CN110059676A - A kind of aviation plug hole location recognition methods based on deep learning Yu multiple target distribution sorting - Google Patents
A kind of aviation plug hole location recognition methods based on deep learning Yu multiple target distribution sorting Download PDFInfo
- Publication number
- CN110059676A CN110059676A CN201910264451.9A CN201910264451A CN110059676A CN 110059676 A CN110059676 A CN 110059676A CN 201910264451 A CN201910264451 A CN 201910264451A CN 110059676 A CN110059676 A CN 110059676A
- Authority
- CN
- China
- Prior art keywords
- plug
- hole location
- image
- aviation
- plug hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000013135 deep learning Methods 0.000 title claims abstract description 13
- 238000009434 installation Methods 0.000 claims abstract description 27
- 238000013528 artificial neural network Methods 0.000 claims description 20
- 230000004927 fusion Effects 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims 5
- 230000002708 enhancing effect Effects 0.000 claims 4
- 210000005036 nerve Anatomy 0.000 claims 1
- 210000004218 nerve net Anatomy 0.000 claims 1
- 238000005070 sampling Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/22—Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于深度学习与多目标分布排序的航空插头孔位识别方法,包括以下步骤:启动相机并初始化,捕获航空插头图像,训练插头定位网络模型在工业场景图像中定位航空插头目标,判断候选目标是否满足尺寸约束条件,从图像中裁剪插头孔位区域,训练孔位识别网络模型识别插头孔位区域的孔位与防错销钉阵列,根据多目标排序原理编号航空插头孔位阵列,判定航空插头孔位安装状态,匹配数据库并输出识别结果。该基于深度学习与多目标分布排序的航空插头孔位识别方法通过拍摄航空插头图像,视觉识别航空插头与插头孔位,对插头孔位进行排序编号,判定航空插头的安装结果,节省了检验航空插头孔位安装状态的人力成本且效率高。
The invention discloses an aviation plug hole position identification method based on deep learning and multi-target distribution sorting, comprising the following steps: starting a camera and initializing, capturing an aviation plug image, training a plug positioning network model to locate the aviation plug target in the industrial scene image , judge whether the candidate target meets the size constraints, crop the plug hole area from the image, train the hole position recognition network model to identify the hole position and error-proof pin array in the plug hole area, and number the aviation plug hole position array according to the multi-object sorting principle , determine the installation status of the air plug hole position, match the database and output the identification result. The aviation plug hole position identification method based on deep learning and multi-object distribution sorting can visually identify the aviation plug and the plug hole position by taking the image of the aviation plug, sort and number the plug hole position, and determine the installation result of the aviation plug, which saves the cost of checking the aviation plug. The labor cost of the plug hole installation state is high and the efficiency is high.
Description
技术领域technical field
本发明涉及飞机制造智能装配领域,尤其涉及一种基于深度学习与多目标分布排序的航空插头孔位识别方法。The invention relates to the field of aircraft manufacturing intelligent assembly, in particular to an aviation plug hole position identification method based on deep learning and multi-objective distribution sorting.
背景技术Background technique
在飞机制造中,飞机装配成本和装配工作量约占全机成本与工作量的一半,飞机装配中导线插头装配占有较大比重。航空插头主要用来连接不同设备之间的电气通信,飞机上航空插头种类和数量繁多,每一种航空插头有其独立的安装状态结果,导线从航空插头背面安装至航空插头的孔位内后,需要对航空插头的安装结果进行校验,该过程严重依赖人工,工人需要区分航空插头正面已安装导线的孔位和未安装导线的孔位,搜索该插头在数据库中存储的安装状态结果,通过比对安装结果是否保持一致进而判断该插头中是否存在漏装导线的孔位,或者错装导线的孔位。该过程繁琐复杂、效率低下,难以适应飞机批量的快速生产需求。In aircraft manufacturing, aircraft assembly cost and assembly workload account for about half of the entire aircraft cost and workload, and wire plug assembly occupies a large proportion in aircraft assembly. Aviation plugs are mainly used to connect electrical communication between different devices. There are many types and quantities of aviation plugs on the plane. Each type of aviation plug has its own independent installation status. The wires are installed from the back of the aviation plug to the hole of the aviation plug. , It is necessary to verify the installation result of the aviation plug. This process relies heavily on labor. The worker needs to distinguish the hole position of the installed wire on the front of the aviation plug and the hole position of the uninstalled wire, and search the installation status results stored in the database for the plug. By comparing whether the installation results are consistent, it is judged whether there are holes for missing wires in the plug, or holes for wrong wires. This process is cumbersome and inefficient, and it is difficult to adapt to the rapid production needs of aircraft batches.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种基于深度学习与多目标分布排序的航空插头孔位识别方法。The invention provides an air plug hole position identification method based on deep learning and multi-target distribution sorting.
为了实现上述目的,本发明采用了如下工作流程:In order to achieve the above object, the present invention has adopted the following workflow:
S1、启动相机并初始化,设置相机的对焦模式,调整相机闪光灯的亮度。S1. Start the camera and initialize it, set the focus mode of the camera, and adjust the brightness of the camera flash.
S2、相机对焦完成后,在现场工业场景下捕获航空插头正面图像。S2. After the camera is focused, the front image of the aviation plug is captured in the on-site industrial scene.
S3、将捕获的航空插头图像送入训练完成的插头定位网络模型,输出航空插头的类别及在图像坐标系下的插头坐标,作为航空插头候选目标。S3. Send the captured image of the aviation plug into the trained plug positioning network model, and output the category of the aviation plug and the plug coordinates in the image coordinate system as the candidate target of the aviation plug.
S4、判断航空插头候选目标是否满足尺寸约束条件,若不满足,重复步骤S2与S3,重新捕获航空插头图像。S4. Determine whether the candidate target of the aviation plug satisfies the size constraint. If not, repeat steps S2 and S3 to recapture the image of the aviation plug.
S5、若航空插头候选目标满足所述S4中的尺寸约束条件,根据所述S3中插头定位网络模型输出的插头坐标从图像中裁剪插头孔位区域。S5. If the candidate target of the aviation plug satisfies the size constraints in the S4, crop the plug hole area from the image according to the plug coordinates output by the plug positioning network model in the S3.
S6、将插头孔位区域送入训练完成的孔位识别网络模型,输出插头孔位区域中的插头孔位坐标与防错销钉坐标,完成插头孔位区域中的插头孔位与防错销钉的类别识别与位置检测。S6. Send the plug hole position area into the trained hole position identification network model, output the plug hole position coordinates and the error-proof pin coordinates in the plug hole position area, and complete the connection between the plug hole position and the error-proof pin in the plug hole position area. Class recognition and location detection.
S7、根据插头孔位坐标与防错销钉坐标,对插头孔位和防错销钉进行阵列多目标排序,对插头孔位进行编号。S7. According to the coordinates of the plug hole positions and the coordinates of the error-proofing pins, perform array multi-object sorting on the plug hole positions and the error-proofing pins, and number the plug hole positions.
S8、判定每个插头孔位的安装状态,判断该插头孔位中是否安装导线,进而得知整个航空插头的安装结果。S8. Determine the installation state of each plug hole position, determine whether a wire is installed in the plug hole position, and then know the installation result of the entire aviation plug.
S9、将航空插头的安装结果匹配数据库中的安装结果,输出航空插头安装检验结果,判别航空插头安装结果是否与数据库保持一致。S9. Match the installation result of the aviation plug with the installation result in the database, output the installation inspection result of the aviation plug, and determine whether the installation result of the aviation plug is consistent with the database.
优选地,所述S3步骤中的插头定位网络模型训练方法包括:Preferably, the plug positioning network model training method in the step S3 includes:
S31、在现场场景中采集大量不同种类的航空插头正面图像,标注每张图像中的航空插头类别与在图像坐标系下的插头坐标,制作航空插头图像数据集D1。S31. Collect a large number of frontal images of different types of aviation plugs in the scene, mark the type of aviation plugs in each image and the plug coordinates in the image coordinate system, and create an image data set D1 of aviation plugs.
S32、对航空插头图像数据集D1中的每张图像进行图像增强操作,得到增强航空插头图像数据集D2。S32 , performing an image enhancement operation on each image in the aviation plug image data set D1 to obtain an enhanced aviation plug image data set D2.
S33、构建插头定位深度神经网络,建立插头定位网络模型的训练目标,回归航空插头图像中的插头坐标,分类图像中的航空插头类型。S33 , constructing a plug positioning deep neural network, establishing a training target of the plug positioning network model, returning the plug coordinates in the air plug image, and classifying the air plug type in the image.
S34、使用航空插头图像数据集D1和增强航空插头图像数据集D2训练插头定位神经网络,拟合网络模型的参数。S34, use the aviation plug image data set D1 and the enhanced aviation plug image data set D2 to train a plug positioning neural network, and fit the parameters of the network model.
S35、训练完成后,保存插头定位网络模型。S35. After the training is completed, save the plug positioning network model.
优选地,所述S6步骤中的孔位识别网络模型训练方法包括:Preferably, the method for training the hole position identification network model in the step S6 includes:
S61、根据航空插头图像数据集D1中标注的插头坐标将每张图像中的航空插头裁剪下来作为新的图像,制作插头孔位区域数据集D3,标注插头孔位区域数据集D3中每张图像中的插头孔位坐标和防错销钉坐标,标注插头孔位的类别和防错销钉的类别。S61. Cut out the aviation plug in each image as a new image according to the plug coordinates marked in the aviation plug image data set D1, create a plug hole area data set D3, and mark each image in the plug hole area data set D3 The coordinates of the plug hole position and the error-proof pin coordinates in , and mark the type of the plug hole position and the type of the error-proof pin.
S62、对插头孔位区域数据集D3中的每张图像进行图像增强操作,得到增强孔位区域数据集D4。S62: Perform an image enhancement operation on each image in the plug hole region data set D3 to obtain an enhanced hole region data set D4.
S63、构建孔位识别深度神经网络,建立孔位识别网络模型的训练目标,回归插头孔位区域图像中插头孔位坐标和防错销钉坐标,分类图像中的插头孔位和防错销钉的类型。S63 , constructing a deep neural network for hole position identification, establishing a training target of the hole position identification network model, returning the plug hole position coordinates and error-proofing pin coordinates in the image of the plug hole position area, and classifying the plug hole positions and the types of error-proofing pins in the image .
S64、使用插头孔位区域数据集D3和增强孔位区域数据集D4训练孔位识别神经网络,拟合网络模型的参数。S64, using the plug hole location area data set D3 and the enhanced hole location area data set D4 to train a hole location identification neural network, and fit the parameters of the network model.
S65、训练完成后,保存孔位识别网络模型。S65. After the training is completed, save the hole position identification network model.
进一步的,所述S32和S62中的图像增强操作包括图像白平衡、图像颜色变换、图像几何伸缩、图像旋转变换及图像随机噪声五种操作。Further, the image enhancement operations in S32 and S62 include five operations of image white balance, image color transformation, image geometric scaling, image rotation transformation, and image random noise.
进一步的,所述S33中插头定位深度神经网络和S63中孔位识别深度神经网络包含特征提取网络、特征融合网络和输出网络,所述特征提取网络包含四层卷积层和池化层,所述特征融合网络包含三层上采样层和级联层,所述输出网络预测检测目标的类别和位置坐标,所述特征提取网络和所述特征融合网络之间连接有1×1的卷积过滤器,所述特征融合网络和所述输出网络之间连接有3×3的卷积过滤器。Further, the plug positioning deep neural network in the S33 and the hole position recognition deep neural network in S63 include a feature extraction network, a feature fusion network and an output network, and the feature extraction network includes four layers of convolution layers and pooling layers. The feature fusion network includes three upsampling layers and cascade layers, the output network predicts the category and position coordinates of the detection target, and a 1×1 convolution filter is connected between the feature extraction network and the feature fusion network. A 3×3 convolution filter is connected between the feature fusion network and the output network.
优选地,所述S4步骤中的尺寸约束条件为所述S3中航空插头候选目标的长宽比在0.6-1.4,所述S3中航空插头候选目标的长度大于所述S3中航空插头图像长度的四分之一。Preferably, the size constraint in the step S4 is that the aspect ratio of the aviation plug candidate target in the S3 is 0.6-1.4, and the length of the aviation plug candidate target in the S3 is greater than the length of the aviation plug image in the S3. quarter.
优选地,所述S7步骤中的阵列多目标排序方法包括:Preferably, the array multi-target sorting method in step S7 includes:
S71、根据所述S6中输出的防错销钉的坐标计算插头孔位区域的几何中心点以该点为极点,引向长宽比最大的防错销钉的坐标的射线为极轴建立级坐标系。S71. According to the coordinates of the error-proofing pins outputted in the S6 Calculate the geometric center point of the plug hole area Take this point as the pole and lead to the coordinates of the error proofing pin with the largest aspect ratio The ray establishes the level coordinate system for the polar axis.
S72、计算所述S6中输出的每个插头孔位的坐标Pi=(xi,yi)在极坐标系中的极角和极径 S72: Calculate the polar angle of the coordinates P i =(x i , y i ) of each plug hole position output in the S6 in the polar coordinate system and polar diameter
S73、根据极径γi距离极点的距离将插头孔位坐标自外向内分为M个区段,第j个区段上的插头孔位坐标为自外向内根据每一层区段上的插头孔位坐标的极角大小对插头孔位进行排序,依此顺序对插头孔位区域的插头孔位进行编号。S73, according to the distance between the pole diameter γ i and the pole, divide the plug hole position coordinates into M sections from the outside to the inside, and the plug hole position coordinates on the jth section are Polar angle from outside to inside according to the coordinates of plug holes on each layer segment The size of the plug holes is sorted, and the plug holes in the plug hole area are numbered in this order.
优选地,所述S8步骤中根据插头孔位的像素颜色判别孔位中是否安装导线。Preferably, in the step S8, it is determined whether or not a wire is installed in the hole according to the pixel color of the hole of the plug.
该发明的有益之处是,通过相机拍摄航空插头图像,视觉识别图像中的航空插头与插头孔位,对检测出的插头孔位进行分布排序与编号,判断插头孔位的安装状态,得知航空插头的安装结果,代替人工检验航空插头的安装结果,节省了人力成本且效率高;航空插头的插头孔位尺寸小,难以直接在航空插头图像中识别插头孔位,首先训练插头定位网络模型从图像中检测插头孔位区域,将插头孔位区域从图像中裁剪下来形成新的图像,继而训练孔位识别网络模型从插头孔位区域识别插头孔位,设计合理,能够分别从含有复杂工业背景的图像中检测航空插头和插头孔位,提高了识别结果的准确率;插头定位深度神经网络和孔位识别深度神经网络中特征提取网络的四层卷积层和池化层能够有效提取航空插头和插头孔位的特征,特征融合网络能够融合图像中不同尺度的提取特征,提高了网络的使用性能;航空插头候选目标的尺寸约束条件可以过滤图像中的噪声目标,保证预测的候选目标为航空插头,提高了航空插头定位的可靠性;结合防错销钉和插头孔位的阵列特征,在极坐标系下对插头孔位多目标进行排序编号,简单易行且适应性强;安装有导线的插头孔位为黄铜色,与未安装导线的插头孔位颜色差异明显,采用像素颜色判别插头孔位是否安装有导线的方式效率高且保证了准确率。The advantage of the invention is that the camera takes an image of the aviation plug, visually identifies the aviation plug and the plug hole position in the image, sorts and numbers the detected plug hole position, judges the installation state of the plug hole position, and knows The installation result of the aviation plug replaces the manual inspection of the installation result of the aviation plug, which saves labor costs and has high efficiency; the plug hole size of the aviation plug is small, and it is difficult to directly identify the plug hole position in the aviation plug image. First, train the plug positioning network model. Detect the plug hole area from the image, crop the plug hole area from the image to form a new image, and then train the hole position recognition network model to identify the plug hole position from the plug hole area. Detecting aviation plugs and plug hole positions in the background image improves the accuracy of the recognition results; the four-layer convolutional layer and pooling layer of the feature extraction network in the plug positioning deep neural network and hole position recognition deep neural network can effectively extract aviation The feature fusion network can fuse the extracted features of different scales in the image, which improves the performance of the network; the size constraints of the candidate target of the aviation plug can filter the noise target in the image and ensure that the predicted candidate target is The aviation plug improves the reliability of the positioning of the aviation plug; combined with the array features of the error-proof pins and the plug hole positions, the multi-objective sorting and numbering of the plug hole positions in the polar coordinate system is simple and easy to implement and has strong adaptability; The hole position of the plug is brass, which is obviously different from the hole position of the plug without the wire. The pixel color is used to determine whether the wire is installed in the plug hole, which is efficient and accurate.
附图说明Description of drawings
图1为本发明的航空插头孔位识别流程图;Fig. 1 is the air plug hole position identification flow chart of the present invention;
图2为本发明的典型航空插头的结构示意图;2 is a schematic structural diagram of a typical aviation plug of the present invention;
图3为本发明的典型航空插头的孔位分布示意图;3 is a schematic diagram of the distribution of holes of a typical aviation plug of the present invention;
图4为本发明的航空插头孔位识别过程的示意图;4 is a schematic diagram of the identification process of the air plug hole position of the present invention;
图5为本发明的深度神经网络的结构示意图;5 is a schematic structural diagram of a deep neural network of the present invention;
图6为本发明的单层航空插头孔位排序方法示意图;6 is a schematic diagram of a method for sorting the hole positions of a single-layer aviation plug according to the present invention;
图7为本发明的多层航空插头孔位编号方法示意图。FIG. 7 is a schematic diagram of the method for numbering holes of multi-layer aviation plugs according to the present invention.
图2中,1、插头孔位,2、插头正面,3、防错销钉。In Figure 2, 1. the hole position of the plug, 2. the front of the plug, and 3. the error-proof pin.
图4中,31、插头坐标,61、防错销钉坐标,62、插头孔位坐标。In Fig. 4, 31, the coordinates of the plug, 61, the coordinates of the error-proof pin, and 62, the coordinates of the hole position of the plug.
从图2中可看出典型航空插头的形状与结构。The shape and structure of a typical aviation plug can be seen from Figure 2.
从图3中可看出典型航空插头的插头孔位和防错销钉的排列方式。Figure 3 shows the arrangement of the plug holes and error-proof pins of a typical aviation plug.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments.
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "top", "bottom", "inside", " The orientation or positional relationship indicated by "outside" is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, so as to The specific orientation configuration and operation are therefore not to be construed as limitations of the present invention.
实施例1:Example 1:
参照图1-2,一种基于深度学习与多目标分布排序的航空插头孔位识别方法,采用了如下工作流程:Referring to Figure 1-2, an aviation plug hole position identification method based on deep learning and multi-target distribution sorting adopts the following workflow:
S1、启动相机并初始化,设置相机的对焦模式,调整相机闪光灯的亮度。S1. Start the camera and initialize it, set the focus mode of the camera, and adjust the brightness of the camera flash.
S2、相机对焦完成后,参考图3,在现场工业场景下捕获航空插头正面2图像。S2. After the camera is focused, refer to Figure 3 to capture an image of the front 2 of the aviation plug in an industrial scene.
S3、将捕获的航空插头图像送入训练完成的插头定位网络模型,参考图4,输出航空插头的类别及在图像坐标系下的插头坐标31,作为航空插头候选目标。S3. Send the captured air plug image into the trained plug positioning network model. Referring to FIG. 4, output the type of the air plug and the plug coordinates 31 in the image coordinate system as the candidate target of the air plug.
S4、判断航空插头候选目标是否满足尺寸约束条件,若不满足,重复步骤S2与S3,重新捕获航空插头图像。S4. Determine whether the candidate target of the aviation plug satisfies the size constraint. If not, repeat steps S2 and S3 to recapture the image of the aviation plug.
S5、若航空插头候选目标满足所述S4中的尺寸约束条件,参考图4,根据所述S3中插头定位网络模型输出的插头坐标31从图像中裁剪插头孔位区域。S5. If the candidate target of the aviation plug satisfies the size constraints in the S4, referring to FIG. 4, crop the plug hole area from the image according to the plug coordinates 31 output by the plug positioning network model in the S3.
S6、将插头孔位区域送入训练完成的孔位识别网络模型,参考图4,输出插头孔位区域中的插头孔位坐标62与防错销钉坐标61,完成插头孔位区域中的插头孔位1与防错销钉3的类别识别与位置检测。S6. Send the plug hole position area into the trained hole position identification network model, referring to FIG. 4 , output the plug hole position coordinates 62 and the error-proof pin coordinates 61 in the plug hole position area, and complete the plug hole position in the plug hole position area. Class recognition and position detection for bit 1 and error proofing pin 3.
S7、根据插头孔位坐标62与防错销钉坐标61,参考图6-7,对插头孔位1和防错销钉3进行阵列多目标排序,对插头孔位1进行编号。S7. According to the plug hole position coordinates 62 and the error-proof pin coordinates 61, referring to FIG. 6-7, perform array multi-object sorting on the plug hole position 1 and the error-proof pin 3, and number the plug hole position 1.
S8、判定每个插头孔位1的安装状态,判断该插头孔位1中是否安装导线,进而得知整个航空插头的安装结果。S8. Determine the installation state of each plug hole 1, determine whether a wire is installed in the plug hole 1, and then know the installation result of the entire aviation plug.
S9、将航空插头的安装结果匹配数据库中的安装结果,输出航空插头安装检验结果,判别航空插头安装结果是否与数据库保持一致。S9. Match the installation result of the aviation plug with the installation result in the database, output the installation inspection result of the aviation plug, and determine whether the installation result of the aviation plug is consistent with the database.
为解决难以直接从航空插头图像中识别插头孔位1的问题,参考图1,分别训练插头定位网络模型和孔位识别网络模型,参考图4,首先使用插头定位网络模型检测航空插头在图像中的插头坐标31,根据插头坐标31将插头孔位区域从图像中裁剪下来送入孔位识别网络模型,检测孔位坐标62与防错销钉坐标61。所述插头定位网络模型的训练方法包括,在现场场景中采集大量不同种类的航空插头正面2的图像,标注每张图像中的航空插头类别与在图像坐标系下的插头坐标31,制作航空插头图像数据集D1;对航空插头图像数据集D1中的每张图像进行图像增强操作,得到增强航空插头图像数据集;构建插头定位深度神经网络,建立插头定位网络模型的训练目标,回归航空插头图像中的插头坐标31,分类图像中的航空插头类型;使用航空插头图像数据集D1和增强航空插头图像数据集D2训练插头定位神经网络,拟合网络模型的参数;训练完成后,保存插头定位网络模型。所述孔位识别网络模型训练方法包括,根据航空插头图像数据集D1中标注的插头坐标31将每张图像中的航空插头裁剪下来作为新的图像,制作插头孔位区域数据集D3,标注插头孔位区域数据集D3中每张图像中的插头孔位坐标62和防错销钉坐标61,标注插头孔位1的类别和防错销钉3的类别;对插头孔位区域数据集D3中的每张图像进行图像增强操作,得到增强孔位区域数据集D4;构建孔位识别深度神经网络,建立孔位识别网络模型的训练目标,回归插头孔位区域图像中插头孔位坐标62和防错销钉坐标61,分类图像中的插头孔位1和防错销钉3的类型;使用插头孔位区域数据集D3和增强孔位区域数据集D4训练孔位识别神经网络,拟合网络模型的参数;训练完成后,保存孔位识别网络模型。所述图像增强操作包括图像白平衡、图像颜色变换、图像几何伸缩、图像旋转变换及图像随机噪声五种操作。参考图5,所述插头定位深度神经网络和孔位识别深度神经网络包含特征提取网络、特征融合网络和输出网络,所述特征提取网络包含四层卷积层和池化层,所述特征融合网络包含三层上采样层和级联层,所述输出网络预测检测目标的类别和位置坐标,所述特征提取网络和所述特征融合网络之间连接有1×1的卷积过滤器,所述特征融合网络和所述输出网络之间连接有3×3的卷积过滤器。In order to solve the problem that it is difficult to directly identify the plug hole position 1 from the aviation plug image, refer to Figure 1, respectively train the plug positioning network model and the hole position identification network model, refer to Figure 4, first use the plug positioning network model to detect the aviation plug in the image. According to the plug coordinate 31, the plug hole area is cut out from the image and sent to the hole identification network model according to the plug coordinate 31, and the hole position coordinate 62 and the error-proof pin coordinate 61 are detected. The training method of the plug positioning network model includes collecting a large number of images of the front face 2 of aviation plugs of different types in a live scene, labeling the aviation plug category in each image and the plug coordinates 31 in the image coordinate system, and making the aviation plug. Image data set D1; image enhancement operation is performed on each image in the aviation plug image data set D1 to obtain an enhanced aviation plug image data set; a plug positioning deep neural network is constructed, a training target of the plug positioning network model is established, and the aviation plug image is returned The plug coordinate 31 in the classification image is used to classify the aviation plug type in the image; use the aviation plug image data set D1 and the enhanced aviation plug image data set D2 to train the plug positioning neural network, and fit the parameters of the network model; after the training is completed, save the plug positioning network. Model. The method for training a network model for hole position identification includes: cropping the aviation plug in each image as a new image according to the plug coordinates 31 marked in the aviation plug image data set D1, making a plug hole position area data set D3, and labeling the plug. The plug hole position coordinates 62 and the error-proofing pin coordinates 61 in each image in the hole position area dataset D3 are marked with the category of the plug hole position 1 and the category of the error-proof pin 3; for each image in the plug hole position area data set D3 Perform image enhancement operations on the first image to obtain the enhanced hole location data set D4; build a hole location recognition deep neural network, establish the training target of the hole location recognition network model, and return the plug hole location coordinates 62 and error-proof pins in the image of the plug hole location area. Coordinate 61, classify the types of plug hole position 1 and error-proof pin 3 in the image; use the plug hole position area data set D3 and the enhanced hole position area data set D4 to train the hole position recognition neural network, and fit the parameters of the network model; training After completion, save the hole location recognition network model. The image enhancement operations include five operations: image white balance, image color transformation, image geometric scaling, image rotation transformation, and image random noise. Referring to FIG. 5 , the deep neural network for plug positioning and the deep neural network for hole position recognition include a feature extraction network, a feature fusion network and an output network, and the feature extraction network includes four convolution layers and a pooling layer. The network includes three layers of upsampling layers and cascade layers. The output network predicts the category and position coordinates of the detection target. A 1×1 convolution filter is connected between the feature extraction network and the feature fusion network. A 3×3 convolution filter is connected between the feature fusion network and the output network.
所述S4步骤中的尺寸约束条件为所述S3中航空插头候选目标的长宽比在0.6-1.4,所述S3中航空插头候选目标的长度大于所述S3中航空插头图像长度的四分之一。The size constraint in the step S4 is that the aspect ratio of the aviation plug candidate target in the S3 is 0.6-1.4, and the length of the aviation plug candidate target in the S3 is greater than one quarter of the length of the aviation plug image in the S3. one.
为解决插头孔位1的阵列多目标排序问题,参考图6,根据所述S6中输出的防错销钉3的坐标计算插头孔位区域的几何中心点 以该点为极点,引向长宽比最大的防错销钉3的坐标的射线为极轴建立级坐标系。计算所述S6中输出的每个插头孔位1的坐标Pi=(xi,yi)在极坐标系中的极角 和极径参考图7,根据极径γi距离极点的距离将插头孔位坐标62自外向内分为M个区段,第j个区段上的插头孔位坐标62为自外向内根据每一层区段上的插头孔位坐标62的极角大小对插头孔位1进行排序,依此顺序对插头孔位区域的插头孔位1进行编号。In order to solve the multi-objective sorting problem of the array of the plug hole position 1, referring to FIG. 6, according to the coordinates of the error-proof pin 3 output in the S6 Calculate the geometric center point of the plug hole area Taking this point as the pole, lead to the coordinates of the error-proof pin 3 with the largest aspect ratio The ray establishes a level coordinate system for the polar axis. Calculate the polar angle of the coordinates P i =(x i , y i ) of each plug hole position 1 output in the S6 in the polar coordinate system and polar diameter Referring to FIG. 7 , according to the distance of the pole diameter γ i from the pole, the plug hole position coordinates 62 are divided into M sections from the outside to the inside, and the plug hole position coordinates 62 on the jth section are: Polar angle according to plug hole position coordinates 62 on each layer segment from outside to inside The size of the plug hole 1 is sorted, and the plug hole 1 in the plug hole area is numbered in this order.
安装有导线的插头孔位1为黄铜色,与未安装导线的插头孔位1的颜色差异明显,所述S8步骤中根据插头孔位1的像素颜色判别孔位中是否安装导线,操作简单方便,值得大范围推广。The plug hole position 1 with the wire installed is brass, and the color difference is obvious from that of the plug hole position 1 without the wire. In the step S8, it is determined whether the wire is installed in the hole position according to the pixel color of the plug hole position 1, and the operation is simple. Convenient and worthy of widespread promotion.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910264451.9A CN110059676B (en) | 2019-04-03 | 2019-04-03 | A method for air plug hole position recognition based on deep learning and multi-objective distribution sorting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910264451.9A CN110059676B (en) | 2019-04-03 | 2019-04-03 | A method for air plug hole position recognition based on deep learning and multi-objective distribution sorting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110059676A true CN110059676A (en) | 2019-07-26 |
CN110059676B CN110059676B (en) | 2021-05-07 |
Family
ID=67318318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910264451.9A Active CN110059676B (en) | 2019-04-03 | 2019-04-03 | A method for air plug hole position recognition based on deep learning and multi-objective distribution sorting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110059676B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111161227A (en) * | 2019-12-20 | 2020-05-15 | 成都数之联科技有限公司 | Target positioning method and system based on deep neural network |
CN111242130A (en) * | 2020-01-06 | 2020-06-05 | 北京航空航天大学 | A kind of automatic generation method of aviation plug type spectrum |
CN111753609A (en) * | 2019-08-02 | 2020-10-09 | 杭州海康威视数字技术股份有限公司 | Target identification method and device and camera |
CN112712529A (en) * | 2020-12-25 | 2021-04-27 | 明峰医疗系统股份有限公司 | Method and system for generating crystal position lookup table of PET (positron emission tomography) detector and PET equipment |
CN112975929A (en) * | 2021-03-05 | 2021-06-18 | 深圳市华艺鑫电子有限公司 | Passenger plane charging socket identification positioning docking system and method based on multi-feature fusion |
CN113859457A (en) * | 2021-09-18 | 2021-12-31 | 泰州蝶金软件有限公司 | Action triggering system and method using block chain storage |
CN114119459A (en) * | 2021-09-15 | 2022-03-01 | 苏州超集信息科技有限公司 | Method and system for locating power port for insulation testing of electrical products |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519387A (en) * | 2011-10-27 | 2012-06-27 | 哈尔滨工业大学 | Visual inspection method of electron beam welding pool shape parameter |
CN104330787A (en) * | 2013-12-30 | 2015-02-04 | 河南科技大学 | Underwater motion array multi-target detection and position estimation integrated method |
CN108171748A (en) * | 2018-01-23 | 2018-06-15 | 哈工大机器人(合肥)国际创新研究院 | A kind of visual identity of object manipulator intelligent grabbing application and localization method |
US20180300549A1 (en) * | 2017-04-12 | 2018-10-18 | Baidu Online Network Technology (Beijing) Co., Ltd. | Road detecting method and apparatus |
CN109087299A (en) * | 2018-08-20 | 2018-12-25 | 北京航空航天大学 | A kind of image collecting device of the aviation wire number identification based on monocular vision |
CN109318234A (en) * | 2018-11-09 | 2019-02-12 | 哈尔滨工业大学 | A calibration method suitable for visual servo plugging and unplugging operations |
-
2019
- 2019-04-03 CN CN201910264451.9A patent/CN110059676B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519387A (en) * | 2011-10-27 | 2012-06-27 | 哈尔滨工业大学 | Visual inspection method of electron beam welding pool shape parameter |
CN104330787A (en) * | 2013-12-30 | 2015-02-04 | 河南科技大学 | Underwater motion array multi-target detection and position estimation integrated method |
US20180300549A1 (en) * | 2017-04-12 | 2018-10-18 | Baidu Online Network Technology (Beijing) Co., Ltd. | Road detecting method and apparatus |
CN108171748A (en) * | 2018-01-23 | 2018-06-15 | 哈工大机器人(合肥)国际创新研究院 | A kind of visual identity of object manipulator intelligent grabbing application and localization method |
CN109087299A (en) * | 2018-08-20 | 2018-12-25 | 北京航空航天大学 | A kind of image collecting device of the aviation wire number identification based on monocular vision |
CN109318234A (en) * | 2018-11-09 | 2019-02-12 | 哈尔滨工业大学 | A calibration method suitable for visual servo plugging and unplugging operations |
Non-Patent Citations (2)
Title |
---|
WEI FANG 等: "Rapid and robust initialization for monocular visual inertial navigation within multi-state Kalman filter", 《CHINESE JOURNAL OF AERONAUTICS》 * |
邱德峰 等: "智能化电缆检测仪研究", 《机电设备管护》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111753609A (en) * | 2019-08-02 | 2020-10-09 | 杭州海康威视数字技术股份有限公司 | Target identification method and device and camera |
CN111753609B (en) * | 2019-08-02 | 2023-12-26 | 杭州海康威视数字技术股份有限公司 | Target identification method and device and camera |
CN111161227A (en) * | 2019-12-20 | 2020-05-15 | 成都数之联科技有限公司 | Target positioning method and system based on deep neural network |
CN111242130A (en) * | 2020-01-06 | 2020-06-05 | 北京航空航天大学 | A kind of automatic generation method of aviation plug type spectrum |
CN111242130B (en) * | 2020-01-06 | 2023-03-03 | 北京航空航天大学 | Automatic generation method of aviation plug type spectrogram |
CN112712529A (en) * | 2020-12-25 | 2021-04-27 | 明峰医疗系统股份有限公司 | Method and system for generating crystal position lookup table of PET (positron emission tomography) detector and PET equipment |
CN112975929A (en) * | 2021-03-05 | 2021-06-18 | 深圳市华艺鑫电子有限公司 | Passenger plane charging socket identification positioning docking system and method based on multi-feature fusion |
CN114119459A (en) * | 2021-09-15 | 2022-03-01 | 苏州超集信息科技有限公司 | Method and system for locating power port for insulation testing of electrical products |
CN113859457A (en) * | 2021-09-18 | 2021-12-31 | 泰州蝶金软件有限公司 | Action triggering system and method using block chain storage |
Also Published As
Publication number | Publication date |
---|---|
CN110059676B (en) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110059676A (en) | A kind of aviation plug hole location recognition methods based on deep learning Yu multiple target distribution sorting | |
CN110543892B (en) | Part identification method based on multilayer random forest | |
CN113822247B (en) | Method and system for identifying illegal building based on aerial image | |
CN107742093B (en) | Real-time detection method, server and system for infrared image power equipment components | |
CN105574550A (en) | Vehicle identification method and device | |
CN105975929A (en) | Fast pedestrian detection method based on aggregated channel features | |
CN112131936A (en) | Inspection robot image identification method and inspection robot | |
CN111368690A (en) | Deep learning-based video image ship detection method and system under influence of sea waves | |
CN110032279A (en) | A kind of the aviation wire plug assembly method and system of computer vision and augmented reality glasses auxiliary | |
CN112837315A (en) | A deep learning-based detection method for transmission line insulator defects | |
CN111402224A (en) | Target identification method for power equipment | |
CN111681214A (en) | A method for detecting rivets on the surface of aviation bearings based on U-net network | |
CN113962929A (en) | Photovoltaic cell assembly defect detection method and system and photovoltaic cell assembly production line | |
CN111914902A (en) | A method for Chinese medicine identification and surface defect detection based on deep neural network | |
WO2025060368A1 (en) | Method and system for rapidly identifying and counting surface fasteners of aviation parts | |
CN115599844A (en) | A visual detection method for incorrect or missing installation of aircraft wing surface connectors | |
CN114429445A (en) | A Method of PCB Defect Detection and Recognition Based on MAIRNet | |
CN116205835A (en) | Circuit board defect detection method, device and electronic equipment | |
CN117788790A (en) | Material installation detection method, system, equipment and medium for general scene | |
CN117437627A (en) | Digital instrument image identification reading method for petroleum refining scene | |
CN113420839B (en) | Semi-automatic labeling method and segmentation positioning system for stacking planar target objects | |
CN117079026A (en) | Unmanned aerial vehicle power inspection hidden danger identification method based on improved YOLOv3 network | |
CN116128800A (en) | ViG-based mobile phone microphone part defect detection and segmentation method | |
CN114529852A (en) | Video data-based carry-over detection and analysis method | |
CN115131334A (en) | Aviation engine pinhole type identification and automatic sequencing method based on machine learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |