CN110054664B - Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application - Google Patents
Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application Download PDFInfo
- Publication number
- CN110054664B CN110054664B CN201910320083.5A CN201910320083A CN110054664B CN 110054664 B CN110054664 B CN 110054664B CN 201910320083 A CN201910320083 A CN 201910320083A CN 110054664 B CN110054664 B CN 110054664B
- Authority
- CN
- China
- Prior art keywords
- fmoc
- ano
- resin
- leu
- side chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108700042778 Antimicrobial Peptides Proteins 0.000 title claims abstract description 66
- 102000044503 Antimicrobial Peptides Human genes 0.000 title claims abstract description 66
- 239000003910 polypeptide antibiotic agent Substances 0.000 title claims abstract description 55
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 45
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 45
- 239000000194 fatty acid Substances 0.000 title claims abstract description 45
- 150000004665 fatty acids Chemical class 0.000 title claims abstract description 42
- 150000001413 amino acids Chemical class 0.000 title claims abstract description 27
- 230000015572 biosynthetic process Effects 0.000 title claims description 31
- 238000003786 synthesis reaction Methods 0.000 title claims description 31
- -1 amino acid side chain fatty acid Chemical class 0.000 claims abstract description 9
- 230000004048 modification Effects 0.000 claims abstract description 9
- 238000012986 modification Methods 0.000 claims abstract description 9
- 108010047448 anoplin Proteins 0.000 claims abstract description 8
- 229940124350 antibacterial drug Drugs 0.000 claims abstract description 4
- 239000011347 resin Substances 0.000 claims description 149
- 229920005989 resin Polymers 0.000 claims description 149
- 125000006239 protecting group Chemical group 0.000 claims description 60
- 238000006482 condensation reaction Methods 0.000 claims description 30
- 239000000243 solution Substances 0.000 claims description 28
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 claims description 24
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 24
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 claims description 24
- CBPJQFCAFFNICX-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(C)C)C(O)=O)C3=CC=CC=C3C2=C1 CBPJQFCAFFNICX-IBGZPJMESA-N 0.000 claims description 20
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 claims description 20
- 150000008574 D-amino acids Chemical class 0.000 claims description 19
- 238000000746 purification Methods 0.000 claims description 18
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 17
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 14
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 12
- YPTNAIDIXCOZAJ-KXQOOQHDSA-N (2r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-[[(4-methylphenyl)-diphenylmethyl]amino]hexanoic acid Chemical compound C1=CC(C)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)NCCCC[C@H](C(O)=O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 YPTNAIDIXCOZAJ-KXQOOQHDSA-N 0.000 claims description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 239000012071 phase Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000004007 reversed phase HPLC Methods 0.000 claims description 8
- 235000021314 Palmitic acid Nutrition 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- UMRUUWFGLGNQLI-JOCHJYFZSA-N (2r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@H](CCCCNC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 UMRUUWFGLGNQLI-JOCHJYFZSA-N 0.000 claims description 6
- HNICLNKVURBTKV-NDEPHWFRSA-N (2s)-5-[[amino-[(2,2,4,6,7-pentamethyl-3h-1-benzofuran-5-yl)sulfonylamino]methylidene]amino]-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)N[C@H](C(O)=O)CCCN=C(N)NS(=O)(=O)C1=C(C)C(C)=C2OC(C)(C)CC2=C1C HNICLNKVURBTKV-NDEPHWFRSA-N 0.000 claims description 6
- LZOLWEQBVPVDPR-VLIAUNLRSA-N (2s,3r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]butanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@H](OC(C)(C)C)C)C(O)=O)C3=CC=CC=C3C2=C1 LZOLWEQBVPVDPR-VLIAUNLRSA-N 0.000 claims description 6
- QXVFEIPAZSXRGM-DJJJIMSYSA-N (2s,3s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@@H](C)CC)C(O)=O)C3=CC=CC=C3C2=C1 QXVFEIPAZSXRGM-DJJJIMSYSA-N 0.000 claims description 6
- NDKDFTQNXLHCGO-UHFFFAOYSA-N 2-(9h-fluoren-9-ylmethoxycarbonylamino)acetic acid Chemical compound C1=CC=C2C(COC(=O)NCC(=O)O)C3=CC=CC=C3C2=C1 NDKDFTQNXLHCGO-UHFFFAOYSA-N 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 238000010828 elution Methods 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 claims description 3
- 238000004108 freeze drying Methods 0.000 claims description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims 10
- 238000010189 synthetic method Methods 0.000 claims 8
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims 5
- 239000002253 acid Substances 0.000 claims 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims 2
- 238000002360 preparation method Methods 0.000 claims 1
- 238000010532 solid phase synthesis reaction Methods 0.000 claims 1
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 17
- 241000894006 Bacteria Species 0.000 abstract description 13
- 229940088710 antibiotic agent Drugs 0.000 abstract description 10
- 239000003242 anti bacterial agent Substances 0.000 abstract description 9
- 230000002255 enzymatic effect Effects 0.000 abstract description 8
- 238000002474 experimental method Methods 0.000 abstract description 8
- 229940079593 drug Drugs 0.000 abstract description 7
- 239000003814 drug Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 238000000684 flow cytometry Methods 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 4
- 238000000338 in vitro Methods 0.000 abstract description 3
- 238000010186 staining Methods 0.000 abstract description 3
- 125000003275 alpha amino acid group Chemical group 0.000 abstract 1
- 238000004737 colorimetric analysis Methods 0.000 description 29
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 29
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 20
- 238000001819 mass spectrum Methods 0.000 description 16
- 230000001580 bacterial effect Effects 0.000 description 14
- 230000002401 inhibitory effect Effects 0.000 description 9
- 238000004949 mass spectrometry Methods 0.000 description 9
- 230000004913 activation Effects 0.000 description 8
- 230000007030 peptide scission Effects 0.000 description 8
- 102000004142 Trypsin Human genes 0.000 description 7
- 108090000631 Trypsin Proteins 0.000 description 7
- 239000012588 trypsin Substances 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 6
- 230000000845 anti-microbial effect Effects 0.000 description 5
- 210000000170 cell membrane Anatomy 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- CLVOYFRAZKMSPF-UHFFFAOYSA-N n,n-dibutyl-4-chlorobenzenesulfonamide Chemical compound CCCCN(CCCC)S(=O)(=O)C1=CC=C(Cl)C=C1 CLVOYFRAZKMSPF-UHFFFAOYSA-N 0.000 description 3
- 241000588626 Acinetobacter baumannii Species 0.000 description 2
- 108010078777 Colistin Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 241001360526 Escherichia coli ATCC 25922 Species 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Polymers CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 2
- RAFYDKXYXRZODZ-UHFFFAOYSA-N octanoyl octanoate Chemical compound CCCCCCCC(=O)OC(=O)CCCCCCC RAFYDKXYXRZODZ-UHFFFAOYSA-N 0.000 description 2
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000010267 two-fold dilution method Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010050820 Antimicrobial Cationic Peptides Proteins 0.000 description 1
- 102000014133 Antimicrobial Cationic Peptides Human genes 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010093965 Polymyxin B Proteins 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000751182 Staphylococcus epidermidis ATCC 12228 Species 0.000 description 1
- PMZXXNPJQYDFJX-UHFFFAOYSA-N acetonitrile;2,2,2-trifluoroacetic acid Chemical compound CC#N.OC(=O)C(F)(F)F PMZXXNPJQYDFJX-UHFFFAOYSA-N 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000006994 mh medium Substances 0.000 description 1
- YKQOSKADJPQZHB-YNWHQGOSSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1s)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Polymers CCC(C)CCCC(=O)N[C@@H](CCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O YKQOSKADJPQZHB-YNWHQGOSSA-N 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000024 polymyxin B Polymers 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229960005266 polymyxin b Drugs 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/542—Carboxylic acids, e.g. a fatty acid or an amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明设计合成了含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物,其是以线性两亲性α‑螺旋天然抗菌肽Anoplin为模板,将D型氨基酸替换增强酶解稳定性和对替换后D型氨基酸侧链进行脂肪酸修饰增强抗耐药菌活性的策略相结合,得到的一类全新结构的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano‑D4,7‑4Cn和Ano‑D4,7‑7Cn,n=4‑16。体外抑菌实验、PI染色法流式细胞术实验和酶解稳定性实验均表明,本发明含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物具有强抗耐药菌活性和高酶解稳定性;相比于传统抗生素,本发明得到的新型抗菌肽类似物在临床抗菌药物的开发方面具有很好的应用前景。The present invention designs and synthesizes a side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acids, which uses the linear amphipathic α-helical natural antimicrobial peptide Anoplin as a template, and replaces D-type amino acids to enhance enzymatic stability and antibacterial effect after replacement. Combining the strategy of D-type amino acid side chain fatty acid modification to enhance the activity of anti-drug-resistant bacteria, a new class of D-type amino acid side chain fatty acid-modified antimicrobial peptide analogs Ano‑D4, 7‑4C n and Ano‑D4 obtained D4,7-7C n , n=4-16. Antibacterial experiments in vitro, PI staining flow cytometry experiments and enzymolysis stability experiments all show that the side chain fatty acid modified antimicrobial peptide analogs containing D-type amino acids of the present invention have strong anti-drug-resistant bacteria activity and high enzymolysis stability ; Compared with traditional antibiotics, the novel antimicrobial peptide analog obtained in the present invention has a good application prospect in the development of clinical antibacterial drugs.
Description
技术领域Technical Field
本发明涉及生物化学技术领域,涉及一类全新结构的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物及其合成和应用,特别涉及一类具有强抗耐药菌活性和高酶解稳定性的含D型氨基酸侧链脂肪酸修饰抗菌肽类似物及其合成和应用。The present invention relates to the field of biochemical technology, and relates to a class of D-amino acid side chain fatty acid modified antimicrobial peptide analogs with a completely new structure, and the synthesis and application thereof, and in particular to a class of D-amino acid side chain fatty acid modified antimicrobial peptide analogs with strong anti-resistant bacteria activity and high enzymatic stability, and the synthesis and application thereof.
背景技术Background Art
近年来,由于传统抗生素在临床用药中的滥用,导致耐药菌株,即“超级细菌”的不断出现,该“超级细菌”对大多数或所有可用的抗生素均表现出耐受性(HealthEcon.1996May-Jun;5(3):217-26)。多粘菌素B和多粘菌素E(又称粘菌素)作为阳离子肽类抗菌药,在20世纪60年代得到广泛应用,但由于严重的毒性问题,在20世纪70年代其临床应用大大减少。虽然随着20世纪70年代流行的具有多药耐药性的革兰氏阴性细菌的出现,这两种抗菌药物的使用又出现了复苏,成为了最后的抗生素,但不幸的是,多粘菌素耐药的“超级细菌”也相继出现(Expert Rev Anti Infect Ther.2012Aug;10(8):917-34;BiomedRes Int.2015;2015:679109)。毋庸置疑,一类新抗生素的开发已经变得至关重要(LancetInfect Dis.2013Dec;13(12):1057-98)。作为一种具有较大潜力的新型抗生素,抗菌肽(AMPs),特别是阳离子抗菌肽,由于其具有广谱抗菌活性,且能够快速杀菌,受到了极大关注(Chembiochem.2015Jan 19;16(2):242-53)。AMPs通常由多样的生物有机体产生,包括细菌、真菌、植物、昆虫、两栖动物、甲壳类动物、鱼类和哺乳动物(Clin MicrobiolRev.2006Jul;19(3):491-511)。最为重要的,相较于传统抗生素,细菌不易对没有特定作用靶点的抗菌肽产生耐药性。抗菌肽的作用方式通常涉及与细菌胞质膜的非特异性相互作用,使得到达细菌膜中的抗菌肽发生积累,使膜的渗透性增加和屏障功能丧失,最终导致细菌内容物的泄露而死亡(Eur.J.Biochem.2001,268,5589-5600;Nat RevMicrobiol.2005Mar;3(3):238-50)。In recent years, due to the abuse of traditional antibiotics in clinical use, drug-resistant strains, i.e., "super bacteria", have continued to emerge, which are resistant to most or all available antibiotics (Health Econ. 1996 May-Jun; 5(3): 217-26). Polymyxin B and polymyxin E (also known as colistin) were widely used as cationic peptide antibacterials in the 1960s, but due to serious toxicity problems, their clinical application was greatly reduced in the 1970s. Although the use of these two antibacterial drugs has revived with the emergence of multidrug-resistant Gram-negative bacteria that became popular in the 1970s, becoming the last antibiotic, unfortunately, polymyxin-resistant "super bacteria" have also appeared one after another (Expert Rev Anti Infect Ther. 2012 Aug; 10(8): 917-34; Biomed Res Int. 2015; 2015: 679109). Undoubtedly, the development of a new class of antibiotics has become crucial (Lancet Infect Dis. 2013 Dec; 13(12): 1057-98). As a new type of antibiotic with great potential, antimicrobial peptides (AMPs), especially cationic antimicrobial peptides, have attracted great attention due to their broad-spectrum antimicrobial activity and rapid bactericidal ability (Chembiochem. 2015 Jan 19; 16(2): 242-53). AMPs are usually produced by a variety of biological organisms, including bacteria, fungi, plants, insects, amphibians, crustaceans, fish and mammals (Clin Microbiol Rev. 2006 Jul; 19(3): 491-511). Most importantly, compared with traditional antibiotics, bacteria are less likely to develop resistance to antimicrobial peptides that do not have specific targets. The mode of action of antimicrobial peptides usually involves nonspecific interactions with the bacterial cytoplasmic membrane, which causes the antimicrobial peptides to accumulate in the bacterial membrane, increase the permeability of the membrane and lose its barrier function, ultimately leading to leakage of bacterial contents and death (Eur. J. Biochem. 2001, 268, 5589-5600; Nat Rev Microbiol. 2005 Mar; 3(3): 238-50).
然而,尽管与传统抗生素相比,AMPs能够有望战胜“超级细菌”,但作为理想的抗菌药物,抗菌活性不佳、宿主细胞的毒性、生理条件的不耐受性、酶降解的敏感性,以及由于复杂的设计而导致的高制造成本,限制了AMPs的临床应用。大量研究表明,D型氨基酸的引入,能够有效的避免蛋白酶的降解,提高抗菌肽的酶解稳定性(Sci Rep.2017Jul 31;7(1):6953;Chem Biol Drug Des.2006Feb;67(2):162-73),但D型氨基酸的引入通常会导致其抗菌活性降低。而脂肪酸作为生物细胞膜磷脂的重要组成部分,具有较高的疏水性,将其引入抗菌肽中,有利于通过增加抗菌肽的疏水性而增强其对细菌细胞膜的亲和力,从而增强其抗菌活性,并且脂肪酸还可以减少蛋白酶的降解,增强抗菌肽的酶解稳定性,延长抗菌肽体内作用时间(Biochem J,2005,385(Pt 1):135-43;Biophys Chem,2015,199:25-33)。However, although AMPs are expected to defeat "superbugs" compared with traditional antibiotics, as ideal antibacterial drugs, poor antibacterial activity, host cell toxicity, intolerance to physiological conditions, sensitivity to enzymatic degradation, and high manufacturing costs due to complex designs limit the clinical application of AMPs. A large number of studies have shown that the introduction of D-amino acids can effectively avoid protease degradation and improve the enzymatic stability of antimicrobial peptides (Sci Rep. 2017 Jul 31; 7 (1): 6953; Chem Biol Drug Des. 2006 Feb; 67 (2): 162-73), but the introduction of D-amino acids usually leads to a decrease in their antibacterial activity. Fatty acids, as an important component of biological cell membrane phospholipids, have high hydrophobicity. Introducing them into antimicrobial peptides is beneficial to increase the hydrophobicity of antimicrobial peptides and enhance their affinity for bacterial cell membranes, thereby enhancing their antimicrobial activity. Fatty acids can also reduce the degradation of proteases, enhance the enzymatic stability of antimicrobial peptides, and prolong the in vivo action time of antimicrobial peptides (Biochem J, 2005, 385 (Pt 1): 135-43; Biophys Chem, 2015, 199: 25-33).
发明内容Summary of the invention
本发明的目的之一:提供一类全新结构的具有强抗耐药菌活性和高酶解稳定性的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物。One of the purposes of the present invention is to provide a new type of antimicrobial peptide analogs containing D-amino acids and side chain fatty acids modified with strong anti-resistant bacteria activity and high enzymatic stability.
本发明的目的之二:提供上述抗菌肽类似物在临床抗菌药物开发中的应用。The second object of the present invention is to provide the application of the above antimicrobial peptide analogs in the development of clinical antimicrobial drugs.
本发明的目的之三:提供上述抗菌肽类似物的合成方法。The third object of the present invention is to provide a method for synthesizing the above-mentioned antimicrobial peptide analogs.
(一)含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物(I) Antimicrobial peptide analogs modified with side chain fatty acids containing D-amino acids
本发明含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物,是在母肽Anoplin的部分D型氨基酸替换类似物Ano-D4,7的4位或者7位引入带有侧链保护基Mtt的D型特殊非天然氨基酸Fmoc-D-Lys(Mtt)-OH,然后脱去侧链保护基,对该D型特殊非天然氨基酸的侧链进行不同长度的脂肪酸(Cn,n=4-16)修饰,得到新型结构的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn,Ano-D4,7-7Cn,n=4-16。The side chain fatty acid modified antimicrobial peptide analogs containing D-amino acids of the present invention are prepared by introducing a D-type special non-natural amino acid Fmoc-D-Lys(Mtt)-OH with a side chain protecting group Mtt into the 4th or 7th position of the analog Ano-D4,7, which is a partial D-amino acid replacement analog of the parent peptide Anoplin, and then removing the side chain protecting group, and modifying the side chain of the D-type special non-natural amino acid with fatty acids (C n , n=4-16) of different lengths to obtain the side chain fatty acid modified antimicrobial peptide analogs containing D-amino acids of novel structure Ano-D4,7-4C n , Ano-D4,7-7C n , n=4-16.
结构式分别如下所示:The structural formulas are as follows:
Gly-Leu-Leu-D-Lys(Cn)-Arg-Ile-D-Lys-Thr-Leu-Leu-NH2Gly-Leu-Leu-D-Lys(C n )-Arg-Ile-D-Lys-Thr-Leu-Leu-NH2
其中n=4-16,命名为Ano-D4,7-4Cn;Where n = 4-16, named Ano-D4,7-4C n ;
Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(Cn)-Thr-Leu-Leu-NH2Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(C n )-Thr-Leu-Leu-NH2
其中n=4-16,命名为Ano-D4,7-7Cn;Where n = 4-16, named Ano-D4,7-7C n ;
本发明含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物的合成方法,包括以下工艺步骤:The method for synthesizing the antimicrobial peptide analogs modified by side chain fatty acids containing D-amino acids of the present invention comprises the following process steps:
1、Ano-D4,7-4Cn的合成1. Synthesis of Ano-D4,7-4C n
将Fmoc-Leu-OH、HOBT、HBTU、DIEA于DMF中溶解混匀,并与脱去Fmoc保护基的MBHA树脂进行缩合反应,得到Fmoc-Leu-resin;同法依次缩合反应氨基酸Fmoc-Leu-OH、Fmoc-Thr(tBu)-OH、Fmoc-D-Lys(Boc)-OH、Fmoc-Ile-OH、Fmoc-Arg(pbf)-OH、Fmoc-D-Lys(Mtt)-OH、Fmoc-Leu-OH、Fmoc-Leu-OH、Fmoc-Gly-OH,得到Fmoc-Gly-Leu-Leu-D-Lys(Mtt)-Arg-Ile-D-Lys-Thr-Leu-Leu-resin,即为Fmoc-Ano-D4,7-4(Mtt)-resin;Dissolve Fmoc-Leu-OH, HOBT, HBTU and DIEA in DMF and mix them evenly, and carry out condensation reaction with MBHA resin from which the Fmoc protecting group has been removed to obtain Fmoc-Leu-resin; carry out condensation reaction of amino acids Fmoc-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Ile-OH, Fmoc-Arg(pbf)-OH, Fmoc-D-Lys(Mtt)-OH, Fmoc-Leu-OH, Fmoc-Leu-OH and Fmoc-Gly-OH in sequence to obtain Fmoc-Gly-Leu-Leu-D-Lys(Mtt)-Arg-Ile-D-Lys-Thr-Leu-Leu-resin, namely Fmoc-Ano-D4,7-4(Mtt)-resin;
将上述得到的Fmoc-Ano-D4,7-4(Mtt)-resin,用含有体积分数为1%TFA的DCM溶液脱去侧链Mtt保护基,得到Ano-D4,7-4(NH2)-resin;分别将脂肪酸、HOBT、HBTU和DIEA于DMF中溶解混匀,并与Ano-D4,7-4(NH2)-resin进行缩合反应,得到Ano-D4,7-4Cn-resin;将Ano-D4,7-4Cn-resin切割、纯化得到抗菌肽类似物Ano-D4,7-4Cn,n=4-16。The Fmoc-Ano-D4,7-4(Mtt)-resin obtained above is used to remove the side chain Mtt protecting group with a DCM solution containing 1% TFA by volume to obtain Ano-D4,7-4(NH 2 )-resin; fatty acid, HOBT, HBTU and DIEA are respectively dissolved and mixed in DMF, and condensed with Ano-D4,7-4(NH 2 )-resin to obtain Ano-D4,7-4C n -resin; Ano-D4,7-4C n -resin is cut and purified to obtain antimicrobial peptide analogs Ano-D4,7-4C n , where n=4-16.
2、Ano-D4,7-7Cn的合成2. Synthesis of Ano-D4,7-7C n
将Fmoc-Leu-OH、HOBT、HBTU、DIEA于DMF中溶解混匀,并与脱去Fmoc保护基的MBHA树脂进行缩合反应,得到Fmoc-Leu-resin;同法依次缩合反应氨基酸Fmoc-Leu-OH、Fmoc-Thr(tBu)-OH、Fmoc-D-Lys(Mtt)-OH、Fmoc-Ile-OH、Fmoc-Arg(pbf)-OH、Fmoc-D-Lys(Boc)-OH、Fmoc-Leu-OH、Fmoc-Leu-OH、Fmoc-Gly-OH,得到Fmoc-Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(Mtt)-Thr-Leu-Leu-resin,即为Fmoc-Ano-D4,7-7(Mtt)resin;Dissolve Fmoc-Leu-OH, HOBT, HBTU and DIEA in DMF and mix them evenly, and carry out condensation reaction with MBHA resin from which the Fmoc protecting group has been removed to obtain Fmoc-Leu-resin; carry out condensation reaction of amino acids Fmoc-Leu-OH, Fmoc-Thr(tBu)-OH, Fmoc-D-Lys(Mtt)-OH, Fmoc-Ile-OH, Fmoc-Arg(pbf)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Leu-OH and Fmoc-Gly-OH in sequence to obtain Fmoc-Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(Mtt)-Thr-Leu-Leu-resin, namely Fmoc-Ano-D4,7-7(Mtt)resin;
将上述得到的Fmoc-Ano-D4,7-7(Mtt)-resin,用含有体积分数为1%TFA的DCM溶液脱去侧链Mtt保护基,得到Ano-D4,7-7(NH2)-resin;分别将脂肪酸、HOBT、HBTU和DIEA于DMF中溶解混匀,并与Ano-D4,7-7(NH2)-resin进行缩合反应,得到Ano-D4,7-7Cn-resin;将Ano-D4,7-7Cn-resin切割、纯化得到抗菌肽类似物Ano-D4,7-7Cn,n=4-16。The Fmoc-Ano-D4,7-7(Mtt)-resin obtained above is used to remove the side chain Mtt protecting group with a DCM solution containing 1% TFA by volume to obtain Ano-D4,7-7(NH 2 )-resin; fatty acid, HOBT, HBTU and DIEA are respectively dissolved and mixed in DMF, and condensed with Ano-D4,7-7(NH 2 )-resin to obtain Ano-D4,7-7C n -resin; Ano-D4,7-7C n -resin is cut and purified to obtain antimicrobial peptide analogs Ano-D4,7-7C n , where n=4-16.
以上所述各氨基酸、脂肪酸、HOBT、HBTU和DIEA在DMF中的浓度分别为20-100mg/mL,20-100mg/mL,10-40mg/mL,20-100mg/mL,20-60mg/mL;各氨基酸、脂肪酸、HOBT、HBTU与脱去Fmoc保护基的MBHA树脂的摩尔质量比均为6:1-3:1,DIEA与脱去Fmoc保护基的MBHA树脂的摩尔质量比为6:1-12:1。The concentrations of the above-mentioned amino acids, fatty acids, HOBT, HBTU and DIEA in DMF are 20-100 mg/mL, 20-100 mg/mL, 10-40 mg/mL, 20-100 mg/mL and 20-60 mg/mL, respectively; the molar mass ratios of the amino acids, fatty acids, HOBT, HBTU and the MBHA resin without the Fmoc protecting group are all 6:1-3:1, and the molar mass ratio of DIEA to the MBHA resin without the Fmoc protecting group is 6:1-12:1.
所述切割试剂为TFA、三异丙基硅烷和水以体积比9.5:0.25:0.25形成的混合溶液。The cleavage reagent is a mixed solution of TFA, triisopropylsilane and water in a volume ratio of 9.5:0.25:0.25.
所述纯化过程为,粗肽先冷冻干燥得到冻干粉,然后进行RP-HPLC分离;RP-HPLC纯化条件为,流动相A:0.05%TFA的水溶液,流动相B:0.05%TFA的乙腈溶液;线性梯度洗脱,收集主要吸收峰的流出液。The purification process is as follows: the crude peptide is first freeze-dried to obtain freeze-dried powder, and then RP-HPLC separation is performed; the RP-HPLC purification conditions are: mobile phase A: 0.05% TFA aqueous solution, mobile phase B: 0.05% TFA acetonitrile solution; linear gradient elution, and the effluent of the main absorption peak is collected.
经质谱鉴定,本发明方法成功合成了新型结构的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn和Ano-D4,7-7Cn,n=4-16。According to mass spectrometry identification, the method of the present invention successfully synthesized novel antimicrobial peptide analogs Ano-D4,7-4C n and Ano-D4,7-7C n containing D-amino acids and modified by side chain fatty acids, where n=4-16.
(二)含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物体外活性研究(II) Study on the in vitro activity of antimicrobial peptide analogs modified with side chain fatty acids containing D-amino acids
1、抑菌实验1. Antibacterial experiment
采用经典的二倍稀释法测定上述抗菌肽类似物的最低抑菌浓度,即MIC值。所选用的实验菌株包括标准正常菌株:E.coli ATCC 25922,P.aeruginos ATCC 27853,K.pneumoniae ATCC 700603,S.aureus ATCC 25923,B.subtilis ATCC 23857,S.epidermidis ATCC 12228和临床分离的多重耐药菌株:A.baumannii 9828,A.baumannii9840,P.aeruginosa 1240,P.aeruginosa 1190,E.coli 8500,E.coli 8040,S.aureus4800,S.aureus 5200。具体实验方法如下:经MH培养基过夜培养至生长对数期的实验细菌稀释成1×106CFU/mL的细菌悬浮液;将抗菌肽类似物溶解于无菌水中,经二倍稀释法配成1-128μmol/L的一系列不同浓度的肽溶液,与上述细菌悬浮液等体积混合,于96孔培养板中37℃孵育18-24h,观察,肉眼可见无明显细菌生长的最小浓度即为最低抑菌浓度MIC;抗生素Erythromycin,Kanamycin,Penicillin作阳性对照药;平行重复三次上述实验,结果如表1和表2。The minimum inhibitory concentration, i.e., MIC value, of the above antimicrobial peptide analogs was determined by the classic two-fold dilution method. The experimental strains used included standard normal strains: E. coli ATCC 25922, P. aeruginos ATCC 27853, K. pneumoniae ATCC 700603, S. aureus ATCC 25923, B. subtilis ATCC 23857, S. epidermidis ATCC 12228 and clinically isolated multidrug-resistant strains: A. baumannii 9828, A. baumannii 9840, P. aeruginosa 1240, P. aeruginosa 1190, E. coli 8500, E. coli 8040, S. aureus 4800, S. aureus 5200. The specific experimental method is as follows: the experimental bacteria cultured in MH medium overnight to the logarithmic growth phase were diluted into a bacterial suspension of 1×10 6 CFU/mL; the antimicrobial peptide analogs were dissolved in sterile water, and a series of peptide solutions with different concentrations of 1-128 μmol/L were prepared by the two-fold dilution method, mixed with the above bacterial suspension in equal volumes, incubated at 37°C in a 96-well culture plate for 18-24 hours, and observed. The minimum concentration at which no obvious bacterial growth was visible to the naked eye was the minimum inhibitory concentration (MIC); the antibiotics Erythromycin, Kanamycin, and Penicillin were used as positive control drugs; the above experiment was repeated three times in parallel, and the results are shown in Tables 1 and 2.
表1对抗标准正常菌株的最低抑菌浓度Table 1 Minimum inhibitory concentration against standard normal strains
表2对抗多重耐药菌株的最低抑菌浓度Table 2 Minimum inhibitory concentration against multidrug-resistant strains
表1结果表明,含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn和Ano-D4,7-7Cn对标准正常细菌菌株具有良好的抗菌活性,其抗菌活性相比于母肽Anoplin有明显提高,且部分优于传统抗生素;表2结果表明,含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn和Ano-D4,7-7Cn对临床分离的多重耐药菌菌株具有较强的抗菌活性,其抗菌活性相比于母肽Anoplin有明显提高,并且优于传统抗生素;随着脂肪酸链长度的增加,抗菌肽类似物对标准菌株和多重耐药菌的抗菌活性均显著增强,但当脂肪酸链长度增加到一定程度时,抗菌活性不再增加。The results in Table 1 show that the side chain fatty acid modified antimicrobial peptide analogs Ano-D4,7-4C n and Ano-D4,7-7C n containing D-amino acids have good antibacterial activity against standard normal bacterial strains, and their antibacterial activity is significantly improved compared with the parent peptide Anoplin, and is partially superior to traditional antibiotics; the results in Table 2 show that the side chain fatty acid modified antimicrobial peptide analogs Ano-D4,7-4C n and Ano-D4,7-7C n containing D-amino acids have strong antibacterial activity against clinically isolated multidrug-resistant bacterial strains, and their antibacterial activity is significantly improved compared with the parent peptide Anoplin, and is superior to traditional antibiotics; with the increase of fatty acid chain length, the antibacterial activity of antimicrobial peptide analogs against standard strains and multidrug-resistant bacteria is significantly enhanced, but when the fatty acid chain length increases to a certain extent, the antibacterial activity no longer increases.
2、流式细胞术实验2. Flow cytometry experiment
采用大肠杆菌(ATCC 25922)标准菌株进行PI染色流式细胞术检测抗菌肽类似物对细菌膜破坏作用。具体实验方法如下:将培养至对数期的大肠杆菌稀释至10×108CFU/mL,PBS(10mM,pH 7.4)洗涤后并半体积重悬,得到细菌悬浮液;将抗菌肽类似物溶解于PBS,浓度为8×MIC,与上述细菌悬浮液等体积混合,于37℃共孵育2h,经碘化吡啶(PI)避光染色15min后,PBS洗去多余染料,经流式细胞仪检测PI荧光的摄取能力,结果如图9。The standard strain of Escherichia coli (ATCC 25922) was used for PI staining flow cytometry to detect the destructive effect of antimicrobial peptide analogs on bacterial membranes. The specific experimental method is as follows: Escherichia coli cultured to the logarithmic phase was diluted to 10×10 8 CFU/mL, washed with PBS (10mM, pH 7.4) and resuspended in half volume to obtain a bacterial suspension; the antimicrobial peptide analog was dissolved in PBS at a concentration of 8×MIC, mixed with an equal volume of the above bacterial suspension, incubated at 37°C for 2h, stained with iodinated pyridinium (PI) in the dark for 15min, and then washed with PBS to remove excess dye, and the PI fluorescence uptake ability was detected by flow cytometry, and the results are shown in Figure 9.
图9结果表明,含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn和Ano-D4,7-7Cn,均具有较好的细菌细胞膜破坏能力;随着侧链脂肪酸长度增加,抗菌肽类似物对细菌细胞膜的破坏能力明显增强,可以为上述抗菌活性的显著增强做出解释。The results in Figure 9 show that the antimicrobial peptide analogs Ano-D4,7-4C n and Ano-D4,7-7C n modified with side chain fatty acids containing D-amino acids have good bacterial cell membrane destruction ability; as the length of the side chain fatty acid increases, the antimicrobial peptide analogs' ability to destroy bacterial cell membranes is significantly enhanced, which can explain the significant enhancement of the above-mentioned antibacterial activity.
3、酶解稳定性实验3. Enzymatic stability test
将肽溶液与不同浓度的胰蛋白酶溶液(1mg/mL,0.5mg/mL,0.2mg/mL,0.1mg/mL)37℃共孵育1h和6h;60℃灭活15min后,与上述最低抑菌浓度测定方法相同,测定在不同胰蛋白酶溶液中对E.coli ATCC 25922的最低抑菌浓度MIC,结果如表3所示。The peptide solution was incubated with trypsin solutions of different concentrations (1 mg/mL, 0.5 mg/mL, 0.2 mg/mL, 0.1 mg/mL) at 37°C for 1 h and 6 h; after inactivation at 60°C for 15 min, the minimum inhibitory concentration (MIC) of E. coli ATCC 25922 in different trypsin solutions was determined in the same manner as the above-mentioned minimum inhibitory concentration determination method. The results are shown in Table 3.
表3不同浓度胰蛋白酶条件下对E.coli ATCC 25922的最低抑菌浓度Table 3 Minimum inhibitory concentration of trypsin against E.coli ATCC 25922 at different concentrations
Control:无胰蛋白酶存在下对E.coli ATCC 25922的最低抑菌浓度Control: Minimum inhibitory concentration against E.coli ATCC 25922 in the absence of trypsin
表3结果表明,母肽Anoplin在不同浓度的胰蛋白酶环境下均丧失抗菌活性,表现出低稳定性;但含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物Ano-D4,7-4Cn和Ano-D4,7-7Cn在不同浓度胰蛋白酶环境中均未丧失抗菌活性,最低抑菌浓度MIC只是发生轻微改变,仍然表现出较好的抗菌活性,说明含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物在胰蛋白酶环境下具有较高稳定性,其稳定性明显优于母肽。The results in Table 3 show that the parent peptide Anoplin lost its antibacterial activity in the environment of different concentrations of trypsin and showed low stability; however, the antimicrobial peptide analogs Ano-D4,7-4C n and Ano-D4,7-7C n modified with side chain fatty acids containing D-amino acids did not lose their antibacterial activity in the environment of different concentrations of trypsin, and the minimum inhibitory concentration MIC only changed slightly, and still showed good antibacterial activity, indicating that the antimicrobial peptide analogs modified with side chain fatty acids containing D-amino acids have higher stability in the environment of trypsin, and their stability is significantly better than that of the parent peptide.
综上,本发明是以线性两亲性α-螺旋天然抗菌肽Anoplin为模板,将D型氨基酸替换增强酶解稳定性和对替换后D型氨基酸侧链进行脂肪酸修饰增强抗耐药菌活性的策略相结合,得到一类全新结构的含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物。体外生物活性研究结果显示,该含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物具有强抗耐药菌抗菌活性和高酶解稳定性,在临床抗菌药物开发中具有良好的应用前景。In summary, the present invention uses the linear amphipathic α-helical natural antimicrobial peptide Anoplin as a template, combines the strategy of D-amino acid substitution to enhance enzymatic stability and fatty acid modification of the replaced D-amino acid side chain to enhance anti-resistant bacteria activity, and obtains a new type of D-amino acid side chain fatty acid modified antimicrobial peptide analog. The results of in vitro biological activity studies show that the D-amino acid side chain fatty acid modified antimicrobial peptide analog has strong antimicrobial activity against resistant bacteria and high enzymatic stability, and has good application prospects in the development of clinical antimicrobial drugs.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明抗菌肽类似物Ano-D4,7-4C4的质谱图;FIG1 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-4C 4 of the present invention;
图2为本发明抗菌肽类似物Ano-D4,7-4C8的质谱图;FIG2 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-4C 8 of the present invention;
图3为本发明抗菌肽类似物Ano-D4,7-4C12的质谱图;FIG3 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-4C 12 of the present invention;
图4为本发明抗菌肽类似物Ano-D4,7-4C16的质谱图;FIG4 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-4C 16 of the present invention;
图5为本发明抗菌肽类似物Ano-D4,7-7C4的质谱图;FIG5 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-7C 4 of the present invention;
图6为本发明抗菌肽类似物Ano-D4,7-7C8的质谱图;FIG6 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-7C 8 of the present invention;
图7为本发明抗菌肽类似物Ano-D4,7-7C12的质谱图;FIG7 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-7C 12 of the present invention;
图8为本发明抗菌肽类似物Ano-D4,7-7C16的质谱图;FIG8 is a mass spectrum of the antimicrobial peptide analog Ano-D4,7-7C 16 of the present invention;
图9为本发明抗菌肽类似物的PI染色流式细胞术实验结果图;图中以从左到右、从上到下的顺序依次为对照组,Anoplin组,Ano-D4,7-4C8组,Ano-D4,7-4C12组,Ano-D4,7-7C8组和Ano-D4,7-7C12组。FIG9 is a graph showing the experimental results of PI staining flow cytometry of the antimicrobial peptide analogs of the present invention; in the figure, from left to right and from top to bottom, are the control group, Anoplin group, Ano-D4,7-4C 8 group, Ano-D4,7-4C 12 group, Ano-D4,7-7C 8 group and Ano-D4,7-7C 12 group.
具体实施方式DETAILED DESCRIPTION
下面通过具体实施例对本发明含D型氨基酸的侧链脂肪酸修饰抗菌肽类似物的合成方法作进一步说明。The synthesis method of the antimicrobial peptide analogs modified with side chain fatty acids containing D-amino acids of the present invention is further described below through specific examples.
实施例1:Ano-D4,7-4C4的合成Example 1: Synthesis of Ano-D4,7-4C 4
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
准确称取0.47g的MBHA树脂(0.43mmol/g)置于多肽固相合成仪中,DCM溶液溶胀30min后,经茚三酮显色法检验,树脂呈无色透明状,表明树脂正常。0.47 g of MBHA resin (0.43 mmol/g) was accurately weighed and placed in a peptide solid phase synthesizer. After swelling with DCM solution for 30 min, the resin was tested by ninhydrin colorimetry and it was colorless and transparent, indicating that the resin was normal.
(2)Fmoc-Ano-D4,7-4(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-4(Mtt)-resin
对上述检验正常的MBHA树脂经含有体积分数20%哌啶的DMF溶液脱去Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去;将Fmoc-Leu-OH(212mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去Fmoc保护基的MBHA树脂混合,缩合反应1h;茚三酮显色法检验,树脂呈无色透明状,则表明缩合反应成功,得到Fmoc-Leu-resin;方法同上,依次缩合反应后续氨基酸:Fmoc-Leu-OH(212mg)、Fmoc-Thr(tBu)-OH(239mg)、Fmoc-D-Lys(Boc)-OH(281mg)、Fmoc-Ile-OH(212mg)、Fmoc-Arg(pbf)-OH(390mg)、Fmoc-D-Lys(Mtt)-OH(376mg)、Fmoc-Leu-OH(212mg)、Fmoc-Leu-OH(212mg)、Fmoc-Gly-OH(238mg),HOBT、HBTU和DIEA用量同上,其中Fmoc-D-Lys(Mtt)-OH缩合反应时间为1.5h,其余均为1h,得到Fmoc-Gly-Leu-Leu-D-Lys(Mtt)-Arg-Ile-D-Lys-Thr-Leu-Leu-resin,即Fmoc-Ano-D4,7-4(Mtt)-resin;The above-mentioned normal MBHA resin was subjected to DMF solution containing 20% piperidine by volume to remove the Fmoc protecting group. The resin was tested by ninhydrin colorimetry and it turned blue-purple, indicating that the protecting group had been removed. Fmoc-Leu-OH (212 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were added to 5-10 mL The mixture was dissolved in DMF and mixed evenly, added to the synthesizer and mixed with the MBHA resin from which the Fmoc protecting group had been removed, and the condensation reaction was carried out for 1 hour. The resin was colorless and transparent when tested by the ninhydrin colorimetric method, indicating that the condensation reaction was successful to obtain Fmoc-Leu-resin. The method was the same as above, and the subsequent amino acids were condensed in sequence: Fmoc-Leu-OH (212 mg), Fmoc-Thr(tBu)-OH (239 mg), Fmoc-D-Lys(Boc)-OH (281 mg), Fmoc-Ile-OH (212 mg), Fmoc-Arg(pbf)-OH (390 mg), Fmoc-D -Lys(Mtt)-OH (376 mg), Fmoc-Leu-OH (212 mg), Fmoc-Leu-OH (212 mg), Fmoc-Gly-OH (238 mg), the amounts of HOBT, HBTU and DIEA are the same as above, wherein the condensation reaction time of Fmoc-D-Lys(Mtt)-OH is 1.5 h, and the others are 1 h, to obtain Fmoc-Gly-Leu-Leu-D-Lys(Mtt)-Arg-Ile-D-Lys-Thr-Leu-Leu-resin, i.e., Fmoc-Ano-D4,7-4(Mtt)-resin;
(3)Ano-D4,7-4C4-resin的合成(3) Synthesis of Ano-D4,7-4C 4 -resin
将上述Fmoc-Ano-D4,7-4(Mtt)-resin用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4(NH2)-resin;分别将丁酸酐(Cn,n=4;0.87mL)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mLDMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-4(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-4C4-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4C4-resin。The side chain Mtt protecting group of the Fmoc-Ano-D4,7-4(Mtt)-resin was removed by using a DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4(NH 2 )-resin. Butyric anhydride (C n , n=4; 0.87 mL), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF, respectively, and added to a synthesizer and mixed with the Ano-D4,7-4(NH 2 )-resin from which the side chain Mtt protecting group had been removed. The condensation reaction was carried out for 1.5 h. The resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-4C 4 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was tested by ninhydrin colorimetry, and it turned blue-purple, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4C 4 -resin.
(4)多肽切割(4) Peptide cleavage
将Ano-D4,7-4C4-resin以TFA、三异丙基硅烷和水体积比9.5:0.25:0.25的混合溶液为切割试剂进行切割,经冰乙醚和水萃取后,冷冻干燥,得到粗肽冻干粉;Ano-D4,7-4C 4 -resin was cleaved with a mixed solution of TFA, triisopropylsilane and water in a volume ratio of 9.5:0.25:0.25 as a cleavage reagent, extracted with ice ether and water, and freeze-dried to obtain a crude peptide lyophilized powder;
(5)多肽纯化(5) Peptide purification
将上述冷冻干燥得到的粗肽冻干粉经RP-HPLC分离纯化,收集流出液,再冷冻干燥,经质谱鉴定得Ano-D4,7-4C4,分子量为1223Da,质谱图见图1;其中,RP-HPLC纯化条件:流动相A:0.05%TFA/水;流动相B:0.05%TFA/乙腈;线性梯度洗脱,收集主要吸收峰的流出液。The crude peptide freeze-dried powder obtained by the freeze-drying was separated and purified by RP-HPLC, and the effluent was collected and freeze-dried again. Ano-D4,7-4C 4 was identified by mass spectrometry, and the molecular weight was 1223Da. The mass spectrum is shown in Figure 1; wherein, the RP-HPLC purification conditions are: mobile phase A: 0.05% TFA/water; mobile phase B: 0.05% TFA/acetonitrile; linear gradient elution, and the effluent of the main absorption peak was collected.
实施例2:Ano-D4,7-4C8的合成Example 2: Synthesis of Ano-D4,7-4C 8
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-4(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-4(Mtt)-resin
同实施例1。Same as Example 1.
(3)Ano-D4,7-4C8-resin的合成(3) Synthesis of Ano-D4,7-4C 8 -resin
将上述得到的Fmoc-Ano-D4,7-4(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4(NH2)-resin;分别将辛酸酐(Cn,n=8;1.53mL)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-4(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-4C8-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4C8-resin。The Fmoc-Ano-D4,7-4(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with a DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4(NH 2 )-resin; octanoic anhydride (C n , n=8; 1.53 mL), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF, respectively, and added to a synthesizer and mixed with the Ano-D4,7-4(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-4C 8 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was blue-purple when tested by ninhydrin colorimetric method, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4C 8 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得到Ano-D4,7-4C8,分子量为1279Da,质谱图见图2。As in Example 1, Ano-D4,7-4C 8 was obtained by mass spectrometry identification, with a molecular weight of 1279 Da. The mass spectrum is shown in FIG2 .
实施例3:Ano-D4,7-4C12的合成Example 3: Synthesis of Ano-D4,7-4C 12
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-resin
同实施例1。Same as Example 1.
(3)Ano-D4,7-4C12-resin的合成(3) Synthesis of Ano-D4,7-4C 12 -resin
将上述得到的Fmoc-Ano-D4,7-4(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4(NH2)-resin;分别将十二烷酸(Cn,n=12;240mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-4(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-4C12-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4C12-resin。The Fmoc-Ano-D4,7-4(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4(NH 2 )-resin; dodecanoic acid (C n , n=12; 240 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF respectively, and added to the synthesizer and mixed with the Ano-D4,7-4(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-4C 12 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was tested by ninhydrin colorimetric method, and it turned blue-purple, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4C 12 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-4C12,分子量为1335Da,质谱图见图3。As in Example 1, Ano-D4,7-4C 12 was identified by mass spectrometry, and its molecular weight was 1335 Da. The mass spectrum is shown in FIG3 .
实施例4:Ano-D4,7-4C16的合成Example 4: Synthesis of Ano-D4,7-4C 16
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-resin
同实施例1。Same as Example 1.
(3)Ano-D4,7-4C16-resin的合成(3) Synthesis of Ano-D4,7-4C 16 -resin
将上述得到的Fmoc-Ano-D4,7-4(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4(NH2)-resin;分别将十六烷酸(Cn,n=16;307mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-4(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-4C16-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-4C16-resin。The Fmoc-Ano-D4,7-4(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4(NH 2 )-resin; hexadecanoic acid (C n , n=16; 307 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF respectively, and added to the synthesizer and mixed with the Ano-D4,7-4(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-4C 16 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was blue-purple when tested by ninhydrin colorimetric method, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-4C 16 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-4C16,分子量为1391Da,质谱图见图4。As in Example 1, Ano-D4,7-4C 16 was identified by mass spectrometry, and its molecular weight was 1391 Da. The mass spectrum is shown in FIG4 .
实施例5:Ano-D4,7-7C4的合成Example 5: Synthesis of Ano-D4,7-7C 4
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-7(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-7(Mtt)-resin
对上述检验正常的MBHA树脂经含有体积分数20%哌啶的DMF溶液脱去Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去;将Fmoc-Leu-OH(212mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去Fmoc保护基的MBHA树脂混合,缩合反应1h;茚三酮显色法检验,树脂呈无色透明状,则表明缩合反应成功,得到Fmoc-Leu-resin;方法同上,依次缩合反应后续氨基酸:Fmoc-Leu-OH(212mg)、Fmoc-Thr(tBu)-OH(239mg)、Fmoc-D-Lys(Mtt)-OH(376mg)、Fmoc-Ile-OH(212mg)、Fmoc-Arg(pbf)-OH(390mg)、Fmoc-D-Lys(Boc)-OH(281mg)、Fmoc-Leu-OH(212mg)、Fmoc-Leu-OH(212mg)、Fmoc-Gly-OH(238mg),HOBT、HBTU和DIEA用量同上,其中Fmoc-D-Lys(Mtt)-OH缩合反应时间为1.5h,其余均为1h,得到Fmoc-Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(Mtt)-Thr-Leu-Leu-resin,即Fmoc-Ano-D4,7-4(Mtt)-resin;The above-mentioned normal MBHA resin was subjected to DMF solution containing 20% piperidine by volume to remove the Fmoc protecting group. The resin was tested by ninhydrin colorimetry and it turned blue-purple, indicating that the protecting group had been removed. Fmoc-Leu-OH (212 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were added to 5-10 mL The product was dissolved in DMF and mixed evenly, added to the synthesizer and mixed with the MBHA resin from which the Fmoc protecting group was removed, and the condensation reaction was carried out for 1 hour. The resin was colorless and transparent when tested by the ninhydrin colorimetric method, indicating that the condensation reaction was successful to obtain Fmoc-Leu-resin. The method was the same as above, and the subsequent amino acids were condensed in sequence: Fmoc-Leu-OH (212 mg), Fmoc-Thr(tBu)-OH (239 mg), Fmoc-D-Lys(Mtt)-OH (376 mg), Fmoc-Ile-OH (212 mg), Fmoc-Arg(pbf)-OH (390 mg), Fmoc-D -Lys(Boc)-OH (281 mg), Fmoc-Leu-OH (212 mg), Fmoc-Leu-OH (212 mg), Fmoc-Gly-OH (238 mg), the amounts of HOBT, HBTU and DIEA are the same as above, wherein the condensation reaction time of Fmoc-D-Lys(Mtt)-OH is 1.5 h, and the others are 1 h, to obtain Fmoc-Gly-Leu-Leu-D-Lys-Arg-Ile-D-Lys(Mtt)-Thr-Leu-Leu-resin, i.e., Fmoc-Ano-D4,7-4(Mtt)-resin;
(3)Ano-D4,7-7C4-resin的合成(3) Synthesis of Ano-D4,7-7C 4 -resin
将上述得到的Fmoc-Ano-D4,7-7(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7(NH2)-resin;分别将丁酸酐(Cn,n=4;0.87mL)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-7(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-7C4-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7C4-resin。The Fmoc-Ano-D4,7-7(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with a DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7(NH 2 )-resin; butyric anhydride (C n , n=4; 0.87 mL), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF, respectively, and added to a synthesizer and mixed with the Ano-D4,7-7(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-7C 4 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was tested by ninhydrin colorimetry, and it turned blue-purple, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7C 4 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-7C4,分子量为1223Da,质谱图见图5。As in Example 1, Ano-D4,7-7C 4 was identified by mass spectrometry, with a molecular weight of 1223 Da. The mass spectrum is shown in FIG5 .
实施例6:Ano-D4,7-7C8的合成Example 6: Synthesis of Ano-D4,7-7C 8
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-7(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-7(Mtt)-resin
同实施例5。Same as Example 5.
(3)Ano-D4,7-7C8-resin的合成(3) Synthesis of Ano-D4,7-7C 8 -resin
将上述得到的Fmoc-Ano-D4,7-7(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7(NH2)-resin;分别将辛酸酐(Cn,n=8;1.53mL)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-7(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-7C8-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7C8-resin。The Fmoc-Ano-D4,7-7(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7(NH 2 )-resin; octanoic anhydride (C n , n=8; 1.53 mL), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF respectively, and added to the synthesizer and mixed with the Ano-D4,7-7(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-7C 8 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was blue-purple when tested by ninhydrin colorimetric method, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7C 8 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-7C8,分子量为1279Da,质谱图见图6。As in Example 1, Ano-D4,7-7C 8 was identified by mass spectrometry, and its molecular weight was 1279 Da. The mass spectrum is shown in FIG6 .
实施例7:Ano-D4,7-7C12的合成Example 7: Synthesis of Ano-D4,7-7C 12
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-7(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-7(Mtt)-resin
同实施例5。Same as Example 5.
(3)Ano-D4,7-7C12-resin的合成(3) Synthesis of Ano-D4,7-7C 12 -resin
将上述得到的Fmoc-Ano-D4,7-7(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7(NH2)-resin;分别将十二烷酸(Cn,n=12;240mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-7(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-7C12-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7C12-resin。The Fmoc-Ano-D4,7-7(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7(NH 2 )-resin; dodecanoic acid (C n , n=12; 240 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF respectively, and added to the synthesizer and mixed with the Ano-D4,7-7(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-7C 12 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was tested by ninhydrin colorimetry, and it turned blue-purple, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7C 12 -resin.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-7C12,分子量为1335Da,质谱图见图7。As in Example 1, Ano-D4,7-7C 12 was identified by mass spectrometry, and its molecular weight was 1335 Da. The mass spectrum is shown in FIG7 .
实施例8:Ano-D4,7-7C16的合成Example 8: Synthesis of Ano-D4,7-7C 16
(1)树脂的活化及预处理(1) Activation and pretreatment of resin
同实施例1。Same as Example 1.
(2)Fmoc-Ano-D4,7-7(Mtt)-resin的合成(2) Synthesis of Fmoc-Ano-D4,7-7(Mtt)-resin
同实施例5。Same as Example 5.
(3)Ano-D4,7-7C16-resin的合成(3) Synthesis of Ano-D4,7-7C 16 -resin
将上述得到的Fmoc-Ano-D4,7-7(Mtt)-resin,用含有体积分数1%TFA的DCM溶液脱去侧链Mtt保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7(NH2)-resin;分别将十六烷酸(Cn,n=16;307mg)、HOBT(81mg)、HBTU(228mg)、DIEA(0.2mL)于5-10mL DMF中溶解混匀,加入合成仪中与上述脱去侧链Mtt保护基的Ano-D4,7-7(NH2)-resin混合,缩合反应1.5h;茚三酮显色法检验,树脂呈无色透明状,表明缩合反应完全,得到Ano-D4,7-7C16-resin;用含有体积分数20%哌啶的DMF溶液,脱去N末端Fmoc保护基,茚三酮显色法检验,树脂呈蓝紫色,表明保护基已脱去,得到Ano-D4,7-7C16-resin。The Fmoc-Ano-D4,7-7(Mtt)-resin obtained above was used to remove the side chain Mtt protecting group with a DCM solution containing 1% TFA by volume. The resin was blue-purple when tested by ninhydrin colorimetry, indicating that the protecting group had been removed, thereby obtaining Ano-D4,7-7(NH 2 )-resin; hexadecanoic acid (C n , n=16; 307 mg), HOBT (81 mg), HBTU (228 mg), and DIEA (0.2 mL) were dissolved and mixed in 5-10 mL DMF, respectively, and added to a synthesizer and mixed with the Ano-D4,7-7(NH 2 )-resin from which the side chain Mtt protecting group had been removed, and the condensation reaction was carried out for 1.5 h; the resin was colorless and transparent when tested by ninhydrin colorimetry, indicating that the condensation reaction was complete, thereby obtaining Ano-D4,7-7C 16 -resin; using DMF solution containing 20% piperidine by volume, the N-terminal Fmoc protecting group was removed, and the resin was tested by ninhydrin colorimetry. The resin was blue-purple, indicating that the protecting group had been removed, and Ano-D4,7-7C 16 -resin was obtained.
(4)多肽切割(4) Peptide cleavage
同实施例1。Same as Example 1.
(5)多肽纯化(5) Peptide purification
同实施例1,经质谱鉴定得Ano-D4,7-7C16,分子量为1335Da,质谱图见图8。As in Example 1, Ano-D4,7-7C 16 was identified by mass spectrometry, with a molecular weight of 1335 Da. The mass spectrum is shown in FIG8 .
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910320083.5A CN110054664B (en) | 2019-04-19 | 2019-04-19 | Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910320083.5A CN110054664B (en) | 2019-04-19 | 2019-04-19 | Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110054664A CN110054664A (en) | 2019-07-26 |
CN110054664B true CN110054664B (en) | 2023-05-26 |
Family
ID=67319804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910320083.5A Active CN110054664B (en) | 2019-04-19 | 2019-04-19 | Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110054664B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110563802B (en) * | 2019-09-04 | 2023-04-07 | 倪京满 | Group of antibacterial peptide analogues containing N-methylated amino acid and N-terminal fatty acid modification, and synthetic method and application thereof |
CN116239653A (en) * | 2021-04-09 | 2023-06-09 | 倪京满 | Alpha helix antibacterial short peptide 2KRI W with high antibacterial activity and low toxicity and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106632600A (en) * | 2016-10-19 | 2017-05-10 | 倪京满 | D-type non-natural amino acid containing antimicrobial peptide analog, synthesis therefor and application of D-type non-natural amino acid containing antimicrobial peptide analog |
CN109265518A (en) * | 2018-10-10 | 2019-01-25 | 倪京满 | N- terminal aliphatic acid modified antimicrobial peptide analogues and its synthesis and application with high enzymatic hydrolysis stability and strong antibacterial activity |
-
2019
- 2019-04-19 CN CN201910320083.5A patent/CN110054664B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106632600A (en) * | 2016-10-19 | 2017-05-10 | 倪京满 | D-type non-natural amino acid containing antimicrobial peptide analog, synthesis therefor and application of D-type non-natural amino acid containing antimicrobial peptide analog |
CN109265518A (en) * | 2018-10-10 | 2019-01-25 | 倪京满 | N- terminal aliphatic acid modified antimicrobial peptide analogues and its synthesis and application with high enzymatic hydrolysis stability and strong antibacterial activity |
Non-Patent Citations (2)
Title |
---|
Àngel Oliveras et al.Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens.《PLOS ONE》.2018, * |
Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin;Kostas Chionis et al;《Journal of peptide science》;20161231;摘要,第3页右栏第1段-第4页左栏第1段,第4页右栏第2段-第5页左栏最后1段,表2,图4 * |
Also Published As
Publication number | Publication date |
---|---|
CN110054664A (en) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2518080B1 (en) | Antibiotic peptides | |
AU2001237616B2 (en) | Antimicrobial compounds and formulations | |
EP3122763B1 (en) | Antimicrobial peptide dendrimers | |
JP2001172297A (en) | Broad spectrum antibacterial compounds and methods of use | |
CN111363010B (en) | Symmetrical short-sequence antibacterial peptide analogue and application thereof | |
Rajasekaran et al. | The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities | |
CN105566452A (en) | Antibacterial peptide with annular structure and preparation method and application thereof | |
EP2595496B1 (en) | Antimicrobial peptide, branched forms thereof and their use in the treatment of bacteria infections | |
CN116947999A (en) | Small molecular antibacterial polypeptide, preparation method and application thereof | |
CN112625106B (en) | Antibacterial polypeptide compound, synthesis method and application thereof | |
CN110054664B (en) | Side chain fatty acid modified antimicrobial peptide analogue containing D-type amino acid and its synthesis and application | |
CN117024552A (en) | Small molecular antibacterial polypeptide, preparation method and application thereof | |
US7629438B2 (en) | Group of synthetic antimicrobial peptides | |
TWI403330B (en) | Low hemolysis antibacterial peptide pharmaceutical compositions and use thereof | |
CN110563802B (en) | Group of antibacterial peptide analogues containing N-methylated amino acid and N-terminal fatty acid modification, and synthetic method and application thereof | |
Wang et al. | Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich α-helical model antimicrobial peptide and its diastereomeric peptides | |
CN102766196B (en) | Cation antibacterial peptides, their preparation method and application | |
JP2013523661A (en) | Low erythrocyte lytic antimicrobial peptide, pharmaceutical composition and use thereof | |
JP2004534084A (en) | Antimicrobial peptide | |
CN113583090B (en) | Anoprin modified peptide with antibacterial activity and its synthesis method and application | |
CN104292324B (en) | One group of HRP5 analog and preparation method thereof | |
Güell et al. | Multivalent display of the antimicrobial peptides BP100 and BP143 | |
WO2019085926A1 (en) | Polymyxin analogue and preparation method therefor | |
CN110437308B (en) | A class of antimicrobial peptide analogues containing β amino acids with specific activity against Pseudomonas aeruginosa and its application | |
AU763679B2 (en) | Crosslink-stabilized indolicidin analogs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230919 Address after: 730000 No. 222 Tianshui South Road, Chengguan District, Gansu, Lanzhou Patentee after: LANZHOU University Address before: 730000 room 609, 680 Dingxi Road, Chengguan District, Lanzhou City, Gansu Province Patentee before: Ni Jingman Patentee before: Wang Rui |