CN110044578B - A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels - Google Patents
A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels Download PDFInfo
- Publication number
- CN110044578B CN110044578B CN201910348790.5A CN201910348790A CN110044578B CN 110044578 B CN110044578 B CN 110044578B CN 201910348790 A CN201910348790 A CN 201910348790A CN 110044578 B CN110044578 B CN 110044578B
- Authority
- CN
- China
- Prior art keywords
- pitot tube
- tube device
- main body
- sensor
- pressure pulsation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010349 pulsation Effects 0.000 title claims abstract description 41
- 238000005259 measurement Methods 0.000 title claims abstract description 23
- 239000007769 metal material Substances 0.000 claims abstract description 37
- 230000035939 shock Effects 0.000 claims abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 9
- 230000010355 oscillation Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000035699 permeability Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/02—Wind tunnels
- G01M9/04—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M9/00—Aerodynamic testing; Arrangements in or on wind tunnels
- G01M9/06—Measuring arrangements specially adapted for aerodynamic testing
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
本发明公开了一种用于高超声速风洞压力脉动测量的皮托管装置,属于流体力学领域,皮托管装置包括主体和传感器,所述传感器位于主体的空心内腔,所述主体的材料为多孔金属材料;多孔材料具有微孔缝隙,可以在不破坏流场结构的同时对声波、涡波和熵波这些扰动波进行一部分的吸收。所述皮托管装置用于高超声速风洞压力脉动测量时,多孔金属材料构成的主体吸收流场扰动,减弱流场扰动在激波面和皮托管装置前端面之间的反射振荡,进而提高高超声速风洞压力脉动测量的准确性。由此解决现有的皮托管用于测量高超声速风洞的压力脉动时存在较大误差的技术问题。
The invention discloses a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel, belonging to the field of fluid mechanics. The pitot tube device comprises a main body and a sensor, the sensor is located in the hollow inner cavity of the main body, and the material of the main body is porous Metal materials; porous materials have microporous gaps, which can partially absorb the perturbation waves such as acoustic waves, vortex waves and entropy waves without destroying the flow field structure. When the pitot tube device is used for the measurement of pressure pulsation in a hypersonic wind tunnel, the main body composed of the porous metal material absorbs the flow field disturbance, weakens the reflection oscillation of the flow field disturbance between the shock surface and the front end of the pitot tube device, thereby improving the hypersonic speed. Accuracy of wind tunnel pressure pulsation measurements. Thereby, the technical problem that the existing pitot tube is used to measure the pressure pulsation of the hypersonic wind tunnel has a large error.
Description
技术领域technical field
本发明属于流体力学领域,更具体地,涉及一种用于高超声速风洞压力脉动测量的皮托管装置。The invention belongs to the field of fluid mechanics, and more particularly relates to a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel.
背景技术Background technique
目前开展高超声速空气动力学研究的主要地面实验研究平台是高超声速风洞。常规高超声速风洞建设完成后必须对其流场静态和动态品质进行鉴定,其中动态品质指的是自由来流扰动的模态特征。目前对于扰动模态特征的定量标定常用到风洞自由来流的压力脉动,密度脉动,总温脉动,静温脉动和速度脉动中的三个量。其中的压力脉动目前常用皮托管测得。皮托管具有皮实耐用,简单易操作等优点,被广泛用于高超声速实验压力和压力脉动量的测量。在高超声速气流中,皮托管前端附近会形成一道弓形激波。皮托管测得的数据即是激波后流动的总压和其脉动量。因此皮托数据需要经过传递函数换算出自由流动中的压力和其脉动量。由于自由流中的脉动穿过激波后的发展规律及机理尚且未知,目前较准确的是利用直接数值模拟的结果进行传递函数的拟合。通过直接数值模拟,可以发现自由流中的脉动量会在激波面和皮托管前端面之间来回反射形成振荡,造成皮托数据系统误差偏大。特别是由于共振效应,皮托管测得共振频率附近的压力脉动量的误差会更大。At present, the main ground experimental research platform for hypersonic aerodynamics research is the hypersonic wind tunnel. After the construction of a conventional hypersonic wind tunnel is completed, the static and dynamic quality of the flow field must be identified, where the dynamic quality refers to the modal characteristics of free flow disturbance. At present, the quantitative calibration of disturbance modal characteristics is commonly used in the three quantities of pressure pulsation, density pulsation, total temperature pulsation, venous temperature pulsation and velocity pulsation of free flow in the wind tunnel. The pressure pulsation is currently measured by a pitot tube. Pitot tubes have the advantages of being durable, simple and easy to operate, and are widely used in the measurement of pressure and pressure pulsation in hypersonic experiments. In hypersonic airflow, a bow shock is formed near the front end of the pitot tube. The data measured by the pitot tube is the total pressure of the flow after the shock wave and its pulsation. Therefore, the pitot data needs to be converted into the pressure and its pulsation in free flow through the transfer function. Since the development law and mechanism of the pulsation in the free flow after passing through the shock wave are still unknown, it is more accurate to use the results of direct numerical simulation to fit the transfer function. Through direct numerical simulation, it can be found that the amount of pulsation in the free flow will reflect back and forth between the shock surface and the front surface of the pitot tube to form oscillation, resulting in a large error in the pitot data system. Especially due to the resonance effect, the error of the pressure pulsation amount measured by the pitot tube around the resonance frequency will be larger.
由此可见,现有的皮托管用于测量高超声速风洞的压力脉动时存在较大误差。It can be seen that there is a large error when the existing pitot tube is used to measure the pressure pulsation of the hypersonic wind tunnel.
发明内容SUMMARY OF THE INVENTION
针对现有技术的以上缺陷或改进需求,本发明提供了一种用于高超声速风洞压力脉动测量的皮托管装置,由此解决现有的皮托管用于测量高超声速风洞的压力脉动时存在较大误差的技术问题。In view of the above defects or improvement needs of the prior art, the present invention provides a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel, thereby solving the problem when the existing pitot tube is used to measure the pressure pulsation in a hypersonic wind tunnel There are technical problems with large errors.
为实现上述目的,本发明提供了一种用于高超声速风洞压力脉动测量的皮托管装置,包括主体和传感器,所述传感器位于主体的空心内腔,所述主体的材料为多孔金属材料;In order to achieve the above object, the present invention provides a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel, comprising a main body and a sensor, the sensor is located in the hollow inner cavity of the main body, and the material of the main body is a porous metal material;
所述皮托管装置用于高超声速风洞压力脉动测量时,多孔金属材料构成的主体吸收流场扰动,减弱流场扰动在激波面和皮托管装置前端面之间的反射振荡,由此提高测量的准确性。When the pitot tube device is used for the measurement of pressure pulsation in a hypersonic wind tunnel, the main body composed of the porous metal material absorbs the flow field disturbance and weakens the reflection oscillation of the flow field disturbance between the shock surface and the front face of the pitot tube device, thereby improving the measurement performance. accuracy.
进一步地,多孔金属材料的孔径为0.05mm~0.2mm。Further, the pore diameter of the porous metal material is 0.05mm˜0.2mm.
进一步地,多孔金属材料的孔隙率为50%~96%。Further, the porosity of the porous metal material is 50% to 96%.
进一步地,多孔金属材料的渗透率为1×10-9m2~1×10-5m2。Further, the permeability of the porous metal material is 1×10 -9 m 2 to 1×10 -5 m 2 .
进一步地,皮托管装置还包括连接件,所述连接件位于主体的空心内腔,所述传感器位于连接件的空心内腔,所述连接件用于固定传感器。Further, the pitot tube device further includes a connecting piece, the connecting piece is located in the hollow inner cavity of the main body, the sensor is located in the hollow inner cavity of the connecting piece, and the connecting piece is used for fixing the sensor.
进一步地,连接件的空心内腔包括第一段和第二段,第一段用于固定传感器,第二段为空心孔结构,用于固定传感器的尾部线缆。Further, the hollow inner cavity of the connector includes a first section and a second section, the first section is used for fixing the sensor, and the second section is a hollow hole structure, which is used for fixing the tail cable of the sensor.
进一步地,连接件、主体和传感器在同一中轴线上。Further, the connector, the main body and the sensor are on the same central axis.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
(1)现有的皮托管中通常使用金属实心体,对超声速自由来流中的扰动会产生全反射,影响测量结果的准确性。多孔材料具有微孔缝隙,可以在不破坏流场结构的同时对声波、涡波和熵波这些扰动波进行一部分的吸收。所述皮托管装置用于高超声速风洞压力脉动测量时,多孔金属材料构成的主体吸收流场扰动,减弱流场扰动在激波面和皮托管装置前端面之间的反射振荡,进而提高高超声速风洞压力脉动测量的准确性。由此解决现有的皮托管用于测量高超声速风洞的压力脉动时存在较大误差的技术问题。(1) A solid metal body is usually used in the existing pitot tube, which will cause total reflection to the disturbance in the supersonic free flow, which will affect the accuracy of the measurement result. Porous materials have microporous gaps, which can partially absorb the perturbation waves such as acoustic waves, vortex waves and entropy waves without destroying the flow field structure. When the pitot tube device is used for the measurement of pressure pulsation in a hypersonic wind tunnel, the main body composed of the porous metal material absorbs the flow field disturbance, weakens the reflection oscillation of the flow field disturbance between the shock surface and the front end of the pitot tube device, thereby improving the hypersonic speed. Accuracy of wind tunnel pressure pulsation measurements. Thereby, the technical problem that the existing pitot tube is used to measure the pressure pulsation of the hypersonic wind tunnel is solved.
(2)将多孔金属材料用于皮托管测量高超声速来流中的压力脉动可消除部分来流扰动的影响,带来的技术难题是不同属性的多孔金属材料,如渗透率、孔隙率等,对实验测量结果的修正结果不同,但是整体趋势较之常规金属实心体皮托管是良好趋势。为了克服以上困难,本发明通过高超声速风洞试验进行系列参数研究,确定有效提高实验数据可信度的多孔金属材料参数范围。多孔金属材料的孔径范围根据皮托管探头的尺寸而定。对于常规尺寸的皮托管探头,多孔金属材料的孔径为0.05mm~0.2mm,多孔金属材料的孔隙率为50%~96%,多孔金属材料的渗透率为1×10-9m2~1×10-5m2。合适的参数选定对于消除皮托管探头与脱体激波之间的声波扰动有良好效果,可以提高皮托管在高超声速流场中测量结果的准确度。(2) The use of porous metal materials in pitot tubes to measure the pressure pulsation in hypersonic incoming flow can eliminate the influence of part of the incoming flow disturbance. The technical problem is that porous metal materials with different properties, such as permeability, porosity, etc., The corrections to the experimental measurements are different, but the overall trend is a good trend compared to conventional metal solid body pitot tubes. In order to overcome the above difficulties, the present invention conducts a series of parameter research through a hypersonic wind tunnel test to determine the parameter range of the porous metal material that can effectively improve the reliability of the experimental data. The pore size range of the porous metal material depends on the size of the pitot tube probe. For a conventional-sized pitot tube probe, the pore diameter of the porous metal material is 0.05mm to 0.2mm, the porosity of the porous metal material is 50% to 96%, and the permeability of the porous metal material is 1×10 -9 m 2 to 1× 10 -5 m 2 . Appropriate parameter selection has a good effect on eliminating the sonic disturbance between the pitot tube probe and the out-of-body shock wave, and can improve the accuracy of the pitot tube's measurement results in hypersonic flow fields.
附图说明Description of drawings
图1是本发明实施例1提供的一种用于高超声速风洞压力脉动测量的皮托管装置的结构示意图;1 is a schematic structural diagram of a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel according to
图2是本发明实施例1提供的一种用于高超声速风洞压力脉动测量的皮托管装置的部件分解图;2 is an exploded view of a Pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel according to
图3是本发明实施例1提供的一种用于高超声速风洞压力脉动测量的皮托管装置的部件组装图;3 is a component assembly diagram of a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel according to
图4是本发明实施例2提供的一种用于高超声速风洞压力脉动测量的皮托管装置的结构示意图;4 is a schematic structural diagram of a pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel according to
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:Throughout the drawings, the same reference numbers are used to refer to the same elements or structures, wherein:
1为主体,11为主体前段,12为主体后段,2为传感器,3为连接件,4为中轴线,5为前端平面,6为圆柱肩部,7为过渡圆角,8为皮托管装置。1 is the main body, 11 is the front section of the main body, 12 is the rear section of the main body, 2 is the sensor, 3 is the connecting piece, 4 is the central axis, 5 is the front plane, 6 is the cylindrical shoulder, 7 is the transition fillet, and 8 is the pitot tube device.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
一种用于高超声速风洞压力脉动测量的皮托管装置,包括主体和传感器,所述传感器位于主体的空心内腔,所述主体的材料为多孔金属材料;A pitot tube device for measuring pressure pulsation in a hypersonic wind tunnel, comprising a main body and a sensor, wherein the sensor is located in a hollow inner cavity of the main body, and the material of the main body is a porous metal material;
所述皮托管装置用于高超声速风洞压力脉动测量时,多孔金属材料构成的主体吸收流场扰动,减弱流场扰动在激波面和皮托管装置前端面之间的反射振荡,由此提高测量的准确性。When the pitot tube device is used for the measurement of pressure pulsation in a hypersonic wind tunnel, the main body composed of the porous metal material absorbs the flow field disturbance and weakens the reflection oscillation of the flow field disturbance between the shock surface and the front face of the pitot tube device, thereby improving the measurement performance. accuracy.
其中,多孔金属材料的孔径为0.05mm~0.2mm,多孔金属材料的孔隙率为50%~96%,多孔金属材料的渗透率为1×10-9m2~1×10-5m2。The pore diameter of the porous metal material is 0.05mm-0.2mm, the porosity of the porous metal material is 50%-96%, and the permeability of the porous metal material is 1×10 -9 m 2 -1×10 -5 m 2 .
皮托管装置还包括连接件,所述连接件位于主体的空心内腔,所述传感器位于连接件的空心内腔,所述连接件用于固定传感器。连接件的空心内腔包括第一段和第二段,第一段用于固定传感器,第二段为空心孔结构,用于固定传感器的尾部线缆。连接件、主体和传感器在同一中轴线上。The pitot tube device further comprises a connecting piece, the connecting piece is located in the hollow inner cavity of the main body, the sensor is located in the hollow inner cavity of the connecting piece, and the connecting piece is used for fixing the sensor. The hollow inner cavity of the connector includes a first section and a second section, the first section is used for fixing the sensor, and the second section is a hollow hole structure, which is used for fixing the tail cable of the sensor. The connector, the main body and the sensor are on the same central axis.
本发明可以根据高超声速风洞流场测试的要求,坚直或水平安装于风洞试验段的指定位置,在所述多孔金属材料构成的主体部分的消波作用下(消除不同类型的扰动子模态,如声波、涡波和熵波,但是对声波效果最为明显),皮托管装置能大大提高高超声速风洞自由来流压力脉动的测量精度。According to the requirements of the hypersonic wind tunnel flow field test, the present invention can be installed upright or horizontally at the designated position of the wind tunnel test section. modes, such as acoustic waves, vortex waves and entropy waves, but the effect is most pronounced for acoustic waves), the Pitot tube device can greatly improve the measurement accuracy of free-flow pressure pulsation in hypersonic wind tunnels.
实施例1Example 1
图1中示出了实施例1的结构图。皮托管装置8包括圆柱形的主体1和传感器2,以及以圆柱形的主体和传感器的中轴线4为旋转中心的内部支撑的连接件3。在图1的实施例1中,圆柱形的主体包括前端平面5和圆柱肩部6以及两者之间的过渡圆角7。其中,过渡圆角7可能被移除或者被其他在空气动力学上适合的轮廓所替代。在实施例1中考虑到机加工问题,将圆柱外形的主体沿着中轴线距离前端平面L处分成两段。长度L受到传感器轴向长度和内部支撑的连接件设计的影响。FIG. 1 shows a block diagram of
图2示出的皮托管装置分解横截面图,该皮托管可以通过构成主体的多孔金属材料的透波特性缓解超声速流动中皮托管测量的扰动反射问题。主体包括主体前段11和主体后段12。Figure 2 shows an exploded cross-sectional view of a pitot tube device, which can alleviate the disturbance reflection problem of pitot tube measurements in supersonic flow through the wave-transmitting properties of the porous metal material constituting the body. The main body includes a main body front section 11 and a main body
图3示出组装好的管件,皮托管装置的主体1由多孔金属材料形成,实施例1中多孔金属材料为三维开孔式镍合金。该主体被分为两段加工。主体前段11包含容纳传感器的空腔和与连接件配合的内螺纹,主体后段12包含容纳连接件的空腔。Fig. 3 shows the assembled pipe, the
超声速流动在皮托管主体部分前端形成弓形激波,流场中的扰动在皮托管前端面和激波面之间来回反射形成扰动振荡,影响皮托管对流场压力及其脉动量的测量。并且由于弓形激波的聚焦效应,被激波面反射的扰动会汇集在传感器的压力感应区域,进一步加大皮托测量的不确定性。实施例1通过多孔金属材料形成的主体对流场扰动的吸收,可以缓解扰动在激波面和皮托管前端面之间的反射振荡问题。由此提高皮托管对高超声速流场测量的准确性。The supersonic flow forms a bow shock wave at the front end of the main part of the pitot tube, and the disturbance in the flow field is reflected back and forth between the front end surface of the pitot tube and the shock wave surface to form a disturbance oscillation, which affects the measurement of the pressure and the pulsation of the flow field by the pitot tube. And due to the focusing effect of the bow shock, the disturbance reflected by the shock surface will be collected in the pressure sensing area of the sensor, further increasing the uncertainty of the pitot measurement.
皮托管装置所包含的传感器在实施例1中选用kulite XCQ-062型号的压力传感器。其中,传感器还可选为其他型号压力传感器或其他类型传感器,如温度传感器。The sensor included in the pitot tube device is a pressure sensor of the kulite XCQ-062 model in Example 1. Among them, the sensor can also be selected as other types of pressure sensors or other types of sensors, such as temperature sensors.
皮托管装置8内部的连接件3在实施例1中由普通金属45钢形成,该连接件3具有和皮托管装置的主体1连接配合的外螺纹和容纳传感器2及其线缆的圆柱形空腔结构。除此之外,连接件3还具有将传感器2准确定位的内圆柱台阶和将皮托管装置的主体1准确定位的外圆柱台阶。皮托管装置的主体1的主体后段12直接套在连接件3的外围与皮托管装置的主体1的主体前段11平面配合。连接件3也可以选用其他材料形成,可以改变与主体1和传感器2的连接定位形式。连接件3起到整个皮托管装置的支撑作用和将所有皮托管装置的部件定位连接成一个整体的作用。The connecting
实施例2Example 2
图4展示出能减弱扰动反射的超声速测量所用皮托管的不同方式。在实施例2中皮托管装置直接由主体1和传感器2构成。由多孔金属材料形成的主体1可以减小对超声速流场中扰动的反射。主体1和传感器2之间的定位连接均是由主体1的空心内腔完成。主体1的外部轮廓可由适合空气动力学外形来改动。传感器2可选用不同型号和类型的传感器。Figure 4 shows different ways of using pitot tubes for supersonic measurements to reduce perturbation reflections. In the second embodiment, the pitot tube device is directly composed of the
将多孔金属材料用于皮托管测量高超声速来流中的压力脉动可消除部分来流扰动的影响,带来的技术难题是不同属性的多孔金属材料,如渗透率、孔隙率等,对实验测量结果的修正结果不同,但是整体趋势较之常规金属实心体皮托管是良好趋势。为了克服以上困难,本发明通过高超声速风洞试验进行系列参数研究,确定有效提高实验数据可信度的多孔金属材料参数范围。多孔金属材料的孔径范围根据皮托管探头的尺寸而定。对于常规尺寸的皮托管探头,实施例1和实施例2中多孔金属材料的孔径为0.05mm~0.2mm,多孔金属材料的孔隙率为50%~96%,多孔金属材料的渗透率为1×10-9m2~1×10-5m2。合适的参数选定对于消除皮托管探头与脱体激波之间的声波扰动有良好效果,可以提高皮托管在高超声速流场中测量结果的准确度。The use of porous metal materials in Pitot tubes to measure the pressure pulsation in hypersonic incoming flow can eliminate the influence of part of the incoming flow disturbance. The technical problem is that porous metal materials with different properties, such as permeability, porosity, etc., are not suitable for experimental measurement. The revised results of the results are different, but the overall trend is a good trend compared to conventional metal solid body pitot tubes. In order to overcome the above difficulties, the present invention conducts a series of parameter research through a hypersonic wind tunnel test to determine the parameter range of the porous metal material that can effectively improve the reliability of the experimental data. The pore size range of the porous metal material depends on the size of the pitot tube probe. For a pitot tube probe with a conventional size, the pore diameter of the porous metal material in Examples 1 and 2 is 0.05 mm to 0.2 mm, the porosity of the porous metal material is 50% to 96%, and the permeability of the porous metal material is 1× 10 -9 m 2 to 1×10 -5 m 2 . Appropriate parameter selection has a good effect on eliminating the sonic disturbance between the pitot tube probe and the out-of-body shock wave, and can improve the accuracy of the pitot tube's measurement results in hypersonic flow fields.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910348790.5A CN110044578B (en) | 2019-04-26 | 2019-04-26 | A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910348790.5A CN110044578B (en) | 2019-04-26 | 2019-04-26 | A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110044578A CN110044578A (en) | 2019-07-23 |
CN110044578B true CN110044578B (en) | 2020-10-30 |
Family
ID=67279903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910348790.5A Active CN110044578B (en) | 2019-04-26 | 2019-04-26 | A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110044578B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813241C1 (en) * | 2023-03-31 | 2024-02-08 | Алексей Романович Корец | Averaging pressure pitot tube (apt) for measuring liquid and gas flow rate using variable pressure differential method (options) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006836A (en) * | 2019-12-16 | 2020-04-14 | 华中科技大学 | Tandem supersonic and hypersonic wind tunnel and its steady flow method |
CN111192800A (en) * | 2020-01-08 | 2020-05-22 | 平高集团有限公司 | Pressure guide pipe for arc extinguishing chamber pressure measurement and arc extinguishing chamber pressure measurement device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7654157B2 (en) * | 2007-11-30 | 2010-02-02 | Honeywell International Inc. | Airflow sensor with pitot tube for pressure drop reduction |
US8397586B2 (en) * | 2010-03-22 | 2013-03-19 | Honeywell International Inc. | Flow sensor assembly with porous insert |
CN203275006U (en) * | 2013-06-03 | 2013-11-06 | 杭州禾风环境科技有限公司 | Sectional type pitot tube |
CN107976222A (en) * | 2016-10-21 | 2018-05-01 | 中石化洛阳工程有限公司 | A kind of Pitot tube integrated gas mass flow measurement methods |
CN109669056B (en) * | 2019-02-27 | 2024-10-15 | 西安鼎研科技股份有限公司 | Calibrating device and method for pitot tube flow velocity meter |
-
2019
- 2019-04-26 CN CN201910348790.5A patent/CN110044578B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813241C1 (en) * | 2023-03-31 | 2024-02-08 | Алексей Романович Корец | Averaging pressure pitot tube (apt) for measuring liquid and gas flow rate using variable pressure differential method (options) |
Also Published As
Publication number | Publication date |
---|---|
CN110044578A (en) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107101798B (en) | A kind of dynamic five-hole probe | |
CN110044578B (en) | A Pitot Tube Device for Pressure Pulsation Measurement in Hypersonic Wind Tunnels | |
CN104101457B (en) | Dynamic total pressure probe | |
CN104048808A (en) | Dynamic entropy probe | |
CN104155473A (en) | Wind speed and wind direction sensing device | |
CN115435929B (en) | High-frequency total temperature and total pressure probe | |
CN113551868A (en) | A probe for measuring the three-dimensional dynamic boundary layer of the hub between the rotating and static fan | |
CN106989896A (en) | A kind of dynamic temperature force combination probe for measuring subsonics three-dimensional non-steady flow field | |
CN115046724B (en) | A highly integrated wide-angle fiber optic pneumatic probe | |
CN212082825U (en) | A full-parameter probe for measuring high-subsonic three-dimensional steady flow field | |
CN113588508A (en) | Threaded connection type optical fiber aerosol concentration measurement probe and concentration measurement device | |
CN106940241B (en) | A Steady-State Temperature-Pressure Combination Probe for Measuring Transonic 3D Flow Fields | |
CN107356288A (en) | A kind of air velocity and temperature duplex measurement device for low speed flow field | |
US3914997A (en) | Static pressure probe | |
CN108458854B (en) | Three-dimensional stern flow field testing device | |
CN204101584U (en) | Wind speed and direction sensing device | |
CN116754032A (en) | Ultrasonic water meter and self-calibration method thereof | |
CN216899542U (en) | Probe for measuring three-dimensional dynamic boundary layer of hub between rotating and static of fan | |
CN216899540U (en) | A probe for measuring the two-dimensional dynamic boundary layer of the end wall between the rotating and stationary parts of a multi-stage compressor | |
CN206321282U (en) | A kind of parallel Eight-channel ultrasonic flowmeter sensor | |
CN216160123U (en) | Combined probe for measuring flow field of small compressor interstage tip region | |
CN211696953U (en) | Prismatic table five-hole probe for measuring dynamic full parameters of subsonic three-dimensional flow field | |
CN206725183U (en) | A kind of dynamic five-hole probe | |
CN215811037U (en) | Metering component for ultrasonic gas meter and gas meter with same | |
CN220583484U (en) | A kind of precession vortex flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |