[go: up one dir, main page]

CN110046433B - Boundary element analysis method based on commercial vehicle whole vehicle parameters - Google Patents

Boundary element analysis method based on commercial vehicle whole vehicle parameters Download PDF

Info

Publication number
CN110046433B
CN110046433B CN201910310866.5A CN201910310866A CN110046433B CN 110046433 B CN110046433 B CN 110046433B CN 201910310866 A CN201910310866 A CN 201910310866A CN 110046433 B CN110046433 B CN 110046433B
Authority
CN
China
Prior art keywords
damping
nonlinear
characteristic curve
piecewise
scaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910310866.5A
Other languages
Chinese (zh)
Other versions
CN110046433A (en
Inventor
何水龙
汤涛
韦壹
欧阳励
蒋占四
鲍家定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201910310866.5A priority Critical patent/CN110046433B/en
Publication of CN110046433A publication Critical patent/CN110046433A/en
Application granted granted Critical
Publication of CN110046433B publication Critical patent/CN110046433B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开了一种基于商用车整车参数边界元分析方法,其特征是,包括如下步骤:1)施加规律性的变化载荷;2)获得阻尼特性曲线;3)阻尼特性分段加权;4)建立分段加权参数集;5)参数边界元提取;6)整车全局边界元设计。这种方法能合理精确的设计非线性阻尼、能提升非线性放缩匹配精确度、能节约开发周期和成本、能削减调教周期且便于形成模型的标准参数放缩数据库,便于对同等车型的减振设计提供参考。

Figure 201910310866

The invention discloses a boundary element analysis method based on the parameters of a commercial vehicle, which is characterized by comprising the following steps: 1) applying a regularly changing load; 2) obtaining a damping characteristic curve; 3) weighting the damping characteristic in sections; 4. ) to establish a segmented weighted parameter set; 5) to extract the parameter boundary element; 6) to design the whole vehicle global boundary element. This method can reasonably and accurately design nonlinear damping, improve the accuracy of nonlinear scaling and matching, save development cycle and cost, reduce training cycle, and facilitate the formation of a standard parameter scaling database for models, which is convenient for reducing the same models. vibration design for reference.

Figure 201910310866

Description

一种基于商用车整车参数边界元分析方法A Boundary Element Analysis Method Based on Vehicle Parameters of Commercial Vehicles

技术领域technical field

本发明涉及商用车技术,具体是一种基于商用车整车参数边界元分析方法。The invention relates to the technology of commercial vehicles, in particular to a boundary element analysis method based on the parameters of the entire commercial vehicle.

背景技术Background technique

商用车的平顺性通常会严重影响驾驶平顺性和舒适性,因此很多企业和车辆研发行业都对商用车上的减振系统的减振参数特性提出了更高的要求,商用车常见配备的减振阻尼结构包括:悬置弹簧、阻尼器、橡胶衬套以及钢板弹簧等,因此,为使得整车的多减振阻尼结构能在整体上获得较好的调教效果,理论上需要满足减振阻尼结构的减振参数值都要匹配到最优,然而在实际的整车实体上,这些理论的最优值往往难以取到,往往只能对原有的阻尼参数特性整体进行比例放缩,获得对最优值的逼近。The ride comfort of commercial vehicles usually seriously affects driving comfort and comfort. Therefore, many companies and vehicle R&D industries have put forward higher requirements for the vibration reduction parameters of the vibration reduction system on commercial vehicles. The vibration damping structure includes: suspension springs, dampers, rubber bushings and leaf springs, etc. Therefore, in order to make the multi-vibration damping and damping structure of the vehicle achieve a better overall adjustment effect, it is theoretically necessary to meet the vibration damping and damping requirements. The vibration damping parameter values of the structure must be matched to the optimal value. However, in the actual vehicle entity, these theoretical optimal values are often difficult to obtain. Often, only the original damping parameter characteristics can be scaled as a whole to obtain An approximation to the optimal value.

商用车在车身的开发阶段中,商用车上安装的各减振组件,由于行驶工况的复杂性以及载荷的多样化,其减振阻尼的参数阻尼特性常多数设定为非线性态的特性曲线来以满足在不同的工况或载荷下对不同的阻尼特性的需求,非线性阻尼特性值的上下变动幅度值通常由结构的安装限位条件以及材料的属性限制决定,在现存的非线性阻尼试验设计软件(如Isight等软件)以及科研机构的常见的分析手段中,依然采用传统的线性阻尼的优化方法来设计阻尼,即通过对既有的非线性特性曲线进行具有一定放缩因子的放缩行为来对整体的特性曲线值进行规律放缩,但放缩方式是采用对称性的,且放缩范围的设定主要依赖于设计人员的主观经验,因此,在设计效果上存在人为的影响因素,无法获得最佳的设计效果。现有传统的非线性阻尼设计设计方法的设计思路可设定为:In the development stage of the body of commercial vehicles, due to the complexity of driving conditions and the diversification of loads, the damping parameters of the vibration damping components installed on commercial vehicles are often set to nonlinear characteristics. The curve is used to meet the requirements of different damping characteristics under different working conditions or loads. The up and down fluctuation range of the nonlinear damping characteristic value is usually determined by the installation limit conditions of the structure and the property restrictions of the material. In the damping test design software (such as Isight and other software) and the common analysis methods of scientific research institutions, the traditional linear damping optimization method is still used to design the damping, that is, the existing nonlinear characteristic curve is adjusted with a certain scaling factor. The scaling behavior is used to regularly scale the overall characteristic curve value, but the scaling method is symmetrical, and the setting of the scaling range mainly depends on the subjective experience of the designer. Therefore, there is an artificial design effect. Influencing factors, the best design effect cannot be obtained. The design idea of the existing traditional nonlinear damping design method can be set as:

假定初始的非线性阻尼特性曲线为S0,放缩因子为C(C=[c0,c1,c2,...ci]),设计目标为Si,则传统的非线性阻尼的设计方法可表示为:Assuming that the initial nonlinear damping characteristic curve is S 0 , the scaling factor is C (C=[c 0 , c 1 , c 2 , ... c i ]), and the design objective is S i , the traditional nonlinear damping The design method can be expressed as:

Si=S0(1±c0)(1±c1)(1±c2)...(1±ci)S i =S 0 (1±c 0 )(1±c 1 )(1±c 2 )...(1±c i )

其中i为设计放缩的总次数,c0为基于产品阻尼原始的特性曲线的放缩因子,该放缩因子受到减振器产品安装后接触的上下端之间的初始载荷大小来决定,随着减振器后期载荷等因素的不断变化调整,需要对上次的设计产品继续乘以一定的比例修改放缩因子(c1,c2,...,ci),进而对原有的非线性曲线不断的进行放缩修正,以达到设计人员的设计目的,但由于该放缩方式是以非线性特性曲线整体上的全局放缩,因此很容易忽略区域性的最优匹配,导致使得阻尼的设计精度差,且放缩次数较少,没有考虑到多级载荷冲击多次放缩之间的影响效应,因此容易造成偶然误差的发生。where i is the total number of design scalings, c 0 is the scaling factor based on the original characteristic curve of the product damping, and the scaling factor is determined by the initial load between the upper and lower ends of the shock absorber after the product is installed. Due to the constant change and adjustment of factors such as the late load of the shock absorber, it is necessary to multiply the last design product by a certain proportion to modify the scaling factor (c 1 , c 2 ,..., ci ), and then to the original design product. The nonlinear curve is continuously scaled and corrected to achieve the design purpose of the designer, but since the scaling method is based on the global scaling of the nonlinear characteristic curve as a whole, it is easy to ignore the regional optimal matching, resulting in The design accuracy of damping is poor, and the number of times of scaling is small, and the influence effect between multiple scalings of multi-level load shocks is not considered, so it is easy to cause accidental errors.

对于已经销售的商用车辆,设计人员对回收的问题车型进行性能调教时,由于问题车型的部分减振元件出现的磨损、变形以及断裂问题,需要对减振元件在实施修复,修复后的减振阻尼需要进行重新设计检验,此时设计时也由于缺乏设计范围的参考,原始的非线性特性曲线的放缩比例因子的变动范围和修复后非线性曲线的特性整体变动放缩比例因子值相差较大,因此需要耗费了较大的维护成本,且调教设计的时间较长,明显影响的产品的设计周期。在某些特殊的情况下,由于成本和生产开发的限制,部分研发人员对于部分问题车型为简化分析的步骤,只能利用已有的部分数据,来模拟线性的阻尼特性曲线来取代非线性特性曲线,这在一定程度上造成较大的匹配误差,与理论寻优值偏差较大,因而最终影响整车减振阻尼的最佳减振匹配结果。For commercial vehicles that have already been sold, when designers adjust the performance of the recovered problem models, due to the wear, deformation and fracture problems of some of the vibration-damping components of the problem models, it is necessary to repair the vibration-damping components. The damping needs to be re-designed and checked. At this time, due to the lack of reference of the design range, the variation range of the scaling factor of the original nonlinear characteristic curve is quite different from the overall variation of the characteristics of the restored nonlinear curve. Therefore, it requires a large maintenance cost, and the design adjustment time is long, which obviously affects the design cycle of the product. In some special cases, due to the limitation of cost and production development, some developers can only use some existing data to simulate the linear damping characteristic curve to replace the nonlinear characteristic in order to simplify the analysis steps for some problem models. curve, which causes a large matching error to a certain extent, and has a large deviation from the theoretical optimization value, which ultimately affects the optimal vibration reduction matching result of the vehicle vibration reduction and damping.

发明内容SUMMARY OF THE INVENTION

本发明的目的是针对现有技术的不足,而提供一种基于商用车整车参数边界元分析方法。这种方法能合理精确的设计非线性阻尼、能提升非线性放缩匹配精确度、能节约开发周期和成本、能削减调教周期且便于形成模型的标准参数放缩数据库,便于对同等车型的减振设计提供参考。The purpose of the present invention is to provide a boundary element analysis method based on the parameters of the entire commercial vehicle in view of the deficiencies of the prior art. This method can reasonably and accurately design nonlinear damping, improve nonlinear scaling and matching accuracy, save development cycle and cost, reduce training cycle, and facilitate the formation of a standard parameter scaling database of the model, which is convenient for reducing the same model. vibration design for reference.

实现本发明目的的技术方案是:The technical scheme that realizes the object of the present invention is:

一种基于商用车整车参数边界元分析方法,与现有技术不同的是,包括如下步骤:A boundary element analysis method based on vehicle parameters of a commercial vehicle, which is different from the prior art, includes the following steps:

1)施加规律性的变化载荷:首先在减振非线性阻尼器的上端口安装压力传感器以收集载荷的变化,同时在减振非线性阻尼器的侧壁上设置上位移传感器和下位移传感器以探测在载荷力作用下的位移变化,在校准设计的初始阶段,对减振非线性阻尼器的上下端口施加预定值为初始载荷N0,初始载荷N0的大小应设定为使得减振非线性阻尼器上的应力片感知到清晰明显的压力,然后,按照载荷间距F0逐步增加载荷,依次增加的载荷力可表示为:N0、N0+F0、N0+2F0、N0+3F0、N0+4F0、N0+5F0,…,N0+nF0,其中,n值取定范围大小由减振非线性阻尼器所能承载的载荷极限应力值来确定;1) Apply a regularly changing load: first, install a pressure sensor on the upper port of the vibration-absorbing nonlinear damper to collect the change in load, and at the same time set an upper displacement sensor and a lower displacement sensor on the side wall of the vibration-absorbing nonlinear damper to To detect the displacement change under the action of the load force, in the initial stage of the calibration design, a predetermined value of initial load N 0 is applied to the upper and lower ports of the vibration damping nonlinear damper, and the size of the initial load N 0 should be set so that the vibration reduction is not The stress piece on the linear damper senses a clear and obvious pressure, and then the load is gradually increased according to the load interval F 0 . The increasing load force can be expressed as: N 0 , N 0 +F 0 , N 0 +2F 0 , N 0 +3F 0 , N 0 +4F 0 , N 0 +5F 0 ,…,N 0 +nF 0 , where the value of n is determined by the limit stress value of the load that the nonlinear damper can bear ;

2)获得阻尼特性曲线:在规律性的载荷应力作用下,测量施加变化载荷在减振阻尼器上作用的采样时间t,同时测量在减振阻尼器侧壁上的上位移传感器和下位移传感器在载荷作用后的位移大小变化,依据粘滞阻尼理论的计算原理,阻尼力FR(t)大小与速度成正比,方向与位移运动速度相反,假定位移量为y(t),按照阻尼力、位移以及时间之间的对应关系,对减振非线性阻尼器上的采集压力传感器上的应力载荷信号和上位移传感器及下位移传感器收集的位移信号进行预处理,进一步得到减振阻尼力随时间变化的非线性阻尼特性曲线,以观测阻尼非线性变化趋势,传统的阻尼非线性曲线是通过整体放缩方式得到非线性阻尼整体特性放大曲线和非线性阻尼整体缩小特性曲线;2) Obtain the damping characteristic curve: under the action of regular load stress, measure the sampling time t of the applied variable load acting on the vibration damping damper, and simultaneously measure the upper displacement sensor and the lower displacement sensor on the side wall of the vibration damping damper The magnitude of the displacement changes after the load is applied. According to the calculation principle of the viscous damping theory, the magnitude of the damping force F R (t) is proportional to the speed, and the direction is opposite to the speed of the displacement. Assuming that the displacement is y(t), according to the damping force The corresponding relationship between , displacement and time, the stress load signal on the pressure sensor collected on the vibration-damping nonlinear damper and the displacement signal collected by the upper and lower displacement sensors are preprocessed, and the vibration-damping force is further obtained. The time-varying nonlinear damping characteristic curve is used to observe the damping nonlinear change trend. The traditional damping nonlinear curve obtains the nonlinear damping overall characteristic amplification curve and the nonlinear damping overall reduction characteristic curve through the overall scaling method;

3)阻尼特性分段加权:依据步骤2)得到的非线性阻尼特性曲线,针对加权放缩因子,提出非线性阻尼的分段离散设计,在压力传感器上的应力载荷信号、上位移传感器和下位移传感器收集的位移信号采集过程中,假定在n不同依次连续的单位时间内,非线性阻尼特性曲线的分段加权放缩因子大小分别为:[c1,c2,c3,...,cn],则原始的非线性加权特性曲线S0在乘以不同的分段加权放缩因子后得到的特性曲线段为[S1,S2,S3,...Sn-1,Sn],其中,为保证曲线放缩后的连续性,在各单位时间节点位置对应的阻尼力数据不参与放缩历程,对应的整体的非线性阻尼加权放缩后得到的曲线表达公式为公式(1):3) Piecewise weighting of damping characteristics: According to the nonlinear damping characteristic curve obtained in step 2), for the weighted scaling factor, a piecewise discrete design of nonlinear damping is proposed. The stress load signal on the pressure sensor, the upper displacement sensor and the lower In the process of collecting displacement signals collected by the displacement sensor, it is assumed that in n different successive unit times, the size of the piecewise weighted scaling factors of the nonlinear damping characteristic curve are: [c 1 ,c 2 ,c 3 ,... ,c n ], then the original nonlinear weighted characteristic curve S 0 is multiplied by different piecewise weighted scaling factors to obtain the characteristic curve segment [S 1 , S 2 , S 3 ,...S n-1 ,S n ], in which, in order to ensure the continuity of the curve after scaling, the damping force data corresponding to the node position of each unit time does not participate in the scaling process, and the curve expression formula obtained after the corresponding overall nonlinear damping weighted scaling is formula (1):

Figure GDA0003531494490000031
Figure GDA0003531494490000031

按照上述的离散化过程,原始的非线性阻尼特性曲线逐步实现了离散化,此外,在分段加权放缩因子的取值上,非线性阻尼特性曲线的分段加权放缩因子之间是彼此相互依赖的,以任意的分段加权放缩因子ci和ci+1进行说明,在施加分段加权放缩因子ci后,对应的放缩非线性阻尼特性段为Si,此时若非阻尼特性放大因子曲线S(0n-i)·(1+ci)的对阻尼器的减振效果优于对非阻尼特性缩小因子曲线S(0n-i)·(1-ci)时,此时次级的分段放缩因子ci+1将往趋于向放大方向进行修正,可表示为:According to the above discretization process, the original nonlinear damping characteristic curve is gradually discretized. In addition, in the value of the piecewise weighted scaling factor, the piecewise weighted scaling factors of the nonlinear damping characteristic curve are mutually exclusive. Interdependent, with arbitrary piecewise weighted scaling factors c i and c i+1 for illustration, after applying piecewise weighted scaling factor c i , the corresponding scaling nonlinear damping characteristic segment is S i , at this time If the non-damping characteristic amplification factor curve S (0n-i) ·(1+c i ) has a better damping effect on the damper than the non-damping characteristic reduction factor curve S (0n-i) · (1-ci ) , at this time, the secondary segment scaling factor c i+1 will tend to be corrected in the direction of enlargement, which can be expressed as:

ci+1=cii c i+1 = c ii

其中ξi为分段放缩因子的变异系数,对应的ci+1的等效非线性阻尼特性曲线可表示为:where ξ i is the coefficient of variation of the piecewise scaling factor, and the corresponding equivalent nonlinear damping characteristic curve of c i+1 can be expressed as:

S0=S0i+1·(1±ci+1)=S0i·(1±cii);S 0 =S 0i+1 ·(1±ci +1 )=S 0i ·(1± ci +ξ i ) ;

4)建立分段加权参数集:考虑到步骤3)中各相邻分段放缩因子之间的交互影响效应,分别收集在各段上分段放缩因子和变异系数值可准确量化阻尼特性曲线特征,便于寻求特定的减振机构载荷下振动衰减的最佳放缩比,在各段上收集分段放缩因子和变异系数值后,逐步建立分段加权参数集可表示为:4) Establish a segmented weighted parameter set: Considering the interaction effect between adjacent segment scaling factors in step 3), separately collecting segment scaling factor and variation coefficient values on each segment can accurately quantify damping characteristics The curve feature is convenient to find the optimal scaling ratio of vibration attenuation under the load of a specific vibration damping mechanism. After collecting the segment scaling factor and variation coefficient value on each segment, the segment weighting parameter set is gradually established and can be expressed as:

S1:S(0,1),c1,0S 1 :S (0,1) ,c 1 ,0

S2:S(0,2),c22 S 2 :S (0,2) ,c 22

S3:S(0,3),c33 S 3 :S (0,3) ,c 33

...:...,...,......:...,...,...

Sn-1:S(0,n-1),cn-1n-1 S n-1 :S (0,n-1) ,c n-1n-1

Sn:S(0,n),cnn S n : S (0,n) , c n ,ξn

其中,S(0,1),S(0,2),S(0,3),...,S(0,n-1),S(0,n)表示原有的非线性阻尼特性段,c1,c2,c3,...,cn-1,cn表示非线性阻尼特性曲线的分段放缩因子,0,ξ23,...,ξn为非线性阻尼特性曲线各段变异系数值;Among them, S (0,1) ,S (0,2) ,S (0,3) ,...,S (0,n-1) ,S (0,n) represent the original nonlinear damping characteristics segment, c 1 , c 2 , c 3 ,...,c n-1 ,c n represent the piecewise scaling factor of the nonlinear damping characteristic curve, 0,ξ 23 ,...,ξ n is Coefficient of variation value of each segment of nonlinear damping characteristic curve;

5)参数边界元提取:原始的非线性阻尼特性曲线在乘以各自的分段放缩因子和变异系数值后,假定变动区间可表示为[S0i·(1+cii)S0i·(1-cii)],则获得的非线性分段加权特性曲线S0在对应的变动区间上都将获得一个最佳的参数值(cj和ξj),该参数值可使得减振器阻尼的减振效果在对第i段的放缩历程中趋于最优,类似的,分别将各段内的最佳等分段放缩因子和变异系数等参数值逐一进行提取,并用虚拟的曲线将这些提取的参数值进行勾勒,便可得到整体的非线性阻尼特性曲线的最优参数边界元,该边界元值组合可使得减振器整体的减振优化趋于最优,也是非线性特性曲线的最终设计目标;5) Extraction of parameter boundary elements: After multiplying the original nonlinear damping characteristic curve by the respective piecewise scaling factor and coefficient of variation value, the assumed variation interval can be expressed as [S 0i ·(1+c ii )S 0i ·(1-c ii )], the obtained nonlinear piecewise weighted characteristic curve S 0 will obtain an optimal parameter value (c j and ξ j ) in the corresponding variation interval. The value can make the damping effect of the shock absorber damping tend to be optimal in the scaling process of the i-th segment. Extract and outline these extracted parameter values with virtual curves, and then the optimal parameter boundary element of the overall nonlinear damping characteristic curve can be obtained. The combination of boundary element values can make the overall vibration reduction optimization of the shock absorber tend to be The optimum is also the final design goal of the nonlinear characteristic curve;

6)整车全局边界元设计:在完成单个减振阻尼整个分段加权参数集的建立以及最优参数边界元的获取后,由于商用车整车上分布有多个减振阻尼单元,且各自的载荷工况也不相同,因此在各减振阻尼的设计分段加权参数以及最优参数边界元也不同,因此,对整车角度设计时,每个独立的减振阻尼需要分别的乘以惩罚因子,来分别配合其他的减振阻尼单元实现整车上全局最优减振阻尼分布,可表示为:6) The global boundary element design of the whole vehicle: After the establishment of the whole segmented weighted parameter set of a single vibration damping and the acquisition of the optimal parameter boundary element, since there are multiple vibration reduction and damping units distributed on the commercial vehicle, and each The load conditions are also different, so the design segment weighting parameters and optimal parameter boundary elements of each vibration damping are also different. Therefore, when designing the angle of the whole vehicle, each independent vibration damping needs to be multiplied by The penalty factor is used to cooperate with other vibration reduction and damping units to achieve the global optimal vibration reduction and damping distribution on the vehicle, which can be expressed as:

Stotal=η1∑(S1,c11)+η2∑(S2,c22)+,...,ηn∑(Sn,cnn)S total1 ∑(S 1 ,c 11 )+η 2 ∑(S 2 ,c 22 )+,...,η n ∑(S n ,c nn )

其中,η12,...,ηn为整车上各非线性阻尼的分配罚值,S1,S2,...,Sn为非线性分段加权特性曲线,c1,c2,...,cn为非线性阻尼特性曲线的分段放缩因子,ξ12,...,ξn分段放缩因子的变异系数。Among them, η 1 , η 2 ,..., η n are the distribution penalties of each nonlinear damping on the vehicle, S 1 , S 2 ,..., Sn are nonlinear piecewise weighted characteristic curves, c 1 ,c 2 ,...,cn is the piecewise scaling factor of the nonlinear damping characteristic curve, and the coefficient of variation of the piecewise scaling factor of ξ 12 ,..., ξn .

本技术方案提供一种更加合理精确的非线性阻尼的设计方法,通过对原有特性曲线S0进行离散分解,进行多小范围的特性加权,最终形成多段放缩加权的非线性特性曲线,与原有的特性曲线的放缩方法对比,采用离散的放缩加权方法更有利于对使得非线性特性曲线设计逼近于目标的设计要求,避免了传统方法在大范围上的乘积放缩而造成设计误差的发生本技术方案采用的放缩因子在离散各段上均不相同,在研究的各小段的离散区间上,放缩因子大小主要由参数对性能的敏感程度决定的,参数变动对调教性能影响效果明显,则放缩因子的设定值就小,以进行小范围的放缩设计。反之,当参数变动对调教性能影响效果迟钝时,放缩因子的设定值就应该大,以快速的避免迟钝的因子范围,更快速的找到敏感的参数变动区间,进行寻求到各区间上最佳的非线性特性的放缩阻尼值。The technical solution provides a more reasonable and accurate nonlinear damping design method. By discretely decomposing the original characteristic curve S 0 , and carrying out characteristic weighting in multiple small ranges, a multi-segment scaling and weighting nonlinear characteristic curve is finally formed. Compared with the original scaling methods of the characteristic curve, the discrete scaling and weighting method is more conducive to making the design of the nonlinear characteristic curve close to the design requirements of the target, and avoids the product scaling caused by the traditional method in a large range. Occurrence of Error The scaling factor used in this technical solution is different in each discrete segment. In the discrete interval of each sub-segment studied, the scaling factor is mainly determined by the sensitivity of parameters to performance. If the effect is obvious, the setting value of the scaling factor is small, so as to carry out a small-scale scaling design. On the contrary, when the effect of parameter changes on the tuning performance is slow, the setting value of the scaling factor should be large, so as to quickly avoid the slow factor range, find the sensitive parameter change range more quickly, and search for the most sensitive parameter range in each range. Scale damping value for optimal nonlinear behavior.

本技术方案在放缩因子基准的确定上,是以在离散的上段非线性设计特性曲线为基准,而不以统一的设计标准为设计准则,考虑了阻尼放缩的连续性和载荷连续变动所造成的阻尼特性之间的交互影响效应,从而提升了非线性放缩匹配精确度。In the determination of the scaling factor benchmark, this technical solution takes the discrete upper segment nonlinear design characteristic curve as the benchmark, rather than the unified design standard as the design criterion, and considers the continuity of the damping scaling and the continuous variation of the load. The resulting interaction effect between damping characteristics improves the accuracy of nonlinear scaling and matching.

本技术方案在放缩因子的上下的放缩比例上参考车身阻尼的曲线的偏向特性,上下的放缩幅度也不与传统方法相同,避免了传统设计方法对的不必要非线性特性设计区间的分析,节约了开发周期和成本。The technical solution refers to the deflection characteristics of the body damping curve in the scaling ratio of the scaling factor up and down, and the scaling range of the upper and lower is not the same as that of the traditional method, which avoids the unnecessary nonlinear characteristic design interval of the traditional design method. Analysis, saving development cycle and cost.

本技术方案提取了离散各段上的设计最优值,通过将各段的最优值进行勾勒,可逐步得到各段最优值形成的最优参数边界元,使得最终的设计结果更加趋于精确化,设计结果值便于设计人员后期调教参考,且调教因仅仅只需对多小范围内的特性曲线值考虑,且避免了对特性迟钝的分析,因而大大削减了调教周期且便于各公司和研发机构内部形成模型的标准参数放缩数据库,便于对同等车型的减振设计提供参考。This technical solution extracts the optimal design values of each discrete segment, and by outlining the optimal values of each segment, the optimal parameter boundary elements formed by the optimal values of each segment can be gradually obtained, so that the final design result tends to be more Accurate, the design result value is convenient for designers to adjust and reference later, and because the adjustment only needs to consider the characteristic curve value in a small range, and avoids the analysis of the characteristics, thus greatly reducing the adjustment cycle and convenient for companies and companies. The standard parameter scaling database of the model is formed within the R&D institution, which is convenient to provide reference for the vibration reduction design of the same model.

本技术方案考虑了在设计过程中商用车振动变化趋势,不断进行分段修复,使得修改后的非线性特性曲线在原有小段非线性特性最优区域不断增多,设计后的非线性设计结果使得车辆产业对模型调教更加具备可信度和实用性,减低开发和后期维护调整周期。This technical solution takes into account the change trend of the vibration of commercial vehicles during the design process, and continuously performs segmental repairs, so that the modified nonlinear characteristic curves continue to increase in the optimal region of the original small segment nonlinear characteristics, and the nonlinear design results after design make the vehicle The industry is more credible and practical for model tuning, reducing development and post-maintenance adjustment cycles.

这种方法能合理精确的设计非线性阻尼、能提升非线性放缩匹配精确度、能节约开发周期和成本、能削减调教周期且便于形成模型的标准参数放缩数据库,便于对同等车型的减振设计提供参考。This method can reasonably and accurately design nonlinear damping, improve nonlinear scaling and matching accuracy, save development cycle and cost, reduce training cycle, and facilitate the formation of a standard parameter scaling database of the model, which is convenient for reducing the same model. vibration design for reference.

附图说明Description of drawings

图1为实施例中商用车整车参数边界元方法流程示意图;FIG. 1 is a schematic flowchart of a boundary element method for parameters of a commercial vehicle in an embodiment;

图2为实施例中阻尼器上传感器的分布图示意图;2 is a schematic diagram of a distribution diagram of sensors on a damper in an embodiment;

图3为实施例中阻尼非线性特性曲线示意图;3 is a schematic diagram of a damping nonlinear characteristic curve in an embodiment;

图4为实施例中非线性阻尼分段放缩趋势图;Fig. 4 is the nonlinear damping segment scaling trend diagram in the embodiment;

图5为实施例中参数边界元曲线提取示意图。FIG. 5 is a schematic diagram of parameter boundary element curve extraction in an embodiment.

图中,1.压力传感器 2.上位移传感器 3.减振非线性阻尼器 4.下位移传感器 5.非线性阻尼整体特性放大曲线 6非线性阻尼特性曲线 7.非线性阻尼整体缩小特性曲线8.表达函数为S(0n-i)·(1+ci)的非阻尼特性缩小因子曲线 9.表达函数为S(0n-i)·(1-ci)的非阻尼特性放大因子曲线 10.变动区间 11.最优参数边界元。In the figure, 1. Pressure sensor 2. Upper displacement sensor 3. Vibration-absorbing nonlinear damper 4. Lower displacement sensor 5. Non-linear damping overall characteristic amplification curve 6 Non-linear damping characteristic curve 7. Non-linear damping overall reduction characteristic curve 8 . Undamped characteristic reduction factor curve expressing function S (0n- i ) ·(1+ci ) 9. Undamping characteristic scaling factor curve expressing function S (0n-i) · (1-ci ) 10 . Variation interval 11. Optimal parameter boundary element.

具体实施方式Detailed ways

下面结合附图和实施例对本发明的内容作进一步的阐述,但不是对本发明的限定。The content of the present invention will be further elaborated below in conjunction with the accompanying drawings and embodiments, but it is not intended to limit the present invention.

实施例:Example:

一种基于商用车整车参数边界元分析方法,包括如下步骤:A boundary element analysis method based on the parameters of a commercial vehicle, comprising the following steps:

1)施加规律性的变化载荷:参见图2,首先在减振非线性阻尼器3的上端口安装压力传感器1以收集载荷的变化,同时在减振非线性阻尼器3的侧壁上设置上位移传感器2和下位移传感器4以探测在载荷力作用下的位移变化,在校准设计的初始阶段,对减振非线性阻尼器3的上下端口施加预定值为初始载荷N0,初始载荷N0的大小应设定为使得减振非线性阻尼器3上的压力传感器1感知到清晰明显的压力,然后,按照载荷间距F0逐步增加载荷,依次增加的载荷力可表示为:N0、N0+F0、N0+2F0、N0+3F0、N0+4F0、N0+5F0,…,N0+nF0,其中,n值取定范围大小由减振非线性阻尼器3所能承载的载荷极限应力值来确定;1) Apply a regularly changing load: Referring to Figure 2, first install a pressure sensor 1 on the upper port of the vibration-absorbing nonlinear damper 3 to collect the load changes, and at the same time set a pressure sensor 1 on the side wall of the vibration-absorbing nonlinear damper 3. The displacement sensor 2 and the lower displacement sensor 4 are used to detect the displacement change under the action of the load force. In the initial stage of the calibration design, a predetermined value of initial load N 0 is applied to the upper and lower ports of the vibration-absorbing nonlinear damper 3, and the initial load N 0 should be set so that the pressure sensor 1 on the vibration-absorbing nonlinear damper 3 senses a clear and obvious pressure, and then the load is gradually increased according to the load spacing F 0 , and the sequentially increased load force can be expressed as: N 0 , N 0 +F 0 , N 0 +2F 0 , N 0 +3F 0 , N 0 +4F 0 , N 0 +5F 0 ,…,N 0 +nF 0 , where the value of n is determined by the nonlinear vibration damping The limit stress value of the load that the damper 3 can carry is determined;

2)获得阻尼特性曲线:在规律性的载荷应力作用下,测量施加变化载荷在减振阻尼器3上作用的采样时间t,同时测量在减振阻尼器3侧壁上的上位移传感器2和下位移传感器4在载荷作用后的位移大小变化,依据粘滞阻尼理论的计算原理,阻尼力FR(t)大小与速度成正比,方向与位移运动速度相反,假定位移量为y(t),按照阻尼力、位移以及时间之间的对应关系,对减振非线性阻尼器3上的采集压力传感器1上的应力载荷信号和上位移传感器2及下位移传感器4收集的位移信号进行预处理,进一步得到减振阻尼力随时间变化的非线性阻尼特性曲线6,如图3所示,以观测阻尼非线性变化趋势,传统的阻尼非线性曲线是通过整体放缩方式得到非线性阻尼整体特性放大曲线5和非线性阻尼整体缩小特性曲线7;2) Obtain the damping characteristic curve: under the action of regular load stress, measure the sampling time t of the applied variable load acting on the vibration damping damper 3, and simultaneously measure the upper displacement sensor 2 and the upper displacement sensor on the side wall of the vibration damping damper 3. The displacement of the lower displacement sensor 4 changes after the load is applied. According to the calculation principle of the viscous damping theory, the size of the damping force F R (t) is proportional to the speed, and the direction is opposite to the displacement speed. The displacement is assumed to be y(t) ,According to the corresponding relationship between damping force, displacement and time, preprocess the stress load signal collected from the pressure sensor 1 on the vibration-absorbing nonlinear damper 3 and the displacement signals collected by the upper displacement sensor 2 and the lower displacement sensor 4 , and further obtain the nonlinear damping characteristic curve 6 of the damping force changing with time, as shown in Figure 3, in order to observe the nonlinear change trend of damping, the traditional nonlinear damping curve is to obtain the overall nonlinear damping characteristic through the overall scaling method Amplification curve 5 and nonlinear damping overall reduction characteristic curve 7;

3)阻尼特性分段加权:如图4所示,依据步骤2)得到的非线性阻尼特性曲线6,针对加权放缩因子,提出非线性阻尼的分段离散设计,在压力传感器1上的应力载荷信号、上位移传感器2和下位移传感器4收集的位移信号采集过程中,假定在n不同依次连续的单位时间内,非线性阻尼特性曲线的分段加权放缩因子大小分别为:[c1,c2,c3,...,cn],则原始的非线性加权特性曲线S0在乘以不同的分段加权放缩因子后得到的特性曲线段为[S1,S2,S3,...Sn-1,Sn],其中,为保证曲线放缩后的连续性,在各单位时间节点位置对应的阻尼力数据不参与放缩历程,对应的整体的非线性阻尼加权放缩后得到的曲线表达公式为公式(1):3) Piecewise weighting of damping characteristics: As shown in Figure 4, according to the nonlinear damping characteristic curve 6 obtained in step 2), for the weighted scaling factor, a piecewise discrete design of nonlinear damping is proposed. The stress on the pressure sensor 1 During the collection process of the load signal, the displacement signal collected by the upper displacement sensor 2 and the lower displacement sensor 4, it is assumed that in n different successive unit times, the piecewise weighted scaling factors of the nonlinear damping characteristic curve are: [c 1 ,c 2 ,c 3 ,...,c n ], then the original nonlinear weighted characteristic curve S 0 is multiplied by different piecewise weighted scaling factors to obtain the characteristic curve segment [S 1 , S 2 , S 3 ,...S n-1 ,S n ], in which, in order to ensure the continuity of the curve after scaling, the damping force data corresponding to the node position of each unit time does not participate in the scaling process, and the corresponding overall nonlinear The curve expression formula obtained after damping weighted scaling is formula (1):

Figure GDA0003531494490000071
Figure GDA0003531494490000071

按照上述的离散化过程,原始的非线性阻尼特性曲线逐步实现了离散化,此外,在分段加权放缩因子的取值上,非线性阻尼特性曲线的分段加权放缩因子之间是彼此相互依赖的,以任意的分段加权放缩因子ci和ci+1进行说明,在施加分段加权放缩因子ci后,对应的放缩非线性阻尼特性段为Si,此时若非阻尼特性放大因子曲线S(0n-i)·(1+ci)8的对阻尼器的减振效果优于对非阻尼特性缩小因子曲线S(0n-i)·(1-ci)9时,此时次级的分段放缩因子ci+1将往趋于向放大方向进行修正,可表示为:According to the above discretization process, the original nonlinear damping characteristic curve is gradually discretized. In addition, in the value of the piecewise weighted scaling factor, the piecewise weighted scaling factors of the nonlinear damping characteristic curve are mutually exclusive. Interdependent, with arbitrary piecewise weighted scaling factors c i and c i+1 for illustration, after applying piecewise weighted scaling factor c i , the corresponding scaling nonlinear damping characteristic segment is S i , at this time If the non-damping characteristic amplification factor curve S (0n-i) ·(1+c i )8, the damping effect of the damper is better than that of the non-damping characteristic reduction factor curve S (0n-i) · (1-ci ) 9, the secondary segment scaling factor c i+1 will tend to be corrected in the direction of enlargement, which can be expressed as:

ci+1=cii c i+1 = c ii

其中ξi为分段放缩因子的变异系数,对应的ci+1的等效非线性阻尼特性曲线可表示为:where ξ i is the variation coefficient of the piecewise scaling factor, and the corresponding equivalent nonlinear damping characteristic curve of ci+1 can be expressed as:

S0=S0i+1·(1±ci+1)=S0i·(1±cii);S 0 =S 0i+1 ·(1±ci +1 )=S 0i ·(1± ci +ξ i ) ;

4)建立分段加权参数集:考虑到步骤3)中各相邻分段放缩因子之间的交互影响效应,分别收集在各段上分段放缩因子和变异系数值可准确量化阻尼特性曲线特征,便于寻求特定的减振机构载荷下振动衰减的最佳放缩比,在各段上收集分段放缩因子和变异系数值后,逐步建立分段加权参数集可表示为:4) Establish a segmented weighted parameter set: Considering the interaction effect between adjacent segment scaling factors in step 3), separately collecting segment scaling factor and variation coefficient values on each segment can accurately quantify damping characteristics The curve feature is convenient to find the optimal scaling ratio of vibration attenuation under the load of a specific vibration damping mechanism. After collecting the segment scaling factor and variation coefficient value on each segment, the segment weighting parameter set is gradually established and can be expressed as:

S1:S(0,1),c1,0S 1 :S (0,1) ,c 1 ,0

S2:S(0,2),c22 S 2 :S (0,2) ,c 22

S3:S(0,3),c33 S 3 :S (0,3) ,c 33

...:...,...,......:...,...,...

Sn-1:S(0,n-1),cn-1n-1 S n-1 :S (0,n-1) ,c n-1n-1

Sn:S(0,n),cnn S n : S (0,n) , c n ,ξn

其中,S(0,1),S(0,2),S(0,3),...,S(0,n-1),S(0,n)表示原有的非线性阻尼特性段,c1,c2,c3,...,cn-1,cn表示非线性阻尼特性曲线的分段放缩因子,0,ξ23,...,ξn为非线性阻尼特性曲线各段变异系数值;Among them, S (0,1) ,S (0,2) ,S (0,3) ,...,S (0,n-1) ,S (0,n) represent the original nonlinear damping characteristics segment, c 1 , c 2 , c 3 ,...,c n-1 ,c n represent the piecewise scaling factor of the nonlinear damping characteristic curve, 0,ξ 23 ,...,ξ n is Coefficient of variation value of each segment of nonlinear damping characteristic curve;

5)参数边界元提取:如图5所示,原始的非线性阻尼特性曲线6在乘以各自的分段放缩因子和变异系数值后,假定变动区间10可表示为[S0i·(1+cii)S0i·(1-cii)],则获得的非线性分段加权特性曲线S0在对应的变动区间10都将获得一个最佳的参数值(cj和ξj),该参数值可使得减振器阻尼的减振效果在对第i段的放缩历程中趋于最优,类似的,分别将各段内的最佳等分段放缩因子和变异系数等参数值逐一进行提取,并用虚拟的曲线将这些提取的参数值进行勾勒,便可得到整体的非线性阻尼特性曲线的最优参数边界元11,该边界元值组合可使得减振器整体的减振优化趋于最优,也是非线性特性曲线的最终设计目标;5) Extraction of parameter boundary elements: As shown in Figure 5, the original nonlinear damping characteristic curve 6 is multiplied by the respective piecewise scaling factor and coefficient of variation values, and the assumed variation interval 10 can be expressed as [S 0i ·(1 +c ii )S 0i ·(1- cii )], then the obtained nonlinear piecewise weighted characteristic curve S 0 will obtain an optimal parameter value (c j and ξ j ), this parameter value can make the damping effect of the shock absorber tend to be optimal in the scaling process of the i-th segment. Similarly, the optimal equal-segment scaling in each segment The parameter values such as factor and coefficient of variation are extracted one by one, and these extracted parameter values are outlined with a virtual curve, and the optimal parameter boundary element 11 of the overall nonlinear damping characteristic curve can be obtained. The overall vibration reduction optimization of the vibrator tends to be optimal, which is also the final design goal of the nonlinear characteristic curve;

6)整车全局边界元设计:在完成单个减振阻尼整个分段加权参数集的建立以及最优参数边界元的获取后,由于商用车整车上分布有多个减振阻尼单元,且各自的载荷工况也不相同,因此在各减振阻尼的设计分段加权参数以及最优参数边界元也不同,因此,对整车角度设计时,每个独立的减振阻尼需要分别的乘以惩罚因子,来分别配合其他的减振阻尼单元实现整车上全局最优减振阻尼分布,可表示为:6) The global boundary element design of the whole vehicle: After the establishment of the whole segmented weighted parameter set of a single vibration damping and the acquisition of the optimal parameter boundary element, since there are multiple vibration reduction and damping units distributed on the commercial vehicle, and each The load conditions are also different, so the design segment weighting parameters and optimal parameter boundary elements of each vibration damping are also different. Therefore, when designing the angle of the whole vehicle, each independent vibration damping needs to be multiplied by The penalty factor is used to cooperate with other vibration reduction and damping units to achieve the global optimal vibration reduction and damping distribution on the vehicle, which can be expressed as:

Stotal=η1∑(S1,c11)+η2∑(S2,c22)+,...,ηn∑(Sn,cnn)S total1 ∑(S 1 ,c 11 )+η 2 ∑(S 2 ,c 22 )+,...,η n ∑(S n ,c nn )

其中,η12,...,ηn为整车上各非线性阻尼的分配罚值,S1,S2,...,Sn为非线性分段加权特性曲线,c1,c2,...,cn为非线性阻尼特性曲线的分段放缩因子,ξ12,...,ξn分段放缩因子的变异系数。Among them, η 1 , η 2 ,..., η n are the distribution penalties of each nonlinear damping on the vehicle, S 1 , S 2 ,..., Sn are nonlinear piecewise weighted characteristic curves, c 1 ,c 2 ,...,cn is the piecewise scaling factor of the nonlinear damping characteristic curve, and the coefficient of variation of the piecewise scaling factor of ξ 12 ,..., ξn .

Claims (1)

1.一种基于商用车整车参数边界元分析方法,其特征是,包括如下步骤:1. a method for boundary element analysis based on the parameters of commercial vehicles, is characterized in that, comprises the steps: 1)施加规律性的变化载荷:首先在减振非线性阻尼器的上端口安装压力传感器,同时在减振非线性阻尼器的侧壁上设置上位移传感器和下位移传感器,在校准设计的初始阶段,对减振非线性阻尼器上下的端口施加预定值为初始载荷N0,初始载荷的大小应设定为使得减振非线性阻尼器上的压力传感器感知到清晰明显的压力,然后,按照载荷间距F0逐步增加载荷,依次增加的载荷力可表示为:N0、N0+F0、N0+2F0、N0+3F0、N0+4F0、N0+5F0,…,N0+nF0,其中,n值取定范围大小由减振非线性阻尼器所能承载的载荷极限应力值来确定;1) Apply a regularly changing load: first install a pressure sensor on the upper port of the vibration-absorbing nonlinear damper, and at the same time set an upper displacement sensor and a lower displacement sensor on the side wall of the vibration-absorbing nonlinear damper, at the initial stage of the calibration design. At this stage, a predetermined value of initial load N 0 is applied to the upper and lower ports of the damping nonlinear damper, and the magnitude of the initial load should be set so that the pressure sensor on the damping nonlinear damper can sense a clear and obvious pressure, and then, according to The load spacing F 0 increases the load step by step, and the increasing load force can be expressed as: N 0 , N 0 +F 0 , N 0 +2F 0 , N 0 +3F 0 , N 0 +4F 0 , N 0 +5F 0 , ...,N 0 +nF 0 , where the value of n is determined by the limit stress value of the load that the vibration-absorbing nonlinear damper can carry; 2)获得阻尼特性曲线:在规律性的载荷应力作用下,测量施加变化载荷在减振阻尼器上作用的采样时间t,同时测量在减振阻尼器侧壁上的上位移传感器和下位移传感器在载荷作用后的位移大小变化,依据粘滞阻尼理论的计算原理,阻尼力FR(t)大小与速度成正比,方向与位移运动速度相反,假定位移量为y(t),按照阻尼力、位移以及时间之间的对应关系,对减振阻尼器上的采集压力传感器上的应力载荷信号和上位移传感器及下位移传感器收集的位移信号进行预处理,进一步得到减振阻尼力随时间变化的非线性阻尼特性曲线;2) Obtain the damping characteristic curve: under the action of regular load stress, measure the sampling time t of the applied variable load acting on the vibration damping damper, and simultaneously measure the upper displacement sensor and the lower displacement sensor on the side wall of the vibration damping damper The magnitude of the displacement changes after the load is applied. According to the calculation principle of the viscous damping theory, the magnitude of the damping force F R (t) is proportional to the speed, and the direction is opposite to the speed of the displacement. Assuming that the displacement is y(t), according to the damping force The corresponding relationship between , displacement and time, the stress load signal collected from the pressure sensor on the vibration damping damper and the displacement signal collected by the upper displacement sensor and the lower displacement sensor are preprocessed, and the change of the vibration damping force with time is further obtained. The nonlinear damping characteristic curve of ; 3)阻尼特性分段加权:依据步骤2)得到的非线性阻尼特性曲线,针对加权放缩因子,提出非线性阻尼的分段离散设计,在压力传感器上的应力载荷信号、上位移传感器和下位移传感器收集的位移信号采集过程中,假定在n不同依次连续的单位时间内,非线性阻尼特性曲线的分段加权放缩因子大小分别为:[c1,c2,c3,...,cn],则原始的非线性加权特性曲线S0在乘以不同的分段加权放缩因子后得到的特性曲线段为[S1,S2,S3,...Sn-1,Sn],其中,在各单位时间节点位置对应的阻尼力数据不参与放缩历程,对应的整体的非线性阻尼加权放缩后得到的曲线表达公式为公式(1):3) Piecewise weighting of damping characteristics: According to the nonlinear damping characteristic curve obtained in step 2), for the weighted scaling factor, a piecewise discrete design of nonlinear damping is proposed. The stress load signal on the pressure sensor, the upper displacement sensor and the lower In the process of collecting displacement signals collected by the displacement sensor, it is assumed that in n different successive unit times, the size of the piecewise weighted scaling factors of the nonlinear damping characteristic curve are: [c 1 ,c 2 ,c 3 ,... ,c n ], then the original nonlinear weighted characteristic curve S 0 is multiplied by different piecewise weighted scaling factors to obtain the characteristic curve segment [S 1 , S 2 , S 3 ,...S n-1 ,S n ], wherein the damping force data corresponding to the node position of each unit time does not participate in the scaling process, and the corresponding curve expression formula obtained after weighted scaling of the overall nonlinear damping is formula (1):
Figure FDA0003531494480000011
Figure FDA0003531494480000011
按照上述的离散化过程,原始的非线性阻尼特性曲线逐步实现了离散化,此外,在分段加权放缩因子的取值上,非线性阻尼特性曲线的分段加权放缩因子之间是彼此相互依赖的,以任意的分段加权放缩因子ci和ci+1进行说明,在施加分段加权放缩因子ci后,对应的放缩非线性阻尼特性段为Si,此时若非阻尼特性放大因子曲线S(0n-i)·(1+ci)的对阻尼器的减振效果优于对非阻尼特性缩小因子曲线S(0n-i)·(1-ci)时,此时次级的分段放缩因子ci+1将往趋于向放大方向进行修正,可表示为:According to the above discretization process, the original nonlinear damping characteristic curve is gradually discretized. In addition, in the value of the piecewise weighted scaling factor, the piecewise weighted scaling factors of the nonlinear damping characteristic curve are mutually exclusive. Interdependent, with arbitrary piecewise weighted scaling factors c i and c i+1 for illustration, after applying piecewise weighted scaling factor c i , the corresponding scaling nonlinear damping characteristic segment is S i , at this time If the non-damping characteristic amplification factor curve S (0n-i) ·(1+c i ) has a better damping effect on the damper than the non-damping characteristic reduction factor curve S (0n-i) · (1-ci ) , at this time, the secondary segment scaling factor c i+1 will tend to be corrected in the direction of enlargement, which can be expressed as: ci+1=cii c i+1 = c ii 其中ξi为分段放缩因子的变异系数,对应的ci+1的等效非线性阻尼特性曲线可表示为:where ξ i is the coefficient of variation of the piecewise scaling factor, and the corresponding equivalent nonlinear damping characteristic curve of c i+1 can be expressed as: S0=S0i+1·(1±ci+1)=S0i·(1±cii);S 0 =S 0i+1 ·(1±ci +1 )=S 0i ·(1± ci +ξ i ) ; 4)建立分段加权参数集:在各段上收集分段放缩因子和变异系数值后,逐步建立分段加权参数集可表示为:4) Establishing a segmented weighted parameter set: After collecting the segmented scaling factor and coefficient of variation values on each segment, the stepwise establishment of a segmented weighted parameter set can be expressed as: S1:S(0,1),c1,0S 1 :S (0,1) ,c 1 ,0 S2:S(0,2),c22 S 2 :S (0,2) ,c 22 S3:S(0,3),c33 S 3 :S (0,3) ,c 33 ...:...,...,......:...,...,... Sn-1:S(0,n-1),cn-1n-1 S n-1 :S (0,n-1) ,c n-1n-1 Sn:S(0,n),cnn S n : S (0,n) , c n ,ξn 其中,S(0,1),S(0,2),S(0,3),...,S(0,n-1),S(0,n)表示原有的非线性阻尼特性段,c1,c2,c3,...,cn-1,cn表示非线性阻尼特性曲线的分段放缩因子,0,ξ23,...,ξn为非线性阻尼特性曲线各段变异系数值;Among them, S (0,1) ,S (0,2) ,S (0,3) ,...,S (0,n-1) ,S (0,n) represent the original nonlinear damping characteristics segment, c 1 , c 2 , c 3 ,...,c n-1 ,c n represent the piecewise scaling factor of the nonlinear damping characteristic curve, 0,ξ 23 ,...,ξ n is Coefficient of variation value of each segment of nonlinear damping characteristic curve; 5)参数边界元提取:原始的非线性阻尼特性曲线在乘以各自的分段放缩因子和变异系数值后,假定变动区间可表示为[S0i·(1+cii)S0i·(1-cii)],则获得的非线性分段加权特性曲线S0在对应的变动区间都将获得一个最佳的参数值(cj和ξj),该参数值可使得减振器阻尼的减振效果在对第i段的放缩历程中趋于最优,分别将各段内的最佳等分段放缩因子和变异系数等参数值逐一进行提取,并用虚拟的曲线将这些提取的参数值进行勾勒,便可得到整体的非线性阻尼特性曲线的最优参数边界元,该边界元值组合可使得减振器整体的减振优化趋于最优,也是非线性特性曲线的最终设计目标;5) Extraction of parameter boundary elements: After multiplying the original nonlinear damping characteristic curve by the respective piecewise scaling factor and coefficient of variation value, the assumed variation interval can be expressed as [S 0i ·(1+c ii )S 0i ·(1-c ii )], then the obtained nonlinear piecewise weighted characteristic curve S 0 will obtain an optimal parameter value (c j and ξ j ) in the corresponding variation interval. It can make the damping effect of the shock absorber tend to be optimal in the scaling process of the i-th segment. The virtual curve outlines these extracted parameter values, and the optimal parameter boundary element of the overall nonlinear damping characteristic curve can be obtained. is the final design goal of the nonlinear characteristic curve; 6)整车全局边界元设计:在完成单个减振阻尼整个分段加权参数集的建立以及最优参数边界元的获取后,对整车角度设计时,每个独立的减振阻尼需要分别的乘以惩罚因子,来分别配合其他的减振阻尼单元实现整车上全局最优减振阻尼分布,可表示为:6) The global boundary element design of the whole vehicle: After completing the establishment of the whole segmented weighted parameter set of a single vibration damping and the acquisition of the optimal parameter boundary element, when designing the angle of the whole vehicle, each independent vibration damping needs to be separately designed. Multiply by the penalty factor to cooperate with other vibration reduction and damping units to achieve the global optimal vibration reduction and damping distribution on the vehicle, which can be expressed as: Stotal=η1∑(S1,c11)+η2∑(S2,c22)+,...,ηn∑(Sn,cnn)S total1 ∑(S 1 ,c 11 )+η 2 ∑(S 2 ,c 22 )+,...,η n ∑(S n ,c nn ) 其中,η12,...,ηn为整车上各非线性阻尼的分配罚值,S1,S2,...,Sn为非线性分段加权特性曲线,c1,c2,...,cn为非线性阻尼特性曲线的分段放缩因子,ξ12,...,ξn分段放缩因子的变异系数。Among them, η 1 , η 2 ,..., η n are the distribution penalties of each nonlinear damping on the vehicle, S 1 , S 2 ,..., Sn are nonlinear piecewise weighted characteristic curves, c 1 ,c 2 ,...,cn is the piecewise scaling factor of the nonlinear damping characteristic curve, and the coefficient of variation of the piecewise scaling factor of ξ 12 ,..., ξn .
CN201910310866.5A 2019-04-18 2019-04-18 Boundary element analysis method based on commercial vehicle whole vehicle parameters Active CN110046433B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910310866.5A CN110046433B (en) 2019-04-18 2019-04-18 Boundary element analysis method based on commercial vehicle whole vehicle parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910310866.5A CN110046433B (en) 2019-04-18 2019-04-18 Boundary element analysis method based on commercial vehicle whole vehicle parameters

Publications (2)

Publication Number Publication Date
CN110046433A CN110046433A (en) 2019-07-23
CN110046433B true CN110046433B (en) 2022-04-19

Family

ID=67277647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910310866.5A Active CN110046433B (en) 2019-04-18 2019-04-18 Boundary element analysis method based on commercial vehicle whole vehicle parameters

Country Status (1)

Country Link
CN (1) CN110046433B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023074A (en) * 2010-11-10 2011-04-20 中国第一汽车集团公司 Performance analysis method for vibratory noise of automobile engine oil pan
CN104036087A (en) * 2014-06-24 2014-09-10 同济大学 Power flow-boundary element model based elevated rail traffic vibratory-noise simulating and predicting method
CN107862141A (en) * 2017-11-10 2018-03-30 西南交通大学 A kind of rail vehicle low noise forward design method
CN107977497A (en) * 2017-11-23 2018-05-01 吉林大学 Vibration insulating system parameter optimization method in a kind of Electric Motor Wheel wheel
CN109238747A (en) * 2018-11-09 2019-01-18 桂林电子科技大学 One kind being used for commercial vehicle vehicle performance index decomposition analysis platform and decomposition analysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414194A (en) * 2002-11-21 2003-04-30 西安理工大学 Pull, press, bend coupling boundary element meathod of beam containing mang flexible joining parts
US7668645B2 (en) * 2004-10-15 2010-02-23 Ford Global Technologies System and method for dynamically determining vehicle loading and vertical loading distance for use in a vehicle dynamic control system
CN107657112B (en) * 2017-09-25 2020-09-04 中国铁路总公司 A shock-resistant optimization design method for multi-stage energy absorption of rail trains
CN108595789B (en) * 2018-04-04 2022-04-19 上海理工大学 A Hierarchical Optimization Design Method for Vibration Radiated Sound Power of Constrained Damping Structures
CN109446634B (en) * 2018-10-23 2022-07-15 哈尔滨工程大学 Ship motion prediction method based on Taylor expansion boundary element method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023074A (en) * 2010-11-10 2011-04-20 中国第一汽车集团公司 Performance analysis method for vibratory noise of automobile engine oil pan
CN104036087A (en) * 2014-06-24 2014-09-10 同济大学 Power flow-boundary element model based elevated rail traffic vibratory-noise simulating and predicting method
CN107862141A (en) * 2017-11-10 2018-03-30 西南交通大学 A kind of rail vehicle low noise forward design method
CN107977497A (en) * 2017-11-23 2018-05-01 吉林大学 Vibration insulating system parameter optimization method in a kind of Electric Motor Wheel wheel
CN109238747A (en) * 2018-11-09 2019-01-18 桂林电子科技大学 One kind being used for commercial vehicle vehicle performance index decomposition analysis platform and decomposition analysis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Matching and application research of mine car suspension parameters based on ride comfort;Jun Zhang 等;《The 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific》;20141103;第1-6页 *
基于车内综合声场贡献分析的车身板件声振优化;靳畅 等;《汽车工程》;20151225;第37卷(第12期);第1438-1444,1432页 *
某轻型卡车方向盘怠速振动优化控制研究;何水龙 等;《计算机仿真》;20190315;第36卷(第3期);第158-163页 *

Also Published As

Publication number Publication date
CN110046433A (en) 2019-07-23

Similar Documents

Publication Publication Date Title
CN104182560A (en) Aircraft flutter prediction and analysis method and device
CN103439070B (en) A kind of separation method of bridge Long-term Deflection effect
CN104309437B (en) The method for designing of vehicle air suspension non-linear rigidity real-time optimistic control
CN104008644B (en) A kind of traffic noise on urban roads measuring method based on Gradient Descent
CN111332491B (en) Method for improving pneumatic servo elastic stability
CN104573274B (en) Structural finite element model correction method based on displacement time-course area under vehicle load
CN107862152A (en) The nonlinear Design of Structural parameters method for resisting snakelike shock absorber
Wang et al. Effect of the nonlinear displacement-dependent characteristics of a hydraulic damper on high-speed rail pantograph dynamics
CN111539157B (en) A Time Domain Recognition Method of Dynamic Loads Based on Multilayer Perceptron
CN104175920A (en) Design method for optimal control current of vehicle seat suspension magnetorheological damper
Liu et al. A new method for runoff prediction error correction based on LS-SVM and a 4D copula joint distribution
CN109829252A (en) A kind of quick ranking method of bridge situation based on influence line identification
CN103902451A (en) Intelligent electricity meter software quality evaluation method
CN102982390A (en) Boiler combustion efficiency predicting method based on support vector machine incremental algorithm
CN111523168A (en) Method for optimizing parameters of liquid viscous damper under multiple working conditions and multiple targets
CN110046433B (en) Boundary element analysis method based on commercial vehicle whole vehicle parameters
Chen et al. Two-stage stochastic model updating method for highway bridges based on long-gauge strain sensing
CN114117844B (en) Active damper control method and system of nonlinear structure
CN107730045A (en) A kind of baseline load thermal inertia modification method based on discrete inertia force system
CN105550383B (en) A kind of design method of unsteady aerodynamic force measurement pilot system
CN114323853A (en) Intelligent monitoring method for asphalt pavement compactness based on decision tree model
CN119227450A (en) A wind vibration performance evaluation method and evaluation system
CN108303066A (en) A method of road surface power spectrum is measured based on suspension travel
CN109752504B (en) Working face gas sensor adjustment and correction auxiliary decision-making method
CN115033977B (en) Ground actually-measured pulsating pressure parameter identification method based on neural network technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190723

Assignee: Guangxi Guike Special Vehicle Manufacturing Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2024980031440

Denomination of invention: A Boundary Element Analysis Method Based on Commercial Vehicle Parameters

Granted publication date: 20220419

License type: Common License

Record date: 20241204