压偏低时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。同样可充电电池36充满电之后处于休眠模式,这样可以延长使用寿命。
(4)当市电电压异常或停电时,其控制方法与离线式不间断电源2的控制方法相同,在此不予以赘述。
综上可知,当可充电电池36充满电后,双向变换器35停止对可充电电池36进行充电,同时充电器38开始工作并给辅助供电系统37提供所需的直流电。由于二极管D3的反向截止功能,此时充电器38并不会给可充电电池36充电。另外,使得充电器38的输出电压高于可充电电池36两端的电压,此时可充电电池36并不会通过二极管D3对辅助供电系统37进行供电。可充电电池36既没有被充电,也没有放电,避免了一直处于浮充电状态。
当需要对可充电电池36进行充电时,双向变换器35工作以对可充电电池36迅速地充电。当可充电电池36充满电后,双向变换器35停止工作,可充电电池36自动地处于休眠模式,极大地延长了可充电电池36的寿命。
在本发明的其他控制方法中,在正常模式或自动电压调节模式中,当可充电电池36未被充满电时,充电器38被控制为一直工作,以对辅助供电系统37提供所需的直流电。
在本发明的上述实施例中,双向变换器可以采用实现上述功能的单个电路模块实施,也可以采用电路模块组合实施,例如选用能够将直流逆变成交流的电路模块和利用交流电逆变成直流电给电池充电的电路模块的组合,比如为逆变器。
EMC滤波器适用于抑制电网噪声和高谐波及开关电源所产生的噪声和高频谐波,因此在对用电质量要求不高的应用场合中,离线式不间断电源也可以不具有EMC滤波器。在本发明的其他实施例中,EMC滤波器通过安全开关连接至交流输入端(即安全开关连接在交流输入端和EMC滤波器之间)。
本发明的控制方法基于交流输入端的市电电压来选择不同的工作模式。例如,当市电电压<第一阈值电压时,离线式不间断电源处于电池模式;当第一阈值电压≤市电电压<第二阈值电压时,离线式不间断电源处于自动电压升压调节模式;当第二阈值电压≤市电电压<第三阈值电压时,离线式不间断电源处于正常模式;当第三阈值电压≤市电电压<第四阈值电压时,离线式不间断电源处于自动电压降压调节模式;当第四阈值电压≤市电电压时,离线式不间断电源处于电池模式。本发明的控制方法并不意欲限定第一、第二、第三、第四阈值电压的具体数值,而是由用户根据市电的额定电压大小,负载允许的电压偏差范围以及变压器的匝数比来选择。例如市电的额定电压值为220伏特,负载允许的电压范围是200伏特~240伏特,变压器Tr1的一次侧的端子T1和抽头T3的匝数与端子T1和端子T2的匝数的比值为5:6,则第一阈值电压可以选择为167伏特,第二阈值电压可以选择为200伏特,第三阈值电压可以选择为240伏特,第四阈值电压可以选择为288伏特。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所作出的各种改变以及变化。
Claims (13)
1.一种离线式不间断电源,其特征在于,包括:
连接在交流输入端和交流输出端之间的安全开关;
变压器,其一次侧的一端连接至所述交流输出端的一个端子;
在所述安全开关和所述交流输出端的另一个端子之间依次连接的第一开关、第二开关和输出开关,所述第一开关可操作地使得所述安全开关连接至所述变压器的一次侧的另一端和抽头之一,所述第二开关可操作地使得所述输出开关连接至所述变压器的一次侧的另一端和抽头之一;
第三开关,其可操作地使得所述安全开关连接至所述第一开关和交流输出端的另一个端子之一;以及
双向变换器,其可控地将所述变压器的二次侧的交流电转换为直流电以对可充电电池进行充电,以及将所述可充电电池的直流电转换为交流电。
2.根据权利要求1所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括:
充电器,其输入端通过所述安全开关连接至所述交流输入端,且可控地将所述交流输入端的交流电转换为直流电;以及
辅助供电系统,其输入端连接至所述充电器的输出端。
3.根据权利要求2所述的离线式不间断电源,其特征在于,所述第三开关包括:
与所述安全开关连接的公共端子;
连接至所述输出开关和所述交流输出端的另一个端子之间的第一切换端子;以及
连接至所述第一开关的第二切换端子。
4.根据权利要求2所述的离线式不间断电源,其特征在于,所述充电器的输出端连接至所述可充电电池的两端。
5.根据权利要求2所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括二极管,其阳极连接至所述可充电电池的正极,其阴极连接至所述充电器的输出端的正极端子。
6.根据权利要求5所述的离线式不间断电源,其特征在于,所述充电器的输出功率小于所述可充电电池的最大充电功率,且所述充电器的输出电压大于所述可充电电池两端的电压。
7.根据权利要求2至6中任一项所述的离线式不间断电源,其特征在于,所述离线式不间断电源还包括:
市电检测装置,其被配置为检测所述交流输出端的市电电压;
电池检测装置,其被配置为检测所述可充电电池的充电状态;以及
控制装置,其被配置为根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
8.根据权利要求7所述的离线式不间断电源,其特征在于:
当第一阈值电压≤所述市电电压<第二阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;其中,当所述可电电池未被充满电时,所述控制装置控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及,当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电;
当第二阈值电压≤所述市电电压<第三阈值电压时,所述控制装置控制所述安全开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电;
当第三阈值电压≤所述市电电压<第四阈值电压时,所述控制装置控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;其中,当所述可充电电池未被充满电时,所述控制装置控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;当所述可充电电池充满电时,所述控制装置控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电;
或,当所述市电电压<第一阈值电压或≥第四阈值电压时,所述控制装置控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
9.一种用于如权利要求2至6中任一项所述的离线式不间断电源的控制方法,其特征在于,包括下列步骤:检测所述交流输出端的市电电压,检测所述可充电电池的充电状态,根据所述市电电压和所述可充电电池的充电状态控制所述充电器和双向变换器的工作状态,以及控制所述安全开关、第一开关、第二开关、第三开关和输出开关的开关状态。
10.根据权利要求9所述的控制方法,其特征在于,当第一阈值电压≤所述市电电压<第二阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的抽头,控制所述第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通;
其中,当所述可电电池未被充满电时,控制所述充电器停止工作,且控制双向变换器将所述变压器的二次侧的交流电转换为直流电;以及
当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
11.根据权利要求9所述的控制方法,其特征在于,当第二阈值电压≤所述市电电压<第三阈值电压时,控制所述安全开关导通;
其中,当所述可充电电池未被充满电时,控制所述第三开关连接至所述第一开关,控制所述第一开关和第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述变压器的二次侧的交流电转换为直流电;
当所述可充电电池充满电时,控制所述第三开关连接至所述交流输出端的另一个端子,控制所述输出开关断开,控制所述双向变换器停止工作,控制所述充电器以将所述交流输入端的交流电转换为直流电。
12.根据权利要求9所述的控制方法,其特征在于,当第三阈值电压≤所述市电电压<第四阈值电压时,控制所述安全开关导通,控制所述第三开关连接至所述第一开关,控制所述第一开关连接至所述变压器的一次侧的另一端,控制所述第二开关连接至所述变压器的一次侧的抽头,且控制所述输出开关导通;
其中,当所述可充电电池未被充满电时,控制所述充电器停止工作,控制所述双向变换器将所述变压器的二次侧的交流电转换为直流电;
当所述可充电电池充满电时,控制所述双向变换器停止工作,且控制所述充电器将所述交流输入端的交流电转换为直流电。
13.根据权利要求9所述的控制方法,其特征在于,当所述市电电压<第一阈值电压或≥第四阈值电压时,控制所述安全开关断开,控制第二开关连接至所述变压器的一次侧的另一端,控制所述输出开关导通,控制所述双向变换器以将所述可充电电池的直流电转换为交流电。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910439590.0A CN110061559B (zh) | 2019-05-24 | 2019-05-24 | 离线式不间断电源及其控制方法 |
US17/613,803 US11949282B2 (en) | 2019-05-24 | 2020-05-21 | Offline uninterruptible power source and control method therefor |
PCT/CN2020/091458 WO2020238735A1 (zh) | 2019-05-24 | 2020-05-21 | 离线式不间断电源及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910439590.0A CN110061559B (zh) | 2019-05-24 | 2019-05-24 | 离线式不间断电源及其控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110061559A true CN110061559A (zh) | 2019-07-26 |
CN110061559B CN110061559B (zh) | 2022-01-25 |
Family
ID=67324418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910439590.0A Active CN110061559B (zh) | 2019-05-24 | 2019-05-24 | 离线式不间断电源及其控制方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11949282B2 (zh) |
CN (1) | CN110061559B (zh) |
WO (1) | WO2020238735A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111917174A (zh) * | 2020-08-27 | 2020-11-10 | 东莞市硕擎能源科技有限公司 | Ups电源及其电压调节装置 |
CN112701781A (zh) * | 2021-01-26 | 2021-04-23 | 东莞市硕擎能源科技有限公司 | Ups的节能电源电路 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115706422A (zh) * | 2021-08-03 | 2023-02-17 | 北京小米移动软件有限公司 | 充电系统、充电系统的控制方法、装置及电子设备 |
CN116826944A (zh) * | 2022-03-22 | 2023-09-29 | 伊顿智能动力有限公司 | 一种离线式不间断电源及doe模式失效检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976871A (zh) * | 2010-10-22 | 2011-02-16 | 艾默生网络能源有限公司 | 一种ups电源控制电路和ups电源 |
CN202026129U (zh) * | 2009-12-11 | 2011-11-02 | 沪东重机有限公司 | 船用智能柴油机电控系统的交流供电设备 |
CN104065157A (zh) * | 2014-06-09 | 2014-09-24 | 深圳微网能源管理系统实验室有限公司 | 一种改进供电可靠性的不间断电源 |
CN104953696A (zh) * | 2014-03-27 | 2015-09-30 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 在线互动式不间断电源 |
CN105634108A (zh) * | 2014-11-06 | 2016-06-01 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 离线式不间断电源 |
CN105723587A (zh) * | 2013-09-30 | 2016-06-29 | 施耐德电气It公司 | 用于混合的ac负载和dc负载的ups |
US20160226304A1 (en) * | 2015-01-30 | 2016-08-04 | Francisco L. Castro | Electrical power generation system |
CN109075602A (zh) * | 2016-09-06 | 2018-12-21 | 株式会社自动网络技术研究所 | 车载用的备用装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005176460A (ja) * | 2003-12-09 | 2005-06-30 | Fuji Electric Fa Components & Systems Co Ltd | 無停電電源装置 |
US7259476B2 (en) * | 2005-04-26 | 2007-08-21 | Always “On” UPS Systems Inc. | DC and AC uninterruptible power supply |
US8212402B2 (en) * | 2009-01-27 | 2012-07-03 | American Power Conversion Corporation | System and method for limiting losses in an uninterruptible power supply |
JP2010233358A (ja) * | 2009-03-27 | 2010-10-14 | Tdk-Lambda Corp | 電池保護回路、電池保護方法、電源装置およびプログラム |
CN102163870A (zh) * | 2010-02-24 | 2011-08-24 | 硕天科技股份有限公司 | 省电式不断电系统 |
CN104810871B (zh) * | 2014-01-26 | 2018-12-11 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 不间断电源及其启动方法 |
CN104882913A (zh) * | 2014-02-27 | 2015-09-02 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 一种ups电路 |
US10641831B2 (en) * | 2017-08-25 | 2020-05-05 | Schneider Electric It Corporation | Battery current measurement |
US10944287B2 (en) * | 2018-07-02 | 2021-03-09 | Schneider Electric It Corporation | AVR bypass relay welding detection |
-
2019
- 2019-05-24 CN CN201910439590.0A patent/CN110061559B/zh active Active
-
2020
- 2020-05-21 US US17/613,803 patent/US11949282B2/en active Active
- 2020-05-21 WO PCT/CN2020/091458 patent/WO2020238735A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202026129U (zh) * | 2009-12-11 | 2011-11-02 | 沪东重机有限公司 | 船用智能柴油机电控系统的交流供电设备 |
CN101976871A (zh) * | 2010-10-22 | 2011-02-16 | 艾默生网络能源有限公司 | 一种ups电源控制电路和ups电源 |
CN105723587A (zh) * | 2013-09-30 | 2016-06-29 | 施耐德电气It公司 | 用于混合的ac负载和dc负载的ups |
CN104953696A (zh) * | 2014-03-27 | 2015-09-30 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 在线互动式不间断电源 |
CN104065157A (zh) * | 2014-06-09 | 2014-09-24 | 深圳微网能源管理系统实验室有限公司 | 一种改进供电可靠性的不间断电源 |
CN105634108A (zh) * | 2014-11-06 | 2016-06-01 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | 离线式不间断电源 |
US20160226304A1 (en) * | 2015-01-30 | 2016-08-04 | Francisco L. Castro | Electrical power generation system |
CN109075602A (zh) * | 2016-09-06 | 2018-12-21 | 株式会社自动网络技术研究所 | 车载用的备用装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111917174A (zh) * | 2020-08-27 | 2020-11-10 | 东莞市硕擎能源科技有限公司 | Ups电源及其电压调节装置 |
CN112701781A (zh) * | 2021-01-26 | 2021-04-23 | 东莞市硕擎能源科技有限公司 | Ups的节能电源电路 |
Also Published As
Publication number | Publication date |
---|---|
US11949282B2 (en) | 2024-04-02 |
CN110061559B (zh) | 2022-01-25 |
WO2020238735A1 (zh) | 2020-12-03 |
US20220231535A1 (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI221695B (en) | Uninterruptible power system | |
CN110061559A (zh) | 离线式不间断电源及其控制方法 | |
CN101604904B (zh) | 可提升轻载效率的交换式电源供应器 | |
US20170012465A1 (en) | Ups circuit | |
CN104067499B (zh) | 开关电源装置 | |
US12160137B2 (en) | Online interactive uninterruptible power supply and method for control thereof | |
CN103248100B (zh) | 一种后备电源充放电控制电路 | |
CN203278327U (zh) | 一种后备电源充放电控制电路 | |
KR20070001031A (ko) | 태양광 발전장치가 구비된 무정전 전원투입장치 | |
CN105634108B (zh) | 离线式不间断电源 | |
CN106602598A (zh) | 一种并网设备的辅助电源的智能供电系统 | |
CN110061560A (zh) | 离线式不间断电源及其控制方法 | |
CN111525676B (zh) | 直流输出不断电电源供应器 | |
CN117713104A (zh) | 备电装置和功率变换器 | |
US7230353B2 (en) | Charging circuit in uninterruptible power supply system | |
CN212649189U (zh) | 一种用于5g基站的直流不间断电源 | |
CN109428388A (zh) | 不断电电源系统 | |
CN218940750U (zh) | 离线式不间断电源 | |
CN113169576A (zh) | 具有多个次级变压器电路的电池充电器 | |
CN219351288U (zh) | 一种发电机供电系统 | |
CN221126915U (zh) | 电池管理系统的直流供电电路、高压箱和储能系统 | |
CN216794695U (zh) | 一种充电电路、充电器和充电系统 | |
US20240297518A1 (en) | Devices, systems, and methods for connecting a direct-current energy storage to an alternating current load | |
CN213213177U (zh) | 离线式不间断电源 | |
JP2018139167A (ja) | 出力変換装置、電源装置および制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |