CN110055464A - Tough hot stamping die steel of a kind of fine grain height and preparation method thereof - Google Patents
Tough hot stamping die steel of a kind of fine grain height and preparation method thereof Download PDFInfo
- Publication number
- CN110055464A CN110055464A CN201910355475.5A CN201910355475A CN110055464A CN 110055464 A CN110055464 A CN 110055464A CN 201910355475 A CN201910355475 A CN 201910355475A CN 110055464 A CN110055464 A CN 110055464A
- Authority
- CN
- China
- Prior art keywords
- hours
- steel
- hot stamping
- stamping die
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 69
- 239000010959 steel Substances 0.000 title claims abstract description 69
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- 238000010791 quenching Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000011282 treatment Methods 0.000 claims abstract description 7
- 238000000137 annealing Methods 0.000 claims abstract description 5
- 230000000171 quenching effect Effects 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 238000005242 forging Methods 0.000 claims description 15
- 230000007547 defect Effects 0.000 claims description 3
- 238000010891 electric arc Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000000265 homogenisation Methods 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims 2
- 230000008018 melting Effects 0.000 claims 2
- 238000004321 preservation Methods 0.000 claims 2
- 229910000754 Wrought iron Inorganic materials 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 239000000155 melt Substances 0.000 claims 1
- 239000003607 modifier Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000003723 Smelting Methods 0.000 abstract description 4
- 238000005496 tempering Methods 0.000 abstract description 4
- 238000005266 casting Methods 0.000 abstract 1
- 239000011572 manganese Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/30—Stress-relieving
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Child & Adolescent Psychology (AREA)
- Forging (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
本发明涉及一种细晶高强韧热冲压模具钢及其制备方法,(1)本发明成分配方如下(元素重量百分比):C 0.28‑0.40%;Si 0.20‑1.05%;Mn 0.25‑0.85%;Cr 3.5‑5.5%;Mo 2.2‑3.4%;W 0.8‑2%,V 0.1‑1.0%;其余微量残余元素为S、P、N、O、H等,Fe为余量。(2)本发明热冲压模具钢工艺过程是配料后熔炼,浇铸成电极棒,电极棒经过电渣重熔后浇铸成圆形钢锭,钢锭经过高温均质化,然后在压机上镦粗和拔长,然后去应力退火,最后超细化处理和调质处理获得成品。本发明热冲压模具钢晶粒尺寸细至约为1‑4μm,具有优良的强韧性、高温摩擦磨损性能、高温热强性、热稳定性、热疲劳性能以及高的热导率。
The invention relates to a fine-grained high-strength-toughness hot stamping die steel and a preparation method thereof. (1) The composition formula of the invention is as follows (element weight percentage): C 0.28-0.40%; Si 0.20-1.05%; Mn 0.25-0.85%; Cr 3.5-5.5%; Mo 2.2-3.4%; W 0.8-2%, V 0.1-1.0%; the remaining trace residual elements are S, P, N, O, H, etc., and Fe is the remainder. (2) the process of hot stamping die steel of the present invention is smelting after batching, casting into electrode rods, and after electroslag remelting, the electrode rods are cast into circular steel ingots, and the steel ingots are homogenized at high temperature, and then upsetting and Elongation, then stress relief annealing, and finally ultra-fine treatment and quenching and tempering treatment to obtain the finished product. The hot stamping die steel of the invention has a grain size as small as about 1-4 μm, and has excellent toughness, high temperature friction and wear performance, high temperature thermal strength, thermal stability, thermal fatigue performance and high thermal conductivity.
Description
技术领域technical field
本发明涉及一种细晶高强韧热冲压模具钢及其制备方法,属合金钢制造技术领域。The invention relates to a fine-grained high-strength-toughness hot stamping die steel and a preparation method thereof, belonging to the technical field of alloy steel manufacturing.
背景技术Background technique
高温高强度钢板在模具内完成冲压成型和淬火,模具必须具有高强度、耐磨损、高热疲劳性能、高的热导率、热稳定性、高密封性和耐蚀性能等;早期使用的H13钢在600℃下的热导率在20W/(m·K)左右,耐磨性和热疲劳性能不佳,后来一胜百降硅增钼推出8418钢(DIEVAR钢),使其具有较高的冲击韧性和耐磨性。然而,8418钢偏低的热导率和热强韧性仍不能满足当前高强钢热冲压的苛刻条件,迫切需要开发能满足热冲压需求的模具材料。The high temperature and high strength steel plate is stamped and quenched in the mold. The mold must have high strength, wear resistance, high thermal fatigue performance, high thermal conductivity, thermal stability, high sealing and corrosion resistance. The thermal conductivity of steel at 600°C is about 20W/(m·K), and the wear resistance and thermal fatigue performance are not good. Later, ASSAB introduced 8418 steel (DIEVAR steel) with silicon and molybdenum, which makes it have higher performance. impact toughness and wear resistance. However, the low thermal conductivity and thermal strength and toughness of 8418 steel still cannot meet the harsh conditions of current high-strength steel hot stamping, and it is urgent to develop mold materials that can meet the needs of hot stamping.
W、Mo是综合提升耐磨性、高温热强性和热导率的有效元素,且WC的弥散析出能够阻止晶粒粗化,本发明将在8418钢成分的基础上增钼加钨,形成细小弥散的WC耐磨析出相,这一析出相密集的钉扎在细小晶粒周围,阻碍晶粒的长大。因此,这类细晶热冲压模具钢将比8418钢具有更好的耐磨性、高温热强韧性和热导率。W and Mo are effective elements to comprehensively improve wear resistance, high temperature thermal strength and thermal conductivity, and the dispersion and precipitation of WC can prevent grain coarsening. The fine and dispersed WC wear-resistant precipitates are densely pinned around the fine grains and hinder the growth of the grains. Therefore, this kind of fine-grained hot stamping die steel will have better wear resistance, high temperature thermal toughness and thermal conductivity than 8418 steel.
发明内容SUMMARY OF THE INVENTION
本发明目的是提供一种细晶高强韧热冲压模具钢。The purpose of the present invention is to provide a fine-grained high-strength-toughness hot stamping die steel.
本发明另一目的是提供一种细晶高强韧热冲压模具钢的制备方法。Another object of the present invention is to provide a method for preparing a fine-grained, high-strength and tough hot stamping die steel.
本发明提供一种细晶高强韧热冲压模具钢的成分配方如下:元素重量百分比C:0.28-0.40%;Si:0.20-1.05%;Mn:0.25-0.85%;Cr:3.5-5.5%;Mo:2.2-3.4%; W:0.8-2%;V:0.1-1.0%;Fe和微量残余元素S、P、N、O、H为余量。The invention provides a fine-grained high-strength-toughness hot stamping die steel with the following composition formula: element weight percentage C: 0.28-0.40%; Si: 0.20-1.05%; Mn: 0.25-0.85%; Cr: 3.5-5.5%; Mo : 2.2-3.4%; W: 0.8-2%; V: 0.1-1.0%; Fe and trace residual elements S, P, N, O, H are the remainder.
上述模具钢命名为SR2019,S代称“上”即上海工程技术大学,R代称“日”即湖北日盛科技有限公司,2019即“2019年”。The above-mentioned die steel is named SR2019, the S generation means "Shang", which means Shanghai University of Engineering Technology, the R generation means "Ri", which means Hubei Risheng Technology Co., Ltd., and 2019 means "2019".
上述细晶高强韧热冲压模具钢的制备方法,其特征在于采用以下的工艺过程和步骤:The preparation method of the above-mentioned fine-grained high-strength and tough hot stamping die steel is characterized in that the following technological process and steps are adopted:
1)熔炼:将配料放入电弧炉中熔炼,在1500℃-1650℃浇铸到模具中形成电极钢棒,脱模后清除电极棒表面氧化皮和凹坑缺陷;1) Smelting: put the ingredients into an electric arc furnace for smelting, cast into a mold at 1500℃-1650℃ to form an electrode steel rod, and remove the oxide scale and pit defects on the surface of the electrode rod after demoulding;
2)电渣重熔:电极棒进行电渣重熔,过滤电极棒中大部分不纯净杂质,且改变其形态分布,最后浇铸成圆形钢锭;2) Electroslag remelting: Electroslag remelting is carried out on the electrode rod, most of the impure impurities in the electrode rod are filtered, and its shape distribution is changed, and finally it is cast into a round steel ingot;
3)高温均质化:将圆形钢锭加热到1230-1265℃,保温(0.2~0.4)×D小时 D为钢锭直径尺寸cm,使钢内成分扩散均匀,然后冷却至锻造温度1180℃;3) High temperature homogenization: heat the round steel ingot to 1230-1265℃, keep the temperature for (0.2~0.4)×D hours, D is the diameter of the steel ingot in cm, so that the components in the steel diffuse evenly, and then cool to the forging temperature of 1180℃;
4)镦粗:将1180℃±10℃钢锭在压机上沿钢锭高度方向进行镦粗至45%高度,然后精整,回炉加热2-4小时,再进行第二次镦粗,精整,回炉保温2-4小时,再进行第三次镦粗,精整,始终保持终锻温度870℃以上;4) Upsetting: Upsetting the 1180℃±10℃ steel ingot on the press along the height direction of the ingot to 45% height, then finishing, returning to the furnace for heating for 2-4 hours, and then performing the second upsetting and finishing, Return to the furnace for 2-4 hours, and then carry out the third upsetting and finishing, and always keep the final forging temperature above 870 °C;
5)拔长:对三次反复镦粗后的钢锭进行拔长和锻打至最终尺寸,保持终锻温度870℃以上,拔长后坑冷至350℃左右;5) Lengthening: The steel ingot after repeated upsetting for three times is drawn and forged to the final size, the final forging temperature is kept above 870°C, and the pit is cooled to about 350°C after stretching;
6)去应力退火:将模块加热至850℃退火10-16小时,消除应力,然后随炉冷切;6) Stress relief annealing: heat the module to 850℃ for 10-16 hours to relieve stress, and then cold cut with the furnace;
7)超细化处理:将模块加热至1060-1100℃保温0.2×d小时d为锻件有效尺寸cm,水淬至室温,然后升温至860℃等温(0.4~0.6)×d小时d为锻件有效尺寸cm,随后炉冷至740℃等温(0.9~1.2)×d小时d为锻件有效尺寸cm,然后随炉冷至室温。7) Ultra-fine treatment: heat the module to 1060-1100°C for 0.2×d hours, d is the effective size of the forging, cm, water quenched to room temperature, and then heated to 860°C isothermal (0.4~0.6)×d hours, d is the effective forging Size cm, then furnace cooled to 740 ℃ isothermal (0.9 ~ 1.2) × d hours d is the effective size of the forging cm, and then cooled to room temperature with the furnace.
8)调质处理:将模块加热至1060℃保温2小时,真空气淬至室温,560℃回火10小时,空冷至室温后,在600℃回火10小时,出炉空冷。8) Quenching and tempering treatment: heat the module to 1060°C for 2 hours, quench it to room temperature in vacuum, temper at 560°C for 10 hours, air-cool to room temperature, temper at 600°C for 10 hours, and air-cool the furnace.
本发明的理论依据:8418钢(DIEVAR钢)的高温摩擦磨损性能,热强性,热稳定性,热疲劳性能以及热导率仍不能满足当前高强钢热冲压的苛刻条件,迫切需要开发能满足热冲压需求的模具材料。普遍的合金化思路是降低铬含量,以提升热导率,并增加锰含量提升耐磨性,然而,铬元素是Cr5系列模具钢核心元素,降低铬将抗氧化性和耐蚀性难以保证;增加锰元素有增加大模块锰元素偏析的风险。另外,当前热作模具钢仍以大模块的自由锻造为主,辅助于超细化工艺,两者良性结合才能获得超细化析出组织,但决定冲击韧性和综合性能的本质晶粒度仍不受控制。另外,在晶粒细化的基础上,能否同时提升高强强度和热稳定性,且保持良好的冲击韧性,这是困扰当前模具材料研究工作者的一大难题。Theoretical basis of the present invention: the high temperature friction and wear properties, thermal strength, thermal stability, thermal fatigue properties and thermal conductivity of 8418 steel (DIEVAR steel) still cannot meet the current harsh conditions of hot stamping of high-strength steels. Die material for hot stamping needs. The general idea of alloying is to reduce the chromium content to improve thermal conductivity, and increase the manganese content to improve wear resistance. However, chromium element is the core element of Cr5 series die steel, and reducing chromium will make it difficult to ensure oxidation resistance and corrosion resistance; Increasing manganese increases the risk of large module manganese segregation. In addition, the current hot work die steel is still dominated by the free forging of large modules, supplemented by the ultra-refining process, and the ultra-refined precipitation structure can be obtained by a benign combination of the two, but the essential grain size that determines the impact toughness and comprehensive performance is still not controlled. In addition, on the basis of grain refinement, whether high strength and thermal stability can be improved at the same time, and good impact toughness can be maintained, this is a major problem that puzzles current mold material researchers.
W、Mo是综合提升耐磨性、高温热强性和热导率的有效元素,且WC的弥散析出能够阻止晶粒粗化,本发明将在8418钢成分的基础上增钼加钨,形成细小弥散的WC耐磨析出相,这一析出相密集的钉扎在细小晶粒周围,阻碍晶粒的长大。因此,这类细晶热冲压模具钢将比8418钢具有更好的耐磨性、高温热强韧性和热导率。W and Mo are effective elements to comprehensively improve wear resistance, high temperature thermal strength and thermal conductivity, and the dispersion and precipitation of WC can prevent grain coarsening. The fine and dispersed WC wear-resistant precipitates are densely pinned around the fine grains and hinder the growth of the grains. Therefore, this kind of fine-grained hot stamping die steel will have better wear resistance, high temperature thermal toughness and thermal conductivity than 8418 steel.
本发明SR2019热冲压模具钢晶粒尺寸细至约为1-4μm,具有优良的强韧性、高温摩擦磨损性能、高温热强性、热稳定性、热疲劳性能以及高的热导率。The SR2019 hot stamping die steel of the present invention has a grain size as small as about 1-4 μm, and has excellent toughness, high temperature friction and wear performance, high temperature thermal strength, thermal stability, thermal fatigue performance and high thermal conductivity.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)该发明钢种SR2019的冲击韧性将维持在8418钢(DIEVAR钢)优异水平,不仅具有优良的高温摩擦磨损性能,高温热强性,热稳定性,热疲劳性能,而且部分固溶Mo和W元素将明显改善热导率。(1) The impact toughness of the invention steel SR2019 will be maintained at the excellent level of 8418 steel (DIEVAR steel), which not only has excellent high temperature friction and wear properties, high temperature thermal strength, thermal stability, thermal fatigue properties, but also partially solid solution Mo and W elements will significantly improve thermal conductivity.
(2)由于从成分角度实现了晶粒度的细化,将有利于常规大生产实现该发明钢的稳定试制。(2) Since the refinement of grain size is realized from the perspective of composition, it will be beneficial to realize the stable trial production of the invention steel in conventional mass production.
(3)本发明将提升热冲压模具钢的晶粒度保持在ASTM 8级以上,硬度50-56HRC范围,7×10×55无缺口式样冲击功大于280J。(3) The present invention keeps the grain size of the hot stamping die steel above ASTM grade 8, the hardness is in the range of 50-56 HRC, and the impact energy of the 7×10×55 unnotched style is greater than 280J.
附图说明Description of drawings
图1为本申请的模具钢的1000倍金相组织图Fig. 1 is the 1000 times metallographic structure diagram of the die steel of the application
图2为600℃回火本申请模具钢和8418钢热稳定性的测试对比图Fig. 2 is the test comparison chart of the thermal stability of the die steel of the present application and the 8418 steel tempered at 600°C
图3为本申请模具钢和8418钢摩擦磨损系数的测试对比图Fig. 3 is the test comparison diagram of the friction and wear coefficient of the die steel of the application and 8418 steel
具体实施方式Detailed ways
以下结合具体的实施例来对本发明的技术方案加以说明。The technical solutions of the present invention will be described below with reference to specific embodiments.
实施例1Example 1
本发明提供一种细晶高强韧热冲压模具钢SR2019的成分配方如下(元素重量百分比):C 0.45%;Si 1.05%;Mn 0.25%;Cr 3.5%;Mo 3.4%;W 2%V 1.0%; Fe和微量残余元素S、P、N、O、H为余量。The invention provides a fine-grained high-strength-toughness hot stamping die steel SR2019 with the following composition formula (element weight percentage): C 0.45%; Si 1.05%; Mn 0.25%; Cr 3.5%; Mo 3.4%; W 2% V 1.0% ; Fe and trace residual elements S, P, N, O, H are the remainder.
本实施例中,SR2019钢的工艺过程和步骤如下:In this embodiment, the technological process and steps of SR2019 steel are as follows:
a.熔炼:将配料放入电弧炉中熔炼,然后浇铸成φ290mm×2050mm电极棒,电极棒脱模后清除氧化皮和凹坑等缺陷。a. Smelting: put the ingredients into the electric arc furnace to smelt, and then cast into φ290mm×2050mm electrode rods, remove the oxide scale and pits and other defects after the electrode rods are demolded.
b.电渣重熔:将电极棒进行电渣重熔精炼,去除电极棒中大部分不纯净杂质,并改变其形态分布,然后浇铸成1吨圆形钢锭。b. Electroslag remelting: Electroslag remelting and refining is carried out on the electrode rod to remove most of the impure impurities in the electrode rod and change its shape distribution, and then cast into a 1 ton round steel ingot.
c.高温均质化:将1吨钢锭加热到1245℃,保温11小时,然后缓冷至1180℃准备锻造加工。c. High temperature homogenization: heat 1 ton of steel ingot to 1245℃, keep for 11 hours, and then slowly cool to 1180℃ for forging.
e.镦粗:将1180℃钢锭沿着钢锭高度方向镦粗至40%高度,然后精整,回炉加热3小时,再进行第二次镦粗,精整,回炉保温3小时,再进行第三次镦粗,精整,保持终锻温度870℃以上。e. Upsetting: Upsetting the 1180°C steel ingot along the height direction of the ingot to 40% height, then finishing, returning to the furnace for heating for 3 hours, and then performing the second upsetting and finishing, returning to the furnace for 3 hours, and then performing the third Secondary upsetting, finishing, keep the final forging temperature above 870 ℃.
f.拔长:对三次反复镦粗后的钢锭进行锻打拔长至最终尺寸165mm× 520mm×1550mm,保持终锻温度870℃以上,拔长后坑冷至350℃左右。f. Drawing length: Forging and drawing the steel ingot after repeated upsetting three times to the final size of 165mm×520mm×1550mm, keeping the final forging temperature above 870°C, and cooling the pit to about 350°C after drawing.
g.去应力退火:将模块加热至850℃退火10小时,消除应力,然后随炉冷切。g. Stress relief annealing: heat the module to 850℃ for 10 hours to relieve stress, and then cool it with the furnace.
h.超细化处理:将模块加热至1060℃保温3.5小时,水淬至室温,然后升温至860℃等温7小时,随后炉冷至740℃,等温15小时,然后随炉冷至室温。h. Ultra-fine treatment: heat the module to 1060°C for 3.5 hours, quench it with water to room temperature, then heat up to 860°C for 7 hours and then cool to 740°C for 15 hours, then cool to room temperature with the furnace.
i.调质处理:将模块加热至1060℃保温2小时,真空气淬至室温,560℃回火10小时,空冷至室温后,在600℃回火10小时,出炉空冷。i. Quenching and tempering treatment: heat the module to 1060℃ for 2 hours, vacuum air quench to room temperature, temper at 560℃ for 10 hours, air-cool to room temperature, temper at 600℃ for 10 hours, and air-cool the furnace.
性能测试Performance Testing
将上述SR2019钢进行性能测试,结果如下:The performance test of the above SR2019 steel is carried out, and the results are as follows:
(1)调质后硬度53HRC;(1) The hardness after quenching and tempering is 53HRC;
(2)无缺口7×10×55的式样冲击功大于280J;(2) The impact energy of the unnotched 7×10×55 style is greater than 280J;
开U型缺口的冲击功26JThe impact energy of opening U-notch is 26J
(3)热稳定性:SR2019钢与8418钢在600℃保温不同的时间,以硬度的下降趋势判断热稳定性的优劣。成分比较如表1所示(wt.%),热稳定性数据比较如表2和图2所示。(3) Thermal stability: SR2019 steel and 8418 steel are kept at 600 ℃ for different times, and the thermal stability is judged by the decreasing trend of hardness. The composition comparison is shown in Table 1 (wt.%), and the thermal stability data comparison is shown in Table 2 and FIG. 2 .
(4)耐磨性:SR2019钢与8418钢进行室温摩擦磨损实验,通过对比摩擦系数的波动来判断耐磨性的优劣,摩擦系数越低,耐磨性越好,如图3所示。(4) Wear resistance: SR2019 steel and 8418 steel were subjected to room temperature friction and wear experiments, and the advantages and disadvantages of wear resistance were judged by comparing the fluctuation of friction coefficient. The lower the friction coefficient, the better the wear resistance, as shown in Figure 3.
表1 8418和SR2019钢成分比较Table 1 Composition comparison of 8418 and SR2019 steels
表2 600℃回火不同时间8418和SR2019钢硬度比较Table 2 Comparison of hardness of 8418 and SR2019 steels tempered at 600℃ for different times
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910355475.5A CN110055464B (en) | 2019-04-29 | 2019-04-29 | A kind of fine-grained high-strength and toughness hot stamping die steel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910355475.5A CN110055464B (en) | 2019-04-29 | 2019-04-29 | A kind of fine-grained high-strength and toughness hot stamping die steel and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110055464A true CN110055464A (en) | 2019-07-26 |
CN110055464B CN110055464B (en) | 2020-07-17 |
Family
ID=67321709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910355475.5A Active CN110055464B (en) | 2019-04-29 | 2019-04-29 | A kind of fine-grained high-strength and toughness hot stamping die steel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110055464B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110669982A (en) * | 2019-10-08 | 2020-01-10 | 鞍钢股份有限公司 | A kind of high-purity microalloyed die steel and preparation method thereof |
CN112795843A (en) * | 2020-12-28 | 2021-05-14 | 武钢集团襄阳重型装备材料有限公司 | Hot work die steel and preparation method thereof |
CN114990424A (en) * | 2021-11-22 | 2022-09-02 | 上海双舜科技发展有限公司 | A kind of high alloy hot work die steel and its processing technology |
CN116377330A (en) * | 2023-04-08 | 2023-07-04 | 浙江通特重型锻造有限公司 | Hot work die steel and preparation method thereof |
WO2023137842A1 (en) * | 2022-01-18 | 2023-07-27 | 河北工业职业技术学院 | Die steel having high thermal diffusion coefficient, and preparation method therefor |
CN116516130A (en) * | 2023-07-05 | 2023-08-01 | 成都先进金属材料产业技术研究院股份有限公司 | Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101392353A (en) * | 2008-10-30 | 2009-03-25 | 上海大学 | High manganese low chromium type high strength toughness hot work die steel and preparation method thereof |
CN102212756A (en) * | 2011-05-04 | 2011-10-12 | 上海大学 | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof |
CN102650020A (en) * | 2012-05-14 | 2012-08-29 | 上海大学 | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof |
CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
CN107557667A (en) * | 2017-09-15 | 2018-01-09 | 张家港市广大机械锻造有限公司 | A kind of large die-casting mould high performance hot-work die steel and its manufacturing process |
CN108531821A (en) * | 2017-03-20 | 2018-09-14 | 宁波合力模具科技股份有限公司 | One kind extrusion die steel containing aluminothermy and its production method |
CN108774712A (en) * | 2018-06-21 | 2018-11-09 | 河南中原特钢装备制造有限公司 | Superelevation thermal conductivity hot stamping die steel and its manufacturing method |
CN109487166A (en) * | 2018-12-21 | 2019-03-19 | 北京科技大学 | A kind of high strength at high temperature low-carbon heated die steel and preparation method thereof |
-
2019
- 2019-04-29 CN CN201910355475.5A patent/CN110055464B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101392353A (en) * | 2008-10-30 | 2009-03-25 | 上海大学 | High manganese low chromium type high strength toughness hot work die steel and preparation method thereof |
CN102212756A (en) * | 2011-05-04 | 2011-10-12 | 上海大学 | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof |
CN102650020A (en) * | 2012-05-14 | 2012-08-29 | 上海大学 | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof |
CN103334061A (en) * | 2013-06-18 | 2013-10-02 | 上海大学 | Die-casting die steel with high heat conductivity and large section and preparation and heat treatment method thereof |
CN108531821A (en) * | 2017-03-20 | 2018-09-14 | 宁波合力模具科技股份有限公司 | One kind extrusion die steel containing aluminothermy and its production method |
CN107557667A (en) * | 2017-09-15 | 2018-01-09 | 张家港市广大机械锻造有限公司 | A kind of large die-casting mould high performance hot-work die steel and its manufacturing process |
CN108774712A (en) * | 2018-06-21 | 2018-11-09 | 河南中原特钢装备制造有限公司 | Superelevation thermal conductivity hot stamping die steel and its manufacturing method |
CN109487166A (en) * | 2018-12-21 | 2019-03-19 | 北京科技大学 | A kind of high strength at high temperature low-carbon heated die steel and preparation method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110669982A (en) * | 2019-10-08 | 2020-01-10 | 鞍钢股份有限公司 | A kind of high-purity microalloyed die steel and preparation method thereof |
CN112795843A (en) * | 2020-12-28 | 2021-05-14 | 武钢集团襄阳重型装备材料有限公司 | Hot work die steel and preparation method thereof |
CN114990424A (en) * | 2021-11-22 | 2022-09-02 | 上海双舜科技发展有限公司 | A kind of high alloy hot work die steel and its processing technology |
WO2023137842A1 (en) * | 2022-01-18 | 2023-07-27 | 河北工业职业技术学院 | Die steel having high thermal diffusion coefficient, and preparation method therefor |
CN116377330A (en) * | 2023-04-08 | 2023-07-04 | 浙江通特重型锻造有限公司 | Hot work die steel and preparation method thereof |
CN116377330B (en) * | 2023-04-08 | 2024-02-09 | 浙江通特重型锻造有限公司 | Hot work die steel and preparation method thereof |
CN116516130A (en) * | 2023-07-05 | 2023-08-01 | 成都先进金属材料产业技术研究院股份有限公司 | Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof |
CN116516130B (en) * | 2023-07-05 | 2023-10-13 | 成都先进金属材料产业技术研究院股份有限公司 | A kind of high hardness and high impact toughness Cr-Mo-V series hot work die steel and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN110055464B (en) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110055464B (en) | A kind of fine-grained high-strength and toughness hot stamping die steel and preparation method thereof | |
CN110172641B (en) | A kind of fine-grained high-strength and toughness hot work die steel and preparation method thereof | |
CN110129678B (en) | Economical fine-grain high-toughness hot-work die steel and preparation method thereof | |
CN109280849A (en) | A kind of high performance hot-work die steel and its manufacturing process | |
CN106566997B (en) | A kind of high-performance compression mod hot die steel metallurgical manufacturing method | |
CN104911501B (en) | A kind of superhigh intensity high-carbon dislocation type martensite steel and preparation method thereof | |
CN101302599A (en) | Niobium microalloyed high strength hot work die steel and preparation method thereof | |
CN102212756A (en) | Chromium-molybdenum-vanadium hotwork tool-die steel and heat treatment process thereof | |
CN102650020A (en) | High-silicon high-manganese type high-thermal stability hot work die steel and thermal treatment process thereof | |
CN110484812A (en) | A kind of high-performance hot stamping die steel and its manufacturing process | |
CN101182619A (en) | High-strength toughness cold work die steel and preparation method thereof | |
CN107779746B (en) | Ultra-fine grain alloy steel with ultrahigh strength, high toughness, corrosion resistance, oxidation resistance and preparation method thereof | |
CN108220807A (en) | A kind of low-density high alumina superelevation carbon bearing steel and preparation method thereof | |
CN111979487A (en) | High-ductility low-alloy ultrahigh-strength steel and preparation method thereof | |
CN114293105A (en) | Cr-Mo-Co-V bainite high-temperature bearing steel and preparation method thereof | |
CN110205542A (en) | A kind of cold roll tool steel and preparation method thereof | |
CN114395738B (en) | A kind of die steel with high thermal diffusivity and preparation method thereof | |
CN111850393A (en) | A kind of bainite die steel and preparation method thereof | |
CN114214567B (en) | Ni 3 Al intermetallic compound precipitation-strengthened high-temperature bearing steel and preparation method thereof | |
CN109628833B (en) | A kind of Cr-Mo-Si-V series cold work die steel and preparation method thereof | |
CN107974632B (en) | A kind of austenitic hot work die steel and preparation method thereof | |
CN106834931A (en) | A kind of hot die steel of thermal fatigue resistance and preparation method thereof | |
CN105950969A (en) | High-heat-resistant austenite die steel and preparation method thereof | |
CN102876996A (en) | Austenitic hot-work die steel and preparation method thereof | |
CN116555679B (en) | A high red hardness hot extrusion die steel and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |