CN110055320A - 痤疮的快速诊断和个体化治疗 - Google Patents
痤疮的快速诊断和个体化治疗 Download PDFInfo
- Publication number
- CN110055320A CN110055320A CN201910052894.1A CN201910052894A CN110055320A CN 110055320 A CN110055320 A CN 110055320A CN 201910052894 A CN201910052894 A CN 201910052894A CN 110055320 A CN110055320 A CN 110055320A
- Authority
- CN
- China
- Prior art keywords
- acnes
- strains
- seq
- acne
- genome
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/0208—Specific bacteria not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/05—Actinobacteria, e.g. Actinomyces, Streptomyces, Nocardia, Bifidobacterium, Gardnerella, Corynebacterium; Propionibacterium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2795/00—Bacteriophages
- C12N2795/00011—Details
- C12N2795/00032—Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Mycology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
本发明涉及痤疮的快速诊断和个体化治疗。具体地,本文提供诊断和治疗患有痤疮的患者的方法,所述方法包括如果个体具有RT4、RT5、RT7、RT8、RT9或RT10,那么将所述个体诊断为具有痤疮。用于治疗痤疮的方法包括施用有效量的特异性地靶向RT4、RT5、RT7、RT8、RT9或RT10的药物,如小分子、反义分子、siRNA、生物制剂、抗体、噬菌体、疫苗或其组合。
Description
本申请是申请日为2013年3月15的中国专利申请20138002 5853.4“痤疮的快速诊断和个体化治疗”的分案申请。
关于联邦资助的研究的声明
本发明是在由国立卫生研究院(National Institutes of Health)授予 的批准号UH2AR057503和R01GM099530的政府支持下完成的。政 府对本发明拥有某些权利。
相关申请的交叉引用
本申请要求2012年3月17日提交的美国临时专利申请号 61/612,290的优先权,该临时专利申请出于所有目的以引用的方式整 体并入本文中。
技术领域
本发明涉及痤疮的诊断和治疗领域。更具体涉及诊断和治疗患有 痤疮的患者的方法,所述方法包括如果个体具有RT4、RT5、RT7、 RT8、RT9或RT10,那么将所述个体诊断为具有痤疮。用于治疗痤疮 的方法包括施用有效量的特异性地靶向RT4、RT5、RT7、RT8、RT9或RT10的药物,如小分子、反义分子、siRNA、生物制剂、抗体、 噬菌体、疫苗或其组合。
背景技术
痤疮是引起丘疹或“面疱”的一种皮肤病状。这包括皮肤的白头粉 刺(whitehead)、黑头粉刺(blackhead)和红色发炎斑点(如囊肿)。痤疮在 皮肤表面上的微小毛孔被堵塞时发生。每个毛孔通向毛囊。毛囊包括 毛发和脂腺。由腺体释放的油脂帮助去除老化的皮肤细胞并且使皮肤 保持柔软。当腺体产生太多油脂时,毛孔可能会变得被堵塞。污物、 细菌和细胞累积。阻塞物被称为栓子(plug)或粉刺。如果栓子的顶部 是白色,那么它被称为白头粉刺。如果栓子的顶部是黑色,那么它被 称为黑头粉刺。如果栓子裂开,那么发生肿胀和红色肿块。在皮肤深 处的痤疮会导致硬的疼痛的囊肿。这被称为囊肿性痤疮。
痤疮在青少年中最常见,但任何人都可能患上痤疮。85%的青少 年患有痤疮。激素变化会使得皮肤更加油性。痤疮有家族遗传的倾向 性。它可能由以下因素触发:与青春期、月经期、孕期、避孕药丸或 压力有关的激素变化;油腻或油性化妆品和头发产品;某些药物(例 如类固醇、睾酮、雌激素以及苯妥英);或高水平的湿度和出汗。
存在有各种疗法用于治疗痤疮。一般来说,痤疮治疗通过减少油 脂产生、加速皮肤细胞更新、抵抗细菌感染、减少炎症或进行前述所 有四项来起作用。这些类型的痤疮治疗包括非处方局部治疗、抗生素、 口服避孕药以及整容程序。痤疮洗剂可平衡油脂,杀死细菌并且促进 死亡皮肤细胞的脱落。非处方(OTC)洗剂通常是温和的并且包含过氧 化苯甲酰、硫、间苯二酚、水杨酸或硫作为其活性成分。已有研究发 现使用局部过氧化苯甲酰连同口服抗生素可降低显现抗生素抗性的 风险。抗生素会导致副作用,如胃部不适、眩晕或皮肤变色。这些药 物还增加皮肤的阳光敏感性并且会降低口服避孕药的有效性。对于深 度囊肿,抗生素可能不够。异维甲酸(Amnesteem、Claravis、Sotret) 是可用于瘢痕囊肿性痤疮或对其它治疗无反应的痤疮的强效药剂。然 而,异维甲酸具有许多副作用,如皮肤干燥、抑郁、剧烈胃疼、和肌 肉/关节/背部疼痛,并且可能引起母亲使用异维甲酸的婴儿中的出生 缺陷。口服避孕药,包括诺孕酯(norgestimate)和乙炔基雌二醇的组合 (Ortho Tri-Cyclen、Previfem等),可改善女性的痤疮。然而,口服避 孕药会引起其它副作用,如头痛、乳房触痛、恶心以及抑郁。化学脱 皮术和微晶磨皮术(microdermabrasion)可有助于控制痤疮。曾在传统 上用于减轻细纹的出现、阳光损伤和小面部疤痕的这些整容程序在与 其它痤疮治疗组合使用时是最有效的。它们会引起皮肤暂时性的严重 发红、脱皮和起泡以及长期变色。
除由当前可用的治疗引起的负面副作用之外,还不存在已针对患 者个体化而可在个体层面上靶向引起痤疮的特定细菌的可供使用的 治疗。此外,对于皮肤科医生将有用的是知道在诊断时哪些菌株在患 者的皮肤上占优势以便使痤疮治疗个体化。因此,在本领域中对痤疮 的个体化诊断和治疗方法存在需要。
发明内容
本发明涉及对患有痤疮的患者的诊断和个体化治疗方法。
在一个实施方案中,本发明提供一种用于确定个体是否具有痤疮 的方法,所述方法包括:从个体获得皮肤样品;从所述样品分离细菌 DNA;扩增所述样品中的16S核糖体DNA;对所述扩增的DNA产 物进行测序;并且基于痤疮丙酸杆菌(P.acnes)菌株的十种主要的核糖 型(RT)RT1至RT10(SEQ ID NO 1至10)中的一种或多种对所述个体 的DNA进行分型,其中所述分型通过确定所述个体是否具有RT1至 RT10中的一种或多种而发生并且其中如果所述个体具有RT4、RT5、 RT7、RT8、RT9或RT10,那么所述个体被诊断为具有痤疮。例如,如果所述个体具有RT4(SEQ ID NO:4)、RT5(SEQ ID NO:5)或RT8 (SEQ ID NO:8),那么所述个体可被诊断为具有痤疮。
在另一个实施方案中,本发明提供一种用于诊断不同类型的痤疮 的方法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细 菌DNA;扩增所述样品中的16S核糖体DNA;对所述扩增的DNA 产物进行测序;并且基于痤疮丙酸杆菌菌株的五种主要的微生物群系 (microbiome)类型中的一种或多种对所述受试者的DNA进行分型, 其中如果所述受试者被分型至微生物群系IV或V,那么所述受试者 被诊断为具有痤疮。
在又一个实施方案中,本发明提供一种用于快速诊断痤疮的方 法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细菌 DNA;使用一个或多个引物组来扩增所述DNA;并且针对与SEQ ID NO 29至32和82至434中的至少一个具有至少95%同源性的序列的存在分析所述扩增的DNA,其中如果存在与SEQ ID NO 29至32和 82至434中的至少一个具有至少95%同源性的序列的存在,那么所 述受试者被诊断为具有痤疮。例如,可针对与SEQID NO 29至32 和82至434中的至少一个具有至少99%同源性的序列的存在分析所 述扩增的DNA,并且其中如果存在与SEQ ID NO 29至32和82至 434中的至少一个具有至少99%同源性的序列的存在,那么所述受试 者被诊断为具有痤疮。作为另一个实例,可针对SEQ IDNO 29至32 和82至434中的至少一个的存在分析所述扩增的DNA,并且其中如 果存在SEQID NO 29至32和82至434中的至少一个的存在,那么 所述受试者被诊断为具有痤疮。
在另一个实施方案中,本发明提供一种用于快速诊断痤疮的方 法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细菌 DNA;使用一个或多个引物组来扩增所述DNA;使用一个或多个探 针来检测所述扩增的DNA;并且针对以下各项的存在分析所述探针信号:基因座1(与SEQ ID NO 29和82至97中的至少一个具有至少 95%同源性的至少一个序列)、基因座2(与SEQ ID NO 30和98至186 中的至少一个具有至少95%同源性的至少一个序列)、基因座3(与 SEQ ID NO 31和187至423中的至少一个具有至少95%同源性的至少一个序列)、和/或基因座4(与SEQ ID NO 32和424至434中的至 少一个具有至少95%同源性的至少一个序列),其中如果存在基因座 1至4中的一个或多个,那么所述受试者被诊断为具有痤疮。例如, 可基于至少99%同源性或100%同源性针对基因座1、基因座2、基 因座3和/或基因座4的存在分析所述信号。
在前述方法中,所述引物组的引物可选自由以下各项组成的组: SEQ ID NO 11、12、17和18(对于基因座1);SEQ ID NO 13、14、 20和21(对于基因座2);SEQ ID NO 15、16、23和24(对于基因座 3);和SEQ ID NO 26和27(对于基因座4)。在前述方法中,所述探 针可以是SEQ ID NO:19(对于基因座1)、SEQ ID NO:22(对于基因座 2)、SEQ ID NO:25(对于基因座3)和SEQ ID NO:28(对于基因座4)。
在又一个实施方案中,本发明提供一种用于预防和/或治疗由痤 疮丙酸杆菌引起的痤疮的疫苗,所述疫苗包含热灭活的痤疮丙酸杆菌 菌株、所述菌株的减毒蛋白质或其组合,其中所述菌株是RT4菌株、 RT5菌株、RT7菌株、RT8菌株、RT9菌株或RT10菌株。
在又一个实施方案中,本发明提供一种用于预防和/或治疗由痤 疮丙酸杆菌引起的痤疮的疫苗,所述疫苗包含基于对影响受试者的痤 疮丙酸杆菌菌株的16S rDNA序列分析被鉴别为对于所述受试者具有 特异性的热灭活的痤疮丙酸杆菌菌株、所述菌株的减毒蛋白质或其组 合。
关于疫苗,所述热灭活的痤疮丙酸杆菌菌株、减毒蛋白质或其组 合可对针对痤疮丙酸杆菌的菌株鉴别的独特基因组基因座、区域或序 列中的至少一个具有特异性。所述热灭活的痤疮丙酸杆菌菌株、减毒 蛋白质或其组合可对基因座1(SEQ ID NO 29和82至97)、基因座2 (SEQ ID NO 30和98至186)、基因组3(31和187至423)和基因座4 (32和424至434)中的至少一个具有特异性。
在又一个实施方案中,本发明提供一种用于个体化治疗痤疮的方 法,所述方法包括确定影响受试者的痤疮丙酸杆菌的菌株和用针对痤 疮丙酸杆菌的至少一种检测过的菌株的活性成分治疗所述受试者,其 中所述活性成分包含靶向痤疮丙酸杆菌的特定菌株的药物,其中所述 靶向药物包含靶向对与痤疮相关的痤疮丙酸杆菌的菌株具有特异性 的基因组元件的小分子、反义分子、siRNA、生物制剂、抗体以及其 组合。
在又一个实施方案中,本发明提供一种用于治疗痤疮的方法,所 述方法包括:施用有效量的益生菌,所述益生菌包含基于其16S rDNA 与健康或正常皮肤相关的痤疮丙酸杆菌的至少一种菌株。所述菌株可 以是RT6菌株。所述菌株可与SEQ ID NO:51、SEQ ID NO:52、SEQ ID NO:53或SEQ ID NO:54具有至少95%同源性,如至少99%同源性 或100%同源性。
在又一个实施方案中,本发明提供一种用于治疗痤疮的方法,所 述方法包括:施用有效量的由与健康或正常皮肤相关的痤疮丙酸杆菌 的菌株产生的代谢物,其中所述代谢物选自包含以下各项的组:细菌 培养物上清液、细胞溶解产物、蛋白质、核酸、脂质以及其它细菌分 子。所述菌株可以是RT6菌株。所述菌株可与SEQ ID NO:51、SEQ ID NO:52、SEQID NO:53或SEQ ID NO:54具有至少95%同源性,如至 少99%同源性或100%同源性。
在又一个实施方案中,本发明提供一种用于治疗受试者的痤疮的 方法,所述方法包括:施用有效量的特异性地靶向RT4、RT5、RT7、 RT8、RT9或RT10的药物,其中所述受试者被确定为分别具有RT4、 RT5、RT7、RT8、RT9或RT10。可在施用所述药物之前进行先前所 述方法。所述药物可以是小分子、反义分子、siRNA、生物制剂、抗 体或其组合。
在又一个实施方案中,本发明提供一种组合物,所述组合物包含 与健康或正常皮肤相关的痤疮丙酸杆菌的至少一种菌株。所述菌株可 以是RT6菌株。所述菌株可与SEQ IDNO:51、SEQ ID NO:52、SEQ ID NO:53或SEQ ID NO:54具有至少95%同源性,如至少99%同源性 或100%同源性。
在又一个实施方案中,本发明提供一种用于诊断基于IB-3的痤 疮的方法,所述方法包括:从受试者获得皮肤样品;从所述样品分离 细菌DNA;使用一个或多个引物组来扩增所述DNA;并且针对与SEQ ID NO 55至81中的至少一个具有至少95%同源性的序列的存在分析 所述扩增的DNA,其中如果存在与SEQ ID NO 55至81中的至少一 个具有至少95%同源性的序列的存在,那么所述受试者被诊断为具有 基于IB-3的痤疮。
在又一个实施方案中,本发明提供一种用于个体化治疗痤疮的方 法,所述方法包括确定影响受试者的痤疮的菌株并且向所述受试者施 用有效量的特异性地针对所述菌株的至少一种噬菌体。例如,可用针 对RT4菌株、RT5菌株、RT7菌株和RT8菌株、RT9菌株和/或RT10 菌株的噬菌体治疗所述受试者。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 I型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、 PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、 PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:40)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL010M04(SEQ ID NO:38)以及 PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有带有IB-3 菌株的微生物群系I型痤疮的个体的方法,所述方法包括向所述个体 施用有效量的噬菌体,其中所述噬菌体选自由以下各项组成的组: PHL082M00(SEQ ID NO:47)和PHL071N05(SEQ ID NO:41)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 II型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL060L00(SEQ ID NO:34)、PHL112N00(SEQ IDNO:35) 以及PHL085M01(SEQ ID NO:44)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 III型或优势RT8痤疮的个体的方法,所述方法包括向所述个体施用 有效量的噬菌体,其中所述噬菌体选自由以下各项组成的组: PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、PHL060L00(SEQ ID NO:34)、 PHL067M10(SEQ ID NO:42)、PHL071N05(SEQ ID NO:41)、 PHL112N00(SEQ ID NO:35)、PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、 PHL085M01(SEQ ID NO:44)、PHL114L00(SEQ ID NO:37)、 PHL073M02(SEQ ID NO:40)、PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 IV型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬 菌体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ IDNO:47)、PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、 PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)、 PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 V型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、 PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)、 PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗humerusii丙酸 杆菌相关疾患的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、 PHL067M10(SEQ ID NO:42)、PHL071N05(SEQ ID NO:41)、 PHL085N00(SEQ ID NO:46)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)以及 PHL010M04(SEQ ID NO:38)。
在又一个实施方案中,本发明提供一种用于诊断受试者的痤疮的 试剂盒,其中所述试剂盒包括:选自包含SEQ ID NO 11至18、20、 21、23、24、26以及27的组的至少一种引物;和使用说明书。
在又一个实施方案中,本发明提供一种用于诊断受试者的痤疮的 试剂盒,其中所述试剂盒包括:选自包含SEQ ID NO 11至18、20、 21、23、24、26以及27的组的至少一种引物;选自包含SEQ ID NO 19、22、25以及28的组的至少一种探针;和使用说明书。
附图说明
图1示出痤疮丙酸杆菌在毛皮脂单位的微生物区系中占据主导 地位,占克隆的87%。痤疮丙酸杆菌在痤疮患者和具有正常皮肤的个 体两者的毛皮脂单位中占主导。通过16S rDNA测序,痤疮丙酸杆菌 序列占所有克隆的87%。具有大于0.35%的相对丰度的物种按相对丰 度的顺序列出。由对来自正常个体的汇集样品的宏基因组鸟枪法测序 得知的物种分布证实了痤疮丙酸杆菌在毛皮脂单位中的高丰度,如最 右列上所示。
图2示出痤疮丙酸杆菌核糖型的等级丰度显示与在更高分类水 平下所观察到的分布类似的分布。在样品中观察到几种高度丰富的核 糖型和大量罕见核糖型。一些核糖型在痤疮患者中高度富集。仅前 30最丰富的核糖型反映在图2中。
图3示出毛皮脂单位中最丰富的痤疮丙酸杆菌核糖型在其它身 体部位处也是丰富的。将痤疮患者和正常个体中发现的主要核糖型与 来自HMP和Grice等人(2009)的数据集进行比较。前三种核糖型是在 不同数据集中最丰富的核糖型。Grice等人(2009)的数据集中观察到的 过量RT4和RT5是由于一个受试者HV4,所述受试者的痤疮丙酸杆 菌菌株种群在取样的每一皮肤部位处以这两种核糖型为主。在去除这 个受试者之后,核糖型分布与所研究的HMP样品和正常皮肤样品类 似。RT6还被发现在HMP数据集中是丰富的,所述数据集是从健康 个体收集的。
图4示出痤疮丙酸杆菌种群结构在痤疮和正常皮肤中不同。利用 对前十种最丰富的核糖型的加权UniFrac距离矩阵所作的主坐标分析 来对来自样品的痤疮丙酸杆菌种群进行聚类。主坐标1(P1)说明了 43.64%的变化并且P2说明了20.07%的变化。使用QIIME(Caporaso 等人2010)进行分析。
图5示出前十种最丰富的痤疮丙酸杆菌核糖型在痤疮患者和具 有正常皮肤的个体中的分布。每列表示在每个受试者中鉴别的前十种 核糖型的百分比。每一受试者平均的痤疮丙酸杆菌克隆数目是262并 且前十种核糖型的平均克隆数目是100。在数据中观察到五种主要的 微生物群系类型处于痤疮丙酸杆菌菌株水平。IV型和V型最常见于 痤疮患者中。未展示具有少于50个痤疮丙酸杆菌16S rDNA序列的 两个样品(一个来自痤疮,一个来自正常皮肤)。
图6示出在不分开痤疮和正常皮肤的两个组的情况下前十种最 丰富的痤疮丙酸杆菌核糖型在所有样品中的分布。每列表示在每个样 品中鉴别的前十种核糖型的百分比。当所有样品被聚类时,观察到处 于痤疮丙酸杆菌菌株水平的相同五种主要的微生物群系类型,从而指 示微生物群系分类不取决于疾病的状态。与图5中所示的一个(用星 号标出)相比,99个样品中仅三个被不同地聚类。未示出具有少于50 个痤疮丙酸杆菌16S rDNA序列的两个样品,一个来自痤疮,并且一 个来自正常皮肤。
图7示出在多个数据集中观察到相同五种主要的微生物群系类 型。将来自研究、HMP和Grice等人(2009)的样品基于前十种最丰富 的痤疮丙酸杆菌核糖型聚类在一起。总计包括284个样品。每列表示 在每个样品中鉴别的前十种核糖型的百分比。HMP样品和来自Grice 等人(2009)的样品两者是从健康个体收集的,因此微生物群系IV型 和V型的百分比在分析中代表性不足。未包括具有少于前十种核糖 型的十个序列的样品。
图8指示71种痤疮丙酸杆菌菌株的基因组比较显示RT4和RT5 的基因组与其它不同。两个染色体区基因座1和基因组2是分支IA-2 和另一种基因组HL086PA1特有的。分支IA-2主要由痤疮中高度富 集的RT4和RT5组成。质粒(基因座3)的存在也是RT4和RT5的特征。每行表示根据核糖型着色的痤疮丙酸杆菌基因组。行按基于痤疮 丙酸杆菌核心基因组中的SNP计算的系统发生排序。仅示出拓扑结 构。分支是基于其recA类型进行命名(IA、IB和II)。列表示基因组 中预测的开放阅读框(ORF)并且根据沿最终的基因组HL096PA1的ORF位置排序,所述HL096PA1编码55Kb质粒。示出染色体上的 仅前300个ORF(左侧)和质粒上的所有ORF(右侧)。着色的质粒区 表示只与HL096PA1质粒区匹配的重叠群上的基因。落在清晰地延伸 超过质粒区的重叠群上的基因很可能是染色体定位的并且用灰色着 色。核糖型的痤疮指数是基于痤疮中发现的每种核糖型克隆的百分比 进行计算,如表1中的第5列中所示。
图9示出基于痤疮丙酸杆菌核心基因组中的96,887个SNP构建 的系统发生树,其示出71种基因组聚类成不同的分支,与已经用于 对痤疮丙酸杆菌菌株进行分类的recA类型一致。所述基因组的16S 核糖型在很大程度上表示谱系的关系。在所述树的一端,分支IA-2 和IB-1主要由痤疮中富集的核糖型组成,并且在所述树的另一端, 分支II中的RT6主要见于健康受试者中。进行了具有1,000次重复的 自举检验(Bootstrap test)。分支之间的距离基于核心基因组中的SNP 进行计算并且不表示每个基因组的非核心区。放大的分支根据16S核 糖型进行着色,如图8中所示。
图10提供71种痤疮丙酸杆菌菌株的基因组比较并且显示RT4 和RT5的基因组与其它不同。示出在染色体上编码的所有预测的开 放阅读框(ORF)。每行表示根据核糖型着色的痤疮丙酸杆菌基因组。 行按基于痤疮丙酸杆菌核心基因组中的SNP计算的系统发生排序。 仅示出拓扑结构。列表示基因组中的ORF并且根据其沿最终的基因 组HL096PA1的位置排序。可在图中观察到主要为RT4菌株和RT5 菌株所独有的基因座1和基因座2以及主要为RT8菌株所独有的基 因座4。
图11提供具有推定质粒的所有基因组中的染色体与质粒区之间 的序列覆盖比较,其示出质粒的拷贝数目在每基因组1至3的范围内。 X轴表示基于最终的基因组HL096PA1的坐标沿染色体的DNA序列, 接着为质粒序列。Y轴表示序列覆盖。所述基因组与图8中的顺序相 同,除了HL056PA1(作为阴性对照)。
图12反映定量PCR(qPCR)证实每个基因组中的质粒的拷贝数目 是如从序列覆盖比较预测的1至3。Pak和RecA是位于染色体上的 管家基因并且TadA是位于质粒上的Tad基因座中的保守基因。基因 组中TadA与Pak之间的拷贝数目比在1至3的范围内,而所有基因组中RecA与Pak之间的比为1。HL078PA1和HL045PA1中的TadA 基因在qPCR中的后期循环中具有扩增。常规PCR证实了这两种菌 株中的TadA的扩增,而无质粒的其它菌株显示无扩增(数据未示出)。
图13示出在添加新基因组序列(N)的情况下发现的新基因(n)的 幂律回归。圆圈是针对200次模拟的n的中值。误差线指示200次模 拟的标准偏差。
图14示出随新基因组序列(N)的添加累积的总基因(n)的幂律回 归。圆圈是针对200次模拟的n的中值。误差线指示200次模拟的标 准偏差。
图15示出对于recAI型、II型和III型具有特异性的核心区中的 123,223个SNP的比例。
图16示出基于核心区(2.20Mb)中的123,223个SNP构建的82 种痤疮丙酸杆菌菌株的系统发生树。菌株之间的距离被计算为所有 SNP位点处的核苷酸取代率,根据比例尺着色。属于相同谱系的来自 相同个体的菌株(SSI)用“+”标记。
图17示出IA(A)型、IB(B)型和II(C)型菌株的泛基因组。圆圈 是针对200次模拟的n的中值。误差线是200次模拟的标准偏差。
图18示出核心区中的SNP分布。图18a示出核心区中的基因的 SNP频率(多态位点的百分比)。图18b提供具有较高SNP频率的基因 的K-S统计数据,具有多于两个标准偏差(SD)。图18c反映核心区中 的基因的非同义突变频率。图18d提供具有较高非同义突变频率的基 因的K-S统计数据,具有多于2个标准偏差。
图19提供同一谱系(图19a)和不同谱系(图19b)中的痤疮丙酸杆 菌菌株之间的距离。
图20反映每一谱系内的痤疮丙酸杆菌菌株共享独特的非核心基 因组区。行表示82种痤疮丙酸杆菌基因组并且列表示长于500bp的 314个非核心区。将所述基因组和所述非核心区分别基于相似性进行 聚类。所绘制的每一区块的宽度不与每一非核心区的基因组长度成比 例。非核心区的存在以黄色着色,并且不存在以蓝色着色。用于RT 和分支的颜色方案与图16中相同。
图21提供RT2菌株和RT6菌株中的CRISPR间隔区序列。在11 种痤疮丙酸杆菌基因组中发现总计48个CRISPR间隔区序列,其中 的29个是独特的。一些CRISPR间隔区见于多种菌株中。例如,间 隔区2(S2)由HL060PA1和HL082PA2共享。间隔区17(S17)由J139、ATCC11828、HL110PA3、HL110PA4、HL042PA3和HL202PA1共享。 间隔区18(S18)由J139、ATCC11828、HL110PA3、HL110PA4和 HL202PA1共享。所述树来自基于核心区中的123,223个SNP构建的 图16。
图22反映痤疮丙酸杆菌基因组中具有推定脂肪酶活性的基因。 图22a给出基于对KPA171202基因组和SK137基因组的注释对具有 推定脂肪酶活性的13种基因的概括。图22b反映在ORF HMPREF0675至4856中观察到的插入/缺失和移码。
图23反映使用靶向基因座1、2和3的多重PCR快速检测痤疮 相关的痤疮丙酸杆菌菌株的结果。
图24示出与管家基因Pak相比,基因座1和基因座2的相对丰 度。
图25反映示出痤疮丙酸杆菌基因座1、基因座3和Pak的扩增 的临床样品#1(图25A)和#2(图25B)的qPCR三重扩增曲线。
图26示出32种噬菌体的进化关系/系统发生树。
图27示出有关本发明的用于痤疮的诊断和疗法的个体化的方法 的图。
图28示出本发明的用于痤疮的诊断和疗法的个体化的方法的流 程图。
图29提供痤疮丙酸杆菌噬菌体基因组和注释。示出所有15种噬 菌体的基因组组构。之前公开的基因组中的阴影箭头表示所提出的新 注释的ORF。斜体的图例条目是指新注释的或修订的ORF。
图30提供基于核心区中的6,148个SNP构建的29种测过序的噬 菌体基因组的系统发生树。具有小于80(基于200次重新取样)的自 举值的分支塌陷。
图31提供基于基因组序列的系统发生树。图31a提供基于所有16种噬菌体的整个基因组序列构建的系统发生树。除了PHL112N00之外,所述噬菌体之间的系统发生关系与图30中所示的仅使用核心区相同。图31b示出仅使用在所述噬菌体之中高度保守的基因组的左臂构建的系统发生树。图31c示出仅使用右臂编码区构建的系统发生树。来自图30的组I和组II也在树中指示。具有小于80 (基于5,000次重新取样)的自举值的分支塌陷。
图32示出基于来自所有噬菌体的酰胺酶(图32a)和头蛋白(图32b) 的核苷酸序列(包括来自Lood等人的序列)构建的系统发生树。来自 之前研究的噬菌体之间的系统发生关系在这些树中保持相同。组I和 组II与图30中所示的基因组中相同。
图33反映针对来自密切相关的噬菌体的组I和组II的基因组产 生的多重比对。将核苷酸变异的位点映射至来自每组的成员。基因组 的每个50-nt窗口中的可变位点的密度以红色指示,其中100%密度 指示窗口中的所有50个位点在组成员之间变化。图33a提供映射至 PHL010M04基因组的组I噬菌体(PHL010M04、PHL066M04、 PHL073M02)之间的变异。图33b提供映射至PHL115M02基因组的 组II噬菌体(PHL115M02、PHL085M01、PHL085N00、PHL037M02) 之间的变异。灰色箭头表示每个基因组中的ORF。
图34示出痤疮丙酸杆菌噬菌体的宿主范围和特异性。示出66种 痤疮丙酸杆菌菌株、三种humerusii丙酸杆菌菌株和一种颗粒丙酸杆 菌(P.granulosum)菌株针对15种新测过序的噬菌体的敏感性/抗性。 顶部上和左侧的系统树图表示噬菌体和痤疮丙酸杆菌菌株的对应系 统发生树(仅示出拓扑结构)。“S”指示所测试的丙酸杆菌菌株对所测试 的噬菌体敏感。呈红色的数字表示相对于痤疮丙酸杆菌菌株 ATCC6919,这些丙酸杆菌菌株针对噬菌体的抗性的倍数增加。
图35提供痤疮丙酸杆菌对噬菌体的抗性与匹配的CRISPR间隔 区的存在之间的相关性。每个细胞中的彩色像素表示在每个痤疮病毒 杆菌菌株中编码的CRISPR间隔区(在行中示出)。每个红色像素意指 这个间隔区在相应噬菌体中具有精确的原型间隔区匹配(在列中示 出)。每个橙色像素意指这个间隔区在相应噬菌体中具有部分匹配的 原型间隔区(一至二个错配)。灰色像素意指无匹配的原型间隔区。粉 红细胞指示对噬菌体的细菌抗性。
图36反映将15种测过序的噬菌体中的每个与痤疮丙酸杆菌菌株 中鉴别的所有8个CRISPR间隔区阵列进行比对以便鉴别每个噬菌体 基因组中的原型间隔区序列,所述序列具有精确匹配(红色)或达到两 个错配(橙色)。正链和负链原型间隔区分别在基因组的上方和下方示 出。
图37反映原型间隔区和PAM中的序列保守性。示出与在 HL042PA3菌株中编码的CRISPR间隔区精确匹配的原型间隔区和其 相关的PAM。来自HL042PA3对其具有抗性的噬菌体的原型间隔区 基序之间的序列保守性在(A)中示出并且HL042PA3对其敏感的噬菌 体的原型间隔区基序之间的序列保守性在(B)中示出。
具体实施方式
在一个实施方案中,本发明提供一种用于确定个体是否具有痤疮 的方法,所述方法包括:从个体获得皮肤样品;从所述样品分离细菌DNA;扩增所述样品中的16S核糖体DNA;对所述扩增的DNA产 物进行测序;并且基于痤疮丙酸杆菌菌株的十种主要的核糖型(RT)RT1至RT10(SEQ ID NO 1至10)中的一种或多种对所述个体的DNA 进行分型,其中所述分型通过确定所述个体是否具有RT1至RT10中 的一种或多种而发生并且其中如果所述个体具有RT4、RT5、RT7、 RT8、RT9或RT10,那么所述个体被诊断为具有痤疮。例如,如果所 述个体具有RT4(SEQ ID NO:4)、RT5(SEQ ID NO:5)或RT8(SEQ ID NO:8),那么所述个体可被诊断为具有痤疮。
在另一个实施方案中,本发明提供一种用于诊断不同类型的痤疮 的方法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细 菌DNA;扩增所述样品中的16S核糖体DNA;对所述扩增的DNA 产物进行测序;并且基于痤疮丙酸杆菌菌株的五种主要的微生物群系 类型中的一种或多种对所述受试者的DNA进行分型,其中如果所述 受试者被分型至微生物群系IV或V,那么所述受试者被诊断为具有 痤疮。
在又一个实施方案中,本发明提供一种用于快速诊断痤疮的方 法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细菌 DNA;使用一个或多个引物组来扩增所述DNA;并且针对与SEQ ID NO 29至32和82至434中的至少一个具有至少95%同源性的序列的存在分析所述扩增的DNA,其中如果存在与SEQ ID NO 29至32和 82至434中的至少一个具有至少95%同源性的序列的存在,那么所 述受试者被诊断为具有痤疮。例如,可针对与SEQID NO 29至32 和82至434中的至少一个具有至少99%同源性的序列的存在分析所 述扩增的DNA,并且其中如果存在与SEQ ID NO 29至32和82至 434中的至少一个具有至少99%同源性的序列的存在,那么所述受试 者被诊断为具有痤疮。作为另一个实例,可针对SEQ IDNO 29至32 和82至434中的至少一个的存在分析所述扩增的DNA,并且其中如 果存在SEQID NO 29至32和82至434中的至少一个的存在,那么 所述受试者被诊断为具有痤疮。
在另一个实施方案中,本发明提供一种用于快速诊断痤疮的方 法,所述方法包括:从受试者获得皮肤样品;从所述样品分离细菌 DNA;使用一个或多个引物组来扩增所述DNA;使用一个或多个探 针来检测所述扩增的DNA;并且针对以下各项的存在分析所述探针信号:基因座1(与SEQ ID NO 29和82至97中的至少一个具有至少 95%同源性的至少一个序列)、基因座2(与SEQ ID NO 30和98至186 中的至少一个具有至少95%同源性的至少一个序列)、基因座3(与 SEQ ID NO 31和187至423中的至少一个具有至少95%同源性的至少一个序列)、和/或基因座4(与SEQ ID NO 32和424至434中的至 少一个具有至少95%同源性的至少一个序列),其中如果存在基因座 1至4中的一个或多个,那么所述受试者被诊断为具有痤疮。例如, 可基于至少99%同源性或100%同源性针对基因座1、基因座2、基 因座3和/或基因座4的存在分析所述信号。
在前述方法中,所述引物组的引物可选自由以下各项组成的组: SEQ ID NO 11、12、17和18(对于基因座1);SEQ ID NO 13、14、 20和21(对于基因座2);SEQ ID NO 15、16、23和24(对于基因座 3);以及SEQ ID NO 26和27(对于基因座4)。在前述方法中,所述 探针可以是SEQ ID NO:19(对于基因座1)、SEQ ID NO:22(对于基因 座2)、SEQ ID NO:25(对于基因座3)和SEQ ID NO:28(对于基因座 4)。
在又一个实施方案中,本发明提供一种用于预防和/或治疗由痤 疮丙酸杆菌引起的痤疮的疫苗,所述疫苗包含热灭活的痤疮丙酸杆菌 菌株、所述菌株的减毒蛋白质或其组合,其中所述菌株是RT4菌株、 RT5菌株、RT7菌株、RT8菌株、RT9菌株或RT10菌株。
在又一个实施方案中,本发明提供一种用于预防和/或治疗由痤 疮丙酸杆菌引起的痤疮的疫苗,所述疫苗包含基于对影响受试者的痤 疮丙酸杆菌菌株的16S rDNA序列分析被鉴别为对于所述受试者具有 特异性的热灭活的痤疮丙酸杆菌菌株、所述菌株的减毒蛋白质或其组 合。
关于疫苗,所述热灭活的痤疮丙酸杆菌菌株、减毒蛋白质或其组 合可对针对痤疮丙酸杆菌的菌株鉴别的独特基因组基因座、区域或序 列中的至少一个具有特异性。所述热灭活的痤疮丙酸杆菌菌株、减毒 蛋白质或其组合可对基因座1(SEQ ID NO 29和82至97)、基因座2 (SEQ ID NO 30和98至186)、基因组3(31和187至423)和基因座4 (32和424至434)中的至少一个具有特异性。
在又一个实施方案中,本发明提供一种用于个体化治疗痤疮的方 法,所述方法包括确定影响受试者的痤疮丙酸杆菌的菌株和用针对痤 疮丙酸杆菌的至少一种检测过的菌株的活性成分治疗所述受试者,其 中所述活性成分包含靶向痤疮丙酸杆菌的特定菌株的药物,其中所述 靶向药物包含靶向对与痤疮相关的痤疮丙酸杆菌的菌株具有特异性 的基因组元件的小分子、反义分子、siRNA、生物制剂、抗体以及其 组合。
在又一个实施方案中,本发明提供一种用于治疗痤疮的方法,所 述方法包括:施用有效量的益生菌,所述益生菌包含基于其16S rDNA 与健康或正常皮肤相关的痤疮丙酸杆菌的至少一种菌株。所述菌株可 以是RT6菌株。所述菌株可与SEQ ID NO:51、SEQ ID NO:52、SEQ ID NO:53或SEQ ID NO:54具有至少95%同源性,如至少99%同源性 或100%同源性。
在又一个实施方案中,本发明提供一种用于治疗痤疮的方法,所 述方法包括:施用有效量的由与健康或正常皮肤相关的痤疮丙酸杆菌 的菌株产生的代谢物,其中所述代谢物选自包含以下各项的组:细菌 培养物上清液、细胞溶解产物、蛋白质、核酸、脂质以及其它细菌分 子。所述菌株可以是RT6菌株。所述菌株可与SEQ ID NO:51、SEQ ID NO:52、SEQID NO:53或SEQ ID NO:54具有至少95%同源性,如至 少99%同源性或100%同源性。
在又一个实施方案中,本发明提供一种用于治疗受试者的痤疮的 方法,所述方法包括:施用有效量的特异性地靶向RT4、RT5、RT7、 RT8、RT9或RT10的药物,其中所述受试者被确定为分别具有RT4、 RT5、RT7、RT8、RT9或RT10。可在施用所述药物之前进行先前所 述方法。所述药物可以是小分子、反义分子、siRNA、生物制剂、抗 体或其组合。
在又一个实施方案中,本发明提供一种组合物,所述组合物包含 与健康或正常皮肤相关的痤疮丙酸杆菌的至少一种菌株。所述菌株可 以是RT6菌株。所述菌株可与SEQ IDNO:51、SEQ ID NO:52、SEQ ID NO:53或SEQ ID NO:54具有至少95%同源性,如至少99%同源性 或100%同源性。
在又一个实施方案中,本发明提供一种用于诊断基于IB-3的痤 疮的方法,所述方法包括:从受试者获得皮肤样品;从所述样品分离 细菌DNA;使用一个或多个引物组来扩增所述DNA;并且针对与SEQ ID NO 55至81中的至少一个具有至少95%同源性的序列的存在分析 所述扩增的DNA,其中如果存在与SEQ ID NO 55至81中的至少一 个具有至少95%同源性的序列的存在,那么所述受试者被诊断为具有 基于IB-3的痤疮。
在又一个实施方案中,本发明提供一种用于个体化治疗痤疮的方 法,所述方法包括确定影响受试者的痤疮的菌株并且向所述受试者施 用有效量的特异性地针对所述菌株的至少一种噬菌体。例如,可用针 对RT4菌株、RT5菌株、RT7菌株和RT8菌株、RT9菌株和/或RT10 菌株的噬菌体治疗所述受试者。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 I型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、 PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:40)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL010M04(SEQ ID NO:38)以及 PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有带有IB-3 菌株的微生物群系I型痤疮的个体的方法,所述方法包括向所述个体 施用有效量的噬菌体,其中所述噬菌体选自由以下各项组成的组: PHL082M00(SEQ ID NO:47)和PHL071N05(SEQ ID NO:41)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 II型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL060L00(SEQ ID NO:34)、PHL112N00(SEQ IDNO:35) 以及PHL085M01(SEQ ID NO:44)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 III型或优势RT8痤疮的个体的方法,所述方法包括向所述个体施用 有效量的噬菌体,其中所述噬菌体选自由以下各项组成的组: PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、PHL060L00(SEQ ID NO:34)、 PHL067M10(SEQ ID NO:42)、PHL071N05(SEQ ID NO:41)、 PHL112N00(SEQ ID NO:35)、PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、 PHL085M01(SEQ ID NO:44)、PHL114L00(SEQ ID NO:37)、 PHL073M02(SEQ ID NO:40)、PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系IV型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬 菌体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、 PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)、 PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗患有微生物群系 V型痤疮的个体的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、 PHL060L00(SEQ ID NO:34)、PHL067M10(SEQ ID NO:42)、 PHL071N05(SEQ ID NO:41)、PHL112N00(SEQ ID NO:35)、 PHL037M02(SEQ ID NO:45)、PHL085N00(SEQ ID NO:46)、PHL115M02(SEQ ID NO:43)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)、 PHL010M04(SEQ ID NO:38)以及PHL066M04(SEQ ID NO:39)。
在又一个实施方案中,本发明提供一种用于治疗humerusii丙酸 杆菌相关疾患的方法,所述方法包括向所述个体施用有效量的噬菌 体,其中所述噬菌体选自由以下各项组成的组:PHL113M01(SEQ ID NO:36)、PHL111M01(SEQ ID NO:33)、PHL082M00(SEQ ID NO:47)、 PHL067M10(SEQ ID NO:42)、PHL071N05(SEQ ID NO:41)、 PHL085N00(SEQ ID NO:46)、PHL085M01(SEQ ID NO:44)、 PHL114L00(SEQ ID NO:37)、PHL073M02(SEQ ID NO:40)以及 PHL010M04(SEQ ID NO:38)。
在又一个实施方案中,本发明提供一种用于诊断受试者的痤疮的 试剂盒,其中所述试剂盒包括:选自包含SEQ ID NO 11至18、20、 21、23、24、26以及27的组的至少一种引物;和使用说明书。
在又一个实施方案中,本发明提供一种用于诊断受试者的痤疮的 试剂盒,其中所述试剂盒包括:选自包含SEQ ID NO 11至18、20、 21、23、24、26以及27的组的至少一种引物;选自包含SEQ ID NO 19、22、25以及28的组的至少一种探针;和使用说明书。
核苷酸、多核苷酸或核酸序列将被理解为意指呈单体或二聚体形 式的双链或单链DNA和所述DNA的转录产物两者。
同源核苷酸序列意指与根据本发明的核苷酸序列的碱基具有至 少80%,优选90%、95%、96%、97%、98%、99%或100%的至少一 定百分比同一性的核苷酸序列。这种百分比是统计值,并且两个核苷 酸序列之间的差异可随机或在其整个长度上确定。
本发明包含由根据本发明的核苷酸序列编码的多肽,包括序列由 片段表示的多肽。在本文中,术语多肽、肽和蛋白质可互换。
多肽允许制备单克隆或多克隆抗体,所述单克隆或多克隆抗体的 特征在于它们特异性地识别所述多肽。本发明涉及单克隆或多克隆抗 体或其片段或嵌合抗体,其特征在于它们能够特异性地识别多肽。
在根据本发明的疫苗组合物中使用的多肽可例如取决于所述多 肽刺激T细胞的能力通过本领域技术人员已知的技术进行选择,这是 例如通过其增殖或白细胞介素的分泌来进行翻译并且导致针对所述 多肽的抗体的产生。疫苗组合将优选地与药学上可接受的媒介物并且 在有需要时与具有适当免疫性的一种或多种佐剂组合。药学上可接受 的媒介物是指如下化合物或化合物的组合,所述化合物不会引起次级 反应并且允许例如促进活性化合物的施用、其寿命持续时间和/或其 在体内的功效的增加、其在溶液中的溶解度的增加、或其保存的改进。
申请人鉴别了痤疮丙酸杆菌的十种主要谱系和其中出现痤疮的 人毛皮脂单位(“毛孔”)中的五种主要微生物群系类型。所述痤疮丙酸 杆菌谱系和微生物群系类型中的一些在痤疮患者中高度富集并且一 些与健康皮肤相关。已经鉴别了每一主要谱系的独特基因组组分,包 括为痤疮相关谱系所特有的线性质粒。这一信息用于,例如:(1)用 于从毛皮脂单位分离细菌DNA/RNA以用于下游分析的方法/试剂盒; (2)快速且准确地检测/诊断/鉴别受影响的受试者的微生物群系类型 和存在于受影响的受试者的毛孔中的痤疮丙酸杆菌的主要菌株;(3) 研发针对痤疮相关的痤疮丙酸杆菌菌株的疫苗;(4)使用与健康皮肤相关的菌株研发呈局部乳膏、溶液等形式的益生菌;(5)研发靶向为 与痤疮相关的痤疮丙酸杆菌菌株所特有的遗传元件和生物途径的药 物,包括小分子、生物制剂和抗体,以及(6)研发基于细菌噬菌体的 菌株特异性疗法以便治疗痤疮。
一旦诊断出受痤疮影响的受试者的微生物群系类型,以下所描述 的几种方法可用于制定有效的治疗计划。例如,如果受试者具有微生 物群系IV型或V型,或由痤疮丙酸杆菌RT10菌株占主导地位,抗 生素治疗将成功的可能性较小,因为这些菌株具有抗生素抗性。然而, 其它方法治疗仍然可供使用,如类视黄醇。
根据本发明的一个实施方案,在受试者具有毒性核糖型(包括 RT4、RT5和RT8)的情况下,靶标特异性药物,包括小分子、生物制 剂和抗体,可能是更有效的治疗。在本发明的一个优选实施方案中, 这种患者可用靶向为与痤疮相关的痤疮丙酸杆菌菌株所特有的遗传 元件和生物途径的抗体进行治疗。
根据本发明的另一个实施方案,在影响受试者的优势痤疮丙酸杆 菌菌株不具有一组CRISPR/Cas的情况下,噬菌体疗法的另外治疗可 能是更有效的。
本发明还涉及痤疮治疗的替代性治疗策略以便通过促进健康相 关的菌株的生长来平衡痤疮丙酸杆菌菌株的相对丰度。
本发明涉及用于从受影响的受试者的毛孔分离细菌DNA/RNA 以用于下游遗传分析的方法和试剂盒。更具体地说,本发明涉及用于 从微小粉刺样品提取细菌基因组DNA和RNA的方案。在本发明的 一个具体实施方案中,深层清洁毛孔贴条可用于从受试者抽取 细菌样品。基因组DNA可根据本领域中已知的方法来提取。例如, QIAamp DNA微小试剂盒(Qiagen)是可用于使用珠磨器(beadbeater)从 通过溶解细胞/微小粉刺获得的上清液提取基因组DNA的市售试剂 盒。
本发明还涉及用于检测和/或诊断受影响的受试者中的微生物群 系类型的快速又准确的方法和试剂盒。微生物群系分型/微生物群系 特异性治疗是基于痤疮丙酸杆菌菌株的十种主要谱系和人毛皮脂单 位中的五种主要微生物群系类型(使用全长16S rDNA测序通过全面 宏基因组分析而发现)。
实际上,将样品使用具有以下序列的16S rDNA特异性引物进行 PCR扩增:27f-MP5’AGRGTTTGATCMTGGCTCAG-3’和1492r-MP 5-TACGGYTACCTTGTTAYGACTT-3’。任选地,在凝胶纯化之后,将 1.4Kb产物切下并且进一步使用例如Quigen QIAquick凝胶提取试 剂盒加以纯化。将纯化的产物使用例如来自Invitrogen的TOPO TA 克隆试剂盒克隆至OneShot大肠杆菌细胞中。测序是用具有以下的序 列的通用正向、通用反向以及(对于亚群)内部16SrDNA引物907R 来进行:TGTAAAACGACGGCCAGT(正向)、CAGGAAACAGCTA TGACC(反向)和CCGTCAATTCCTTTRAGTTT(907R)。将序列反应 物在具有长读取运行模块的50cm阵列上加载到来自ABI的ABI 3 730机器上。
痤疮丙酸杆菌的每一谱系具有独特的基因组基因座、区域和序 列。因此,可产生特异性引物来靶向谱系特异性基因组区以便使用本 领域中已知的方法如PCR/qPCR检测每一谱系的存在或不存在以及 每一谱系的相对量。这在获得样品的几个小时内发生。在申请人的发 明之前,这需要更多时间—使用基于培养的方法经常数周。根据本发 明的一个实施方案,将受影响的受试者基于这些诊断针对微生物群系 特异性治疗进行分组。
根据本发明的方法,核糖型4和5的菌株的独特基因组基因座1、 2和3已经显示与痤疮相关。使用靶向基因座1、2和3的特异性引 物,可区别包含这些基因座的谱系与缺乏这些基因座的谱系。此外, 使用PCR/qPCR技术,还可检测每一菌株的相对丰度。对模拟群落的分析已显示可使用这些技术检测微生物群系中的处于7.5%或更高丰 度的具有基因座1、2和3的分离株。鉴于qPCR的灵敏度,一些DNA 拷贝的较低丰度水平也可以是可检测的。
之前已报道痤疮丙酸杆菌的热灭活可以是研发基于痤疮丙酸杆 菌的疫苗的有效方式。参见T.Nakatsuji等人,128(10)J.Invest. Dermatol.2451-2457(2008年10月)。在本发明的一方面,研发针对 痤疮相关的痤疮丙酸杆菌菌株的疫苗。在本发明的另一方面,研发针 对痤疮相关的痤疮丙酸杆菌菌株的个体化疫苗。在本发明的又一方 面,使用无活性痤疮丙酸杆菌菌株或热减毒蛋白质来研发针对痤疮相 关的痤疮丙酸杆菌菌株的疫苗。适合用作疫苗的菌株可基于16S rDNA测序来鉴别,从而鉴别与痤疮相关的痤疮丙酸杆菌菌株的谱系 和每一谱系的独特基因组基因座、区域和序列以便特异性地靶向与痤 疮相关的痤疮丙酸杆菌的菌株而不是与健康皮肤相关的那些菌株。
根据以上所描述的方法,已发现具有核糖型4、5、7、8、9和 10的痤疮丙酸杆菌菌株是与痤疮高度相关的。在本发明的一个实施 方案中,产生单独地或组合地针对这些个别菌株的疫苗。类似地,基 因座1、2和3中的基因可以是疫苗接种的靶标,因为这些基因座是 核糖型4和5特有的并且没有在共生菌株中发现。为核糖型8所特有 的基因座4也可用作疫苗疗法的潜在靶标。在基因座1、2、3和4中 编码的基因的列表在表2中示出。
本发明还涉及药物、组合物、局部乳膏、溶液或其它化妆品产品 中的使用与健康皮肤相关的痤疮丙酸杆菌菌株研发的益生菌。益生菌 在过去已用于局部乳膏中。PROBIOTIC LABTM宣布了将细菌的14种 特异性菌株的混合物用于治疗囊肿性痤疮(http://www.probiotic-lab.com/aboutusprobioticlab.html)。益生菌皮肤护 理品/DERMBIOTIX具有产品系列—益生菌胶原复合物(PC3),其据 称对皮肤具有靶向性抗衰老益处。然而,这不是针对于痤疮治疗。益 生菌胶原复合物(PC3)向皮肤注入为有效对抗和去除因外界因素产生 的过量阴性细菌所需的阳性细菌(http://www.dermbiotix.com)。然而,在本发明之前,不存在已被报道用于使用与健康/正常皮肤相关的痤 疮丙酸杆菌菌株治疗痤疮的皮肤益生菌产品。在本发明的一方面,研 发皮肤益生菌以用于使用与健康/正常皮肤相关的痤疮丙酸杆菌菌株 治疗痤疮。在本发明的另一方面,基于16S rDNA测序研发皮肤益生 菌以用于使用与健康/正常皮肤相关的痤疮丙酸杆菌菌株治疗痤疮。
在本发明的一个具体实施方案中,与健康皮肤相关的痤疮丙酸杆 菌的RT6谱系用作局部产品。在本发明的又一个实施方案中,通过 在人皮肤上接种这种分离株以便竞争掉痤疮相关菌株来使用痤疮丙 酸杆菌的RT6谱系。在另一个实施方案中,这些菌株的分子(包括蛋 白质、核酸、脂质和其它代谢物)、培养物上清液和/或细胞溶解产物 可用作益生菌。
本发明还涉及靶向痤疮相关的痤疮丙酸杆菌菌株的药物。这是基 于痤疮丙酸杆菌的多重基因组比较结合16S rDNA宏基因组分析,从 而鉴别与痤疮相关的某些菌株和基因组变异。意图靶向痤疮相关痤疮 丙酸杆菌的药物包括靶向对于与痤疮相关的菌株具有特异性的基因 组元件的定制设计的小分子、反义分子、siRNA分子、生物制剂和抗 体。可设计靶向基因座1、2、3和4的反义RNA、抗体或小分子。 具有核糖型4、5和10的菌株具有抗生素抗性。因此,本领域中需要 靶向核糖型4、5和10的新的抗生素。
本发明还涉及用于受痤疮影响的受试者的个体化噬菌体疗法,所 述个体化噬菌体疗法包括对于痤疮丙酸杆菌的某些菌株具有特异性 的噬菌体。某些公司为痤疮患者提供噬菌体疗法,如噬菌体疗法中心 TM(http://www.phagetherapycenter.com/pii/PatientServlet?command=st atic_home)。然而,这类公司不提供关于用于所述疗法的噬菌体的细 菌宿主特异性的信息。痤疮丙酸杆菌是共生的并且一些菌株对宿主发 挥保护作用。在本发明的一个实施方案中,个体化噬菌体疗法包括选 择靶向已显示缺乏对受痤疮影响的受试者的保护作用的痤疮丙酸杆 菌菌株的噬菌体。在本发明的又一个实施方案中,个体化噬菌体疗法 可根据其噬菌体的细菌宿主特异性研发以便靶向痤疮丙酸杆菌的特 异性菌株,从而使健康相关的菌株保持完整。此外,有可能鉴别受影 响的受试者的痤疮丙酸杆菌谱系的结构并且使用所述结构来预测对 噬菌体感染或质粒缀合的抗性以便更好地靶向特异性噬菌体疗法。例 如,痤疮丙酸杆菌谱系RT2和RT6具有CRISPR/Cas结构,从而指示它们具有针对某些噬菌体感染和质粒缀合的抗性。表5示出特定痤疮 丙酸杆菌菌株对特异性痤疮丙酸杆菌噬菌体的敏感性和抗性。
在以下说明性实施例中对本发明进行更详细的描述。虽然所述实 施例可能仅代表本发明的选定实施方案,但以下实施例仅是说明性的 并且不以任何方式具限制性。
实施例
实施例1—对与痤疮相关的人皮肤微生物群系中的痤疮丙酸杆 菌菌株种群的分析
人皮肤微生物群系在皮肤健康和疾病中起重要作用。然而,在申 请人的发明之前,对在菌株水平上的细菌种群结构和多样性了解甚 少。本发明人通过在49名痤疮患者和52名健康个体的鼻上获取毛皮 脂单位样品来在他们之间的痤疮丙酸杆菌(一种优势皮肤共生体)的 菌株水平和基因组水平上比较皮肤微生物群系。宏基因组分析证明, 虽然痤疮丙酸杆菌的相对丰度类似,但菌株种群结构在两个组中显著 不同。某些菌株与痤疮高度相关并且其它菌株在健康皮肤中富集。通 过对66种新颖的痤疮丙酸杆菌菌株测序并且比较71种痤疮丙酸杆菌 基因组,本发明人鉴别了与痤疮或健康相关的各种痤疮丙酸杆菌菌株的潜在遗传决定簇。分析指示获得的DNA序列和细菌免疫元件可在 确定痤疮丙酸杆菌菌株的毒力特性中起作用并且一些可以是治疗干 预的靶标。这一研究展示共生菌株种群的先前未曾报道的范例,所述 范例解释说明人疾病的发病机制。它强调对人微生物群系的菌株水平 分析的重要性以便界定共生体在健康和疾病中的作用。
背景
人微生物区系在菌株水平下的多样性及其与人健康和疾病的关 联在很大程度上是未知的。然而,许多研究已显示微生物有关的人疾 病经常由物种的某些菌株引起,而不是为病原性的整个物种。实例包 括耐甲氧西林金黄色葡萄球菌(MRSA)(Chambers和Deleo,2009; Chen等人,2010;Hansra和Shinkai)和大肠杆菌O157(Chase-Topping 等人,2008;Tarr等人,2005)。寻常痤疮(通常被称为痤疮)是最常见的 皮肤疾病之一,其具有高达85%青少年和11%成人的流行率(White, 1998)。虽然痤疮的病因学和发病机制仍然不清楚,但微生物涉及被 认为是促使患上痤疮的主要机制之一(Bojar和Holland,2004;Cunliffe,2002)。具体地说,痤疮丙酸杆菌已被假定为重要的致病因子(Webster, 1995)。靶向痤疮丙酸杆菌的抗生素疗法在30多年里一直是主要的治 疗手段(Leyden,2001)。然而,尽管经过数十年的研究,但仍不清楚 痤疮丙酸杆菌如何导致痤疮发病机制,同时为正常皮肤菌群的主要共 生体(Bek-Thomsen等人,2008;Cogen等人,2008;Costello等人,2009; Dominguez-Bello等人,2010;Fierer等人,2008;Gao等人,2007;Grice 等人,2009)。痤疮丙酸杆菌是否作为共生细菌保护人皮肤或充当痤疮 的致病因子、或两者仍有待阐明。
因此,申请人使用宏基因组学和基因组测序的组合在菌株水平和 基因组水平上比较了49名痤疮患者和52名正常个体中的皮肤微生物 群系。首先,对于每个样品,扩增16S核糖体DNA(rDNA),对大约 400个克隆进行测序,并且对平均311个接近全长的16S rDNA序列 进行分析。确定每个样品中的痤疮丙酸杆菌菌株的种群结构。其次, 基于16S rDNA宏基因组数据通过计算每种痤疮丙酸杆菌菌株在痤疮 患者中的流行率来对其赋以“痤疮指数”。鉴别与痤疮患者组相关的痤 疮丙酸杆菌菌株以及在具有正常皮肤的个体中富集的菌株。这种宏基 因组方法在确定疾病关联性方面根本上不同于先前方法;它通过绕过 菌株分离和培养中的偏差和选择而比传统方法更强大并且更少偏差。 最后,对66种新颖的痤疮丙酸杆菌菌株进行测序并且对涵盖皮肤微 生物区系中发现的痤疮丙酸杆菌的主要谱系的71种痤疮丙酸杆菌基 因组进行比较。通过组合皮肤微生物群系的宏基因组研究与这种主要 皮肤共生体的基因组测序,申请人的研究提供对痤疮发病机制中的细 菌遗传决定簇的深入了解,并且强调人微生物群系的菌株水平分析的 重要性以便理解共生体在健康和疾病中的作用。
结果
痤疮丙酸杆菌在毛皮脂单位中占优势
申请人表征了从49名痤疮患者和52名具有正常皮肤的个体收集 的鼻上的毛皮脂单位(“毛孔”)中的微生物群系。使用桑格(Sanger)方法 获得了接近全长的16S rDNA序列,其允许在菌株水平下分析痤疮丙 酸杆菌。在质量滤波之后,最终数据集包括在位置29至位置1483范 围内的31,461个16S rDNA序列。所述序列中的27,358个以大于99% 同一性与痤疮丙酸杆菌匹配。所述数据证明痤疮丙酸杆菌在毛皮脂单 位的微生物区系中占优势,占克隆的87%(图1)。毛皮脂单位中的其 它通常发现的物种包括表皮葡萄球菌(Staphylococcus epidermidis)、 humerusii丙酸杆菌和颗粒丙酸杆菌,各自占总克隆的1%至2.3%。 在样品中鉴别了属于42属和六门的总计536个物种水平操作分类单 位(SLOTU)(表S1)。
表S1.毛皮脂单位中发现的六门和42属
为了绕过由于PCR扩增和由于不同物种之间不平均数目的16S rDNA基因拷贝所致的潜在偏差,进行从22名另外正常个体的毛皮 脂单位样品汇集的总DNA的宏基因组鸟枪法测序。通过将宏基因组 序列映射至参考基因组来鉴别微生物物种。结果证实痤疮丙酸杆菌是 最丰富的物种(89%)(图1)。这与从16S rDNA测序获得的结果(87%) 一致。
对于16S rRNA序列,对位置27至位置1492进行PCR扩增。但 是,在分析序列时,仅研究位置29至位置1483。位置的编号是基于 大肠杆菌命名法系统。因此,29至1483之间的序列对于确定核糖型 (存在许多核糖型,不仅仅10种)是重要的。至于前10种核糖型,16ArRNA的位置529至位置1336之间的序列是足够的。
痤疮中的不同痤疮丙酸杆菌菌株种群
当比较痤疮患者与正常个体时,在痤疮丙酸杆菌的相对丰度方面 不存在统计上显著的差异。然后通过广泛分析痤疮丙酸杆菌16S rDNA序列来检验是否存在痤疮丙酸杆菌的菌株水平下的差异。在本 文,作为16S rDNA等位基因类型的每种独特的16S rDNA序列被称 为核糖型(RT)。最丰富的痤疮丙酸杆菌序列被定义为核糖型1(RT1) (SEQ ID NO:1)。所有其它定义的核糖型与RT1具有99%或更大序列 同一性。与在更高分类水平(Bik等人)下观察到的分布类似,在菌株 水平下一些核糖型在样品中高度丰富,连同相对数量的罕见核糖型 (图2)。在仔细检验序列色谱图和人工校正序列之后,将总计11,009 种核糖型分配至痤疮丙酸杆菌16S rDNA序列。次要核糖型中的大多 数是单个的。平均起来,每个个体拥有3±2种具有三个或更多个克隆 的痤疮丙酸杆菌核糖型。基于以下所描述的基因组序列,所有测过序 的痤疮丙酸杆菌菌株具有三个相同的16S rDNA基因拷贝(参见以下 的注释)。这允许基于16S rDNA序列比较个体中的痤疮丙酸杆菌菌株 种群。具有多于60个克隆并且在多个受试者中发现的前十种主要的 核糖型在表1中示出:
表1-在毛皮脂单位中发现的前十种最丰富的核糖型
a在将每种核糖型的克隆的数目用痤疮患者中的克隆的总数目标 准化之后计算所述百分比(痤疮指数)。
b在将每种核糖型的克隆的数目用正常个体中的克隆的总数目标 准化之后计算所述百分比。
c曼-惠特尼-威尔科克森(Mann-Whitney-Wilcoxon)秩和检验。
对前十种核糖型的分析显示疾病特异性相关和健康特异性关联 两者。三种最丰富的核糖型(RT1、RT2和RT3)在痤疮和正常个体 之中非常均匀地分布。然而,后七种主要核糖型在其分布上显著偏差 (表1)。核糖型4、5、7、8、9和10被发现在痤疮患者中占优势,其中这六种中的四种在痤疮中统计上显著地富集(p<0.05,威尔科克森检 验)。核糖型4、5和10在16S rDNA序列中包含核苷酸取代G1058C, 所述取代之前已显示赋予针对四环素的增加的抗性(Ross等人,1998; Ross等人,2001)。然而,在本研究中仅较小百分比的拥有这些核糖型 的受试者曾用抗生素治疗(图3),因此痤疮组中的这三种核糖型的富 集与抗生素治疗不相关。这与之前研究一致,所述之前研究显示之前 使用抗生素并不总是与抗生素抗性菌株的存在相关并且之前未用抗 生素治疗的一些患者拥有对抗生素已经有抗性的菌株(Coates等人, 2002;Dreno等人,2001)。一种核糖型RT6(虽然仅在11名受试者中 检测到)与正常皮肤密切相关(p=0.025,威尔科克森检验)(表1)。它在 正常组中的相对丰度与来自人微生物群系项目(HMP)的健康组数据 中发现的相对丰度类似(参见图3)。阳性受试者的百分比(11/52)也类 似。14名HMP受试者中的三名在前鼻孔中发现RT6,并且另一名受 试者在左耳后皱褶中具有RT6。
基于前十种核糖型的分布,使用几种不同测试的统计分析显示了 痤疮与正常皮肤之间的痤疮丙酸杆菌种群的显著差异(图4)。这与主 坐标分析一致,其中痤疮样品和正常皮肤样品通常通过主坐标1和主 坐标2分开(图4),所述主坐标分别解释44%和20%的变化。
为了检验不同个体是否共有类似的痤疮丙酸杆菌种群结构,将样 品基于前十种核糖型的相对丰度进行聚类。在痤疮丙酸杆菌菌株水平 下观察到物种主要的微生物群系类型(微生物群系类型I至V)。分别 由痤疮丙酸杆菌RT4和RT5占优势的类型IV和类型V主要见于痤 疮患者中(图5和图6)。在HMP数据和来自Grice等人(Grice等人,2009) 的数据中观察到相同的五种主要微生物群系类型(参见图7)。
71种痤疮丙酸杆菌菌株的基因组序列分析
所有前十种最丰富的核糖型仅在16S rDNA序列中的一个或两个 核苷酸变化方面不同于RT1(表1)。为了确定16S rDNA序列中的这 类小的变化是否反映基因组水平下的谱系和进化史,选择代表主要核 糖型1、2、3、4、5、6和8以及两种次要核糖型16和532的66个痤疮丙酸杆菌分离株以用于基因组测序。对这66个分离株的基因组 进行完全测序并且汇编至高质量草图(draft)或具有50X覆盖率或更高 的完整基因组中。五种其它痤疮丙酸杆菌基因组KPA171202 (Bruggemann等人,2004)、J165、J139、SK137和SK187是公共可利 用的并且包括在分析中。构建了基于从这71种痤疮丙酸杆菌基因组 获得的核心基因组中的96,887个独特的单核苷酸多态性(SNP)位置的 系统发生树。大多数具有相同核糖型的基因组聚类在一起。所述树指 示16S rDNA核糖型确实在很大程度上表示谱系的关系并且16SrDNA序列是用于区别主要痤疮丙酸杆菌谱系的有用的分子标记(图8 和图9)。
在痤疮丙酸杆菌中检测到的遗传元件
进行了通过核糖型分组的所有71种基因组之间的对比基因组分 析。所述分析揭示了痤疮相关的菌株可通过其促进痤疮发病机制的遗 传元件和健康相关的菌株可通过其促进维持皮肤健康的元件。具体地 说,现在已知的是以下各项的独特基因组区:与痤疮密切相关的RT4 和RT5以及被发现在正常皮肤中富集的RT6。三种不同区基因座1、 基因座2和基因座3被发现几乎仅存在于属于系统发生树中的分支 IA-2的菌株中。分支IA-2主要由RT4和RT5组成(图8和图10)。基 因座1和基因座2位于染色体上。基因座1包含原噬菌体相关的基因 并且似乎是基因组岛。基因座2具有质粒整合位点并且可源自质粒序 列。基因座3似乎是在较大可动遗传元件、很可能质粒上。质粒是大 约55Kb长并且具有根据完成的基因组HL096PA1的反向末端重复序 列。所述序列数据表明质粒是线性的并且可能起源于噬菌体 (Hinnebusch和Tilly(1993))。RT4和RT5的十五种基因组中除一种之 外的所有其它基因组具有至少60%的所表示的质粒的基因,并且它们 全部具有与质粒中的反向末端重复序列同源的区,从而表明它们拥有 相同或类似的线性质粒(图8)。所述基因组中的质粒的拷贝数目基于 基因组测序覆盖在1至3的范围内,其通过定量PCR证实(图11和 图12)。
痤疮富集的RT4菌株和RT5菌株携带线性质粒和基因组岛的两 个独特基因座的事实指示这些质粒和染色体区在痤疮发病机制中起 作用。事实上,线性质粒编码紧密粘附(Tad)基因座,所述基因座已显 示在其它生物体中的毒力中起作用(Kachlany等人,2000;Schreiner 等人,2003)。完整Tad基因座见于RT4和RT5的十五种基因组中除 一种之外的所有其它基因组中,并且仅偶尔见于其它核糖型中。此外, Sag基因簇在基因座2中编码,所述基因簇已显示促进病原体中的溶 血活性(Fuller等人,2002;Humar等人,2002;Nizet等人,2000)。图6 总结主要为RT4和RT5所特有的基因,所述基因中的几种在其它生 物体中的毒力中起重要作用。在RT4和RT5中编码的这些基因中的 一些增加毒力、促进对人宿主的更强粘附或诱导病原性宿主免疫应 答。
在基因组比较分析中,据发现RT2和RT6的所有基因组编码成 簇的规律间隔的短回文重复序列(CRISPR)。在所测序的基因组之中, RT2和RT6是仅有的编码CRISPR的核糖型。CRISPR已显示赋予针 对病毒、噬菌体和质粒的保护性“免疫”(Horvath和Barrangou,2010; Makarova等人,2011)。在痤疮丙酸杆菌中编码的CRISPR基因座由一 系列cas基因—cas3、cse1、cse2、cse4,、cas5e、cse3、cas1和cas2 组成,所述CRISPR基因座与大肠杆菌中报道的CRISPR基因座(图 S10)和嗜热链球菌中的CRISPR4基因座同源(Horvath和Barrangou, 2010)。
CRISPR阵列由通过类似长度但具有不同核苷酸序列的间隔区序 列分开的一组相同的重复序列组成。据发现间隔区序列是与噬菌体或 质粒DNA序列相同的或具有一个或两个错配。在八种痤疮丙酸杆菌 菌株中发现总计39个间隔区序列,其中的25个是独特的,如表2中 所示。
表2-RT2和RT6的基因组中发现的CRISPR间隔区序列
缩写:BLAST,局部序列排比检索基本工具;CRISPR,成簇的 规律间隔的短回文重复序列;C.leptum,柔嫩梭菌;P.acnes,痤疮丙 酸杆菌;RT,核糖型。
如所预期,大多数可鉴别的间隔区靶向已知的痤疮丙酸杆菌噬菌 体序列。然而,在独特的CRISPR间隔区序列之中,一个匹配染色体 上的基因座2并且三个匹配主要是RT4和RT5的痤疮丙酸杆菌菌株 中的质粒区(基因座3)。这表明这些基因座可能已被RT4菌株和RT5 菌株获得,而RT2和RT6的基因组可能能够通过CRISPR机制防止 质粒或其它外源DNA的侵袭。
讨论
与痤疮相关的人皮肤微生物群系的前述研究提供在菌株水平下 的毛皮脂单位的微生物区系的第一描写。因为痤疮丙酸杆菌是痤疮和 健康皮肤两者中发现的主要皮肤共生细菌,所以这种菌株水平分析对 于帮助理解痤疮丙酸杆菌在痤疮发病机制和皮肤健康中的作用是重 要的。已显示了RT4和RT5的菌株与痤疮之间的密切相关和RT6的 菌株与健康皮肤之间的密切关联,所述菌株各自具有独特的遗传元 件。其它痤疮丙酸杆菌菌株(包括核糖型7、8、9和10)或不同菌株之 间的相互作用还可促进疾病的发展。此外,宿主因素如激素水平、皮 脂产生和毛皮脂单位中的物理变化也在痤疮发病机制中起作用。
揭示痤疮丙酸杆菌菌株与疾病或健康的关联的前述宏基因组方 法比使用传统方法的先前研究(Lomholt和Kilian,2010;McDowell等 人,2011)更强大。因为每个个体和每个皮肤部位的皮肤微生物区系可 同时拥有“良好”、“中性”和“不良”菌株,所述菌株在体外培养条件下 可具有不同的生长率,所以培养来自疾病病变或健康皮肤部位的一些 分离株可能不提供所述菌株与疾病或健康的关联的准确且无偏差的 测量。前述研究中的取样技术和疾病关联不取决于取样位置、取样区 域中病变的存在或固有偏差的培养技术。虽然有意地取样病变皮肤可 能产生令人感兴趣的结果,但这些结果将不能定义无偏取样能够定义 的疾病关联。在前述研究中用于鉴别痤疮中的潜在菌株差异的宏基因 组方法还可应用于其它疾病/健康与共生或病原细菌的相关性的研 究。
材料和方法
受试者
具有痤疮的受试者和具有正常皮肤的受试者是从南加州的各种 诊所(包括私人开业、管理式医疗和公立医院机构)招募的以便最好地 代表种群的多样性和医疗护理的历史。受试者数据可在dbGaP (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=ph s000263.v1.p1)获得。痤疮的诊断由通过职业验证的皮肤科医生进行。 痤疮的存在按与全球痤疮严重程度量表(Dreno等人,2011)密切相 关的0至5的标度分级。分开地记录脸和鼻两者的等级,其中零表示 正常皮肤并且5表示最严重的炎性囊肿性痤疮。在痤疮患者中,脸的 等级在1至5的范围内,其中平均为2.1,并且鼻的等级在0至2的 范围内,其中平均为0.3。还注意瘢痕的存在。具有正常皮肤的受试 者由通过职业验证的皮肤科医生确定并且被定义为在脸、胸或背上无 痤疮样病变的人。如果他们具有研究者觉得将影响取样或皮肤上的微 生物种群的其它皮肤问题,那么他们也被排除。在101名受试者之中, 59名是女性(31名痤疮患者和28名正常受试者)并且42名是男性(18 名痤疮患者和24名正常受试者)。痤疮组的平均年龄是22.2并且正常 组的平均年龄是29.6。在痤疮群体与正常群体之间不存在种族的显著 差异。受试者回答书面调查问卷,由仔细检查受试者的每个问题的医 师或训练有素的研究协调者管理。大多数受试者杂过去未曾针对痤疮进行治疗或在收集样品时未正在接受治疗(图3)。78名受试者中仅九 名(其提供了治疗信息)在取得样品时正在针对痤疮进行治疗。在九名 受试者之中,两名正在用抗生素治疗,五名正在用局部类视黄醇治疗, 一名正在用抗生素和类视黄醇两者治疗,并且一名未列出治疗。向受 试者询问过去的痤疮治疗历史(在其生命中的任何时间)。73名受试者 中的十八名(其提供了治疗历史)曾在过去针对痤疮进行治疗。在他们 之中,七名曾用抗生素治疗,八名曾用类视黄醇治疗,两名曾用抗生 素和类视黄醇治疗,并且一名未列出治疗。所有受试者提供了书面知 情同意书。所有方案和同意书表单由UCLA和洛杉矶生物医学研究 所IRB两者批准。所述研究遵循Helsinki准则进行。
样品
皮肤微小粉刺(白头或黑头)样品是使用Bioré深层清洁毛孔贴条 (Kao BrandsCompany,Cincinnati,OH)按照制造商的说明书从受试者 的鼻取得的。防尘手套用于每次取样。在从鼻移去之后,将贴条立即 放置到50mL无菌管中并且保持在冰上或在4℃下。在大多数情况下 细胞在四小时内溶解。
宏基因组DNA提取、16S rDNA扩增、克隆以及测序
使用无菌镊子从粘附鼻贴分离单独微小粉刺。使用QIAamp DNA 微小试剂盒(Qiagen,Valencia,CA)提取基因组DNA。将16S rDNA根 据HMP的方案进行扩增和克隆,所述方案在补充信息中更详细地描 述。通过桑格方法获得接近全长的序列。
16S rDNA序列分析
用Phred(Ewing和Green,1998;Ewing等人,1998)确定碱基读出 和质量。汇编双向读数并且使用AmosCmp16Spipeline和NAST-ier (Haas等人,2011)将其与一组核心NAST-格式的序列(rRNA16S.金)进 行比对。使用ChimeraSlayer和WigeoN鉴别可疑嵌合体(Haas等人, 2011)。将16S rDNA序列进行广泛人工检查。在所有碱基处以Phred 质量得分<30目视检查色谱图。施加适当的校正。QIIME(Caporaso 等人,2010)用于将所述序列聚类成OTU。
痤疮丙酸杆菌分离和基因分型
从每个样品板挑选具有痤疮丙酸杆菌的宏观特征的菌落并且使 其传代(pass)两次。通过PCR扩增和通过桑格方法对16S rDNA基因 的全长的测序来确定每个分离株的核糖型。
全基因组鸟枪法测序、汇编和注释
将基因组HL096PA1使用Roche/454 FLX进行测序并且使用PH RAP/CONSED(Gordon等人,1998)与GSMAPPER(Roche,Branford, CT)的组合进行汇编,其中在CONSED中广泛手动编辑。将剩余的6 5个基因组使用Illumina/Solexa GAIIx(Illumina,San Diego,CA)进 行测序。将序列数据集通过质量修整进行处理并且使用Velvet(Zerbi no和Birney,2008)进行汇编。使用GeneMark(Borodovsky和Mclni nch,1993)和GLIMMER(Salzberg等人,1998)预测编码序列。将最终 基因集通过由Interpro、psort-b和KEGG组成的一套蛋白质分类工具进行处理。更详细的方案可在http://hmpdacc.org/doc/sops/reference_g enomes/annotation/WUGC_SOP_DACC.pdf找到。
对比基因组分析
将七十一个痤疮丙酸杆菌基因组序列使用Nucmer(Kurtz等人, 2004)进行比较。使用MEGA5(Tamura等人,2007)进行系统发生分析。 CRISPRFinder(Grissa等人,2007)用于鉴别CRISPR重复-间隔区序 列。
补充信息
KPA171202的16S rDNA序列
所有测过序的痤疮丙酸杆菌基因组编码16S rRNA基因的三个拷 贝,所述拷贝在每个分离株内是相同的,除了KPA171202之外。基 于KPA171202基因组(Bruggemann等人,2004),16S rRNA基因的一 个拷贝与RT1的其它两个相同的拷贝具有一个核苷酸差异。然而, 从未在16S rDNA数据集中观察到这种突变。将来自KPA171202的 16S rRNA基因的多个克隆进行扩增、克隆并且测序,并且未发现拥 有这种突变的序列。因此,KPA171202也具有16S rDNA的三个相同 的拷贝。
痤疮丙酸杆菌菌株分布与其它微生物群系数据集的比较
为了确定本研究中测量的痤疮丙酸杆菌核糖型及其相对丰度是 否是毛皮脂单位所特有的,应用对来自人微生物群系项目(HMP)的微 生物群系16S rDNA数据和来自Grice等人(2009)的数据的类似分析。 两个数据集均从健康受试者获得。来自所述研究的健康受试者中的主 要核糖型的相对丰度与在这两个数据集中发现的相对丰度在很大程 度上类似,尽管事实是它们是从不同的解剖部位取样的(图3)。在HMP 数据中RT6(6.3%)被发现比RT4和RT5的组合(2.8%)更丰富,这与在 正常组中发现的那些类似,其中RT6占4.8%并且RT4和RT5的组合 占克隆的1.2%。在两个数据集中观察到相同的五种主要微生物群系 类型(图7)。
基因组聚类和系统发生树
recA基因已广泛地用于将痤疮丙酸杆菌菌株分类成四种已知的 类型:IA、IB、II和III(McDowell等人,2008;McDowell等人,2005)。 基于核心基因组中的SNP的71种基因组的系统发生树完全匹配recA 类型,除了一个分离株HL097PA1之外。大多数具有核糖型1、4、5 和532的基因组被分组到recA类型IA分支,所述IA分支可进一步 分成亚分支IA-1和IA-2。分支IA-2主要由RT4和RT5组成。RT4 基因组和大多数RT5基因组似乎属于相同谱系,具有非常类似的基 因组序列。所有具有核糖型3、8和16的分离株(其在16S rDNA基因 中共享T1007C的突变)被分组至recA类型IB分支。大多数RT3基 因组形成亚分支IB-2并且RT8基因组本身形成亚分支IB-1,所述IB-1 与痤疮高度相关。值得注意的是,RT2和RT6(其共享T854C突变) 与其它核糖型具有更远的系统发生关系并且被分组至recA类型II分 支。这与之前研究(Lomholt和Kilian,2010;McDowell等人,2005)一 致。未在样品中发现具有recAIII型的痤疮丙酸杆菌分离株。
对痤疮丙酸杆菌谱系与健康状态和疾病状态的关联性进行进一 步分析。存在具有痤疮的分支沿系统发生树的相关强度的清楚位移 (图9)。被鉴别为与痤疮密切相关的三种测过序的核糖型(RT4、RT5 和RT8)在所述树的一端处在分支IA-2和IB-1中找到,而被鉴别为与 正常皮肤相关的RT6在所述树的另一端处在分支II的顶部处(图9)。
抗生素抗性
痤疮丙酸杆菌核糖型4、5和10在16S rDNA序列中具有单核苷 酸取代G1058C,所述取代之前已显示赋予针对四环素的增加的抗性 (Ross等人,1998a;Ross等人,2001)。除16SrDNA序列中的所述取 代之外,据确定所测序的RT4和RT5的所有菌株在23S rDNA序列 中具有核苷酸取代,所述取代赋予针对不同类别的抗生素红霉素和克 林霉素的增加的抗性(Ross等人,1997;Ross等人,1998b)。据实验证 实这些分离株(除了不可培养的两种之外)对四环素、红霉素和克林霉 素具有抗性。
还检验了这些核糖型在痤疮组中的富集是否可能是由于抗生素 治疗。然而,在研究中,仅较小百分比的拥有核糖型4、5或10的受 试者用抗生素治疗(表S2)。
表S2-受试者的过去治疗和当前治疗
拥有这三种核糖型中的任一种的29名受试者中的十八名给出关 于过去治疗和当前治疗的报告。在他们之中,50%(9/18)的受试者从 未接受治疗;33%(6/18)用类视黄醇治疗;11%(2/18)在过去用抗生素 治疗;并且5.6%(1/18)在过去用抗生素和类视黄醇两者治疗。通过抗 生素治疗选择的理论不适合于本研究。痤疮患者中的抗生素抗性菌株 的先前调查证明之前使用抗生素并不总是导致抗性菌株的存在并且 一些先前未使用抗生素的患者拥有抗性菌株(Coates等人,2002; Dreno等人,2001)。本研究中的观察结果与之前研究一致。
CRISPR间隔区序列
虽然与痤疮丙酸杆菌基因组的GC含量更类似,但在RT2和RT6 的菌株中发现的四种独特间隔区序列与柔嫩梭菌(一种肠道菌群中的 共生细菌)的基因组具有最佳匹配(表2)。在HL096PA1中拥有的55Kb 质粒和其它RT4基因组和RT5基因组上,还存在与柔嫩梭菌中发现 的基因(包括Tad基因座)相同的35种基因的较大簇。
材料和方法
宏基因组DNA提取、PCR扩增、克隆以及16S rDNA测序
宏基因组DNA提取
使用无菌镊子从粘附鼻贴分离单独微小粉刺并且将其放置在填 充有ATL缓冲液(Qiagen)和0.1mm直径玻璃细珠(BioSpec Products, Inc.,Bartlesville,OK)的2mL无菌微量离心管中。使用珠搅拌器在室 温下在4,800rpm下使细胞溶解3分钟。在于14,000rpm下离心5分 钟之后,取回上清液并且将其用于使用QIAamp DNA微小试剂盒 (Qiagen)提取基因组DNA。使用用于从口香糖提取DNA的制造商方 案。通过NanoDrop 1000分光光度计来确定基因组DNA的浓度。
16S rDNA PCR扩增、克隆以及测序
将大多数宏基因组样品使用具有以下序列的16S rDNA特异性 引物一式三份进行扩增:27f-MP 5’-25 AGRGTTTGATCMTGGCTC AG-3’和1492r-MP 5’-TACGGYTACCTTGTTAYGACTT-3’。PCR反 应包含0.5U/μL高保真度铂Taq DNA聚合酶(Invitrogen)、来自Epi centre Fail-Safe PCR系统的1X预混E PCR缓冲液、0.12μM浓度的每种引物27f-MP和1492r-MP、以及Sigma PCR级水。将一微升 DNA(总计0.2至10ng的范围)添加至每个反应。G-Storm GS4热循 环仪条件是如下:在96℃下5分钟的初始变性,和30次循环的在9 4℃下变性30秒、在57℃下退火1分钟以及在72℃下延长2分钟, 连同在72℃下最终延长7分钟。在扩增之后,通过将1U的GOTaq DNA聚合酶直接添加至苦争反应并且在热循环仪中在72℃下孵育1 0分钟来进行A-加尾反应。
将来自每种源DNA的三个PCR扩增反应汇集并且凝胶纯化(用 SYBR绿色荧光染料染色的1.2%琼脂糖凝胶)。切除1.4Kb产物并且 将其使用Qiagen QIAquick凝胶提取试剂盒进行进一步纯化。将纯化 的产物使用来自Invitrogen的TOPO TA克隆试剂盒克隆至OneShot 大肠杆菌细胞中。
使用Qpix挑取机器人将白色菌落挑取至含有极品肉汤(terrific br oth)、甘油和卡那霉素的384孔盘中。每个盘被准备用于使用来自A gilent的磁珠制备进行测序并且用来自ABI的1/16th Big染料终止剂 测序。测序是用具有以下的序列的通用正向、通用反向并且对于亚群, 内部16S rDNA引物907R进行:TGTAAAACGACGGCCAGT(正 向)、CAGGAAACAGCTATGACC(反向)和CCGTCAATTCCTTTRA GTTT(907R)。将序列反应物在具有长读取运行模块的50cm阵列上 加载到来自ABI的ABI 3730机器上。
在无自动化的情况下将稍微不同的PCR和克隆方案用于如以下 所描述的几种初始样品。将16S rDNA使用通用引物8F(5’-AGAGT TTGATYMTGGCTCAG-3’)和1510R(5’-TACGGYTACCTTGTTAC GACTT-3’)(Gao等人,2007)进行扩增。热循环条件是如下:在94℃ 下5分钟的初始变性步骤,30次循环的在94℃下变性45秒、在52℃ 下退火30秒以及在72℃下延长90秒,以及在72℃下最终延长步骤 20分钟。
使用DNA清洁和浓缩试剂盒(Zymo Research)对PCR产物进 行纯化。随后,将16SrDNA扩增子克隆到pCR 2.1-TOPO载体 (Invitrogen)中。将One-Shot TOP-10化学感受态大肠杆菌细胞 (Invitrogen)用所述载体进行转化并且接种到选择性培养基上。挑取单 独阳性菌落将且将其接种到选择性LB液体培养基中。在孵育14小 时之后,提取质粒并且将其使用PrepEase MiniSpin质粒试剂盒(USB Corporation)或Zyppy质粒小量制备试剂盒(ZymoResearch)进行纯 化。使用ABI 3730序列分析仪(Applied Biosystems Inc.)以1/8th化学使用桑格测序方法对所述克隆进行双向测序。
痤疮丙酸杆菌分离和培养
样品培养板
使用无菌环(Fisherbrand,Pittsburgh,PA)将鼻贴内表面上的微小 粉刺捣碎并且刮下,并且将其接种到血琼脂板上(具有氯高铁血红素 (Hemin)和维生素K的Teknova布鲁氏菌琼脂平板,Teknova,Hollister, CA)。将所述板使用AnaeroPack系统(MitsubishiGas Chemical Company,东京,日本)在37℃下厌氧孵育5至7天。
单独菌株的分离和培养
从每个样品板挑取具有痤疮丙酸杆菌的宏观特征的菌落并且将 其在A-培养基板(Casine的胰腺Digase、Difco酵母提取物、葡萄糖、 KH2PO4、MgSO4、Difco琼脂以及水)上划线培养。然后将这些第一 传代板在37℃下厌氧孵育5至7天。作为第二传代,从第一传代板挑取单个分离的菌落并且将其在新的A-培养基板上划线培养。然后 将这些板在37℃下厌氧孵育5至7天。这些板上的菌落被挑取用于 后续步骤中的培养、基因分型和基因组测序。
痤疮丙酸杆菌分离株的基因分型
将每个分离株通过16S rDNA基因的PCR扩增来进行分析。基 于全长序列来确定核糖型。具有所需核糖型的分离株被选择用于未来 培养和基因组测序。
痤疮丙酸杆菌分离株的基因组DNA提取
使分离株在5mL的梭菌培养基中在厌氧条件下在37℃下生长5 至7天。将培养物通过离心来沉淀并且用3mL磷酸盐缓冲盐水洗涤 (PBS)。将用于宏基因组DNA提取的相同方案用于提取分离株的基因 组DNA。
宏基因组鸟枪法测序和分析
将来自22个个体的微小粉刺样品的宏基因组DNA样品汇集并 且使用Roche/454FLX进行测序。平均读取长度是236bp。测序因 13,291个序列读数而受到限制。使用BLAST将序列读数针对NCBI 的非冗余数据库进行比对。物种分配是基于97%同一性和100%的所比对的读取长度。
16S rDNA序列的汇编、比对和编辑
汇编和比对
使用缺省参数用Phred(Ewing和Green,1998;Ewing等人,1998) 确定碱基读出和质量。汇编双向读数并且使用AmosCmp16Spipeline 和NAST-ier将其与一组核心NAST-格式的序列(rRNA16S.金)进行比 对,所述序列来自布罗德研究所(Broad Institute)的微生物群系应用门 户网站(http://microbiomeutil.sourceforge.net/)。这些工具进而使用Amoscmp(Pop等人,2004)、Mummer(Kurtz等人,2004)、Lucy(Chou 和Holmes,2001)、BLAST(Altschul等人,1990)以及Cdb工具 (http://compbio.dfci.harvard.edu/tgi/software/)。使用ChimeraSlayer和WigeoN鉴别可疑嵌合体(Haas等人,2011)。将对嵌合断裂点具有至少 90%自引支持度(ChimeraSlayer)或含有在预期变异的超过99%分位点 处变化的区(WigeoN)的序列从进一步分析中去除。
质量筛选
在痤疮丙酸杆菌种群的多样性分析中,将与痤疮丙酸杆菌 KPA171202(Bruggemann等人,2004)16S rDNA在超过1,400个核苷 酸范围内具有至少99%同一性的序列修整至位置29至1483(基于大 肠杆菌命名法系统编号(Brosius等人,1978))。将在这个区上无完全覆 盖的序列从进一步菌株水平分析中排除。如以上所描述的嵌合体筛选 导致少于0.35%的所述序列的去除。这可能是对嵌合体的过低估计, 因为序列中的大多数仅相差1或2个核苷酸。低质量序列被排除,所 述低质量序列被定义为在位置79与位置1433之间超过50个核苷酸 具有小于15的Phred质量得分。为了允许详细的菌株水平分析,对 数据进行广泛手动编辑。在所有碱基处以Phred质量得分<30目视 检查色谱图,并且施加适当的校正。在物种水平下的分析中,不对 16S rDNA序列进行手动编辑。经过汇编的序列的嵌合体筛选导致少 于0.65%的所述序列的去除。将比对的序列修整至大肠杆菌等效位置 29至位置1483(Brosius等人,1978)。将在这个区上无完全覆盖的序 列从进一步分析中排除。
序列编辑
将表示26,446个经过汇编的痤疮丙酸杆菌序列的接近62,000个 桑格序列读数在CONSED(Gordon,2003;Gordon等人,1998)中映射 至RT1序列。大量序列的综合半手动编辑因其非常高的成对相似性 而变得可行:每序列与RT1仅一个核苷酸变化的中值(在编辑之前三 个核苷酸变化)。通过使用脚本和CONSED的定制导航特征、从而允 许单击跳转至需要检查的站点而有助于编辑。将色谱图针对与RT1 不同的所有低质量(Phred<30)碱基进行检查并且根据需要进行校正, 包括许多通常发生的序列错误。为了最小化碱基错误掺入和嵌合体的 影响,在少于4个序列中发生的与RT1的特定碱基差异(频率< 0.00015)被认为是不可靠的并且被返回至相应RT1碱基。基于100% 同一性为所得到的序列分配核糖型。
16S rDNA序列分析
OTU和分类分配
QIIME(Caporaso等人,2010b)用于使用同一性99%截断、最远邻 体法以及UCLUST(Edgar,2010)将序列聚类成OTU。选择代表性序 列(最丰富)并且使用PYNAST(Caporaso等人,2010a)将其与绿色基因 数据库进行比对。使用RDP方法(Cole等人,2009)分配分类。将比对 用绿色基因提供的lanemask进行滤波,并且使用FastTree(Price等人, 2009)构建系统发生树。
对前十种核糖型的威尔科克森检验
对于每种样品,将前十种核糖型中的每种的克隆数目通过样品的 痤疮丙酸杆菌克隆的总数目进行标准化。将标准化的计数用于检验痤 疮组与正常组之间的富集显著性。R程序(http://www.R-project.org)中 的函数wilcox_test用于计算p值。
微生物群系类型分配
微生物群系类型是基于当使用MOTHUR(Schloss等人,2009)中 的thetayc相似性(图5和图6)或分层聚类(Eisen等人,1998)(图7)对样 品进行聚类时观察到的最大分支来分配。
将核糖型分配至HMP和Grice等人2009的数据集
如果序列满足一下标准,那么所述序列被分配至一种核糖型。首 先,存在单个最佳匹配。其次,它覆盖辨别前45种核糖型所要求的 范围(58至1388)。再次,在辨别位置处不存在N。最后,存在不超过 十个不可辨别的差异。
在来自HMP数据分析和协调中心的许可的情况下下载HMP 16 S rDNA桑格序列数据集。它具有来自14名受试者和九个身体部位 (耳后褶皱、前鼻孔、硬腭、口腔粘膜、喉、腭扁桃体、肘前窝、唾 液以及龈下菌斑)的8,492个痤疮丙酸杆菌序列。关于所述数据集的更多细节可在http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?s tudy_id=phs000228.v2.p1找到。在这个数据集中,低质量碱基(Phred 质量<20)被转化成N,并且26%的序列由于过多N或在核糖型辨 别位点处的N而未被分配。少于1%由于与RT1相等最佳匹配或大 于十个错配而未分辨。
来自Grice等人(2009)的数据集可在NCBI(GenBank登录号 GQ000001至GQ116391)获得。它具有来自十名受试者和21个皮肤 部位(臀部、肘、小鱼际手掌,手掌侧前臂、肘前窝、腋穹窿、臀皱 褶、腹股沟皱褶、指间蹼空间、鼻孔、足底后跟、腘窝、趾蹼空间、 脐、腋皱褶、背、外耳道、眉间、胸骨柄、枕骨部以及耳后皱褶)的 22,378个痤疮丙酸杆菌序列。3%的序列由于与RT1大于十个错配而 未被分配,并且1.6%由于相等最佳匹配而未被分配。
出于比较目的,将未编辑的16S rDNA序列通过以上所描述的相 同方法分配至核糖型并且结果在图3中示出。少于0.6%的序列由于 与RT1大于十个错配而未被分配,并且1.7%由于相等最佳匹配而未 被分配。
66种痤疮丙酸杆菌分离株的全基因组鸟枪法测序、编译和注释
基因组HL096PA1
在UCLA基因分型和测序核心使用Roche/454 FLX对基因组进 行测序。产生总计590,054个序列读数,其中平均读取长度为230b p。在这些之中,433,896个被汇编成两个重叠群,即2,494,190bp的 环状主要染色体和55,585bp的线性质粒。在CONSED中广泛手动 编辑的情况下通过PHRAP/CONSED(Gordon等人,1998)与GSMAP PER(Roche)的组合来实现编译。使用GeneMark v2.6r(Borodovsky 和Mclninch,1993)和GLIMMER v2.0(Salzberg等人,1998)来进行从 头开始蛋白质编码基因预测。将tRNAScan-SE 1.23用于tRNA鉴别 并且将RNAmmer用于预测核糖体RNA基因(5S、16S和23S)。基 因组注释结果是基于公共数据库,包括Pfam(http://pfam.jouy.inra.fr /)、KEGG(http://www.genome.jp/kegg)和COG(http://www.ncbi.nlm. nih.gov/COG/)中的自动搜索。还进行注释的手动检查。
其它65种分离株的基因组
将基因组使用Illumina/Solexa基因组分析器IIx进行测序并且通 过圣路易斯的华盛顿大学基因组中心注释。
汇编
将每个基因组DNA样品进行随机剪切并且使用标准Illumina方 案构建索引文库。汇集十二个独特标记的文库并且在GAIIx流动池的 一条泳道上跑胶,并且产生成对的末端序列。在将标记的读数去卷积 成单独的样本之后,在q10阈值下使用BWA(Li和Durbin,2009)质量 修整来处理数据集。长度被修整至小于35bp的读数被丢弃,并且使 用oneButtonVelvet来汇编剩下的数据,所述oneButtonVelvet是在用 户提供的k-mer范围内多次运行Velvet汇编程序(Zerbino和Birney, 2008)同时改变所述汇编程序参数中的几个并且针对产生最长N50重 叠群长度的汇编参数设置进行优化的一种优化程序。
注释
使用GeneMark v3.3(Borodovsky和Mclninch,1993)和GLIMM ER v2.13(Salzberg等人,1998)预测编码序列。将未被GeneMark和GLIMMER跨越的基因间区使用BLAST针对NCBI的非冗余数据库 进行比对并且基于蛋白质比对来产生预测。使用tRNAscan-SE 1.23 来确定tRNA基因并且通过RNAmmer-1.2和Rfam v8.0来确定非编 码RNA基因。将最终基因集通过由Interpro、psort-b和KEGG组成 的一套蛋白质分类工具进行处理。基因产物命名来自BER管线(JCV I)。更详细的标准操作方案(SOP)可在http://hmpdacc.org/doc/sops/reference_genomes/annotation/WUGC_SOP_DACC.pdf找到。
71种痤疮丙酸杆菌基因组分析和痤疮丙酸杆菌基因组的核心区 的对比鉴别
“核心”区被定义为存在于所有71种基因组中的基因组序列。痤 疮丙酸杆菌KPA171202用作参考基因组。将其它70种基因组序列(所 述基因组中的大多数和两个完整基因组中的一系列重叠群)中的每种 使用Nucmer(Kurtz等人,2004)映射至参考基因组。将Nucmer程序的 所有70个“.coords”输出文件进行分析以便使用Perl脚本基于 KPA171202坐标来鉴别重叠区。最后,用以上所计算的坐标基于 KPA171202的基因组序列来提取“核心”序列。平均来说,90%(88% 至92%的范围内)的所述基因组包括于核心区中。
核心区中的SNP的鉴别
通过在默认设置的情况下使用Nucmer程序(Kurtz等人,2004)的 “显示-snp”应用选项来鉴别单核苷酸多态性(SNP)。痤疮丙酸杆菌 KPA171202的基因组序列用作参考基因组。将Nucmer程序的所有70 个“.snps”输出文件进行分析以便使用Perl脚本基于KPA171202坐标 来鉴别独特的SNP位置。将核心区中的SNP进行进一步分析以便构 建系统发生树。
系统发生树构建
使用核心区中的96,887个SNP核苷酸的71个串联序列来构建痤 疮丙酸杆菌基因组的系统发生树。使用邻接法(Saitou和Nei,1987)来 推断所述基因组之间核心区的进化距离。采取从1,000次重复推断的 自举树。对应于在少于80%自举重复中再现的分区的分支塌陷。图8 仅示出拓扑结构。在图9中,所述树是按比例绘制的,其中与进化距 离的那些相同的单元中的分支长度用于推断系统发生树。进化距离是 使用p-距离法计算的并且以每位点核苷酸差异的数目为单位。这种树 显示基于仅核心区的比较。所述距离不表示不同基因组之间的真实进 化距离,因为在此未考虑每个基因组的非核心区。含有缺口和丢失数据的所有位置被消除。使用MEGA5(Tamura等人,2007)进行进化分 析。
基因含量比较
为了评估跨71种基因组的基因保守含量,将所有基因组中的蛋 白质编码基因使用UCLUST(Edgar,2010)通过以下方式进行聚类:通 过减少长度进行第一分选,然后将每个序列聚类至现有种子序列(如 果它在其整个长度上具有至少90%核苷酸同一性),否则它成为新的 种子。为了可视化,将数据重新格式化为分别表示基因和基因组的列 和行。基因组中的基因的一个或多个拷贝被视为存在。将基因列基于 HL096PA1基因组(一种具有55Kb质粒的完全完成的基因组)的坐标 根据其位置进行排序。将基因组行根据其在以上所描述的基于SNP 的邻接树中的位置进行排序。
CRISPR/Cas的鉴别
CRISPRFinder(Grissa等人,2007)用于鉴别CRISPR重复-间隔区 序列。HL110PA3的注释用于BLAST比对以便鉴别HL001PA1、 HL060PA1、HL082PA2、HL103PA1、HL106PA1、HL110PA4和J139 的菌株中CRISPR/Cas结构和CRISPR重复-间隔区序列的存在。通过 针对NCBI的非冗余核苷酸数据库和参考基因组序列数据库 (refseq_genomic)BLAST比对来注释每个间隔区序列。
序列覆盖分析
MAQ(Li等人,2008)用于将来自Illumina/Roche平台的原始序列 读数映射至参考基因组。简言之,“map”命令用于映射,并且“assemble” 命令用于读出来自读取映射的共有序列,然后“cnd2win”命令用于提 取在平铺式窗口中平均化的信息。使用1,000bp的窗口大小。随机选 择的1百万个读数用于映射。这说明对于除HL096PA2、HL096PA3、 HL097PA1和HL099PA1之外的所有基因组大约40X覆盖, HL096PA2、HL096PA3、HL097PA1和HL099PA1具有大约55X至 75X覆盖。BWA(Li和Durbin,2010)用于将来自Roche/454平台的原 始序列读数映射至参考基因组HL096PA1。平均覆盖率在1,000bp窗 口中进行计算。
定量PCR
使用从痤疮丙酸杆菌分离株提取的基因组DNA进行靶向质粒上 的TadA(基因座3)和染色体上的管家基因Pak和RecA的定量PCR (qPCR)。使用LightCyler 480高分辨率熔融主试剂盒(Roche Diagnos tics GmbH,Mannheim,Germany)。每10μL反应溶液由5μL主混 合物(2X浓缩)、1μL 25mM MgCl2、0.5μL 4μM正向引物和反 向引物以及DNA模板组成。四次qPCR操作在Roche LightCycler 4 80上进行。用于TadA的引物序列是5’-GATAATCCGTTCGACAAG CTG-3’(正向)和5’-ACCCACCACGATGATGTTT-3’(反向)。用于pa k的引物序列是5’-CGACGCCTCCAATAACTTCC-3’(正向)和5’-GT CGGCCTCCTCAGCATC-3’(反向)。用于recA的引物序列是5’-CCG GAGACAACGACAGGT-3’(正向)和5’-GCTTCCTCATACCACTGGTCATC-3’(反向)。将所有样品在每次qPCR操作中一式两份地进行, 除了第二次操作之外,所述第二次操作不重复进行。热循环条件是如 下:在95℃下10分钟的初始活化步骤;50次扩增循环,其中每次循 环由以下组成:在95℃下10秒、在第一循环中在65℃下15秒,其 中对于每一后续循环逐步减少0.5℃,以及在72℃下30秒;以及开 始于65℃且结束于99℃的最终熔融曲线步骤,其中匀变速率为0.02℃ /s并且采集速率为25/℃。DNA浓度标准以一式两份地进行行。基于 质粒和染色体上的基因的浓度来计算基因的拷贝数目比。
数据可用性
16S rDNA序列已经在项目ID 46327下保藏于GenBank。痤疮丙 酸杆菌菌株的全基因组鸟枪法测序和注释已经在以下登录号下保藏 于GenBank:ADWB00000000、ADWC00000000、ADWF00000000、 ADWH00000000、ADWI00000000、ADXP00000000、ADXQ00000000、 ADXR00000000、ADXS00000000、ADXT00000000、ADXU00000000、ADXW00000000、ADXX00000000、ADXY00000000、 ADXZ00000000、ADYA00000000、ADYB00000000、ADYC00000000、 ADYD00000000、ADYE00000000、ADYF00000000、ADYG00000000、 ADYI00000000、ADYJ00000000、ADYK00000000、ADYL00000000、ADYM00000000、ADYN00000000、ADYO00000000、ADYP00000000、 ADYQ00000000、ADYR00000000、ADYS00000000、ADYT00000000、 ADYU00000000、ADYV0000000、ADYW00000000、ADYX00000000、 ADYY00000000、ADYZ00000000、ADZA00000000、ADZB00000000、 ADZC00000000、ADZD00000000、ADZE00000000、ADZF00000000、ADZG00000000、ADZH00000000、ADZI00000000、ADZJ00000000、 ADZK00000000、ADZL00000000、ADZM00000000、ADZN00000000、 ADZO00000000、ADZP00000000、ADZQ00000000、ADZR00000000、 ADZS00000000、ADZT00000000、ADZV00000000、ADZW00000000、 CP003293以及CP003294。
实施例2–对痤疮丙酸杆菌的泛基因组和对比基因组分析
痤疮丙酸杆菌是主要的人皮肤细菌。为了理解不同菌株是否具有 不同的毒性特性并且因此在健康和疾病中起不同作用,对82种痤疮 丙酸杆菌菌株的基因组进行了比较,所述基因组中的大多数是从痤疮 或健康皮肤分离的。鉴别了谱系特异性遗传元件,所述谱系特异性遗 传元件可解释痤疮丙酸杆菌作为共生体在健康状态下和作为病原体 在疾病中的表型和功能差异。通过分析大量测过序的菌株,提供对菌 株水平和分子水平下的生物体的遗传景观和多样性的改进的理解。
引言
痤疮丙酸杆菌是人皮肤的主要共生体。它有助于通过抑制常见病 原体(如金黄色葡萄球菌和化脓链球菌)的侵袭来维持皮肤健康。它通 过水解甘油三酯并且释放有助于皮肤表面的酸性pH的游离脂肪酸来 做到这一点(1)。另一方面,痤疮丙酸杆菌在历史上一直与寻常痤疮 相联系,所述寻常痤疮是影响超过85%的青少年和青年成人的毛皮脂 单位的慢性炎性疾病(2)。宏基因组研究之前证明痤疮丙酸杆菌是健 康个体和痤疮患者两者中的毛皮脂单位中的优势细菌(3,4)。然而, 在菌株水平下,痤疮丙酸杆菌的种群结构在两个组之间不同。这些发 现表面微生物相关的人疾病经常是由物种的某些菌株而不是整个物 种引起,这与其它疾病的研究一致(5,6)。
痤疮丙酸杆菌已被分成三种不同的类型。Johnson和Cummins的 研究(7)首次揭示了痤疮丙酸杆菌的两种不同的表型(其被称为I型和 II型),所述两种不同的表型可基于血清学凝集试验和细胞壁糖分析 来区别。McDowell等人(8)通过单克隆抗体分型区分了I型和II型痤 疮丙酸杆菌。此外,他们基于recA基因和更可变的溶血素/细胞毒素 基因(tly)的核苷酸序列对痤疮丙酸杆菌菌株的系统发生分析证明I型 和II型代表不同的谱系。他们的研究还揭示I型谱系内的菌株可进一 步分成被称为IA型和IB型的两种分支(8,9)。被称为III型的痤疮 丙酸杆菌的另一系统发生组在后来进行了描述(10)。基于多基因座序 列分型(MLST)的最近研究将痤疮丙酸杆菌进一步细分成密切相关的 簇,所述簇中的一些与各种疾病包括痤疮相关(11至13)。
痤疮丙酸杆菌的第一完整基因组序列KPA171202(一种IB型菌 株)提供关于这种革兰氏阳性菌的致病潜力的深入了解(14)。所述基因 组是2.56Mbp,具有60%GC含量。它编码2,333个开放阅读框(ORF), 包括涉及在降解宿主分子中的多种基因产物,如唾液酸酶、神经氨酸 酶、神经酰胺糖内切酶、脂肪酶以及毛孔形成因子。然而,单个基因 组的序列不反映生物体的遗传景观和菌株之间的遗传变异如何决定 其不同表型和病原特性。
为了更好地理解菌株水平下的人微生物群系变异,作为人微生物 群系项目(HMP)的一部分(15,16),之前产生了选自从一组健康受试 者和痤疮患者分离的超过1,000个菌株的合集的66种痤疮丙酸杆菌 菌株的参考基因组序列(4)。这66种菌株代表在人皮肤上发现的痤疮 丙酸杆菌的主要谱系,包括IA型、IB型以及II型。为了在分析中涵 盖所有主要的痤疮丙酸杆菌谱系,对三种另外的痤疮丙酸杆菌菌株进 行了测序,包括第一可获得的III型痤疮丙酸杆菌基因组。通过其它 研究组(14,17至22)测过序的十三种痤疮丙酸杆菌基因组在分析时 也可获得。在总计82种基因组的情况下,进行了对比基因组分析以 便表征痤疮丙酸杆菌的泛基因组、不同谱系之间的系统发生关系、同 一单个微生物群系中的菌株的微观进化以及对于每个谱系具有特异 性的遗传元件和其与健康和疾病的关联性。
结果
痤疮丙酸杆菌菌株和一般基因组特征
为了理解这种重要皮肤共生体在菌株水平下的基因组多样性,对 69种测过序的痤疮丙酸杆菌菌株的基因组进行了分析。在它们之中, 67种痤疮丙酸杆菌菌株是从健康个体和痤疮患者的皮肤分离的(3, 4),并且两种痤疮丙酸杆菌菌株HL201PA1和HL202PA1是从难治性 牙髓病变分离的(23)(表2-1)。
表2-1-82种痤疮丙酸杆菌基因组的一般特征
这69种菌株涵盖迄今为止分离的所有已知的痤疮丙酸杆菌谱 系。所述菌株基于其16S核糖体RNA(rRNA)序列进行分离。每个独 特的16S rRNA序列被定义为核糖型(RT)。所有测过序的痤疮丙酸杆 菌基因组具有16S rRNA的三个相同的拷贝。基于与痤疮相关的皮肤 微生物群系的宏基因组研究(4),在前十种主要核糖型中,RT1、RT2 和RT3是最丰富的并且在健康个体和痤疮患者两者中均有发现(无显 著差异)。然而,RT4、RT5和RT8在痤疮患者中富集,而RT6主要 见于健康个体中。69种菌株包括19个RT1菌株、五个RT2菌株、 15个RT3菌株、八个RT4菌株、七个RT5菌株、四个RT6菌株、六 个RT8菌株、四个次要核糖型的菌株以及一个III型菌株。平均基因 组大小是2.50Mb(在2.46至2.58Mb的范围内)并且GC含量是60%。 平均来说,每个基因组编码2,626个ORF(在2,393至2,806范围内)(表 2-1)。
分析包括公开可获得的13种另外的痤疮丙酸杆菌基因组(14,17 至22)(表2-1)。这13种痤疮丙酸杆菌的平均基因组大小是2.51Mb (在2.48至2.56Mb的范围内)并且GC含量是60%,平均编码2,319 个ORF(在2,233至2,412范围内)。这13种基因组包括六个RT1菌株、两个RT2菌株、四个RT3菌株以及一个RT5菌株,然而,没有 RT4、RT6、RT8和III型菌株的基因组可获得。测序成就显著增加了 每种痤疮丙酸杆菌谱系的基因组的数目以及所涵盖的谱系的数目。
痤疮丙酸杆菌泛基因组
为了确定痤疮丙酸杆菌的遗传景观,估计了基于82种痤疮丙酸 杆菌基因组的泛基因组。通过使用幂律回归分析n=κNγ(24)估计了将 通过测序另外的痤疮丙酸杆菌基因组发现的新基因的数目(图13)。分 析鉴别α为0.788。当添加第82种基因组时,由新颖的基因组添加的 新基因的平均数目是三。然后通过使用幂律回归分析n=κNγ估计了 将通过测序另外的痤疮丙酸杆菌基因组累积的痤疮丙酸杆菌泛基因 的数目(图14)。指数γ是0.067,并且痤疮丙酸杆菌具有3,136个泛基 因(N=82)。基于这些结果,痤疮丙酸杆菌的泛基因组被定义为开放型 的,因为指数α小于一并且γ大于零(24)。然而,因为α接近一并且γ接近零,所以据信这种生物体在无大量扩增的情况下不断进化。
痤疮丙酸杆菌基因组之间的系统发生关系
82种痤疮丙酸杆菌菌株的基因组比较揭示2.20Mb(88%的平均 基因组)由所有痤疮丙酸杆菌基因组共享,其在本文被称为“核心区”。 在所述核心区内,在菌株之中检测到123,223个独特的单核苷酸多态 性(SNP)。27%的SNP是I型特有的,22%是II型特有的,并且22% 是III型特有的(图15)。构建了基于所述核心区中的123,223个SNP 的系统发生树(图16)。所述树显示所述菌株的recA类型分类与基于 基因组的主要分支一致。recA类型IA、IB以及II菌株分别全部一起 聚类在每种类型内,除了HL097PA1和PRP-38。仅有的recA类型III 菌株HL201PA1形成与I型和II型菌株不同的分支。所述树还显示所 述菌株的16SrRNA核糖型与从所述基因组序列推断的系统发生关系 一致。大多数RT1菌株被聚类在分支IA-1中,而所有的RT4菌株和 大多数RT5菌株被聚类在分支IA-2中。所有六个RT8菌株被一起聚 类在分支IB-1中。所有的RT3菌株和RT6菌株被一起聚类在分支IB-2 中,除了SK187之外。HL030PA1和KPA171202与6609一起被聚类 为不同的IB-3分支。HL097PA1和PRP-38被聚类在一起并且被分类 为最近由McDowell等人命名的新颖的IC型(22)。所有RT2菌株与 RT6菌株一起被聚类在离分支I较远的分支II中。为RT6菌株并且 从口部部位分离的HL202PA1与皮肤RT6分离株差别不大并且被聚 类在一起。所有菌株的序列类型是基于两个公开的MLST方案(11, 13)分配并且在表S1中示出。基于核心基因组区的系统发生树证明 16S核糖分型可用于痤疮丙酸杆菌鉴别和分类。它提供比recA分型 高得多的分辨率,并且与此同时,在仅需要一种基因的情况下它比 MLST更简单和更快速,所述MLST是通常需要7至9种基因的费力 的过程。
所产生的大量基因组序列允许在分支水平下分析痤疮丙酸杆菌 泛基因组。分支IA、IB和II分别具有36、33和12种基因组。基于 以上所描述的幂律回归分析,确定在分支水平下,痤疮丙酸杆菌还具 有有限扩增的recAIA型分支、IB型分支和II型分支的开放型泛基因 组(图17)。扩增速率在分支之间无显著不同并且与物种水平下的扩增 速率类似。这表明痤疮丙酸杆菌的所有主要谱系以类似的速率进化。
核心基因组区中的SNP分布
为了确定对于痤疮丙酸杆菌基因组中的突变和/或重组是否存在 “热点”,确定SNP是否在整个基因组中随机分布或在特定区中富集。 计算了SNP在核心区的每个蛋白质编码基因中的频率。核心区中的 多态性位点的平均率是5.3%,即在每100bp中5.3个独特的SNP。 这种比率可比得上在多种肠道细菌基因组中发现的比率(25)。在核心 区中编码的1,888个基因之中,55个基因具有更高SNP频率,其具 有多于两个标准偏差(SD);并且47个基因具有多于三个SD(图18a)。 使用Kolmogorov-Smirnov(K-S)检验,证明这102个高度突变的基因 在整个基因组中不是随机分布的(P<0.01)(图18b)。这表明痤疮丙酸 杆菌具有进化风险管理策略。基于直系同源组的簇(COG)类别,这102 个基因的功能显示与核心区中的所有1,888个基因的分布类似的分 布。在这些频繁突变的基因中不存在特定功能类别的富集。
通过计算所述1,888个基因的非同义(NS)SNP对比同义(S)SNP 的比进一步确定核心区中的突变是否在选择之下。NS突变的平均率 是38%。在1,888个基因之中,54个基因具有更高NS突变,其具有 多于两个SD;并且13个基因具有多于三个SD(图18c)。这67个基 因随机地分布于基因组中并且未在特定区中特别地富集(在K-S检验 情况下P>0.05)(图18d)。具有更高SNP频率的102个基因中的大多 数不与这67个基因重叠,从而表明独立的进化事件可导致这些基因 改变。仅十个基因同时具有高SNP频率和高NS突变率,其全部被注释为假定蛋白。
从相同个体分离的菌株的进化关系
从痤疮患者和健康个体的组分离的大量痤疮丙酸杆菌菌株允许 研究来自相同个体的毛囊中的痤疮丙酸杆菌菌株是否是无性系的。基 于之前的宏基因组分析,证明大多数个体拥有来自不同谱系的多种痤 疮丙酸杆菌菌株(4)。然而,尚不知晓相同个体中的同一谱系的菌株 是否源自同一祖先。从相同样品分离的菌株的基因组序列使得有可能 检验来自相同个体(SSI)的菌株是否是经由克隆扩增从同一起源进化。 69种测过序的痤疮丙酸杆菌菌株包括49个SSI:13个双重(即,从 13个个体分离的13对菌株)、五个三重以及两个四重。二十三个SSI 被聚类在相同分支中,九个在分支IA-1中,四个在分支IA-2中,两 个在分支IB-1中,六个在分支IB-2中并且两个在分支II中。计算了 每对SSI之间的距离(在核心区中的123,223个SNP位点处的取代率) (图16)。分支IA-1中的SSI的平均距离是0.0014,而分支IA-1中来 自不同个体的菌株的平均距离是0.0064(P<0.001)。在其它分支(包括 IA-2、IB-1、IB-2和II)中观察到一致的结果(图19a)。这证明与从不 同个体分离的菌株相比,同一谱系中的SSI彼此显著更相似,从而表 明它们在每个个体中是无性系的。然而,在分支IA-2内的RT4菌株 和RT5菌株之中,SSI之间的平均距离(0.0004)与来自不同个体的菌 株之间的平均距离(0.0017)没有显著差异(P=0.072)。此外,来自不同 个体的RT4/RT5菌株之间的平均距离(0.0017)与分支IA-1中的SSI 之间的平均距离(0.0014)类似,并且甚至比分支IB-1(0.0059)、分支 IB-2(0.0019)和分支II(0.0022)中的SSI之间的平均距离更短(图 S3A)。这表明虽然是从不同个体分离的,但这些RT4菌株和RT5菌 株似乎是无性系的并且是从同一相近祖先进化的。观察到分支IC中 的两个RT5菌株之间的类似关系,其中从不同个体分离的HL097PA1 和PRP-38彼此密切相关,距离为0.0012。宏基因组研究已证明了RT4 和RT5的菌株与痤疮的密切关联(4)。从不同个体分离的这些菌株的 无性系形成能力表明RT4菌株和RT5菌株可在个体之间传播。这一 发现与之前临床报告一致,即抗生素抗性丙酸杆菌可在易生痤疮个体 (包括皮肤科医生)之间传播(26),因为大多数抗生素抗性痤疮丙酸杆 菌菌株属于RT4和RT5(4,13)。SSI的分析进一步支持以下理论:RT4菌株和RT5菌株可以是痤疮中的致病因子。
为了确定来自相同个体但属于不同谱系的菌株对之间的距离是 否不同于随机菌株对,计算了来自不同分支的SSI的任何对的距离。 分支IA-1和分支IA-2(即,HL005PA3对HL005PA1、HL005PA2对 HL005PA1、HL096PA3对HL096PA1以及HL096PA3对HL096PA2) 之间的SSI的平均距离是0.039,与来自不同个体的分离株的平均距 离(0.040)类似。对于所有其它分支对比较来说获得类似结果(图19b)。 这些结果证明来自不同分支的SSI彼此与来自不同个体的菌株类似 地不同。这一分析表明在每个单个微生物群系中,痤疮丙酸杆菌菌株经历同一种群中的克隆扩增,同时多个菌株种群经常可在很少重组的 情况下在同一群落中共存。
I型菌株中的非核心基因组区
通过比较82种痤疮丙酸杆菌菌株的基因组序列,鉴别了不由所 有82种菌株共享的非核心基因组区。非核心区的总长度是大约0.90 Mb。非核心区的平均GC含量稍微低于核心区的平均GC含量 (58%±6.9%),从而表明非核心区的那一部分可能经由水平基因转移而 源自于其它物种。
痤疮丙酸杆菌菌株的不同谱系具有不同的非核心区。使用非核心 区的分层聚类,显示相同核糖型的菌株被聚类在一起,其中在分支之 间具有明显分离(图20)。在非核心区之中,鉴别了对于每个谱系具有 特异性的遗传元件,所述遗传元件可解释所述菌株在健康和疾病中的 表型和功能差异。在分支IA-2中,鉴别了基因组基因座1、2和3, 所述基因座主要是RT4菌株和RT5菌株所特有的(4)。这些基因座似 乎起源于可动元件、编码几种毒性基因并且可促进这些菌株的毒力。 与此同时,基因组岛样簇2(GI2)(18)在这一分支中的大多数菌株中独 特地不存在。分支IB-1由所有RT8菌株组成,基于宏基因组研究所 述RT8菌株也与痤疮高度相关(4)。它们全部具有独特的基因组岛(基 因座4),所述基因组岛是20Kb长并且编码一系列非核糖体肽合成酶 (NRPS),所述非核糖体肽合成酶可促进这些菌株的增加的毒力。大 多数RT3菌株和RT16菌株属于分支IB-2并且具有比其它分支中的 菌株少的非核心区。这可由整个重排热点(RHS)家族蛋白质的缺乏解 释,所述重排热点家族蛋白质在基因组重排中如之前在大肠杆菌中所 暗示(27)的一样起作用。分支IB-3由三种菌株组成,包括KPA171202。 之前描述(18)的四种基因组岛中的三种GI1、GI3和GI4是这一分支 所特有的并且在所有其它菌株中不存在。这一分析表明KPA171202 虽然是痤疮丙酸杆菌的第一个被测序的完整基因组,但它似乎并不是 代表主要谱系之一的常见皮肤痤疮丙酸杆菌菌株。这一结果与使用 MLST的先前研究(11至13)一致。分支IC的菌株属于RT5。它们也 包含基因座3(一种线性质粒),所述基因座3与分支IA-2的RT4菌 株和RT5菌株中的基因座3高度同源并且编码起源于柔嫩梭菌的紧 密粘附基因座(4)。总之,虽然不同谱系中的菌株在类似的遗传物质 损益的情况下具有类似的基因组大小,但它们拥有可导致其不同的毒 性特性的独特遗传元件。
II型菌株中的非核心基因组区
分支II中的菌株(主要是RT2和RT6)与分支I中的菌株更为远缘 相关。基于宏基因组研究,分支II中的菌株不与痤疮相关,因为RT2 在痤疮患者与健康个体之间均匀地分布,而RT6在健康个体中显著 富集(4)。与I型菌株相比,RT2菌株和RT6菌株的基因组缺乏几个区,所述几个区总计大约92Kb长并且编码107个ORF。RT2基因组 和RT6基因组具有编码93个ORF的类似大小的另外基因组区(图 20)。基于COG分类,在107个I型特异性ORF与93个II型特异性 ORF之间不存在功能类别的分布的显著差异。
RT2菌株和RT6菌株的最独特的基因组特征由成簇的规律间隔 的短回文重复序列(CRISPR)/Cas基因座代表(4)。CRISPR/Cas系统通 过以序列特异性方式靶向核酸来提供针对病毒和质粒的获得性细菌 免疫(28)。RT2和RT6的所有测过序的菌株编码一组完整的CRISPR/Cas基因和至少一个重复和间隔区序列,而其它核糖型菌株 都并不如此。基于其完整基因组序列(20),菌株ATCC11828似乎是 一个例外,其仅具有末端序列而无间隔区序列。然而,使用PCR和 测序,确定ATCC11828具有一个重复-间隔区序列(表S2)。
表S2.在ATCC 11828、HL042PA3和HL202PA1的基因组中发现 的CRISPR间隔区序列
在11种RT2菌株和RT6菌株中发现总计48个间隔区序列,其 中的29个是独特的。在其它细菌物种中,已经用实验方法和计算方 法确定在前导序列近端的间隔区是更多样化的,而在前导序列远端的 间隔区是菌株之中更保守的。分析了基于RT2菌株和RT6菌株的共享的间隔区序列其之间的进化关系。被紧密地聚类在分支II中的 HL060PA1和HL082PA2共享相同间隔区S2(图21)。J139、 ATCC11828、HL110PA4、HL110PA3和HL202PA1共享相同的间隔 区S17和S18(图21)。这些结果表明这些组的菌株在获得另外的间隔 区之前很可能从相同祖先进化。基于共享的CRISPR间隔区的所述菌 株之间的关系与基于核心区中的SNP计算的系统发生关系一致。此 外,多个II型菌株拥有与基因座2和基因座3中的序列匹配的间隔区序列,所述间隔区序列主要是痤疮相关的RT4菌株和RT5菌株所 特有的(4)。基因座2和基因座3中的序列似乎是起源于柔嫩梭菌并 且编码潜在毒力因子(图S4)。这些基因座可能已经被RT4菌株和RT5 菌株获得,而编码这些间隔区的RT2和RT6的基因组可能能够通过CRISPR机制消除外源DNA的侵袭(4)。
大量高质量草图基因组序列使得不仅能够检测大的基因组变异, 而且能够检测小的但必要的基因组改变。据之前报道II型菌株显示 减少的脂肪酶活性(10)。脂肪酶在水解甘油三酯和释放游离脂肪酸中 起作用,所述作用被认为是在痤疮丙酸杆菌毒力中必不可少的。基于 基因组注释,13种基因被鉴别为具有潜在脂肪酶功能(图22a)。在它 们之中,检测到一个核苷酸至13个核苷酸范围内的插入/缺失可以解 释II型菌株中的减少的脂肪酶活性。两种三酰基甘油脂肪酶在痤疮 丙酸杆菌基因组中串联编码,HMPREF0675-4855和HMPREF0675-4 856(根据SK137的注释)。所有II型菌株和IB-3菌株具有在第二脂 肪酶基因HMPREF0675-4856的起始密码子上游“TATA盒”20bp的缺 失(图22b)。此外,在第二脂肪酶基因的124G的位置处存在一个核苷 酸缺失,从而导致移码和过早终止密码子的引入。这两种缺失可潜在 地解释减少的脂肪酶活性并且因此解释之前研究中在II型菌株中观 察到的痤疮的减少的毒力(4,10)。
III型菌株中的非核心基因组区
很少在皮肤表面上发现III型菌株。对从难治性牙髓病变分离的 III型痤疮丙酸杆菌菌株HL201PA1进行了测序。这一首次可获得的I II型基因组允许鉴别对这一谱系具有特异性的遗传元件。与I型菌株 和II型菌株相比,HL201PA1的基因组缺乏总长度为43Kb的一些区 (图20)。存在在这些区中编码的42个ORF,包括厌氧的二甲亚砜还 原酶(PPA0516-PPA0517)、枸橼酸铁(III)转运系统通透酶(PPA0792-P PA0793)、3-异丙基苹果酸脱氢酶(PPA1361-PPA1363)以及麦芽糖转运 系统通透酶(PPA1553-PPA1554)。
讨论
大量相关菌株的高通量基因组测序和对比分析已用于研究几种 病原体在菌株水平下的传播和微观进化,所述病原体包括耐甲氧西林 金黄色葡萄球菌(29)、肺炎链球菌(30)和海地爆发中的霍乱弧菌(31), 从而证明多种菌株的对比基因组分析在改进对细菌性病原体的理解 中的能力。然而,这种方法很少被应用于研究共生物种以便理解它们 在不同菌株之间的变化的毒性潜力和它们在健康和疾病中的作用。
这一研究基于大量测过序的菌株呈现对主要皮肤共生体痤疮丙 酸杆菌的对比基因组分析。这一菌株合集不仅包括与健康皮肤或痤疮 相关的菌株,而且包括从相同个体分离的大量菌株对。这允许比较与 健康和疾病相关的痤疮丙酸杆菌菌株的系统发生关系和微观进化以 及同一单个微生物群系中的菌株。
通过比较82种痤疮丙酸杆菌菌株,已显示所有痤疮丙酸杆菌菌 株具有类似的基因组大小与类似的GC含量,平均编码2,577个ORF (表1)。虽然痤疮丙酸杆菌具有开放型泛基因组,但不同于许多其它 开放型基因组物种(24),它具有有限的基因组扩增,其中每基因组仅 添加几个新的基因(图13和图14)。基因组扩增的速率在主要谱系内 是类似的(图17)。在不同痤疮丙酸杆菌菌株之间存在有限重组,并且 因此16S rRNA核糖型可用作痤疮丙酸杆菌菌株鉴别和分类的代用指 标(图16)。与其它分型方法相比,16S核糖分型具有比recA分型更 高的分辨率并且比传统MLST方法更容易且更快速。这种方法可通 过与下一代测序组合来以高通量方式应用,并且因此允许检测菌株水 平下的微生物群系变异(4)。这是有利的和重要的,因为鉴别和理解 人微生物群系的菌株水平变异是医学上重要的。
对从相同个别样品分离的数组菌株的基因组进行了比较(图16和 图19)。这一基因组数据合集是独特的并且之前还未进行过这种研究 来调查单个微生物群系中的人共生体的微观进化。据发现虽然多个痤 疮丙酸杆菌菌株种群共同存在于同一单个微生物群系中,但克隆扩增 在每个种群中发生,其中在不同种群之间具有很少重组。在每一谱系 内,与从不同个体分离的菌株相比,从相同个体分离的菌株彼此显著 更相似,除了疾病相关的菌株RT4菌株和RT5菌株之外(图19)。虽 然分离自不同个体,但它们似乎是无性系的并且是从同一毒性祖先菌 株进化(图16)。这支持以下观察结果:这些菌株是可传播的(26)并且它们可在痤疮发病机制中起作用(4)。这一发现是重要的并且将帮助控 制抗生素抗性菌株的传播和研发用于痤疮的新的靶向疗法。
通过分析非核心区,鉴别了对于每一谱系具有特异性的基因组元 件改变(图20)。这些谱系特异性元件可给予菌株不同的生理和功能特 性并且因此导致其作为共生体在健康或作为病原体在疾病中的不同 作用。在痤疮相关的菌株之中,RT4菌株和RT5菌株编码起源于可 动元件的三种不同的基因座,并且RT8菌株编码含有一组NRPS的 不同区。在这些菌株特异性区中编码的毒性基因可解释这些菌株与痤 疮的关联并且帮助研发针对这些菌株的新药物。分别与痤疮不相关和 在健康皮肤中富集的RT2菌株和RT6菌株全部编码CRISPR/cas元 件。CRISPR机制可防止这些菌株获得毒性基因、侵袭外源可动元件。 此外,这些菌株包含可改变脂质代谢并且降低其毒力的脂肪酶中的基 因组变异(图22)。
总之,通过用大量基因组表征痤疮丙酸杆菌的遗传景观和多样 性,提供了可解释痤疮丙酸杆菌菌株的多样表型的基因组证据和对于 这种共生体在人皮肤健康和疾病中的双重作用的新见解。来自这一对 比基因组分析的发现提供了关于人微生物群系中的共生体的菌株多 样性和进化的新观点。由于许多当前微生物群系研究集中于微生物群 落与健康和疾病的关联,所以本研究强调了在菌株水平下理解共生微 生物群系的重要性(25)。来自本研究的发现还阐明用于痤疮和其它痤 疮丙酸杆菌相关疾病的新的菌株特异性治疗剂。
材料和方法
痤疮丙酸杆菌菌株
在所测序的69种痤疮丙酸杆菌之中,67种是从来自痤疮患者和 健康个体的皮肤微生物群系样品分离的(4)。另外两种菌株HL201PA1 和HL202PA1是从伦敦国王学院(King’s College London)的David Beighton博士提供的难治性牙髓病变(23)分离的。
全基因组鸟枪法测序、汇编和注释
将HL042PA3的基因组使用Roche/454 FLX进行测序并且使用 PHRAP/CONSED(32)与GSMAPPER(Roche)的组合进行汇编。将 HL201PA1和HL202PA1使用Illumina MiSeq(250bp,成对的末端) 进行测序并且使用Velvet(33)进行汇编。剩下的66种基因组之前如所描述(4)进行了测序。使用GeneMark(34)和GLIMMER(35)预测编 码序列。
核心区、非核心区以及泛基因组的计算
核心区被定义为存在于所有82种基因组中的基因组序列,而非 核心区被定义为并非存在于所有基因组中的基因组序列。KPA171202 用作参考基因组。将其它81种基因组序列(所述基因组中的大多数和 十个完整基因组中的一系列重叠群)中的每种使用Nucmer(36)映射至 参考基因组。将Nucmer程序的所有81个“.coords”输出文件进行分析 以便使用Perl脚本基于KPA171202坐标来鉴别重叠区。然后用以上 所计算的坐标基于KPA171202的基因组序列来提取核心序列。
将来自每个基因组的独特区添加至参考基因组以便产生“修订 的”参考基因组,所述修订的参考基因组包含原始序列加独特的基因 组序列。将这一过程针对所有基因组进行重复直到来自所有基因组的 所有独特区包括于泛基因组中。
最后,从所述泛基因组中减去核心区。剩下的区被定义为非核心 区,所述非核心区不被所有菌株共享。使用KPA171202作为参考文 件通过GeneMark.hmm来预测蛋白质编码序列。
核心区中的SNP的鉴别
通过在默认设置(36)的情况下使用Nucmer程序的“显示-snp”应 用选项来鉴别单核苷酸多态性(SNP)。KPA171202的基因组序列用作 参考基因组。将Nucmer程序的所有81个“.snps”输出文件进行分析以 便使用Perl脚本基于KPA171202坐标来鉴别独特的SNP位置。
系统发生树构建
使用核心区中的123,223个SNP核苷酸的82个串联序列来构建 痤疮丙酸杆菌基因组的系统发生树。将MEGA5(37)用于使用邻接法 和p-距离法来计算基于核心区中的SNP的距离。采取从200次重复 推断的自举树。
基于MLST方案的序列类型分析
基于之前公开的MLST方案(11-13)来确定82种分离株的序列类 型。将MLST基因序列使用BLAST针对用于两个MLST方案中的所 有等位基因进行比对。
CRISPR/Cas的鉴别
CRISPRFinder(38)用于鉴别CRISPR重复-间隔区序列。 HL110PA3的注释用于BLAST比对以便鉴别HL001PA1、HL060PA1、 HL042PA3、HL082PA2、HL103PA1、HL106PA1、HL110PA4、 HL202PA1、J139以及ATCC11828的菌株中CRISPR/Cas结构和 CRISPR重复-间隔区序列的存在。针对NCBI的非冗余核苷酸数据库 和参考基因组序列数据库(refseq_genomic)通过BLAST(39)来注释每 个间隔区序列。
非核心区的分层聚类分析
在1,685个非核心片段(总计895,905bp)之中,提取了314个长 度>500bp的非核心片段(总计747,189bp,对应于所有非核心区的 83%)并且将其用于非核心区的分层聚类中。使用Cluster 3.0程序(40) 和平均联结法。聚类矩阵由314行和82列组成,其中1指代非核心 区的存在并且0指代非核心区的不存在。Java TreeView程序(41)用于 展示聚类结果。
参考文献
1.Grice EA,Segre JA.2011.The skin microbiome.Nat Rev Microbiol 9:244-253.
2.White GM.1998.Recent findings in the epidemiologic evidence,classification, and subtypes of acne vulgaris.J Am Acad Dermatol 39:S34-37.
3.http://precedings.nature.com/documents/5305/version/1
4.Fitz-Gibbon ST,Tomida S,Chiu B,Nguyen L,Du C,Liu M,Elashoff D,ErfeMC,Loncaric A,Kim J,Modlin RL,Miller JF,Sodergren E,Craft N,Weinstock GM,LiH.Propionibacterium acnes strain populations in the human skin microbiomeassociated with acne.Journal of Investigative Dermatology(in press).
5.Chambers HF,Deleo FR.2009.Waves of resistance:Staphylococcus aureusin the antibiotic era.Nat Rev Microbiol 7:629-641.
6.Chase-Topping M,Gally D,Low C,Matthews L,Woolhouse M.2008.Super-shedding and the link between human infection and livestock carriage ofEscherichia coli O157.Nat Rev Microbiol 6:904-912.
7.Johnson JL,Cummins CS.1972.Cell wall composition anddeoxyribonucleic acid similarities among the anaerobic coryneforms,classicalpropionibacteria, and strains of Arachnia propionica.J Bacteriol 109:1047-1066.
8.McDowell A,Valanne S,Ramage G,Tunney MM,Glenn JV,McLorinan GC,Bhatia A,Maisonneuve JF,Lodes M,Persing DH,Patrick S.2005. Propionibacterlumacnes types I and II represent phylogenetically distinct groups.J ClinMicrobiol 43:326-334.
9.Valanne S,McDowell A,Ramage G,Tunney MM,Einarsson GG,O′Hagan S,Wisdom GB,Fairley D,Bhatia A,Maisonneuve JF,Lodes M,Persing DH, PatrickS.2005.CAMP factor homologues in Propionibacterium acnes:a new protein familydifferentially expressed by types I and II.Microbiology 151:1369-1379.
10.McDowell A,Perry AL,Lambert PA,Patrick S.2008.A new phylogeneticgroup of Propionibacterium acnes.J Med Microbiol 57:218-224.
11.Lomholt HB,Kilian M.2010.Population genetic analysis ofPropionibacterium agnes identifies a subpopulation and epidemic clonesassociated with acne. PLoS One 5:e12277.
12.McDowell A,Gao A,Bamard E,Fink C,Murray PI,Dowson CG,Nagy I,Lambert PA,Patrick S.2011.A novel multilocus sequence typing scheme for theopportunistic pathogen Propionibacterium acnes and characterization of type Icell surface-associated antigens.Microbiology 157:1990-2003.
13.McDowell A,Barnard E,Nagy I,Gao A,Tomida S,Li H,Eady A,Cove J,NordCE,Patrick S.2012.An Expanded Multilocus Sequence Typing Scheme forPropionibacterium agnes:Inyestigation of′Pathogenic′,′Commensal′andAntibiotic Resistant Strains.PLoS One 7:e41480.
14.Bruggemann H,Henne A,Hoster F,Liesegang H,Wiezer A,Strittmatter A,Hujer S,Durre P,Gottschalk G.2004.The complete genome sequence ofPropionibacterium acnes,a commensal of human skin.Science 305:671-673.
15.The Human Microbiome Project Consortium.2012.A framework for humanmicrobiome research.Nature 486:215-221.
16.The Human Microbiome Project Consortium.2012.Structure,funictionand diversity of the healthy human microbiome.Nature 486:207-214.
17.Nelson KE,Weinstock GM,Highlander SK,Worley KC,Creasy HH,WortmanJR,Rusch DB,Mitreva M,Sodergren E,Chinwalla AT,Feldgarden M,Gevers D,Haas BJ,Madupu R,Ward DV,Birren BW,Gibbs RA,Methe B,Petrosino JF,Strausberg RL,SuttonGG,White OR,Wilson RK,Durkin S,Giglio MG, Gujja S,Howarth C,Kodira CD,Kyrpides N,Mehta T,Muzny DM,Pearson M, Pepin K,Pati A,Qin X,Yandava C,Zeng Q,Zhang L,Berlin AM,Chen L, Hepburn TA,Johnson J,McCorrison J,Miller J,Minx P,Nusbaum C,Russ C, Sykes SM,Tomlinson CM,Young S,Warren WC,Badger J,CrabtreeJ, Markowitz VM,Orvis J,Cree A,Ferriera S,Fulton LL,Fulton RS,Gillis M,Hemphill LD,Joshi V,Kovar C,Torralba M,Wetterstrand KA,Abouellleil A, WollamAM,Buhay CJ,Ding Y,Dugan S,FitzGerald MG,Holder M,Hostetler J,Clifton SW,Allen-Vercoe E,Earl AM,Farmer CN,Liolios K,Surette MG,Xu Q,Pohl C,Wilczek-Boney K,Zhu D.2010.A catalog of reference genomes from the humanmicrobiome.Science 328:994-999.
18.Brzuszkiewicz E,Weiner J,Wollherr A,Thurmer A,Hupeden J,LomholtHB, Kilian M,Gottschalk G,Daniel R,Mollenkopf HJ,Meyer TF,Bruggemann H.2011.Comparative genomics and transcriptomics of Propionibacterium acnes.PLoS One 6:e21581.
19.Hunyadkurti J,Feltoti Z,Horvath B,Nagymihaly M,Voros A,McDowell A,Patrick S,Urban E,Nagy l.2011.Complete genome sequence of Propionibacteriumacnes type IB strain 6609.J Bacteriol 193:4561-4562.
20.Horvath B,Hunyadkurti J,Voros A,Fekete C,Urban E,Kemeny L,Nagy I.2012.Genome sequence of Propionibacterium acnes type II strain ATCC 11828.JRacteriol 194:202-203.
21.Voros A,Horvath B,Hunyadkurti J,McDowell A,Barnard E,Patrick S,Nagy I. 2012.Complete genome sequences of three Propionibacterium acnesisolates from the type IA(2)cluster.J Bacteriol 194:1621-1622.
22.McDowell A,Hunyadkurti J,Horvath B,Voros A,Barnard E,Patrick S,Nagy I. 2012.Draft genome sequence of an antibiotic-resistantPropionibacterium acnes strain,PRP-38,from the novel type IC cluster.JBacteriol 194:3260- 3261.
23.Niazi SA,Clarke D,Do T,Gilbert SC,Mannocci F,Beighton D.2010.Propionibacterium acnes and Staphylococcus epidermidis isolated fromrefractory endodontic lesions are opportunistic pathogens.J Clin Microbiol48:3859-3869.
24.Tettelin H,Riley D,Cattuto C,Medini D.2008.Comparative genomics:the bacterial pan-genome.Curr Opin Microbiol 11:472-477.
25.Schloissnig S,Arumugam M,Sunagawa S,Mitreva M,Tap J,Zhu A,WallerA, Mende DR,Kultima JR,Martin J,Kota K,Sunyaev SR,Weinstock GM,Bork P.2013.Genomic variation landscape of the human gut microbiome.Nature 493:45-50.
26.Ross JI,Snelling AM,Carnegie E,Ccates P,Cunliffe WJ,Bettoli V,Tosti G, Katsambas A,Galvan Perez Del Pulgar JI,Rollman O,Torok L,Eady EA,Cove JH.2003.Antibiotic-resistant acne:lessons from Europe.The Britishjournal of dermatology 148:467-478.
27.Jackson AP,Thomas GH,Parkhill J,Thomson NR.2009.Evoluticnarydiversification of an ancient gene family(rhs)through C-terminaldisplacement. BMC Genomics 10:584.
28.Horvath P,Barrangou R.2010.CRISPR/Cas,the immune system ofbacteria and archaea.Science 327:167-170.
29.Harris SR,Feil EJ,Holden MT,Quail MA,Nickerson EK,Chantratita N,Gardete S,Tavares A,Day N,Lindsay JA,Edgeworth JD,de Lencastre H, Parkhill J,Peacock SJ,Bentley SD.2010.Evolution of MRSA during hospital transmission andintercontinental spread.Science 327:469-474.
30.Croucher NJ,Harris SR,Fraser C,Quail MA,Burton J,van der Linden M,McGee L,von Gottberg A,Song JH,Ko KS,Pichon B,Baker S,Parry CM, LambertsenLM,Shahinas D,Pillai DR,Mitchell TJ,Dougan G,Tomasz A, Klugman KP,Parkhill J,Hanage WP,Bentley SD.2011.Rapid pneumococcal evolution in response tocllinical interventions.Science 331:430-434.
31.Chin CS,Sorenson J,Harris JB,Robins WP,Charles RC,Jean-Charles RR,Bullard J,Webster DR,Kasarskis A,Peluso P,Paxinos EE,Yamaichi Y, CalderwoodSB,Mekalanos JJ,Schadt EE,Waldor MK.2011.The origin of the Haitian choleraoutbreak strain.The New England journal of medicine 364:33-42.
32.Gordon D,Abajian C,Green P.1998.Consed:a graphical tool forsequence finishing.Genome Res 8:195-202.
33.Zerbino DR,Birney E.2008.Velvet:algorithms for de novo short readassembly using de Bruijn graphs.Genome Res 18:821-829.
34.Borodovsky M,Mclninch J.1993.Recognition of genes in DNA sequencewith ambiguities.Biosystems 30:161-171.
35.Salzberg SL,Delcher AL,Kasif S,White O.1998.Microbial geneidentification using interpolated Markov models.Nucleic Acids Res 26:544-548.
36.Kurtz S,Phillippy A,Delcher AL,Smoot M,Shumway M,Antonescu C,Salzberg SL.2004.Versatile and open software for comparing large genome:Genome Biol 5:R12.
37.Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S.2011.MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance.and maximum parsimony methods.Mol Biol Evol 28:2731-2739.
38.Grissa I,Vergnaud G,Pourcel C.2007.CRISPRFinder:a web tool toidentify clustered regularly interspaced short palindromic repeats.NucleicAcids Res 35:W52-57.
39.Altschul SF,Gish W,Miller W,Myers EW,Lipman DJ.1990.Basic localalignment search tool.J Mol Biol 215:403-410.
40.de Hoon MJ,Imoto S,Nolan J,Miyano S.2004.Open source clusteringsoftware.Bioinformatics 20:1453-1454.
41.Saldanha AJ.2004.Java Treeview--extensible visualization ofmicroarray data.Bioinformatics 20:3246-3248.
实施例3-从皮肤样品提取微生物DNA
皮肤微小粉刺取样
使用专用粘附带从受试者的皮肤取得皮肤微小粉刺(白头或黑头) 样品。在放上粘附带之前将皮肤用水润湿。将带留在皮肤上持续15 至20分钟直到它变干。防尘手套用于每次取样。在从皮肤脱下之后, 将带放置到50mL无菌管中。这可应用于许多皮肤部位,如鼻、前额、 下颏以及背部。
细菌DNA提取
使用无菌镊子从粘附带单独地挑取或刮下微小粉刺并且将其放 置在填充有ATL缓冲液(Qiagen)和0.1mm直径玻璃细珠(BioSpec Products,Inc.,Bartlesville,OK)的2mL无菌微量离心管中。使用珠搅 拌器在室温下在4,800rpm下使细胞溶解3分钟。在于14,000rpm下 离心5分钟之后,取回上清液并且将其用于使用QIAamp DNA微小 试剂盒(Qiagen)提取基因组DNA。使用用于从口香糖提取DNA的制 造商方案。通过光谱仪来确定基因组DNA的浓度。
实施例4-微生物群系类型检测
用于基于16SrDNA准确检测皮肤微生物群系类型的详细方案
PCR扩增、克隆和测序
将16S rDNA使用引物8F(5’-AGAGTTTGATYMTGGCTCAG-3’) 和1510R(5’-TACGGYTACCTTGTTACGACTT-3’)进行扩增。热循环 条件是如下:在94℃下5分钟的初始变性步骤,30次循环的在94℃ 下变性45秒、在52℃下退火30秒以及在72℃下延长90秒,以及在72℃下最终延长步骤20分钟。使用基于柱的方法来纯化PCR产物。 随后,将16S rDNA扩增子克隆到pCR2.1-TOPO载体(Invitrogen)中。 将One-Shot TOP-10化学感受态大肠杆菌细胞(Invitrogen)用所述载体 进行转化并且接种到选择性培养基上。挑取单独阳性菌落将且将其接 种到选择性LB液体培养基中。在14小时孵育之后,使用基于柱的 质粒提取试剂盒或传统方法提取并且纯化质粒。使用桑格测序方法对 所述克隆进行双向测序。基于前10种主要核糖型的16S rDNA序列 数据来确定每个个体的微生物群系类型。参见图5和SEQ IDNO 1 至10。
用于基于PCR和qPCR快速检测皮肤微生物群系类型的详细方 案
通过对69种新颖的痤疮丙酸杆菌基因组进行测序和注释并且通 过比较总计82种痤疮丙酸杆菌基因组,鉴别了为痤疮相关的痤疮丙 酸杆菌菌株所特有的几种基因组基因座,即基因座1至4。参见图8。 来自所有痤疮丙酸杆菌菌株序列及其序列相似物(相似性在95%至 100%的范围内)的基因座1、2、3和4的基因组序列分别如SEQ ID NO 15至18中所列出。
检测方法1
为了快速地检测患者中RT4菌株和RT5菌株的存在或不存在, 设计了靶向基因座1、2、和3多重PCR并且对从痤疮丙酸杆菌菌株 和皮肤样品提取的基因组DNA进行所述所述多重PCR。图23示出 基因座1、2、和3是从如基于基因组数据所预测的不同痤疮丙酸杆 菌菌株扩增的。
PCR引物序列在表1中示出:
表1—对于基因座1、2、3和Pak(管家基因)具有特异性的引物 靶向这些基因座的另外引物可基于基因组1至4的基因组序列 (分别为SEQ ID NO 15至18)进行设计。每20μL反应包含12.7μL 分子级H2O、2μL 10X高保真度缓冲液、0.6μL50mM MgSO4、0.4μL 10nMdNTP、0.8μL的每种引物(最终引物浓度是400nM)、0.1μL 高保真度铂Taq DNA聚合酶(所有试剂来自Invitrogen)以及1μL gDNA模板(approx.40ng gDNA)。热循环条件是如下:在95℃下10 分钟的初始变性步骤;35次循环,其中每次循环由以下组成:在95℃ 下45秒、在65℃下30秒以及在72℃下45秒;以及在72℃下10分 钟的最终延长步骤。
为了定量地测量皮肤样品中的痤疮相关的痤疮丙酸杆菌菌株的 丰度,对从痤疮丙酸杆菌菌株提取的基因组DNA进行靶向基因座1、 2和3的定量PCR(qPCR)。参见图12。使用LightCyler480高分辨率 熔融主试剂盒(Roche Diagnostics GmbH,Mannheim,Germany)。每10 μL反应包含5μL的主混合物(2X浓缩)、1μL的25mM MgCl2、0.5μL 的4μM正向引物和反向引物、1μL至3.5μL的DNA模板(大约2.5ng DNA)以及分子级H2O,达到所述体积。热循环条件是如下:在95℃ 下10分钟的初始活化步骤;40次扩增循环,其中每次循环由以下组 成:在95℃下10秒、在第一循环中在65℃下15秒,但对于每一后 续循环逐步减少0.5℃、以及在72℃下30秒;以及最后,开始于65℃ 且结束于99℃的最终熔融曲线步骤,其中匀变速率为0.02℃/s并且 采集速率为25/℃。
使用模拟样品对方案进行测试,其中将痤疮丙酸杆菌的不同菌株 按不同比例进行混合以便模拟实际样品中的菌株种群分布。参见表2。
表2-模拟人皮肤样品中观察到的微生物群系类型的模拟样品
从源自基因座1、基因座2和PakPCR扩增子的标准物定量每一 基因座的浓度。从源自使用常规PCR的TadA(基因座3中)和Pak扩 增子的基因组DNA标准物定量每种基因的拷贝数目。参见图24。
检测方法2
痤疮丙酸杆菌TaqMan qPCR测定
引物和探针设计
用于检测痤疮丙酸杆菌菌株和临床样品中的基因座1、2、3和4 的引物和探针如表3中所列出进行设计:
表3-用于鉴别痤疮丙酸杆菌基因座的引物和探针序列
使用丙酸杆菌特异性引物设计并且测试了三重Taqman qPCR以 便靶向存在于所有痤疮丙酸杆菌中的基因座1、基因座3和内部对照 Pak。
基因座1、基因座3和Pak扩增
进行台式扩增以便在多重反应之前评估所设计的引物的特异性 并且确定最佳循环条件。使用BioRad C1000热循环仪进行扩增。单 重PCR反应包含0.2μM靶特异性引物、10X铂Taq缓冲液 (Invitrogen)、1.0mM MgCl2、0.2mM每种dNPT、0.5U/μl铂Taq聚 合酶、1μlDNA目标并且补充至10μl的最终体积。循环是如下:在94℃下初始变性5分钟,接着30次循环的在94℃下变性30秒、在 60℃下退火30秒以及在72℃下延长30秒,以及在72℃下一个最终延长循环5分钟。将扩增产物在1%琼脂糖/TBE凝胶上进行电泳分析 以便针对靶标的正确扩增和与引物靶标的交叉物种反应性进行检验。
Taqman三重PCR
使用Applied Biosystems 7900HT仪器进行三重qPCR。将1至2μl 的样品DNA添加至含有以下各项的主混合物:X2 QuantiTect多重 PCR主混合物(Qiagen),0.2μM引物;基因座1_F,基因座1_R,Pak_F, Pak_R;0.2μM探针;基因座1__探针和Pak_探针以及0.1μM引物基因座3_F和基因座3_R和0.1μM基因座3_探针。将反应混合物用 无菌PCR级水补充至20μl的最终体积。PCR程序由以下组成:在 50℃下2分钟的一次循环,接着在95℃下15分钟的一次循环以便允 许所述多重主混合物的活化,然后94℃60秒和57℃90秒的45次循 环。每次操作包括从培养物提取的痤疮丙酸杆菌DNA的校准物以及 无模板对照物(NTC)和水对照物。用被动参考即Quantitect多重PCR 主混合物中供应的ROX进行qPCR。使用SDS v2.4软件对数据进行 分析。
测定校准、灵敏度和特异性
通过绘出从来自纯培养物的痤疮丙酸杆菌提取的量化的基因组 DNA标准物的一系列对数稀释的平均Ct值来构建痤疮丙酸杆菌靶标 基因座1和Pak的校准曲线。估计了基因组等效形式。痤疮丙酸杆菌 校准物的五次重复用于计算平均Ct值和标准偏差。这些数据用于确 定测定的灵敏度和检测限(LOD)。校准曲线用于确定临床样品中的痤 疮丙酸杆菌基因组的数目,连同每基因组基因座1和Pak靶标的一个 拷贝。确定DNA浓度和拷贝数目并且纯化的产物的连续十倍稀释液 用作用于构建基因座3校准曲线的标准物。展示基因座1和基因座3 的存在和不存在的可能的组合的菌株用于基因座1和Pak校准:HL038PA1(基因座1+,基因座3+)、HL083PA1(基因座1+,基因座 3-)、HL078PA1(基因座1-,基因座3+)以及HL063PA1(基因座1-, 基因座3-)。在应用于临床样品之前使用来自纯培养物的具有已知基因座的测过序的痤疮丙酸杆菌菌株对所述测定进行验证。使用其它细 菌物种(包括皮肤共生体和其它丙酸杆菌)来对所述测定针对每种靶 标的特异性进行测试。
测定验证
总计24种测过序的痤疮丙酸杆菌菌株(HL063PA1、HL078PA1、 HL083PA1、HL038PA1、HL037PA1、HL082PA1、HL020PA1、HL0 01PA1、HL046PA2、HL043PA1、HL086PA1、HL110PA3、HL110PA 4、HL007PA1、HL087PA3、HL027PA1、HL056PA1、HL067PA1、H L074PA1、HL045PA1、HL053PA1、HL005PA1、HL072PA1、HL043 PA2)(包括有或没有基因座1和基因座3的可能的组合)用于验证所 述三重qPCR测定。所述qPCR三重测定成功地鉴别了之前通过全基因组测序所显示的拥有这些基因座的菌株中的基因座1和基因座3。
应用于临床样品
使用Taqman qPCR三重测定对从两种临床样品#1和#2提取的基 因组DNA进行分析。扩增曲线揭示了两种样品中痤疮丙酸杆菌(Pak) 的存在(图6)。还在两种样品中检测到基因座1和基因座3靶标,其 中与样品#2相比,1μl的样品#1中存在的痤疮丙酸杆菌基因座1阳性 和基因座3阳性菌株的百分比要高得多。
实施例5-痤疮疫苗
具有16S rDNA核糖型(RT)4、5、7、8、9和10的菌株被鉴别 为与痤疮高度相关。可产生针对这些菌株的疫苗。参见T.Nakatsuji 等人,128(10)J.Invest.Dermatol.2451-2457(2008年10月)。
实施例6-使用与健康皮肤相关的菌株研发呈局部乳膏、溶液等 形式的益生菌以用于化妆品产品和其它产品
RT6主要见于健康皮肤中。这些菌株可用作用于痤疮预防和治疗 的局部产品中的益生菌。分离并且测序了四种RT6菌株,包括 HL110PA3、HL110PA4、HL042PA3和HL202PA1。
此外,细菌培养物上清液和/或细胞溶解产物(包括细菌代谢物) 可用于乳膏、溶液和其它化妆品产品以便防止与痤疮相关的菌株的生 长。与SEQ ID NO 51-54共享至少95%同源性的序列可用于益生菌等 的研发。
实施例7-靶向与痤疮相关的特定菌株的药物研发
痤疮丙酸杆菌的核心区和非核心区的鉴别
痤疮丙酸杆菌的“核心”基因组区被定义为存在于所有82种基因 组中的基因组序列,而“非核心”区被定义为并非存在于所有基因组中 的基因组序列。参见S.Tomida等人,Pan-genome and Comparative Genome Analyses of Propionibacterium acnes RevealIts Genomic Diversity in the Healthy and Diseased Human Skin Microbiome(出版中);还参见实施例2。如之前所提及鉴别了对于RT4和RT5的菌株 具有特异性的非核心区,例如基因座1、2和3。还鉴别了对于RT8 的菌株具有特异性的非核心区(注解为基因座4)以及几种其它菌株如 HL078PA1、HL030PA2、HL063PA2、P.acn17、HL097PA1以及PRP38。 参见图20。基因座4的基因组序列是如SEQ ID NO:18所列出。在以 下列出主要为痤疮相关的菌株RT4、RT5和RT8所特有的以下基因座 1至4中的基因(表4-1、4-2和4-3)。还列出非核心区。在这些基因 座中编码的基因是药物靶标。
表4-1-在基因座1和2中编码、对于RT4和RT5具有特异性的 基因的列表
表4-2–在基因座3(一种线性质粒)中编码并且对于RT4和RT5 具有特异性的基因的列表
表4-3–在基因座4(RT8特异性区)中编码的基因的列表
实施例8-靶向噬菌体疗法
噬菌体在调控微生物群落(包括人皮肤微生物区系)的组成和动 力学方面起重要作用。痤疮丙酸杆菌的噬菌体(一种主要皮肤共生体) 之前进行分离并且用作分型系统以便区分不同血清型的痤疮丙酸杆 菌。然而,一直缺乏对这些噬菌体的分子表征。基因组测序中的最近 成就改进了对痤疮丙酸杆菌噬菌体以及其与细菌宿主的相互作用的 理解。
噬菌体是地球上最丰富的生物体(Mc Grath和van Sinderen,200 7)并且据信在数量上超过细菌,在许多不同的生态系统中两者的比例 是10:1(Rohwer,2003)。作为微生物群落的重要组成部分,噬菌体是 产生多样性元件的储库(Rohwer和Thurber 2009)并且通过捕食调控 微生物宿主的丰度(Suttle、Chan和Cottrell,1990)和多样性(Rodrigue z-Valera等人,2009)。人皮肤栖息着数百个微生物物种,包括细菌、 真菌和病毒(Grice和Segre,2011)。这一生态系统的体内平衡对于其 作为抵抗病原体在皮肤上的侵袭和定殖的屏障的功能是重要的。然 而,关于皮肤微生物群落中的微生物之间的动力学的性质和驱动力尚 有许多许多有待了解。具体地说,皮肤上的噬菌体与其细菌宿主之间 的相对丰度和相互作用仍有待阐明。
痤疮丙酸杆菌在皮肤的毛皮脂单位中的微生物群落中占优势地 位,其占所述微生物区系的大约90%(“(Nature Precedings Paper),” n.d.)。痤疮丙酸杆菌已被认为是寻常痤疮(最常见的人皮肤疾病之一) 发展中的致病因子(Bojar和Holland,2004;Leyden,2001)。以上详述 的研究将痤疮丙酸杆菌菌株基于其16S核糖体RNA(rRNA)序列分类 成核糖型(RT),并且证明毛皮脂单位中的痤疮丙酸杆菌菌株种群结构 在健康皮肤与受痤疮影响的皮肤之间不同。
痤疮丙酸杆菌噬菌体存在于人皮肤上。在1968便,Zierdt等人 (Zierdt.Webster和Rude,1968)从痤疮丙酸杆菌分离株的自发噬斑分 离了被称为噬菌体174的这种噬菌体(在那时被称为痤疮棒状杆菌)。 噬菌体174能够使研究中所测试的几乎所有痤疮丙酸杆菌菌株溶解 [10]。后来,分离了更多的痤疮丙酸杆菌噬菌体,所述噬菌体表现出 从溶解至温和范围的变化的生命周期[11,12]。然而,在过去十年中, 痤疮丙酸杆菌噬菌体的研究局限于噬菌体分型系统的研发以便区分 不同血清型的痤疮丙酸杆菌[13,14]_ENREF_4,并且一直缺乏对噬 菌体的广泛分子表征。
痤疮丙酸杆菌噬菌体的最近基因组测序(Farrar等人,2007;Lood 和Collin,2011;Marinelli等人,2012)已提供对痤疮丙酸杆菌噬菌体多 样性的新见解。痤疮丙酸杆菌噬菌体在形态学和遗传学上均与分枝杆 菌噬菌体类似,但具有更小的基因组。当前可获得14种噬菌体基因 组序列。需要对另外噬菌体分离株进行测序以便进一步表征多样性。尽管存在这些最近测序成就,但人皮肤微生物群系中的痤疮丙酸杆菌 噬菌体的基因组水平多样性及其与痤疮丙酸杆菌和其它丙酸杆菌的 相互作用仍然有待阐明。痤疮丙酸杆菌噬菌体在痤疮丙酸杆菌菌株的 不同谱系之中具有不同宿主特异性[14]。噬菌体宿主特异性在确定这 些噬菌体如何调控群落中的痤疮丙酸杆菌种群的组成和动力学中是 重要的。另一方面,某些痤疮丙酸杆菌菌株还可通过其抗病毒机制影 响噬菌体种群,所述机制如基于成簇的规律间隔的短回文重复序列 (CRISPR)序列阵列的转录的细菌免疫系统。CRISPR阵列包含源自噬 菌体DNA或质粒DNA的寡核苷酸“间隔区”。以与RNA干扰类似的 方式,转录的单链CRISPR RNA元件与CRISPR相关(Cas)的蛋白质 相互作用以便指导含有来自外源DNA的互补“原型间隔区”序列的 DNA靶标的降解[16]。在表征痤疮丙酸杆菌的基因组多样性同时,申 请人发现了RT2和RT6的痤疮丙酸杆菌菌株拥有CRISPR阵列。 CRISPR机制可在抵抗噬菌体或质粒侵袭中起作用。
为了更好地理解人皮肤微生物群系中的细菌与噬菌体之间的相 互作用以及其对皮肤健康和疾病的贡献,研究了从痤疮患者和健康个 体分离的痤疮丙酸杆菌噬菌体的多样性和宿主特异性。对15种噬菌 体分离株的基因组进行了研究并且针对69种测过序的丙酸杆菌菌株 的组进行筛选以便确定其宿主范围和特异性。
噬菌体分离和一般基因组特征
为了表征皮肤微生物群系中的痤疮丙酸杆菌噬菌体的遗传多样 性和丰度,收集了来自179个个体的毛皮脂单位的203份皮肤样品, 包括来自正常个体的109份样品和来自痤疮患者的94份样品。将所 有样品针对痤疮丙酸杆菌在厌氧条件下进行培养。在49份样品中观 察到噬菌体噬斑:35份来自正常个体并且14份来自痤疮患者。发现 与来自痤疮患者的样品相比,痤疮丙酸杆菌噬菌体更频繁地存在于来 自正常个体的样品中,具有统计显著性(p=0.005,费希尔精确检验)。 在从这些样品获得的93种噬菌体分离株之中,选择来自痤疮患者的 五种噬菌体和来自正常个体的十种噬菌体用于使用454或Illumina平 台进行全基因组测序(表3-1)。
表3-1-噬菌体基因组信息和测序统计数据
*在Illumina MiSeq平台上测序。所有其它基因组在454平台上测序
对所有噬菌体基因组进行汇编,使其完整并且加以注释(图29)。 这15种噬菌体的基因组具有可比的大小(29.1-29.5Kb)和GC含量 (53.8%-54.5%),与已公开的痤疮丙酸杆菌噬菌体基因组类似。平均 来说,在每个基因组中预测到44个开放阅读框(ORF)。与之前报道的 基因组组构[11,15]一致,所述ORF紧密地排列在每个基因组的左臂 区和右臂区内。基因组的左臂和右臂可通过其转录的相反方向进行区 别。任何对的基因组之间的序列同一性是适度高的,在78.2%至99.9% 的范围内(表3-1)。
痤疮丙酸杆菌噬菌体是多样的,其中高度相关的菌株的亚群具有 不同遗传变异位点
为了研究痤疮丙酸杆菌噬菌体的基因组多样性,将所有29种测 过序的噬菌体基因组进行比较,包括申请人的15种噬菌体基因组和 14种已公开的基因组(Farrar等人,2007;Lood和Collin,2011;Marinelli 等人,2012)。由所有29种基因组共享的核心基因组区具有24,475bp (83%的平均基因组长度)的组合长度并且包含6,812个单核苷酸多态 性(SNP)。从这6,812个SNP构建的系统发生树(图30)显示从迄今为 止的所有研究分离的噬菌体基因组中的大多数显示彼此可比的趋异 性,其中平均距离为0.301(SNP位点处的取代率)。然而,还发现被 称为I组和II组的两组噬菌体(图30),所述两组噬菌体密切相关,具有更短的系统发生距离。当在系统发生关系的计算中使用整个基因组 序列(包括核心区和非核心区)时获得相同结果(图31)。
接下来确定最新测过序的噬菌体是否属于以前发现的系统发生 组。Lood等人之前基于编码头蛋白或噬菌体分离株的酰胺酶的核苷 酸序列调查了痤疮丙酸杆菌噬菌体的系统发生多样性[12]。报道了三 个主要的系统发生组。将申请人的数据与来自Lood等人的数据组合 并且申请人重新构建了头蛋白和酰胺酶基因序列的系统发生树。更新 的系统发生树再现了来自之前研究的菌株之间的关系(图32)。然而, 申请人的噬菌体被分组至单独的分支中。此外,通过包括来自当前研 究的基因序列,所有研究的噬菌体之间的最长系统发生距离对于头蛋 白从0.077增加至0.102并且对于酰胺酶基因从0.140增加至0.182。 虽然这些距离仍然显著短于最近的外群(0.939,来自分枝杆菌噬菌体 Che9d的头蛋白;0.764,痤疮丙酸杆菌KPA171202酰胺酶)[12],但 分析表明痤疮丙酸杆菌噬菌体多样性比之前所描述的更广泛。
一些痤疮丙酸杆菌噬菌体似乎是如之前所示的密切相关的菌株 [12]。在29种测过序的基因组中,观察到两组密切相关的菌株(图30)。 I组由PHL066M04、PHL010M04和PHL073M02组成,其在基因组 水平下以0.002的平均系统发生距离分开。II组由PHL085M01、PHL085N00、PHL115M02以及PHL037M02组成,其中平均系统发 生距离为0.004。当核心区或整个基因组或仅左臂或右臂编码区用于 计算系统发生时,这两组是统计上强大的(图30和31)。
研究I组噬菌体或II组噬菌体之中的遗传变异是否位于基因组的 特定区中。I组噬菌体之中的序列变异位点主要位于编码推定II型穴 蛋白和肽聚糖酰胺酶(如PA6中所注释的Gp20和Gp21,图33)的区 内。这些细胞内溶素透化膜并且降解细胞外肽聚糖层以便从细菌宿主 释放新的噬菌体颗粒。I组噬菌体基因组之中的这两种基因中的大多 数序列变异大多是同义的并且似乎不影响蛋白质的功能。 PHL010M02和PHL066M02的基因组仅在11个位点处不同,其中的 9个存在于预测的编码区中。
II组成员之中的遗传变异存在于编码PA6中的Gp16、Gp17和 Gp18的同系物的区域中(图33)。靠近结构蛋白质与溶解蛋白质之间 的左臂的3’端的这些蛋白质的位置表明它们可能是与病毒蛋白加工 和包装有关的后期作用基因。
痤疮丙酸杆菌噬菌体基因组的替代注释
大量最新测过序的痤疮丙酸杆菌噬菌体菌株提供了验证和改进 痤疮丙酸杆菌噬菌体基因组的初始注释的机会。基于分析,确认了噬 菌体基因组的几种替代注释。
已测过序的所有15种噬菌体基因组支持Gp22/23基因座的替代 注释,所述Gp22/23基因座之前被注释为在PA6基因组中的正链上 编码的两个ORF,即Gp22和Gp23。PA6基因Gp22和Gp23的同系 物未在所述基因组中一致地鉴别,因为许多同系物在这些基因的预期正链位置处具有不一致的起始和终止密码子位置。然而,在负链上, 所有基因组似乎编码具有513-522bp长度的单个ORF。这种注释与 由Marinelli等人(Marinelli等人,2012)所报道的注释一致,其在本文 被称为Gp22/23(图29)。虽然没有已知的功能被分配至原始正链注释 的Gp22或Gp23,但PHL112N00和PHL111M01中的Gp22/23的负 链注释显示与来自石膏样节皮菌(Arthroderma gypseum)的锌指蛋白 的适度相似性(E值分别是1.0e-4和5.7e-4)。PHL111M01注释还显示 与来自白色链霉菌(Streptomyces albus)的聚异戊二烯基二磷酸酯合成 酶的相似性(E-值2.6e-5)和与来自弗兰克氏菌属的聚酮化合物合成酶 的相似性(E-值2.5e-4)。来自大多数基因组的负链Gp22/23 ORF是彼 此的同系物,除了PHL067M10和PHL114L00中的那些之外。这两 种基因组中的Gp22/23 ORF形成单独的组并且与尽管存在于基因组 中的同一基因座处的其它Gp22/23 ORF共享很少核苷酸相似性。这 种ORF在负链上的所有噬菌体基因组中出现的观察结果表明这个区 可以是右臂的一部分。这与使Gp22/23与PA6、PAD20和PAS50中 的左臂的剩余部分分离的正链转录终止子的先前报道一致[11]。
存在于靠近约1kb非编码区的基因组的右臂中的PA6 ORF Gp42、Gp45和Gp46的同系物未被一致地鉴别。噬菌体基因组中的 这些右臂ORF中的每个的预期位置包含多个终止密码子并且显示与 PA6基因组的相应区的有限同源性。这与靠近非编码区的通常高度的核苷酸变异一致并且表明这些ORF可代表在不同噬菌体菌株之中差 异地存在的基因。
测序数据证明噬菌体基因组的末端侧接11个核苷酸单链突出端 (表3-1)。在10种噬菌体基因组的测序数据中,发现跨越基因组的3’ 端和5’端两者的1至3个读数。这些读数中的基因组末端通过匹配之 前报道(Marinelli等人,2012)的11-nt单链延长的序列一致地分离。然 而,基于测序数据,未显示15种基因组中的三种中的突出端的存在:PHL010M04、PHL073M02和PHL071N05。很可能它们仅仅是未检 测到,因为一般很少观察到含有突出端的读数(每10,000个读数2.3 个突出端读数)。尽管如此,数据确实表明噬菌体DNA可能在其生命 周期中的某些点处是环化的[11]。映射至基因组的仅一端的读数中突 出端的不存在可以是样品加工的人为现象,如T4 DNA聚合酶被用于 通过消化3’单链延长部分并且延长5’单链延长部分的补体来“抛光” 片段化的文库(Roche Diagnostics,2009)。如果是这样,可推测突出端 可存在于基因组的3’端上。
痤疮丙酸杆菌噬菌体的宿主范围和特异性
为了研究痤疮丙酸杆菌噬菌体的宿主范围和特异性,将15种测 过序的噬菌体针对一组69种丙酸杆菌菌株进行筛选,该组包括65种 痤疮丙酸杆菌菌株、三种humerusii丙酸杆菌菌株以及一种颗粒丙酸 杆菌菌株。除了痤疮丙酸杆菌菌株KPA171202和ATCC11828外,所 有这些丙酸杆菌菌株是从针对噬菌体取样的同一组受试者分离的。对 所有65种痤疮丙酸杆菌菌株和三种humerusii丙酸杆菌菌株的基因组 进行测序。构建了基于65种痤疮丙酸杆菌菌株的核心基因组区中的 SNP的其系统发生树(图33,左系统树图)。基于通过痤疮丙酸杆菌菌 株的RecA基因序列之前建立的痤疮丙酸杆菌菌株的分型[7],细菌合 集包括在人皮肤上发现的痤疮丙酸杆菌的所有主要谱系,其中多个菌 株代表每种类型:IA-1、IA-2、IB-1、IB-2、IB-3和II。使用交叉划 线法来确定69种细菌菌株中的每种针对15种测过序的噬菌体中的每 种的敏感性/抗性。总计确定了1,035个细菌-噬菌体相互作用。每个 实验重复至少五次。对于显示出对噬菌体的抗性的细菌菌株,相对于 痤疮丙酸杆菌菌株ATCC6919来确定成斑效率(EOP)的倍数变化,所 述菌株ATCC6919已知对所有所测试的菌株敏感。
据发现对噬菌体的敏感性/抗性与痤疮丙酸杆菌谱系相关。69种 丙酸杆菌菌株中的五种显示出针对至少一种噬菌体的抗性的100倍 或更大增加。IA-1型、IA-2型、IB-1型以及IB-2型的痤疮丙酸杆菌 菌株对于所有测试的噬菌体都是敏感的。然而,IB-3型的两种菌株 (KPA171202和HL030PA1)对于一些噬菌体是高度抗性的(图34)。IB-3 型菌株编码III型限制修饰系统的组分(KPA171202中的基因PPA1611 和PPA1612)。这可以解释其对噬菌体的抗性。KPA171202编码基因 组中的隐蔽原噬菌体[17]。然而,原噬菌体的序列不与测过序的痤疮 丙酸杆菌噬菌体中的任一个相关,因此隐蔽原噬菌体的存在不太可能 解释对噬菌体的抗性。三种II型菌株对一些噬菌体也是高度抗性的。 这与先前观察结果一致,即这种类型的菌株对噬菌体具有抗性的频率 更高[14]。
另一方面,痤疮丙酸杆菌菌株对噬菌体的敏感性/抗性不与噬菌 体谱系相关(r=0.1343,p-值=0.115,曼特尔检验(Mantel test))。甚至I 组或II组中的密切相关的噬菌体菌株之中的宿主范围也是不同的(图 34)。一个实例是PHL066M04,其是显示出与同一组中的其它噬菌体 很少相似性但与II组噬菌体PHL115M02和PHL037M02具有类似的 细菌-噬菌体相互作用模式的I组噬菌体。这些结果表明细菌因素可 能在确定噬菌体宿主范围和特异性中起重要作用。
为了确定这些噬菌体是否仅对痤疮丙酸杆菌具有特异性或它们 是否能够与其它丙酸杆菌相互作用,在细菌-噬菌体相互作用实验中 包括了一种颗粒丙酸杆菌菌株和三种humerusii丙酸杆菌菌株。颗粒 丙酸杆菌是在毛皮脂单位中具有大约1.1%丰度的常见皮肤共生体 [7]。humerusii丙酸杆菌是新定义的物种[18]。在研究组中,humerusii 丙酸杆菌是在皮肤上发现的在毛皮脂单位中具有1.9%丰度的主要物 种之一[7]。它与痤疮丙酸杆菌密切相关,在16S rRNA基因序列中具 有>98%同一性[18]。虽然颗粒丙酸杆菌菌株显示出对所有测试的噬菌 体的较强抗性,但两种humerusii丙酸杆菌菌株HL037PA2和HL037PA3是对所有噬菌体敏感性的。第三种humerusii丙酸杆菌菌 株HL044PA1被15种测试的噬菌体中的十种溶解。这表明痤疮丙酸 杆菌噬菌体的宿主范围不限于痤疮丙酸杆菌,而是包括humerusii丙 酸杆菌和可能的其它密切相关的丙酸杆菌物种。
对噬菌体的抗性不与痤疮丙酸杆菌菌株中匹配的CRISPR间隔 区的存在相关
在65种痤疮丙酸杆菌分离株之中,八种菌株属于RT2和RT6 (RecAII型)并且编码CRISPR/Cas基因,所述八种菌株充当针对外源 DNA的细菌获得性免疫机制。这些RT2菌株和RT6菌株在其CRISPR 阵列中各自具有一至九个间隔区,33个核苷酸长。总计,它们编码 42个间隔区,其中的28个是独特的。
研究了CRISPR/Cas机制是否能够解释RT2菌株和RT6菌株中的 噬菌体敏感性/抗性。鉴别了匹配来自RT2和RT6痤疮丙酸杆菌菌株 的间隔区序列的15种噬菌体基因组中的原噬菌体。在序列比对中允 许多达两个错配。在所有噬菌体中,鉴别了匹配至少两种痤疮丙酸杆 菌菌株中的间隔区的原型间隔区(图35)。这些原型间隔区在噬菌体基 因组中全部是单一拷贝的并且主要位于左臂上(图36)。它们的位置在 具有相同原型间隔区序列的所有其它噬菌体基因组之中通常是保守 的。
八种RT2和RT6痤疮丙酸杆菌菌株的敏感性/抗性显示与具有原 型间隔区匹配的每个阵列中的间隔区的数目(r=0.207)或一般是否可 针对CRISPR阵列发现至少一个匹配(r=0.202)关系不大。对噬菌体的 敏感性/抗性也不与任何特异性间隔区所匹配的模式相关(最大绝对相 关0.051)。
噬菌体可通过使涉及在原型间隔区识别中的位点突变来逃避 CRISPR防御机制。原型间隔区下游的短核苷酸基序(被称为邻近原型 间隔区的基序(PAM))在CRISPR/Cas系统的靶标之中是高度保守的 [19]。已发现这些核苷酸中的突变破坏CRISPR介导的抗性,不管原 型间隔区序列中的完全互补性[20-22]。为了确定细菌敏感性/抗性与 匹配间隔区序列的存在之间的相关的缺乏是否是由于PAM序列内的 突变所致,检验了与在HL042PA3中编码的间隔区序列具有精确匹配 的九种原型间隔区的PAM。这些原型间隔区中的六种来自HL042PA3 对其抗性的噬菌体,而其它三种原型间隔区来自能够溶解HL042PA3 的噬菌体。在所述六种原型间隔区之中,观察到在其33个核苷酸长 度内和预期包含PAM的十个下游核苷酸内的几个位点处的序列保守 性(图37)。这表明这些原型间隔区基序是保守的并且可以由 HL042PA3CRISPR靶向。然而,这些相同核苷酸位置在来自能够溶 解HL042PA3的其它噬菌体(PHL113M01、PHL112N00和PHL085M01) 的三种原型间隔区中也是保守的(图37)。因此,包括PAM的原型间 隔区基序的保守性不能解释细菌敏感性/抗性与匹配间隔区序列的存 在之间的相关性的缺乏。
总之,数据证明编码针对侵袭噬菌体的基因组匹配的CRISPR间 隔区不足以用于有效防御,从而表明CRISPR RNA的转录和/或翻译 调控和Cas基因表达也可能是CRISPR介导的抗性所需的。这些细菌 与噬菌体之间的相互作用还可以取决于与噬菌体结合、进入、复制或 释放有关的其它噬菌体和细菌组分。
已经揭示了存在于人皮肤上的一组多样的痤疮丙酸杆菌噬菌体。 测过序的噬菌体中的大多数显示与某些菌株的适度高的遗传相似性, 从而形成密切相关的组。这些噬菌体显示与痤疮丙酸杆菌菌株和 humerusii丙酸杆菌菌株的不同模式的相互作用,但这些模式不与噬 菌体系统发生相关。确定对噬菌体的抗性或敏感性与痤疮丙酸杆菌谱 系良好相关。IA-1型、IA-2型、IB-1型以及IB-2型都是对所有测试 的噬菌体敏感性的,而IB-3型和II型的某些菌株是对一些噬菌体抗 性的。II型痤疮丙酸杆菌菌株中的噬菌体抗性不与同噬菌体原型间隔 区匹配的CRISPR间隔区的存在相关,从而表明在赋予噬菌体抗性中 需要另外的机制,如CRISPR/Cas系统的调控和/或其它抗病毒机制。
这一研究表明痤疮丙酸杆菌噬菌体在皮肤微生物群系中的重要 调控作用。菌株特异性宿主范围证明这些噬菌体调控痤疮丙酸杆菌种 群和humerusii丙酸杆菌种群的特定亚群的能力。在丙酸杆菌种群的 这些子群之中,噬菌体还可以散播潜在修饰毒力(如由Lood和Collin [11]表明)或竞争性的基因,因为据表明在一些噬菌体中编码的 gp22/23可能潜在地涉及在聚酮化合物抗微生物剂的产生中。噬菌体 对痤疮丙酸杆菌菌株的选择性溶解和修饰均潜在的调控皮肤上的痤 疮丙酸杆菌的共生菌株和病原性菌株的相对丰度。共生体与病原体之 间的这种微妙平衡对于痤疮丙酸杆菌占优势的位点处的皮肤健康和疾病可能是尤其重要的。基于宏基因组鸟枪法测序数据,据估计毛皮 脂单位中的痤疮丙酸杆菌噬菌体和痤疮丙酸杆菌之间的比例是1:20 [7],这与在环境微生物群落中估计的噬菌体:细菌比例相差甚远,在 环境微生物群落中病毒通常在数量上超过细菌[23]。这表明人宿主也 在选择和调控微生物群系的组成和多样性中起作用。
材料和方法
丙酸杆菌培养
将痤疮丙酸杆菌、humerusii丙酸杆菌和颗粒丙酸杆菌菌株在厌 氧条件下在梭菌培养基(Oxoid)中在37℃下培养4至6天。丙酸杆菌 培养物用于制备用于A培养基板上的噬菌体培养的顶层琼脂覆层(12 g/L酪蛋白胰酶消化物、12g/LDifco酵母提取物、22.2mM D-葡萄糖、 29.4mM g/L磷酸二氢钾、8mM硫酸镁七水合物、20g/LDifco琼脂)。
噬菌体分离和DNA提取
通过用移液管尖端刺穿琼脂并且重悬浮于50μL SM缓冲液(0.1 M氯化钠、8mM硫酸镁七水合物、1M Tris-HCl(pH 7.5)、2%明胶、 1mM氯化钙)中来分离在皮肤样品培养板上发现的噬斑。将噬菌体重 悬浮液涂布到具有含有痤疮丙酸杆菌菌株ATCC 6919的顶层琼脂的 A培养基板上。在37℃下孵育2天之后,将噬菌体用8mL SM缓冲 液在室温下洗脱、用0.22uM PES过滤器(Millipore)过滤并且储存在 4℃下。通过噬斑测定确定噬菌体滴度。
在以下修改的情况下使用Lambda微型试剂盒(Qiagen)进行噬菌 体DNA提取。通过在20,000g下离心1小时将噬菌体颗粒沉淀于缓 冲液L2中。将提取的DNA用缓冲液QF洗脱并且在离心之前在-20℃ 下用异丙醇沉淀过夜。
噬菌体基因组测序和注释
使用Roche GS FLX Titanium或Illumina MiSeq平台对噬菌体基 因组进行一式多份的测序。用MIRA[24]进行读数的从头汇编,并且 在Consed[25]中手动完成所得到的重叠群。对于被多于20,000个读 数覆盖的噬菌体,对454数据的10,000个读数或MiSeq数据的20,000 个读数的随机选择的子集进行汇编。使用Genemark.hmm[26]和 Glimmerv3.02[27]对完全汇编的噬菌体基因组进行注释。
基因组序列比对和系统发生树构建
存在于所有16种噬菌体基因组中的序列被定义为噬菌体基因组 的核心区。为了鉴别这些核心区,使用Nucmer[28]首先在PA6基因 组与其它15种噬菌体基因组中的每种之间产生比对。这产生描述与 任何给定噬菌体基因组对齐的PA6基因组内的区间的15组起始和结 束坐标。然后通过确定所有15个坐标组之间的重叠区间来计算所有 噬菌体的核心区。使核心区序列串联以用于后续多重序列比对。通过 在默认设置的情况下使用Nucmer的“显示-snp”选项来鉴别核心区上 的单核苷酸多态性(SNP)。使用MEGA5[29],基于SNP位点通过邻 接法和p-距离法来构建系统发生树。自举法是基于200次重复。
全长噬菌体基因组、左臂和右臂编码区、头蛋白序列以及酰胺酶 序列的多重序列比对各自用MAFFT[30]或Muscle[31]产生。基于应 用于序列之间的Jukes-Cantor距离的BioNJ方法在Seaview[32]中构 建系统发生树。对所有树进行自举分析,重复5,000次。
变异位点的确定
使用MAFFT[30]产生I组和II组噬菌体的多重序列比对。在这 些比对中的每个中,相对于随机选择的参考基因组记录所有错配和缺 口(差异)的位置。参考基因组中的连续缺口被计数为单个差异。将参 考基因组分成50个核苷酸窗口,并且将每个序列窗口的差异密度计 算为它所包括的差异的总数。将密度用Artemis[33]绘示。
为了确定每种菌株内的单核苷酸变异,将每种菌株的所有读出数 据(包括最初未包括于从头基因组汇编中的读数)使用Mira.映射至其 相对应的基因组,作为每种噬菌体基因组汇编中的位点。
细菌抗性测试
使用经过修改的交叉划线测定(cross-streak assay)来确定丙酸杆 菌菌株针对15种噬菌体的敏感性/抗性。培养菌株并且将其跨越A培 养基板平行划线(每个板上5至6个分离株,约相隔1cm,连同ATCC 6919作为对照)。将大约5μL的106pfu/mL噬菌体悬浮液涂布至每 个划线上,并且然后将板在37℃下厌氧地孵育2天。进行每一交叉 划线实验的至少五次重复以便确定所述菌株是否是基于溶解所判断 的敏感性的或抗性的。通过相对于痤疮丙酸杆菌菌株ATCC 6919测 定噬菌体的成斑效率来进一步量化菌株的抗性,如下计算所述抗性:
成斑效率的100倍或更大的增加被认为是抗性的证据。
噬菌体相互作用相关性
为了确定遗传学上相似的噬菌体是否具有相似的宿主范围和特 异性,计算了其系统发生关系和表型关系之间的相关性,后者基于来 自细菌抗性测试的结果。将代表给定噬菌体的宿主范围的细菌抗性表 中的每列通过对抗性实例赋值为1并且对敏感性实例赋值为0来转换 成二进制形式。将每列之间的欧几里德距离用于计算所有噬菌体之间 的表型距离矩阵。使用MEGA5[29]计算噬菌体基因组之间的系统发 生距离矩阵。使用R中的ade4软件包[34],对表型距离矩阵和系统 发生距离矩阵进行曼特尔检验以便确定两者之间的相关性。进行了 10,000种排列。
CRISPR检索
使用CRISPRfinder[35]在痤疮丙酸杆菌基因组中鉴别了CRISPR 间隔区序列。将所提取的间隔区序列使用BLASTn针对所有噬菌体 序列进行比对。鉴别了具有多达两个错配的原型间隔区。
结果
对从人皮肤分离的15种痤疮丙酸杆菌噬菌体的基因组进行了测 序。噬菌体基因组显示适度高的序列相似性并且在大小和组构上是可 比的。基于基因组的比较,大多数噬菌体彼此偏离,而它们中的一些 形成之前未描述的密切相关的组。当针对一组69种丙酸杆菌菌株进 行测试时,这些噬菌体溶解所有的痤疮丙酸杆菌菌株,除了来自IB-3 和II型的一些菌株外。所述噬菌体中的一些还能够溶解humerusii丙 酸杆菌菌株。据发现,对噬菌体的细菌敏感性/抗性与噬菌体系统发 生或匹配噬菌体基因组中的原型间隔区的II型痤疮丙酸杆菌菌株中 的CRISPR间隔区的存在无显著相关性。
结论
使用15种新的噬菌体基因组,确定痤疮丙酸杆菌噬菌体的多样 性比之前所描述的更广泛,其中添加了新颖的组。宿主范围和特异性 在噬菌体之间是不同的,但不与噬菌体基因组的系统发生相关。还发 现编码与噬菌体基因组匹配的CRISPR间隔区不足以赋予痤疮丙酸 杆菌对噬菌体的抗性。本研究提供对噬菌体在治疗痤疮和其它痤疮丙 酸杆菌相关的疾病中的潜在应用的新见解。
实施例8中所引用的参考文献
1.Mc Grath S,van Sinderen D(eds):Bacteriophage:Genetics and MolecularBiology.Norfolk,UK:Caister Academic Press;2007.
2.Rohwer F:Global phage diversity.Cell 2003,113:141.
3.Rohwer F,Thurber RV:Viruses manipulate the marineenvironment.Nature 2009,459:207-212.
4.Suttle CA,Chan AM,Cottrell MT:Infection of Phytoplankton by Virusesand Reduction of Primary Productivity.Nature 1990,347:467-469.
5.Rodriguez-Valera F,Martin-Cuadrado AB,Rodriguez-Brito B,Pasic L,Thingstad TF,Rohwer F,Mira A:Explaining microbial population genomics throughphage predation.Nature reviews Microbiology 2009,7:828-836.
6.Grice EA,Segre JA:The skin microbiome.Nature reviews Microbiology2011, 9:244-253.
7.http://precedings.nature.com/documents/5305/version/1
8.Bojar RA,Holland KT:Acne and Propionibacterium acnes.Clin Dermatol2004,22:375-379.
9.Leyden JJ:The evolving role of Propionibacterium acnes inacne.Semin Cutan Med Surg 2001,20:139-143.
10.Zierdt CH,Webster C,Rude WS:Study of the anaerobic corynebacteria.International Journal of Systematic Bacteriology 1968,18:33-47.
11.Lood R,Collin M:Characterization and genome sequencing of twoPropionibacterium acnes phages displaying pseudolysogeny.BMC genomics 2011,12:198.
12.Lood R,Morgelin M,Holmberg A,Rasmussen M,Collin M:InducibleSiphoviruses in superficial and deep tissue isolates of Propionibacteriumacnes.BMC microbiology 2008,8:139.
13.Jong EC,Ko HL,Pulverer G:Studies on bacteriophages ofPropionibacterium acnes.Med Microbiol Immunol 1975,161:263-271.
14.Webster GF,Cummins CS:Use of bacteriophage typing to distinguishPropionibacterium acne types I and II.Journal of clinical microbiology 1978,7:84-90.
15.Farrar MD,Howson KM,Bojar RA,West D,Towler JC,Parry J,Pelton K,Holland KT:Genome sequence and analysis of a Propionibacterium acnesbacteriophage.Journal of bacteriology 2007,189:4161-4167.
16.Horvath P,Barrangou R:CRISPR/Cas,the immune system of bacteria andarchaea.Science 2010,327:167-170.
17.Brzuszkiewicz E,Weiner J,Wollherr A,Thurmer A,Hupeden J,LomholtHB, Kilian M,Gottschalk G,Daniel R,Mollenkopf HJ,et al:Comparative genomicsand transcriptomics of Propionibacterium acnes.PloS one 2011,6:e21581.
18.Butler-Wu SM,Sengupta DJ,Kittichotirat W,Matsen FA,3rd,BumgamerRE: Genome sequence of a novel species,Propionibacterium humerusii.Journal ofbacteriology 2011,193:3678.
19.Mojica FJ,Diez-Villasenor C,Garcia-Martinez J,Almendros C:Shortmotif sequences determine the targets of the prokaryotic CRISPR defencesystem. Microbiology 2009,155:733-740.
20.Westra ER,van Erp PB,Kunne T,Wong SP,Staals RH,Seegers CL,BollenS, Jore MM,Semenova E,Severinov K,et al:CRISPR immunity relies on theconsecutive binding and degradation of negatively supercoiled invader DNA byCascade and Cas3.Molecular cell 2012,46:595-605.
21.Semenova E,Jore MM,Datsenko KA,Semenova A,Westra ER,Wanner B,vander Oost J,Brouns SJ,Severinov K:Interference by clustered regularlyinterspaced short palindromic repeat(CRlSPR)RNA is governed by a seedsequence.Proceedings of the National Academy of Sciences of the United Statesof America 2011.108:10098-10103.
22.Semenova E,Nagornykh M,Pyatnitskiy M,Artamonova,II,Severinov K:Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMSmicrobiology letters 2009,296:110-116.
23.Srinivasiah S,Bhavsar J,Thapar K,Liles M,Schoenfeld T,Wommack KE:Phages across the biosphere:contrasts of viruses in soil and aquaticenvironments.Research in microbiology 2008,159:349-357.
24.Chevreux B,Pfisterer T,Drescher B,Driesel AJ,Muller WE,Wetter T,Suhai S: Using the miraEST assembler for reliable and automated mRNAtranscript assembly and SNP detection in sequenced ESTs.Genome research 2004,14:1147-1159.
25.Gordon D,Abajian C,Green P:Consed:a graphical tool for sequencefinishing.Genome research 1998,8:195-202.
26.Lukashin AV,Borodovsky M:GeneMark.hmm:new solutions for genefinding.Nucleic acids research 1998,26:1107-1115.
27.Delcher AL,Harmon D,Kasif S,White O,Salzberg SL:Improved microbialgene identification with GLIMMER.Nucleic acids research 1999,27:4636- 4641.
28.Kurtz S,Phillippy A,Delcher AL,Smoot M,Shumway M,Antonescu C,Salzberg SL:Versatile and open software for comparing Iarge genomes. Genomebiology 2004,5:R12.
29.Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S:MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Molecular biology andevolution 2011,28:2731-2739.
30.Katoh K,Misawa K,Kuma K,Miyata T:MAFFT:a novel method for rapidmultiple sequence alignment based on fast Fourier transform.Nucleic acidsresearch 2002,30:3059-3066.
31.Edgar RC:MUSCLE:multiple sequence alignment with high accuracy andhigh throughput.Nucleic acids research 2004,32:1792-1797.
32.Gouy M,Guindon S,Gascuel O:SeaView version 4:A multiplatformgraphical user interface for sequence alignment and phylogenetic treebuilding.Molecular biology and evolution 2010,27:221-224.
33.Rutherford K,Parkhill J,Crook J,Horsnell T,Rice P,Rajandream MA,Barrell B: Artemis:sequence visualization and annotation.Bioinformatics 2000,16:944- 945.
34.Dray S,Dufour AB:The ade4 package:Implementing the duality diagramfor acologists.Joumal of Statistical Software 2007,22:1-20.
35.Grissa I,Vergnaud G,Pourcel C:CRISPRFinder:a web tool to idantifyclustered regularly interspaced short palindromic repeats.Nucleic acidsresearch 2007.35:W52-57.
(Nature Precedings Paper).(n.d.).检索自
http://precedings.nature.com/documents/5305/version/1
Bojar,R.a,&Holland,K.T.(2004).Acne and Propionibacteriumacnes.Clinics in dermatology,22(5),375-9.doi:10.1016/j.clindermatol.2004.03.005
Farrar,M.D.,Howson,K.M.,Bojar,R.a,West,D.,Towler,J.C.,Parry,J.,Pelton, K.,et al.(2007).Genome sequence and analysis of a Propionibacteriumacnes bacteriophage.Journal of bacteriology,189(11),4161-7. doi:10.1128/JB.00106-07
Grice,E.a,&Segre,J.a.(2011).The skin microbiome.Nature reviews.Microbiology,9(4),244-53.doi:10.1038/nrmicro2537
Leyden,J.J.(2001).The evolving role of Propionibacterium acnes inacne. Seminars in cutaneous medicine and surgery,20(3)′139-43. doi:10.1053/sder.2001.28207
Lood,R.,&Collin,M.(2011).Characterization and genome sequencing oftwo Propionibacterium acnes phages displaying pseudolysogeny.BMC genomics, 12(1),198.doi:10.1186/1471-2164-12-198
Marinelli,L.J.,Fitz-gibbon,S.,Hayes,C.,Bowman,C.,Inkeles,M.,Loncaric,A., &Russell,D.A.(2012).Propionibacterium acnes Bacteriophages DisplayLimited Genetic Diversity and Broad Killing Activity against Bacterial SkinIsolates.mBio,3(5),1-13.doi:10.1128/mBio.00279-12.Editor
Mc Grath,S.,&van Sinderen,D.(eds).(2007).Bacteriophage;Genetics andMolecular Biology.Norfolk,UK:Caister Academic Press.
Roche Diagnostics.(2009).GS FLX Titanium General Library PreparationMethod Manual.Mannheim:Roche Diagnostics GmbH.
Rodriguez-Valera,F.,Martin-Cuadrado,A.-B.,Rodriguez-Brito,B.,L.,Thingstad,T.F.,Rohwer,F.,&Mira,A.(2009).Explaining microbial populationgenomics through phage predation.Nature reviews.Microbiology, 7(11),828-36.doi:10.1038/nrmicro2235
Rohwer,F.(2003).Global phage diversity.Cell,113(2),141.
Zierdt,C.H.,Webster,C.,&Rude,W.S.(1968).Study of the anaerobiccorynebacteria.International Journal of Systematic Bacteriology,18,33-47.
RT4、RT5和RT8的所有菌株显示对表5中所示的所有噬菌体的 敏感性。因此,痤疮患者可通过使用表5中所列出的噬菌体菌株来用 噬菌体治疗:
表5—痤疮丙酸杆菌噬菌体的宿主范围和特异性
IB-3谱系中的菌株显示出针对所测试的噬菌体中的大多数的抗 性。因此,带有那些菌株的患者可能不能从噬菌体疗法中获得同样多 的益处。SEQ ID NO 55-81包括针对IB-3谱系中的菌株和针对几种其 它菌株,如IB-3-s1(IB-3和SK187)、IB-3-s2(IB-3和HL025PA1)、 IB-3-s3(IB-3和HL201PA1)、IB-3-s4(IB-3和HL201PA1)的四种独特 的基因组序列。序列相似性在从95%至100%的范围内。靶向这些序 列的引物可以用于估计并且预测噬菌体疗法的有效性。
图26示出32种噬菌体(包括18种测过序的噬菌体)的系统发生 树。存在与彼此高度相似的噬菌体菌株,如I组和II组中的噬菌体菌 株。这表明可在不同个体中发现相同噬菌体并且支持特定噬菌体可用 作不同个体的共同治疗剂。SEQ ID NO 33-50反映18种测过序的噬 菌体(包括表5中所示的15种噬菌体)的基因组序列。
用于具有微生物群系I型的患者的潜在治疗性噬菌体包括:
PHL113M01、PHL111M01、PHL082M00、PHL060L00、 PHL067M10、PHL071N05、PHL112N00、PHL037M02、PHL085N00、 PHL115M02、PHL085M01、PHL114L00、PHL073M02、PHL010M04、 以及PHL066M04。
用于具有微生物群系I型与IB-3菌株的患者的潜在治疗性噬菌体包括:
PHL082M00和PHL071N05。
用于具有微生物群系II型的患者的潜在治疗性噬菌体包括:
PHL113M01、PHL060L00、PHL112N00和PHL085M01。
用于具有微生物群系III型或优势RT8的患者的潜在治疗性噬菌体包括:
PHL113M01、PHL111M01、PHL082M00、PHL060L00、 PHL067M10、PHL071N05、PHL112N00、PHL037M02、PHL085N00、 PHL115M02、PHL085M01、PHL114L00、PHL073M02、PHL010M04、 以及PHL066M04。
用于具有微生物群系IV型的患者的潜在治疗性噬菌体包括:
PHL113M01、PHL111M01、PHL082M00、PHL060L00、 PHL067M10、PHL071N05、PHL112N00、PHL037M02、PHL085N00、 PHL115M02、PHL085M01、PHL114L00、PHL073M02、PHL010M04、 以及PHL066M04。
用于具有微生物群系V型的患者的潜在治疗性噬菌体包括:
PHL113M01、PHL111M01、PHL082M00、PHL060L00、 PHL067M10、PHL071N05、PHL112N00、PHL037M02、PHL085N00、 PHL115M02、PHL085M01、PHL114L00、PHL073M02、PHL010M04、 以及PHL066M04。
在humerusii丙酸杆菌与痤疮丙酸杆菌噬菌体之间的特异性相 互作用
一些痤疮丙酸杆菌噬菌体菌株可溶解密切相关的丙酸杆菌物种 humerusii丙酸杆菌,其已被假设为与假体中的感染相关。可溶解 humerusii丙酸杆菌菌株的痤疮丙酸杆菌噬菌体菌株可潜在地用作 humerusii丙酸杆菌相关疾病的治疗剂。
用于humerusii丙酸杆菌相关疾病的潜在治疗性噬菌体包括:
PHL113M01、PHL111M01、PHL082M00、PHL067M10、 PHL071N05、PHL085N00、PHL085M01、PHL114L00、PHL073M02、 以及PHL010M04。
显示与其PA6同系物85%或更小的同一性的噬菌体基因组中的 ORF
实施例9—药物研发
基于前述,现在已知一些痤疮丙酸杆菌菌株与痤疮相关。因此, 在诊断时,对于皮肤科医生将有用的是知道哪种菌株是在患者的皮肤 上占主导的。为了做到这一点,首先需要从患者的皮肤样品提取细菌 DNA。用于从皮肤分离细菌DNA以用于以上详述的下游分析的方法 /试剂盒可以在实践中实施。在提取细菌DNA之后,用于鉴别以上详 述的患者的微生物群系类型的快速又精确的检测/诊断方法/试剂盒可 被实施以用于诊断。一旦诊断了患者的微生物群系类型,几种方法可 用于治疗患者。
例如,如果患者具有微生物群系IV型或V型,或由痤疮丙酸杆 菌RT10菌株占主导,抗生素治疗将成功的可能性较小,因为这些菌 株具有抗生素抗性。这些患者应使用其它疗法(如类视黄醇)或方法进 行治疗。在患者具有毒性核糖型(包括RT4、RT5和RT8)的情况下,可以使用特异性地靶向RT4、RT5和RT8的药物。例如,可以使用以 上详述的靶向为与痤疮相关的痤疮丙酸杆菌菌株所特有的遗传元件 和生物途径的小分子、反义分子、siRNA、生物制剂、抗体或其组合。
实施例10—另外疗法
在患者的优势痤疮丙酸杆菌菌株不拥有一组CRISPR/Cas的情况 下,可以使用基于前述的噬菌体疗法的其它治疗。例如,可以采用基 于噬菌体的菌株特异性疗法来治疗痤疮。替代治疗策略是通过促进健 康相关的菌株的生长来平衡痤疮丙酸杆菌菌株的相对丰度。与健康相 关的菌株可用作益生菌。这些可以是局部乳膏、溶液或其它化妆产品。
出于预防目的,可以研发针对痤疮丙酸杆菌的毒性菌株的疫苗。
纵向研究确定微生物群系类型是否随时间推移改变并且在治疗 之后某些菌株是否存留在受试者上。
接种毒性菌株和健康菌株的接种实验确定痤疮丙酸杆菌菌株种 群是否改变。
可以研究痤疮丙酸杆菌菌株与噬菌体之间的特异性相互作用。
还可以测量人细胞中针对痤疮丙酸杆菌的不同菌株的免疫应答。
如本文引用的所有其它出版物和序列表一样,以下出版物出于所 有目的以引用的方式整体并入本文:
E.Grice等人,324 Science 1190-1192(2009)。
Claims (10)
1.一种用于确定个体是否具有痤疮的方法,所述方法包括:
从个体获得皮肤样品;
从所述样品分离细菌DNA;
扩增所述样品中的16S核糖体DNA;
对所述扩增的DNA产物进行测序;以及
基于痤疮丙酸杆菌菌株的十种主要核糖型(RT) RT1至RT10 (SEQ ID NO 1至10)中的一种或多种对所述个体的DNA进行分型,
其中所述分型通过确定所述个体是否具有RT1至RT10中的一种或多种而发生并且其中如果所述个体具有RT4、RT5、RT7、RT8、RT9或RT10,那么所述个体被诊断为具有痤疮。
2.根据权利要求1所述的方法,其中如果所述个体具有RT4 (SEQ ID NO:4)、RT5 (SEQID NO:5)或RT8 (SEQ ID NO:8),那么所述个体被诊断为具有痤疮。
3.一种用于诊断不同类型的痤疮的方法,所述方法包括:
从受试者获得皮肤样品;
从所述样品分离细菌DNA;
扩增所述样品中的16S核糖体DNA;
对所述扩增的DNA产物进行测序;以及
基于痤疮丙酸杆菌菌株的五种主要微生物群系类型中的一种或多种对所述受试者的DNA进行分型,
其中如果所述受试者被分型至微生物群系IV或V,那么所述受试者被诊断为具有痤疮。
4.一种用于快速诊断痤疮的方法,所述方法包括:
从受试者获得皮肤样品;
从所述样品分离细菌DNA;
使用一个或多个引物组来扩增所述DNA;以及
针对与SEQ ID NO 29至32和82至434中的至少一个具有至少95%同源性的序列的存在分析所述扩增的DNA,
其中如果存在与SEQ ID NO 29至32和82至434中的至少一个具有至少95%同源性的序列的存在,那么所述受试者被诊断为具有痤疮。
5.根据权利要求4所述的方法,其中针对与SEQ ID NO 29至32和82至434中的至少一个具有至少99%同源性的序列的存在分析所述扩增的DNA,并且其中如果存在与SEQ ID NO 29至32和82至434中的至少一个具有至少99%同源性的序列的存在,那么所述受试者被诊断为具有痤疮。
6.根据权利要求4所述的方法,其中针对SEQ ID NO 29至32和82至434中的至少一个的存在分析所述扩增的DNA,并且其中如果存在SEQ ID NO 29至32和82至434中的至少一个的存在,那么所述受试者被诊断为具有痤疮。
7.一种用于快速诊断痤疮的方法,所述方法包括:
从受试者获得皮肤样品;
从所述样品分离细菌DNA;
使用一个或多个引物组来扩增所述DNA;
使用一个或多个探针来检测所述扩增的DNA;以及
针对以下各项的存在分析所述探针信号:基因座1 (与SEQ ID NO 29和82至97中的至少一个具有至少95%同源性的至少一个序列)、基因座2 (与SEQ ID NO 30和98至186中的至少一个具有至少95%同源性的至少一个序列)、基因座3 (与SEQ ID NO 31和187至423中的至少一个具有至少95%同源性的至少一个序列)、和/或基因座4 (与SEQ ID NO 32和424至434中的至少一个具有至少95%同源性的至少一个序列),
其中如果存在基因座1至4中的一个或多个,那么所述受试者被诊断为具有痤疮。
8.根据权利要求7所述的方法,其中基于至少99%同源性针对基因座1、基因座2、基因座3和/或基因座4的存在分析所述信号。
9.根据权利要求7所述的方法,其中基于100%同源性针对基因座1、基因座2、基因座3和/或基因座4的存在分析所述信号。
10.根据权利要求4至9中任一项所述的方法,其中所述引物组的引物选自由以下各项组成的组:SEQ ID NO 11、12、17和18 (对于基因座1);SEQ ID NO 13、14、20和21 (对于基因座2);SEQ ID NO 15、16、23和24 (对于基因座3);和SEQ ID NO 26和27 (对于基因座4)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261612290P | 2012-03-17 | 2012-03-17 | |
US61/612290 | 2012-03-17 | ||
CN201380025853.4A CN104364394B (zh) | 2012-03-17 | 2013-03-15 | 痤疮的快速诊断和个体化治疗 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380025853.4A Division CN104364394B (zh) | 2012-03-17 | 2013-03-15 | 痤疮的快速诊断和个体化治疗 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110055320A true CN110055320A (zh) | 2019-07-26 |
Family
ID=49223275
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380025853.4A Active CN104364394B (zh) | 2012-03-17 | 2013-03-15 | 痤疮的快速诊断和个体化治疗 |
CN201910052894.1A Pending CN110055320A (zh) | 2012-03-17 | 2013-03-15 | 痤疮的快速诊断和个体化治疗 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380025853.4A Active CN104364394B (zh) | 2012-03-17 | 2013-03-15 | 痤疮的快速诊断和个体化治疗 |
Country Status (10)
Country | Link |
---|---|
US (5) | US20150086581A1 (zh) |
EP (3) | EP2825676B1 (zh) |
JP (3) | JP2015512255A (zh) |
CN (2) | CN104364394B (zh) |
AU (3) | AU2013235340B2 (zh) |
BR (1) | BR112014023005A2 (zh) |
CA (1) | CA2867621A1 (zh) |
HK (1) | HK1207402A1 (zh) |
SG (1) | SG11201405783VA (zh) |
WO (1) | WO2013142378A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109562048A (zh) * | 2016-02-05 | 2019-04-02 | 加州大学评议会 | 用于促进皮肤健康的组合物和方法 |
CN113066533A (zh) * | 2021-04-02 | 2021-07-02 | 欧蒙医学诊断(中国)有限公司 | 一种mNGS病原体数据分析方法 |
CN118737269A (zh) * | 2024-08-30 | 2024-10-01 | 墨卓生物科技(浙江)有限公司 | 在单细胞微生物基因组测序结果中区分菌株的方法 |
Families Citing this family (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457077B2 (en) | 2009-11-18 | 2016-10-04 | Katherine Rose Kovarik | Method and system for targeting the microbiome to promote health and treat allergic and inflammatory diseases |
US9585920B2 (en) | 2011-02-04 | 2017-03-07 | Katherine Rose Kovarik | Method and system for treating cancer cachexia |
US10842834B2 (en) | 2016-01-06 | 2020-11-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
US10245288B2 (en) | 2011-02-04 | 2019-04-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing NASH in an individual diagnosed with non-alcoholic fatty liver disease |
US10687975B2 (en) | 2011-02-04 | 2020-06-23 | Joseph E. Kovarik | Method and system to facilitate the growth of desired bacteria in a human's mouth |
US11357722B2 (en) | 2011-02-04 | 2022-06-14 | Seed Health, Inc. | Method and system for preventing sore throat in humans |
US12257272B2 (en) | 2015-12-24 | 2025-03-25 | Seed Health, Inc. | Method and system for reducing the likelihood of developing depression in an individual |
US10086018B2 (en) | 2011-02-04 | 2018-10-02 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
US11998479B2 (en) | 2011-02-04 | 2024-06-04 | Seed Health, Inc. | Method and system for addressing adverse effects on the oral microbiome and restoring gingival health caused by sodium lauryl sulphate exposure |
US10940169B2 (en) | 2015-11-30 | 2021-03-09 | Joseph E. Kovarik | Method for reducing the likelihood of developing cancer in an individual human being |
US11419903B2 (en) | 2015-11-30 | 2022-08-23 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
US10583033B2 (en) | 2011-02-04 | 2020-03-10 | Katherine Rose Kovarik | Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being |
US10548761B2 (en) | 2011-02-04 | 2020-02-04 | Joseph E. Kovarik | Method and system for reducing the likelihood of colorectal cancer in a human being |
US11951139B2 (en) | 2015-11-30 | 2024-04-09 | Seed Health, Inc. | Method and system for reducing the likelihood of osteoporosis |
US10111913B2 (en) | 2011-02-04 | 2018-10-30 | Joseph E. Kovarik | Method of reducing the likelihood of skin cancer in an individual human being |
US11273187B2 (en) | 2015-11-30 | 2022-03-15 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing depression in an individual |
US9987224B2 (en) | 2011-02-04 | 2018-06-05 | Joseph E. Kovarik | Method and system for preventing migraine headaches, cluster headaches and dizziness |
US11844720B2 (en) | 2011-02-04 | 2023-12-19 | Seed Health, Inc. | Method and system to reduce the likelihood of dental caries and halitosis |
US10512661B2 (en) | 2011-02-04 | 2019-12-24 | Joseph E. Kovarik | Method and system for reducing the likelihood of developing liver cancer in an individual diagnosed with non-alcoholic fatty liver disease |
US9730967B2 (en) | 2011-02-04 | 2017-08-15 | Katherine Rose Kovarik | Method and system for treating cancer cachexia |
US10835560B2 (en) | 2013-12-20 | 2020-11-17 | Joseph E. Kovarik | Reducing the likelihood of skin cancer in an individual human being |
US10314865B2 (en) | 2011-02-04 | 2019-06-11 | Katherine Rose Kovarik | Method and system for treating cancer and other age-related diseases by extending the healthspan of a human |
US10010568B2 (en) | 2011-02-04 | 2018-07-03 | Katherine Rose Kovarik | Method and system for reducing the likelihood of a spirochetes infection in a human being |
US11191665B2 (en) | 2011-02-04 | 2021-12-07 | Joseph E. Kovarik | Method and system for reducing the likelihood of a porphyromonas gingivalis infection in a human being |
US10085938B2 (en) | 2011-02-04 | 2018-10-02 | Joseph E. Kovarik | Method and system for preventing sore throat in humans |
US11523934B2 (en) | 2011-02-04 | 2022-12-13 | Seed Health, Inc. | Method and system to facilitate the growth of desired bacteria in a human's mouth |
US11951140B2 (en) | 2011-02-04 | 2024-04-09 | Seed Health, Inc. | Modulation of an individual's gut microbiome to address osteoporosis and bone disease |
EP2734621B1 (en) | 2011-07-22 | 2019-09-04 | President and Fellows of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
CA2867621A1 (en) | 2012-03-17 | 2013-09-26 | The Regents Of The University Of California | Fast diagnosis and personalized treatments for acne |
US11072832B2 (en) | 2013-06-18 | 2021-07-27 | Prodermiq, Inc. | Customized skin care products and personal care products based on the analysis of skin flora |
WO2015013214A2 (en) | 2013-07-21 | 2015-01-29 | Whole Biome, Inc. | Methods and systems for microbiome characterization, monitoring and treatment |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9228207B2 (en) | 2013-09-06 | 2016-01-05 | President And Fellows Of Harvard College | Switchable gRNAs comprising aptamers |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
JP2016536021A (ja) | 2013-11-07 | 2016-11-24 | エディタス・メディシン,インコーポレイテッド | CRISPR関連方法および支配gRNAのある組成物 |
US9068179B1 (en) | 2013-12-12 | 2015-06-30 | President And Fellows Of Harvard College | Methods for correcting presenilin point mutations |
US11833177B2 (en) | 2013-12-20 | 2023-12-05 | Seed Health, Inc. | Probiotic to enhance an individual's skin microbiome |
US11026982B2 (en) | 2015-11-30 | 2021-06-08 | Joseph E. Kovarik | Method for reducing the likelihood of developing bladder or colorectal cancer in an individual human being |
US11998574B2 (en) | 2013-12-20 | 2024-06-04 | Seed Health, Inc. | Method and system for modulating an individual's skin microbiome |
US11213552B2 (en) | 2015-11-30 | 2022-01-04 | Joseph E. Kovarik | Method for treating an individual suffering from a chronic infectious disease and cancer |
US11672835B2 (en) | 2013-12-20 | 2023-06-13 | Seed Health, Inc. | Method for treating individuals having cancer and who are receiving cancer immunotherapy |
US11969445B2 (en) | 2013-12-20 | 2024-04-30 | Seed Health, Inc. | Probiotic composition and method for controlling excess weight, obesity, NAFLD and NASH |
US11980643B2 (en) | 2013-12-20 | 2024-05-14 | Seed Health, Inc. | Method and system to modify an individual's gut-brain axis to provide neurocognitive protection |
US11642382B2 (en) | 2013-12-20 | 2023-05-09 | Seed Health, Inc. | Method for treating an individual suffering from bladder cancer |
US11839632B2 (en) | 2013-12-20 | 2023-12-12 | Seed Health, Inc. | Topical application of CRISPR-modified bacteria to treat acne vulgaris |
US12246043B2 (en) | 2013-12-20 | 2025-03-11 | Seed Health, Inc. | Topical application to treat acne vulgaris |
US11826388B2 (en) | 2013-12-20 | 2023-11-28 | Seed Health, Inc. | Topical application of Lactobacillus crispatus to ameliorate barrier damage and inflammation |
US12005085B2 (en) | 2013-12-20 | 2024-06-11 | Seed Health, Inc. | Probiotic method and composition for maintaining a healthy vaginal microbiome |
US11529379B2 (en) | 2013-12-20 | 2022-12-20 | Seed Health, Inc. | Method and system for reducing the likelihood of developing colorectal cancer in an individual human being |
EP4299122A3 (en) * | 2014-05-07 | 2024-03-27 | The Regents of The University of California | Compositions and methods for treating skin and mucous membrane diseases |
WO2015195845A1 (en) | 2014-06-17 | 2015-12-23 | Xycrobe Therapeutics, Inc. | Genetically modified bacteria and methods for genetic modification of bacteria |
EP3177718B1 (en) | 2014-07-30 | 2022-03-16 | President and Fellows of Harvard College | Cas9 proteins including ligand-dependent inteins |
EP3186376B1 (en) | 2014-08-27 | 2019-03-20 | Caribou Biosciences, Inc. | Methods for increasing cas9-mediated engineering efficiency |
US10410749B2 (en) | 2014-10-21 | 2019-09-10 | uBiome, Inc. | Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions |
US10169541B2 (en) | 2014-10-21 | 2019-01-01 | uBiome, Inc. | Method and systems for characterizing skin related conditions |
CA2962466C (en) | 2014-10-21 | 2023-01-10 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics |
EP3283084A4 (en) * | 2015-04-13 | 2018-12-19 | Ubiome Inc. | Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions |
EP3285872A4 (en) | 2015-04-20 | 2019-02-20 | S-Biomedic NV | METHOD AND COMPOSITIONS FOR CHANGING THE COMPOSITION OF SKIN MICROBIOMA WITH COMPLEX MIXTURES OF BACTERIAL BARS |
JP6046849B1 (ja) * | 2015-07-21 | 2016-12-21 | TAK−Circulator株式会社 | 身体状態の評価方法、情報の提示方法、および身体状態を改善又は予防する物質のスクリーニング方法 |
ES2855202T3 (es) * | 2015-08-06 | 2021-09-23 | Ares Genetics Gmbh | Predicción de la resistencia genética contra fármacos antimicrobianos en microorganismos usando cambios estructurales en el genoma |
WO2017044885A1 (en) * | 2015-09-09 | 2017-03-16 | uBiome, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for conditions associated with cerebro-craniofacial health |
US11773455B2 (en) | 2015-09-09 | 2023-10-03 | Psomagen, Inc. | Method and system for microbiome-derived diagnostics and therapeutics infectious disease and other health conditions associated with antibiotic usage |
AU2016321319A1 (en) * | 2015-09-09 | 2018-04-26 | Psomagen, Inc. | Method and system for microbiome-derived diagnostics and therapeutics for eczema |
EP4345725A3 (en) | 2015-09-17 | 2024-06-19 | Prodermiq, Inc. | Predicting skin age based on the analysis of skin flora and lifestyle data |
WO2017070632A2 (en) | 2015-10-23 | 2017-04-27 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
JP6872222B2 (ja) * | 2015-11-04 | 2021-05-19 | 学校法人慶應義塾 | 対象物の使用者を判定する方法 |
GB2544481B (en) * | 2015-11-16 | 2019-12-11 | Century International Enterprises Ltd | A wearable article and a method for producing a wearable article |
US10933128B2 (en) | 2015-11-30 | 2021-03-02 | Joseph E. Kovarik | Method and system for protecting honey bees from pesticides |
US11529412B2 (en) | 2015-11-30 | 2022-12-20 | Seed Health, Inc. | Method and system for protecting honey bees from pesticides |
US10568916B2 (en) | 2015-11-30 | 2020-02-25 | Joseph E. Kovarik | Method and system for protecting honey bees, bats and butterflies from neonicotinoid pesticides |
US10675347B2 (en) | 2015-11-30 | 2020-06-09 | Joseph E. Kovarik | Method and system for protecting honey bees from fipronil pesticides |
US10086024B2 (en) | 2015-11-30 | 2018-10-02 | Joseph E. Kovarik | Method and system for protecting honey bees, bats and butterflies from neonicotinoid pesticides |
US12239706B2 (en) | 2015-11-30 | 2025-03-04 | Seed Health, Inc. | Method and system for protecting monarch butterflies from pesticides |
WO2017147507A1 (en) | 2016-02-24 | 2017-08-31 | Xycrobe Therapeutics, Inc. | Skin probiotic formulation |
CN109715179A (zh) | 2016-04-21 | 2019-05-03 | 内科德生物群系公司 | 用于治疗皮肤病症的组合物和方法 |
US20190336542A1 (en) * | 2016-04-21 | 2019-11-07 | Naked Biome, Inc. | Synthetic bacteria and methods of use |
EP3448399A4 (en) * | 2016-04-25 | 2020-05-13 | Ubiome, Inc. | SKIN CONDITION CHARACTERIZATION METHOD AND SYSTEM |
EP3243907A1 (en) * | 2016-05-13 | 2017-11-15 | Curetis GmbH | Stable pan-genomes and their use |
WO2017200873A1 (en) | 2016-05-15 | 2017-11-23 | The Regents Of The University Of California | Compositions and methods for treating acne |
CN106167820A (zh) * | 2016-05-19 | 2016-11-30 | 胤安国际(辽宁)基因科技股份有限公司 | 鉴定或辅助鉴定痤疮丙酸杆菌的专用引物及其应用 |
EP3372693B1 (en) * | 2016-07-08 | 2020-02-12 | Kao Corporation | Method for preparing nucleic acid sample |
CN113481294B (zh) * | 2016-07-08 | 2024-03-12 | 花王株式会社 | 核酸样品的制备方法 |
GB2568182A (en) | 2016-08-03 | 2019-05-08 | Harvard College | Adenosine nucleobase editors and uses thereof |
WO2018031683A1 (en) | 2016-08-09 | 2018-02-15 | President And Fellows Of Harvard College | Programmable cas9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
SG11201903089RA (en) | 2016-10-14 | 2019-05-30 | Harvard College | Aav delivery of nucleobase editors |
US11541081B2 (en) | 2016-10-19 | 2023-01-03 | S-Biomedic Nv | Methods and compositions for changing the composition of the skin microbiome using complex mixtures of bacterial strains |
JP6815006B2 (ja) | 2016-11-01 | 2021-01-20 | 株式会社桃谷順天館 | アクネ菌株選択的抗菌剤 |
WO2018089337A1 (en) * | 2016-11-08 | 2018-05-17 | The Regents Of The University Of California | Compositions and methods for treating skin diseases and maintaining healthy skin |
US11915795B2 (en) * | 2016-12-23 | 2024-02-27 | The Regents Of The University Of California | Method and device for digital high resolution melt |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
CN110914310A (zh) | 2017-03-10 | 2020-03-24 | 哈佛大学的校长及成员们 | 胞嘧啶至鸟嘌呤碱基编辑器 |
CN110753966A (zh) | 2017-03-10 | 2020-02-04 | 普罗皮肤检测股份有限公司 | 基于皮肤菌群分析的定制化护肤产品和个人护理产品 |
CN110914426A (zh) | 2017-03-23 | 2020-03-24 | 哈佛大学的校长及成员们 | 包含核酸可编程dna结合蛋白的核碱基编辑器 |
KR20190135054A (ko) * | 2017-04-21 | 2019-12-05 | 파이 테라퓨틱스, 인크. | 프로피오니박테리움 아크네스 박테리오파지를 포함하는 여드름 치료용 조성물 |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
EP3658573A1 (en) | 2017-07-28 | 2020-06-03 | President and Fellows of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace) |
EP3676376B1 (en) | 2017-08-30 | 2025-01-15 | President and Fellows of Harvard College | High efficiency base editors comprising gam |
WO2019079347A1 (en) | 2017-10-16 | 2019-04-25 | The Broad Institute, Inc. | USES OF BASIC EDITORS ADENOSINE |
WO2019079612A1 (en) * | 2017-10-20 | 2019-04-25 | Naked Biome, Inc. | SYSTEMS AND METHODS OF BACTERIAL DETECTION AND TREATMENT |
EP3720459A4 (en) * | 2017-12-05 | 2021-11-17 | Biomx Ltd. | TREATMENT WITH BACTERIOPHAGES FOR ACNE AND BIOFILMS |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12150967B2 (en) | 2018-08-18 | 2024-11-26 | Seed Health, Inc. | Methods and compositions for honey bee health |
WO2020091044A1 (ja) * | 2018-11-01 | 2020-05-07 | 花王株式会社 | 被験体の皮膚細胞に由来する核酸の調製方法 |
KR20210143230A (ko) | 2019-03-19 | 2021-11-26 | 더 브로드 인스티튜트, 인코퍼레이티드 | 뉴클레오티드 서열을 편집하기 위한 방법 및 조성물 |
KR102746770B1 (ko) * | 2019-07-10 | 2024-12-30 | 루오웨이 지앙 | 피부 분석을 위한 이미지들을 프로세싱하고 피부 분석을 시각화하기 위한 시스템들 및 방법들 |
ES3004013T3 (en) | 2019-07-12 | 2025-03-11 | Biomerieux Sa | Method for identification and epidemiological surveillance of a bacterial focus |
EP4003381A4 (en) * | 2019-07-22 | 2024-02-28 | The Regents of the University of California | COMPOSITIONS AND METHODS FOR TREATING SKIN INFECTIONS AND OTHER DISEASES |
US20220380744A1 (en) * | 2019-10-31 | 2022-12-01 | University Of Maryland, College Park | Method of treating infections by bacteriolytic enzymes and manufacture thereof |
WO2021226558A1 (en) | 2020-05-08 | 2021-11-11 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
JP2023533202A (ja) | 2020-06-23 | 2023-08-02 | クラウン ラボラトリーズ,インコーポレイテッド | プロバイオティクス皮膚製剤 |
JP2024512491A (ja) * | 2021-03-19 | 2024-03-19 | パラレル・ヘルス・インコーポレイテッド | マイクロバイオーム同定およびバクテリオファージ製剤 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060121015A1 (en) * | 2001-07-26 | 2006-06-08 | Alimentary Health Limited | Probiotic bifidobacterium strains |
WO2009105592A2 (en) * | 2008-02-19 | 2009-08-27 | Hogan James J | Compositions and methods for detection of propionibacterium acnes nucleic acid |
CN109689861A (zh) * | 2016-05-15 | 2019-04-26 | 加州大学评议会 | 用于治疗痤疮的组合物和方法 |
CN110352065A (zh) * | 2016-10-19 | 2019-10-18 | S-生物医药有限公司 | 使用细菌菌株的复合混合物改变皮肤微生物组的组成的方法和组合物 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU670777B2 (en) | 1992-04-16 | 1996-08-01 | Ortho Pharmaceutical Corporation | Aqueous gel vehicles for retinoids |
US5836999A (en) | 1995-09-28 | 1998-11-17 | Esc Medical Systems Ltd. | Method and apparatus for treating psoriasis using pulsed electromagnetic radiation |
AU734420B2 (en) | 1996-04-15 | 2001-06-14 | Nymox Corporation | Compositions containing bacteriophages and methods of using bacteriophages to treat infections |
JPH11171783A (ja) | 1997-08-15 | 1999-06-29 | Vetoquinol Sa | 所定の動物に関して細胞性免疫と体重増加を生じる濃度でのバクテリアの経口投与 |
ATE225859T1 (de) * | 1998-05-22 | 2002-10-15 | Creatogen Ag | Nachweis von antibiotikumresistenzen in mikroorganismen |
US6726913B1 (en) | 1999-10-15 | 2004-04-27 | The Van Kampen Group, Inc. | Treatment of dermal tumors, warts, and viral infections of the respiratory tract in humans using heat-killed P. acnes |
CA2407352A1 (en) | 2000-04-21 | 2001-11-01 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of acne vulgaris |
WO2003033515A1 (en) * | 2001-10-15 | 2003-04-24 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of acne vulgaris |
US20040157837A1 (en) | 2002-11-07 | 2004-08-12 | Serbedzija George N. | Combinations for the treatment of fungal infections |
NZ539076A (en) * | 2005-03-29 | 2008-05-30 | Blis Technologies Ltd | Skin treatment compositions |
WO2007007055A1 (en) * | 2005-07-12 | 2007-01-18 | The University Of Leeds | Bacteriophage and their uses |
US20070269813A1 (en) | 2005-11-03 | 2007-11-22 | Dewhirst Floyd E | Methods and arrays for identifying human microflora |
JP5201818B2 (ja) * | 2006-11-10 | 2013-06-05 | キヤノン株式会社 | プローブセット、プローブ固定担体及び遺伝子検査方法 |
WO2009018447A2 (en) | 2007-07-31 | 2009-02-05 | New York University | Diagnostic and treatment methods for characterizing bacterial microbiota in skin conditions |
EP2082736A1 (fr) * | 2008-01-23 | 2009-07-29 | Jean Hilaire Saurat | Composition pharmaceutique à usage topique |
US9340769B2 (en) | 2008-12-05 | 2016-05-17 | The Regents Of The University Of California | Methods and compositions for treating P. acnes |
US9457077B2 (en) * | 2009-11-18 | 2016-10-04 | Katherine Rose Kovarik | Method and system for targeting the microbiome to promote health and treat allergic and inflammatory diseases |
SG194420A1 (en) * | 2010-05-27 | 2013-12-30 | Kenichiro Hasumi | Antigen peptide and use thereof |
CA2867621A1 (en) * | 2012-03-17 | 2013-09-26 | The Regents Of The University Of California | Fast diagnosis and personalized treatments for acne |
EP2664919A1 (fr) * | 2012-05-15 | 2013-11-20 | Jean Hilaire Saurat | Une méthode pour identifier les ligands du récepteur AhR possédant une activité sebosuppressive thérapeutique |
US20150152486A1 (en) * | 2012-07-13 | 2015-06-04 | L'oreal S.A. | Method of in vitro diagnosing a pellicular state in a subject and related applications |
JP2015525800A (ja) | 2012-08-07 | 2015-09-07 | トップジェニックス, インコーポレーテッドTopgenix, Inc. | 関心のある化合物(目的化合物)を発現する形質転換細菌を含む局所用組成物 |
US8906668B2 (en) * | 2012-11-23 | 2014-12-09 | Seres Health, Inc. | Synergistic bacterial compositions and methods of production and use thereof |
EP2953474A4 (en) * | 2013-02-04 | 2016-12-28 | Seres Therapeutics Inc | COMPOSITIONS AND METHODS |
CN105979952B (zh) * | 2013-11-25 | 2022-04-08 | 赛里斯治疗公司 | 协同细菌组合物以及其制造方法和用途 |
US9737592B1 (en) * | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
EP4299122A3 (en) | 2014-05-07 | 2024-03-27 | The Regents of The University of California | Compositions and methods for treating skin and mucous membrane diseases |
WO2015195845A1 (en) * | 2014-06-17 | 2015-12-23 | Xycrobe Therapeutics, Inc. | Genetically modified bacteria and methods for genetic modification of bacteria |
EP3328417A4 (en) * | 2015-07-31 | 2019-02-06 | The Regents of The University of California | MYCOBACTERIUM LYSTERASE: A NEW TREATMENT FOR AKNE |
CN109562048A (zh) * | 2016-02-05 | 2019-04-02 | 加州大学评议会 | 用于促进皮肤健康的组合物和方法 |
CN109715179A (zh) * | 2016-04-21 | 2019-05-03 | 内科德生物群系公司 | 用于治疗皮肤病症的组合物和方法 |
EP3720459A4 (en) * | 2017-12-05 | 2021-11-17 | Biomx Ltd. | TREATMENT WITH BACTERIOPHAGES FOR ACNE AND BIOFILMS |
JP2023533202A (ja) * | 2020-06-23 | 2023-08-02 | クラウン ラボラトリーズ,インコーポレイテッド | プロバイオティクス皮膚製剤 |
-
2013
- 2013-03-15 CA CA2867621A patent/CA2867621A1/en not_active Abandoned
- 2013-03-15 EP EP13764219.5A patent/EP2825676B1/en active Active
- 2013-03-15 CN CN201380025853.4A patent/CN104364394B/zh active Active
- 2013-03-15 BR BR112014023005A patent/BR112014023005A2/pt not_active Application Discontinuation
- 2013-03-15 EP EP19218444.8A patent/EP3692999A1/en active Pending
- 2013-03-15 WO PCT/US2013/032551 patent/WO2013142378A1/en active Application Filing
- 2013-03-15 AU AU2013235340A patent/AU2013235340B2/en active Active
- 2013-03-15 EP EP17002012.7A patent/EP3360560A1/en not_active Withdrawn
- 2013-03-15 US US14/385,576 patent/US20150086581A1/en not_active Abandoned
- 2013-03-15 SG SG11201405783VA patent/SG11201405783VA/en unknown
- 2013-03-15 CN CN201910052894.1A patent/CN110055320A/zh active Pending
- 2013-03-15 JP JP2015501822A patent/JP2015512255A/ja not_active Withdrawn
-
2015
- 2015-08-18 HK HK15107973.9A patent/HK1207402A1/zh not_active IP Right Cessation
-
2016
- 2016-09-06 US US15/257,423 patent/US10364473B2/en active Active
-
2019
- 2019-01-10 JP JP2019002573A patent/JP2019050833A/ja active Pending
- 2019-04-22 US US16/390,575 patent/US20190316183A1/en not_active Abandoned
- 2019-08-22 AU AU2019219817A patent/AU2019219817A1/en not_active Abandoned
-
2020
- 2020-09-02 AU AU2020227049A patent/AU2020227049A1/en not_active Abandoned
- 2020-09-25 US US17/033,034 patent/US11692229B2/en active Active
- 2020-11-12 JP JP2020188630A patent/JP2021013395A/ja active Pending
-
2023
- 2023-06-30 US US18/217,206 patent/US20240117446A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060121015A1 (en) * | 2001-07-26 | 2006-06-08 | Alimentary Health Limited | Probiotic bifidobacterium strains |
WO2009105592A2 (en) * | 2008-02-19 | 2009-08-27 | Hogan James J | Compositions and methods for detection of propionibacterium acnes nucleic acid |
CN109689861A (zh) * | 2016-05-15 | 2019-04-26 | 加州大学评议会 | 用于治疗痤疮的组合物和方法 |
CN110352065A (zh) * | 2016-10-19 | 2019-10-18 | S-生物医药有限公司 | 使用细菌菌株的复合混合物改变皮肤微生物组的组成的方法和组合物 |
Non-Patent Citations (8)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109562048A (zh) * | 2016-02-05 | 2019-04-02 | 加州大学评议会 | 用于促进皮肤健康的组合物和方法 |
CN113066533A (zh) * | 2021-04-02 | 2021-07-02 | 欧蒙医学诊断(中国)有限公司 | 一种mNGS病原体数据分析方法 |
CN118737269A (zh) * | 2024-08-30 | 2024-10-01 | 墨卓生物科技(浙江)有限公司 | 在单细胞微生物基因组测序结果中区分菌株的方法 |
CN118737269B (zh) * | 2024-08-30 | 2024-11-19 | 墨卓生物科技(浙江)有限公司 | 在单细胞微生物基因组测序结果中区分菌株的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240117446A1 (en) | 2024-04-11 |
AU2013235340B2 (en) | 2019-05-23 |
SG11201405783VA (en) | 2014-10-30 |
US20210123092A1 (en) | 2021-04-29 |
EP2825676A4 (en) | 2015-09-30 |
AU2019219817A1 (en) | 2019-09-12 |
WO2013142378A1 (en) | 2013-09-26 |
JP2021013395A (ja) | 2021-02-12 |
EP2825676A1 (en) | 2015-01-21 |
EP2825676B1 (en) | 2017-12-20 |
US11692229B2 (en) | 2023-07-04 |
EP3692999A1 (en) | 2020-08-12 |
CN104364394A (zh) | 2015-02-18 |
CA2867621A1 (en) | 2013-09-26 |
EP3360560A1 (en) | 2018-08-15 |
JP2015512255A (ja) | 2015-04-27 |
US10364473B2 (en) | 2019-07-30 |
CN104364394B (zh) | 2019-02-22 |
BR112014023005A2 (pt) | 2017-07-18 |
US20170058328A1 (en) | 2017-03-02 |
JP2019050833A (ja) | 2019-04-04 |
AU2020227049A1 (en) | 2020-09-17 |
WO2013142378A9 (en) | 2014-01-23 |
US20190316183A1 (en) | 2019-10-17 |
AU2013235340A1 (en) | 2014-10-16 |
HK1207402A1 (zh) | 2016-01-29 |
US20150086581A1 (en) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11692229B2 (en) | Fast diagnosis and personalized treatments for acne | |
Fittipaldi et al. | Full-genome dissection of an epidemic of severe invasive disease caused by a hypervirulent, recently emerged clone of group A Streptococcus | |
Springman et al. | Pilus distribution among lineages of group b streptococcus: an evolutionary and clinical perspective | |
Uchiya et al. | Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease | |
Meehan et al. | Molecular epidemiology of group B streptococci in Ireland reveals a diverse population with evidence of capsular switching | |
Sahl et al. | Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity | |
Tokajian et al. | Molecular characterization of Staphylococcus aureus in Lebanon | |
van Der Mee-Marquet et al. | Analysis of the prophages carried by human infecting isolates provides new insight into the evolution of Group B Streptococcus species | |
Opota et al. | Genomics of the new species Kingella negevensis: diagnostic issues and identification of a locus encoding a RTX toxin | |
Rakov et al. | Population structure of hyperinvasive serotype 12F, clonal complex 218 Streptococcus pneumoniae revealed by multilocus boxB sequence typing | |
CA2991090A1 (en) | Genetic testing for predicting resistance of gram-negative proteus against antimicrobial agents | |
AU2015404958A1 (en) | Genetic testing for alignment-free predicting resistance of microorganisms against antimicrobial agents | |
WO2017012659A1 (en) | Genetic testing for predicting resistance of salmonella species against antimicrobial agents | |
Yan et al. | Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the lsa (E) gene for quinupristin/dalfopristin resistance | |
Ahle et al. | Comparison of three amplicon sequencing approaches to determine staphylococcal populations on human skin | |
Lim et al. | Comparative genome analysis of multiple vancomycin-resistant Enterococcus faecium isolated from two fatal cases | |
Speck et al. | Characterization of Streptococcus equi subsp. ruminatorum isolated from spotted hyenas (Crocuta crocuta) and plains zebras (Equus burchelli), and identification of a M-like protein (SrM) encoding gene | |
Ntozini et al. | Molecular epidemiology of invasive group B Streptococcus in South Africa, 2019-2020 | |
Lindstedt | Human Gut Colonisation by the Klebsiella pneumoniae Species Complex: Detection, Duration, Dynamics, and Microbiota Associations | |
Schiff | The Bacterial and Viral Complexity of Postinfectious Hydrocephalus in Uganda | |
Ene | Exploring the Role of Lactobacillus jensenii and Lactobacillus mulieris in the Urogenital Tract | |
Alexander | Using Whole Genome Sequencing to Study the Epidemiology and Comparative Genomics of Streptococcus equi from the United States | |
El-naggar et al. | Detection of Pathogenicity Island-encoding Virulence Genes of Staphylococcus aureus Isolated from Various Clinical Sources | |
Arteaga Ortega et al. | Genomic characterization of the non-O1/non-O139 Vibrio cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018 | |
Richards | http://eprints. gla. ac. uk/191813 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40011589 Country of ref document: HK |
|
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190726 |
|
WD01 | Invention patent application deemed withdrawn after publication |