CN110034678A - Single inductance double-polarity control type of voltage step-up/down converter and its control method - Google Patents
Single inductance double-polarity control type of voltage step-up/down converter and its control method Download PDFInfo
- Publication number
- CN110034678A CN110034678A CN201810029733.6A CN201810029733A CN110034678A CN 110034678 A CN110034678 A CN 110034678A CN 201810029733 A CN201810029733 A CN 201810029733A CN 110034678 A CN110034678 A CN 110034678A
- Authority
- CN
- China
- Prior art keywords
- switch
- sibo
- buck
- output
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000000737 periodic effect Effects 0.000 claims description 7
- 206010071061 Small intestinal bacterial overgrowth Diseases 0.000 claims 30
- 230000007142 small intestinal bacterial overgrowth Effects 0.000 claims 30
- 239000003990 capacitor Substances 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000872 buffer Substances 0.000 description 8
- 229920001621 AMOLED Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种单电感双极性输出(SIBO,Single Inductor BipolarOutput)升降压转换器及其控制方法。The present invention relates to a single-inductor bipolar output (SIBO, Single Inductor Bipolar Output) buck-boost converter and a control method thereof.
背景技术Background technique
行动系统与显示器需要有效的长时间电池使用。此外,显示品质是重要性能特征之一,但即便在重负载电流变动、快速输入电压变动与直流-直流转换器的切换噪声中,显示品质仍不能被牺牲。Mobile systems and displays require effective long-term battery use. In addition, display quality is one of the important performance characteristics, but it cannot be sacrificed even in heavy load current fluctuations, fast input voltage fluctuations and switching noise of DC-DC converters.
主动式矩阵OLED(active matrix OLED,AMOLED)显示在行动显示应用中愈来愈普遍,因为主动式矩阵OLED的优点在于高显示品质、低功率消耗与低材质成本。主动式矩阵OLED面板通常需要具有不同电压的正极性与负极性电源供应。而且此所需的正电压和负电压电源输出的涟波大小必需要够小,才能避免水波纹的产生,破坏面板显示品质。不同面板可能具有不同输出电流与电压的需求,通常取决于面板尺寸、像素数量、显示品质等。Active matrix OLED (AMOLED) displays are becoming more and more common in mobile display applications because the advantages of active matrix OLEDs are high display quality, low power consumption and low material cost. Active matrix OLED panels usually require positive and negative power supplies with different voltages. In addition, the required positive voltage and negative voltage power supply output ripples must be small enough to avoid the generation of water ripples and damage the display quality of the panel. Different panels may have different output current and voltage requirements, usually depending on panel size, number of pixels, display quality, etc.
图1显示现有的单电感AMOLED电源供应器,其为两级SIBO转换器。如图1所示,现有两级SIBO转换器100包括:同步升降压电路(synchronous buck-boost circuit)120,电荷泵(charge pump)140,电感L11与电容C11-C15。电容C11-C13是去耦合电容。电容C14-C15是飞驰电容(fly capacitor)。现有两级SIBO转换器100产生正输出Vop与正电流Iop以驱动负载160,并产生负输出Von与负电流Ion以驱动负载180。输入端提供输入电压Vin与输入电流Iin。Figure 1 shows an existing single-inductor AMOLED power supply, which is a two-stage SIBO converter. As shown in FIG. 1 , the conventional two-stage SIBO converter 100 includes: a synchronous buck-boost circuit 120 , a charge pump 140 , an inductor L11 and capacitors C11 - C15 . Capacitors C11-C13 are decoupling capacitors. Capacitors C14-C15 are fly capacitors. The conventional two-stage SIBO converter 100 generates a positive output Vop and a positive current Iop to drive the load 160 , and generates a negative output Von and a negative current Ion to drive the load 180 . The input terminal provides the input voltage Vin and the input current Iin.
依据输入电压Vin和输出电压Vop的相对关系条件,同步升降压电路120可以操作在降压、升降压和升压等模式。此输入电压Vin通常由锂电池所提供,输入电压Vin的电压范围介于3.0V到4.5V,而输出电压Vop的所需值则有关于AMOLED面板大小,显示亮度以及驱动芯片,输出电压Vop的常用典型值包括4.6V、3.3V、2.8V与2.5V等等。According to the relative relationship between the input voltage Vin and the output voltage Vop, the synchronous buck-boost circuit 120 can operate in buck, buck-boost, and boost modes. The input voltage Vin is usually provided by a lithium battery. The voltage range of the input voltage Vin ranges from 3.0V to 4.5V, and the required value of the output voltage Vop is related to the size of the AMOLED panel, the display brightness and the driver chip. The output voltage Vop Commonly used typical values include 4.6V, 3.3V, 2.8V and 2.5V, etc.
电荷泵140用以从正输出Vop产生负输出Von。电荷泵140可有许多输出段(step),例如但不受限于,-1x与-1.5x。利用飞驰电容C14,电荷泵140可实现-1x,亦即Von=Vop*(-1)。利用飞驰电容C14与C15,电荷泵140可实现-1.5x,亦即Von=Vop*(-1.5)。负输出Von可由转换器数字界面设定为正输出Vop的-1x~-1.5x,以符合AMOLED显示器的高亮度需求。The charge pump 140 is used to generate the negative output Von from the positive output Vop. Charge pump 140 may have many output steps, such as, but not limited to, -1x and -1.5x. Using the flying capacitor C14, the charge pump 140 can achieve -1x, ie Von=Vop*(-1). Using the flying capacitors C14 and C15, the charge pump 140 can achieve -1.5x, that is, Von=Vop*(-1.5). The negative output Von can be set by the converter digital interface to -1x to -1.5x of the positive output Vop to meet the high brightness requirements of AMOLED displays.
由图1可看出,正输出Vop与负输出Von的产生是独立控制的。It can be seen from Figure 1 that the generation of the positive output Vop and the negative output Von are independently controlled.
图2显示两级SIBO转换器100的能量转换效率图。能量转换效率Eff定义如下:FIG. 2 shows a graph of the energy conversion efficiency of the two-stage SIBO converter 100 . The energy conversion efficiency Eff is defined as follows:
如图2所示,当Vop等于2.8(V)时,现有两级SIBO转换器100在Von=Vop*(-1)=2.8*(-1)=-2.8(V)或者Von=Vop*(-1.5)=2.8*(-1.5)=-4.2(V)有最佳能量转换效率。然而,当Von不等于-2.8(V)或者-4.2(V)时,现有两级SIBO转换器100的能量转换效率不佳。因而,需要改善现有两级SIBO转换器的能量转换效率。As shown in FIG. 2, when Vop is equal to 2.8(V), the existing two-stage SIBO converter 100 is at Von=Vop*(-1)=2.8*(-1)=-2.8(V) or Von=Vop* (-1.5)=2.8*(-1.5)=-4.2(V) has the best energy conversion efficiency. However, when Von is not equal to -2.8(V) or -4.2(V), the energy conversion efficiency of the existing two-stage SIBO converter 100 is not good. Thus, there is a need to improve the energy conversion efficiency of existing two-stage SIBO converters.
发明内容SUMMARY OF THE INVENTION
根据本案一实施例,提出一种控制方法,控制一单电感双极性输出(SIBO)升降压转换器以产生一正输出与一负输出,该SIBO升降压转换器包括一SIBO升降压功率级,该SIBO升降压功率级包括耦合于一输入与一第一节点间的一第一开关、耦合于该第一节点与接地端间的一第二开关、耦合于一第二节点与接地端间的一第三开关、耦合于该第二节点与输出该正输出的一第一输出节点间的一第四开关,耦合于该第一节点与输出该负输出的一第二输出节点间的一第五开关,以及耦合于该第一与该第二节点之间的一电感,该控制方法包括:控制该第一与该第三开关导通,以及该第二、该第四与该第五开关关闭,以充磁该电感于一电感充磁操作时相;控制该第一与该第四开关导通,以及该第二、该第三与该第五开关关闭,以产生该正输出于一正输出充电操作时相;以及控制该第三与该第五开关导通,以及该第一、该第二与该第四开关关闭,以产生该负输出于一负输出充电操作时相。According to an embodiment of the present application, a control method is proposed to control a single inductor bipolar output (SIBO) buck-boost converter to generate a positive output and a negative output. The SIBO buck-boost converter includes a SIBO buck-boost converter A buck power stage, the SIBO buck-boost power stage includes a first switch coupled between an input and a first node, a second switch coupled between the first node and ground, and a second node coupled to a third switch between the ground and a fourth switch coupled between the second node and a first output node that outputs the positive output, a fourth switch coupled to the first node and a second output that outputs the negative output A fifth switch between nodes, and an inductor coupled between the first and the second node, the control method includes: controlling the first and the third switch to conduct, and the second and the fourth turning off the fifth switch to magnetize the inductor in an inductor magnetizing operation phase; controlling the first and the fourth switch to be turned on, and the second, the third and the fifth switch to be turned off to generate the positive output is in a positive output charging operation phase; and controlling the third and the fifth switch to be turned on, and the first, the second and the fourth switch to be turned off, so as to generate the negative output to charge a negative output operating phase.
根据本案另一实施例,提供一种单电感双极性输出(SIBO)升降压转换器,以产生一正输出与一负输出,该SIBO升降压转换器包括:一SIBO升降压控制器;以及一SIBO升降压功率级,耦合至该SIBO升降压控制器,该SIBO升降压功率级包括耦合于一输入与一第一节点间的一第一开关、耦合于该第一节点与接地端间的一第二开关、耦合于一第二节点与接地端间的一第三开关、耦合于该第二节点与输出该正输出的一第一输出节点间的一第四开关,耦合于该第一节点与输出该负输出的一第二输出节点间的一第五开关,以及耦合于该第一与该第二节点之间的一电感。该SIBO升降压控制器控制该第一与该第三开关导通,以及该第二、该第四与该第五开关关闭,以充磁该电感于一电感充磁操作时相。该SIBO升降压控制器控制该第一与该第四开关导通,以及该第二、该第三与该第五开关关闭,以产生该正输出于一正输出充电操作时相。该SIBO升降压控制器控制该第三与该第五开关导通,以及该第一、该第二与该第四开关关闭,以产生该负输出于一负输出充电操作时相。According to another embodiment of the present application, a single inductor bipolar output (SIBO) buck-boost converter is provided to generate a positive output and a negative output, the SIBO buck-boost converter includes: a SIBO buck-boost control and a SIBO buck-boost power stage coupled to the SIBO buck-boost controller, the SIBO buck-boost power stage including a first switch coupled between an input and a first node, coupled to the first a second switch between the node and ground, a third switch coupled between a second node and ground, a fourth switch coupled between the second node and a first output node outputting the positive output , a fifth switch coupled between the first node and a second output node outputting the negative output, and an inductor coupled between the first and second nodes. The SIBO buck-boost controller controls the first and the third switches to be turned on, and the second, the fourth and the fifth switches to be turned off, so as to magnetize the inductor in an inductor magnetizing operation phase. The SIBO buck-boost controller controls the first and the fourth switches to be turned on, and the second, the third and the fifth switches to be turned off to generate the positive output during a positive output charging operation phase. The SIBO buck-boost controller controls the third and the fifth switches to be turned on, and the first, the second and the fourth switches to be turned off, so as to generate the negative output in a negative output charging operation phase.
为了对本发明的上述及其他方面有更佳的了解,下文特举实施例,并配合所附图式详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given and described in detail as follows in conjunction with the accompanying drawings:
附图说明Description of drawings
图1(现有技术)显示现有的两级SIBO转换器。Figure 1 (Prior Art) shows an existing two-stage SIBO converter.
图2(现有技术)显示图1的现有两级SIBO转换器的能量转换效率图。FIG. 2 (Prior Art) shows a graph of the energy conversion efficiency of the prior art two-stage SIBO converter of FIG. 1 .
图3显示根据本案一实施例的SIBO升降压转换器的电路图。FIG. 3 shows a circuit diagram of a SIBO buck-boost converter according to an embodiment of the present invention.
图4显示图3的SIBO升降压转换器的4个操作时相P1-P4。FIG. 4 shows the four operating phases P1-P4 of the SIBO buck-boost converter of FIG. 3 .
图5显示图3的SIBO升降压转换器的多个信号的时序图。FIG. 5 shows a timing diagram of various signals of the SIBO buck-boost converter of FIG. 3 .
图6显示本案实施例与现有两级SIBO转换器的能量转换效率比较图。FIG. 6 shows a comparison diagram of the energy conversion efficiency between the embodiment of the present invention and the existing two-stage SIBO converter.
其中,附图标记:Among them, reference numerals:
两级SIBO转换器100 同步升降压电路120Two-stage SIBO converter 100 Synchronous buck-boost circuit 120
电荷泵140 电感L11Charge Pump 140 Inductor L11
电容C11-C15 正输出VopCapacitor C11-C15 Positive output Vop
正电流Iop 负载160,180Positive current Iop load 160, 180
负输出Von 负电流IonNegative output Von Negative current Ion
输入电压Vin 输入电流IinInput voltage Vin Input current Iin
SIBO升降压转换器300 SIBO升降压控制器310SIBO Buck-Boost Converter 300 SIBO Buck-Boost Controller 310
SIBO升降压功率级350SIBO Buck-Boost Power Stage 350
波形产生器312 补偿误差放大器314与316Waveform generator 312 Compensation error amplifiers 314 and 316
加法器318与319 缓冲器320与322Adders 318 and 319 Buffers 320 and 322
比较器324、326与328 电压产生器330Comparators 324, 326 and 328 Voltage Generator 330
PSM电路332 PWM逻辑334PSM circuit 332 PWM logic 334
电阻Rs、R1、R2与R3Resistors Rs, R1, R2 and R3
参考电压Vref、VCLReference voltage Vref, VCL
反馈信号Vop_FB、Von_FBFeedback signal Vop_FB, Von_FB
输出信号VEAp、VEAn、VEApn、Vsum、Cp、Cn、CpnOutput signals VEAp, VEAn, VEApn, Vsum, Cp, Cn, Cpn
电感电流ILInductor current IL
控制信号S1、S2、S3、SP与SNControl Signals S1, S2, S3, SP and SN
电感L31Inductor L31
开关SW1、SW2、SW3、SWP与SWNSwitches SW1, SW2, SW3, SWP and SWN
电容C31、C32与C33 节点N1、N2Capacitors C31, C32 and C33 Nodes N1, N2
负载360,380 P1-P5操作时相Load 360, 380 P1-P5 operating phase
具体实施方式Detailed ways
本说明书的技术用语是参照本技术领域的习惯用语,如本说明书对部分用语有加以说明或定义,该部分用语的解释以本说明书的说明或定义为准。本揭露的各个实施例分别具有一或多个技术特征。在可能实施的前提下,本技术领域具有通常知识者可选择性地实施任一实施例中部分或全部的技术特征,或者选择性地将这些实施例中部分或全部的技术特征加以组合。The technical terms in this specification refer to the common terms in the technical field. If some terms are described or defined in this specification, the explanations or definitions in this specification shall prevail. Each embodiment of the present disclosure has one or more technical features. Under the premise of possible implementation, those skilled in the art can selectively implement some or all of the technical features in any embodiment, or selectively combine some or all of the technical features in these embodiments.
图3显示根据本案一实施例的单电感双极性输出(SIBO,Single InductorBipolar Output)升降压转换器300的电路图。SIBO升降压转换器300包括:SIBO升降压控制器(SIBO buck-boost inverting controller)310与SIBO升降压功率级(SIBO buck-boostinverting power stage)350。FIG. 3 shows a circuit diagram of a single inductor bipolar output (SIBO, Single Inductor Bipolar Output) buck-boost converter 300 according to an embodiment of the present invention. The SIBO buck-boost converter 300 includes: a SIBO buck-boost inverting controller 310 and a SIBO buck-boost inverting power stage 350 .
SIBO升降压控制器310包括:波形产生器312,补偿误差放大器314与316,加法器318与319,缓冲器320与322,比较器324、326与328,电压产生器330,PSM(脉冲省略模式,pulse skipping mode)电路332与PWM(脉冲宽度调变,pulse width modulation)逻辑334。SIBO buck-boost controller 310 includes: waveform generator 312, compensation error amplifiers 314 and 316, adders 318 and 319, buffers 320 and 322, comparators 324, 326 and 328, voltage generator 330, PSM (pulse omitted) mode, pulse skipping mode) circuit 332 and PWM (pulse width modulation, pulse width modulation) logic 334 .
波形产生器312耦合至加法器318。波形产生器312产生周期波形信号,例如但不受限于,斜坡信号(ramp signal)。由波形产生器312所产生的周期波形信号输入至加法器318。Waveform generator 312 is coupled to summer 318 . The waveform generator 312 generates a periodic waveform signal, such as, but not limited to, a ramp signal. The periodic waveform signal generated by the waveform generator 312 is input to the adder 318 .
补偿误差放大器314耦合至分压电路,该分压电路包括电阻R1、R2与R3。补偿误差放大器314接收参考电压Vref与反馈信号Vop_FB,反馈信号Vop_FB有关于正输出Vop。补偿误差放大器314将输出信号VEAp输入至缓冲器320、比较器324与PSM电路332。亦即,补偿误差放大器314所产生的输出信号VEAp(也可称为第一补偿误差放大器输出信号)是回应于正输出Vop。Compensated error amplifier 314 is coupled to a voltage divider circuit including resistors R1, R2 and R3. The compensation error amplifier 314 receives the reference voltage Vref and the feedback signal Vop_FB. The feedback signal Vop_FB is related to the positive output Vop. The compensation error amplifier 314 inputs the output signal VEAp to the buffer 320 , the comparator 324 and the PSM circuit 332 . That is, the output signal VEAp (also referred to as the first compensated error amplifier output signal) generated by the compensation error amplifier 314 is responsive to the positive output Vop.
相似地,补偿误差放大器316耦合至分压电路,该分压电路包括电阻R1、R2与R3。补偿误差放大器316接收接地端与反馈信号Von_FB,反馈信号Von_FB有关于负输出Von。补偿误差放大器316将输出信号VEAn输入至缓冲器322、比较器328与PSM电路332。亦即,补偿误差放大器316所产生的输出信号VEAn(也可称为第二补偿误差放大器输出信号)是回应于负输出Von。Similarly, compensated error amplifier 316 is coupled to a voltage divider circuit that includes resistors R1, R2, and R3. The compensation error amplifier 316 receives the ground terminal and the feedback signal Von_FB, and the feedback signal Von_FB is related to the negative output Von. The compensation error amplifier 316 inputs the output signal VEAn to the buffer 322 , the comparator 328 and the PSM circuit 332 . That is, the output signal VEAn (also referred to as the second compensated error amplifier output signal) generated by the compensation error amplifier 316 is responsive to the negative output Von.
加法器318将波形产生器312所产生的周期波形信号与电压IL*Rs相加,其中,IL代表电感L31的电感电流。加法器318的输出信号Vsum(亦即总和信号)输出至比较器324、326与328。The adder 318 adds the periodic waveform signal generated by the waveform generator 312 to the voltage IL*Rs, where IL represents the inductor current of the inductor L31. The output signal Vsum (ie, the sum signal) of the adder 318 is output to the comparators 324 , 326 and 328 .
缓冲器320与322分别缓冲补偿误差放大器314与316的输出信号VEAp与VEAn。缓冲器320与322的输出乃是输入至加法器319。The buffers 320 and 322 buffer the output signals VEAp and VEAn of the compensation error amplifiers 314 and 316, respectively. The outputs of buffers 320 and 322 are input to adder 319 .
加法器319相加缓冲器320与322的输出信号(亦即VEAp与VEAn)以得到输出信号VEApn(亦即第三补偿误差放大器输出信号),并输入至比较器326(亦即,VEApn=VEAp+VEAn)。The adder 319 adds the output signals of the buffers 320 and 322 (ie, VEAp and VEAn) to obtain the output signal VEApn (ie, the third compensation error amplifier output signal), which is input to the comparator 326 (ie, VEApn=VEAp +VEAn).
比较器324用以接收由加法器318所输出的输出信号Vsum与补偿误差放大器314所输出的输出信号VEAp。比较器324的输出信号Cp(亦称为第一比较信号)输入至PWM逻辑334。当输出信号Vsum高于或等于输出信号VEAp时,输出信号Cp为逻辑高。The comparator 324 is used for receiving the output signal Vsum output by the adder 318 and the output signal VEAp output by the compensation error amplifier 314 . The output signal Cp of the comparator 324 (also referred to as the first comparison signal) is input to the PWM logic 334 . When the output signal Vsum is higher than or equal to the output signal VEAp, the output signal Cp is logic high.
比较器326用以接收由加法器318所输出的输出信号Vsum与加法器319所输出的输出信号VEApn。比较器326的输出信号Cpn(亦称为第三比较信号)输入至PWM逻辑334。当输出信号Vsum高于或等于输出信号VEApn时,输出信号Cpn为逻辑高。The comparator 326 is used for receiving the output signal Vsum output by the adder 318 and the output signal VEApn output by the adder 319 . The output signal Cpn (also referred to as the third comparison signal) of the comparator 326 is input to the PWM logic 334 . When the output signal Vsum is higher than or equal to the output signal VEApn, the output signal Cpn is logic high.
比较器328用以接收由加法器318所输出的输出信号Vsum与补偿误差放大器316所输出的输出信号VEAn。比较器328的输出信号Cn(亦称为第二比较信号)输入至PWM逻辑334。当输出信号Vsum高于或等于输出信号VEAn时,输出信号Cn为逻辑高。The comparator 328 is used for receiving the output signal Vsum output by the adder 318 and the output signal VEAn output by the compensation error amplifier 316 . The output signal Cn (also referred to as the second comparison signal) of the comparator 328 is input to the PWM logic 334 . When the output signal Vsum is higher than or equal to the output signal VEAn, the output signal Cn is logic high.
电压产生器330用以产生参考电压Vref与VCL,分别输出至补偿误差放大器314与PSM电路332。The voltage generator 330 is used for generating the reference voltages Vref and VCL, which are respectively output to the compensation error amplifier 314 and the PSM circuit 332 .
PSM电路332用以接收由补偿误差放大器314所产生的输出信号VEAp,补偿误差放大器316所产生的输出信号VEAn,以及由电压产生器330所产生的参考电压VCL。PSM电路332的输出输入至PWM逻辑334。PSM电路332的细节在此省略。The PSM circuit 332 is used for receiving the output signal VEAp generated by the compensation error amplifier 314 , the output signal VEAn generated by the compensation error amplifier 316 , and the reference voltage VCL generated by the voltage generator 330 . The output of PSM circuit 332 is input to PWM logic 334 . Details of the PSM circuit 332 are omitted here.
根据电压IL*RS、输出信号Cp、Cpn与Cn(分别由比较器324、326与328所产生),以及PSM电路332的输出信号,PWM逻辑334产生控制信号S1、S2、S3、SP与SN。PWM逻辑334的细节在此省略。Based on voltage IL*RS, output signals Cp, Cpn, and Cn (generated by comparators 324, 326, and 328, respectively), and the output signal of PSM circuit 332, PWM logic 334 generates control signals S1, S2, S3, SP, and SN . Details of the PWM logic 334 are omitted here.
亦即,根据正输出Vop、负输出Von与电感L31的电感电流,SIBO升降压控制器310产生控制信号S1、S2、S3、SP与SN。That is, according to the positive output Vop, the negative output Von and the inductor current of the inductor L31, the SIBO buck-boost controller 310 generates the control signals S1, S2, S3, SP and SN.
SIBO升降压功率级350包括电感L31,开关SW1、SW2、SW3、SWP与SWN,以及电容C31、C32与C33。电容C31、C32与C33是去耦合电容。The SIBO buck-boost power stage 350 includes an inductor L31, switches SW1, SW2, SW3, SWP, and SWN, and capacitors C31, C32, and C33. Capacitors C31, C32 and C33 are decoupling capacitors.
开关SW1由控制信号S1所控制。开关SW2由控制信号S2所控制。开关SW3由控制信号S3所控制。开关SWP由控制信号SP所控制。开关SWN由控制信号SN所控制。The switch SW1 is controlled by the control signal S1. The switch SW2 is controlled by the control signal S2. The switch SW3 is controlled by the control signal S3. The switch SWP is controlled by the control signal SP. The switch SWN is controlled by the control signal SN.
开关SW1耦合于输入电压Vin与节点N1之间。开关SW2耦合于节点N1与接地端GROUND之间。开关SW3耦合于节点N2与接地端GROUND之间。开关SWP耦合于节点N2与第一输出节点(用以输出正输出Vop)之间。开关SWN耦合于节点N1与第二输出节点(用以输出负输出Von)之间。电感L31耦合于节点N1与N2之间。电容C31耦合于输入电压Vin与接地端GROUND之间。电容C32耦合于正输出Vop与接地端GROUND之间。电容C33耦合于负输出Von与接地端GROUND之间。The switch SW1 is coupled between the input voltage Vin and the node N1. The switch SW2 is coupled between the node N1 and the ground terminal GROUND. The switch SW3 is coupled between the node N2 and the ground terminal GROUND. The switch SWP is coupled between the node N2 and the first output node (for outputting the positive output Vop). The switch SWN is coupled between the node N1 and the second output node (for outputting the negative output Von). Inductor L31 is coupled between nodes N1 and N2. The capacitor C31 is coupled between the input voltage Vin and the ground terminal GROUND. The capacitor C32 is coupled between the positive output Vop and the ground terminal GROUND. The capacitor C33 is coupled between the negative output Von and the ground terminal GROUND.
正输出Vop,高于0V,产生于电容C32之上。正输出Vop可用正电流Iop来驱动负载360。负输出Von,低于0V,产生于电容C33之上。负输出Von可用负电流Ion来驱动负载380。The positive output Vop, above 0V, is generated on capacitor C32. Positive output Vop can drive load 360 with positive current Iop. The negative output Von, below 0V, is generated on capacitor C33. The negative output Von can drive the load 380 with the negative current Ion.
图4显示图3的SIBO升降压转换器300的4个操作时相P1-P4。图5显示图3的SIBO升降压转换器300的多个信号(IL、VEAp、VEAn、VEApn与Vsum)的时序图。如图5所示,SIBO升降压转换器300具有两种操作模式:连续导通模式(continuous conduction mode,CCM)与非连续导通模式(discontinuous conduction mode,DCM)。FIG. 4 shows four operating phases P1-P4 of the SIBO buck-boost converter 300 of FIG. 3 . FIG. 5 shows a timing diagram of various signals (IL, VEAp, VEAn, VEApn, and Vsum) of the SIBO buck-boost converter 300 of FIG. 3 . As shown in FIG. 5 , the SIBO buck-boost converter 300 has two operating modes: continuous conduction mode (CCM) and discontinuous conduction mode (DCM).
在CCM模式下,电感L31的电感电流IL是连续的。在重负载下,利用正确的反馈控制,SIBO升降压转换器300进入CCM模式。In the CCM mode, the inductor current IL of the inductor L31 is continuous. Under heavy loads, with proper feedback control, the SIBO buck-boost converter 300 enters CCM mode.
相反地,在轻负载下,利用正确的反馈控制,SIBO升降压转换器300进入DCM模式。在轻负载下,电感电流IL的平均电流较小,且可能放电至0。当电感电流IL的平均电流接近0时,开关SW1、SWP与SWN将被关闭,然而,这五个开关SW1、SW2、SW3、SWP与SWN可为导通或关闭,而且,电感L31未吸收能量也未释出能量,直到下一个时脉周期。此可藉由将电感L31的一端或两端浮接而达成,或者将电感L31的两端彼此短路而达成。例如,开关SW2、SW3、SWP与SWN可关闭,而开关SW1可导通。或者,开关SW1、SWP与SWN可关闭,而开关SW2与SW3可导通。Conversely, at light loads, with proper feedback control, the SIBO buck-boost converter 300 enters DCM mode. At light loads, the average current of the inductor current IL is small and may discharge to zero. When the average current of the inductor current IL is close to 0, the switches SW1, SWP and SWN will be turned off, however, the five switches SW1, SW2, SW3, SWP and SWN can be turned on or off, and the inductor L31 does not absorb energy Energy is also not released until the next clock cycle. This can be achieved by floating one or both ends of the inductor L31, or by short-circuiting the two ends of the inductor L31 to each other. For example, switches SW2, SW3, SWP, and SWN can be turned off, while switch SW1 can be turned on. Alternatively, switches SW1, SWP and SWN may be turned off, while switches SW2 and SW3 may be turned on.
请参考图4与图5。在第一操作时相P1下,开关SW1与SW3导通且开关SW2、SWP与SWN则为关闭,其标示为图4中的“P1,13”。“P1,13”代表,在第一操作时相P1下,开关SW1与SW3导通。因而,在第一操作时相P1下,电感电流IL从输入电压Vin通过电感L31与开关SW1、SW3而流至接地端GROUND,以对电感L31充电。因此,第一操作时相P1是电感充电操作时相。电感充电操作时相(亦即P1)的空占比(duty cycle)可回应于反馈信号Von_FB而控制。Please refer to Figure 4 and Figure 5. In the first operating phase P1 , the switches SW1 and SW3 are turned on and the switches SW2 , SWP and SWN are turned off, which are denoted by “P1, 13” in FIG. 4 . "P1, 13" means that in the first operation phase P1, the switches SW1 and SW3 are turned on. Therefore, in the first operation phase P1 , the inductor current IL flows from the input voltage Vin to the ground terminal GROUND through the inductor L31 and the switches SW1 and SW3 to charge the inductor L31 . Therefore, the first operation phase P1 is the inductor charging operation phase. The duty cycle of the inductor charging operation phase (ie, P1 ) can be controlled in response to the feedback signal Von_FB.
在第二操作时相P2下,开关SW1与SWP导通,而开关SW2、SW3与SWN则为关闭,在图4中标示为“P2,1P”。“P2,1P”代表,在第二操作时相P2下,开关SW1与SWP导通。因而,在第二操作时相P2下,电感电流从电感L31流出并通过开关SP与电容C32而流至接地端GROUND。电感L31被充磁,如果输入电压Vin高于输出电压Vop,而电感L31放出能量,如果输入电压Vin低于输出电压Vop。因此,对电容C32充电,且正输出Vop产生于电容C32之上。因此,第二操作时相P1是正输出充电(positive output energizing)操作时相。正输出充电操作时相(亦即P2)的空占比可回应于反馈信号Vop_FB与Von_FB而控制。In the second operation phase P2, the switches SW1 and SWP are turned on, while the switches SW2, SW3 and SWN are turned off, which are marked as “P2, 1P” in FIG. 4 . "P2, 1P" means that in the second operation phase P2, the switches SW1 and SWP are turned on. Therefore, in the second operation phase P2, the inductor current flows from the inductor L31 and flows to the ground terminal GROUND through the switch SP and the capacitor C32. The inductor L31 is magnetized if the input voltage Vin is higher than the output voltage Vop, while the inductor L31 discharges energy if the input voltage Vin is lower than the output voltage Vop. Therefore, the capacitor C32 is charged, and the positive output Vop is generated on the capacitor C32. Therefore, the second operation phase P1 is a positive output energizing operation phase. The duty cycle of the positive output charging operation phase (ie, P2 ) can be controlled in response to the feedback signals Vop_FB and Von_FB.
在第三操作时相P3下,开关SW2与SWP导通,而开关SW1、SW3与SWN则为关闭,在图4中标示为“P3,2P”。“P3,2P”代表,在第三操作时相P3下,开关SW2与SWP导通。因而,第三操作时相P3是电感释放能量操作时相,且电感电流从电流L31释放至电容C32。In the third operation phase P3 , the switches SW2 and SWP are turned on, while the switches SW1 , SW3 and SWN are turned off, which are marked as “P3, 2P” in FIG. 4 . "P3, 2P" means that in the third operation phase P3, the switches SW2 and SWP are turned on. Therefore, the third operation phase P3 is the inductor discharge energy operation phase, and the inductor current is discharged from the current L31 to the capacitor C32.
在第四操作时相P4下,开关SW3与SWN导通而开关SW1、SW2与SWP则为关闭,在图4中标示为“P4,3N”。“P4,3N”代表,在第四操作时相P4下,开关SW3与SWN为导通。因而,在第四操作时相P4下,电感L31将所储能的电能释放,电感电流IL从电感L31通过开关SN与电容C33而流至接地端GROUND。因此,对电容C33充电,而负输出Von产生于电容C33之上。第四操作时相P4是负输出充电(negative output energizing)操作时相。In the fourth operating phase P4 , the switches SW3 and SWN are turned on and the switches SW1 , SW2 and SWP are turned off, which is marked as “P4, 3N” in FIG. 4 . "P4, 3N" means that in the fourth operation phase P4, the switches SW3 and SWN are turned on. Therefore, in the fourth operation phase P4, the inductor L31 releases the stored energy, and the inductor current IL flows from the inductor L31 to the ground terminal GROUND through the switch SN and the capacitor C33. Therefore, the capacitor C33 is charged, and the negative output Von is generated on the capacitor C33. The fourth operation phase P4 is a negative output energizing operation phase.
在第五操作时相P5(图4未显示出)下,电感L31的至少一端为浮接,或电感L31的两端彼此短路。例如,开关SW1、SWN和SWP都是关闭,而开关SW2与SW3可为导通或关闭。第五操作时相P5是0电感电流操作时相。在第五操作时相P5下,电感L31的至少一端是浮接的,因而,电感未被充电也未被放电。In the fifth operation phase P5 (not shown in FIG. 4 ), at least one end of the inductance L31 is floating, or the two ends of the inductance L31 are short-circuited to each other. For example, switches SW1, SWN and SWP are all off, while switches SW2 and SW3 can be on or off. The fifth operation phase P5 is the 0 inductor current operation phase. In the fifth operation phase P5, at least one end of the inductance L31 is floating, and thus, the inductance is neither charged nor discharged.
图5也显示出5种操作模式,亦即,在Vin>Vop且重负载(CCM)下的操作模式,在Vin≈Vop且重负载(CCM)下的操作模式,在Vin<Vop且重负载(CCM)下的操作模式,在Vin>Vop且轻负载(DCM)下的操作模式,以及在Vin<Vop且轻负载(DCM)下的操作模式。Figure 5 also shows 5 operating modes, namely, the operating mode under Vin>Vop and heavy load (CCM), the operating mode under Vin ≈ Vop and heavy load (CCM), the operating mode when Vin < Vop and heavy load (CCM), operation mode at Vin>Vop and light load (DCM), and operation mode at Vin<Vop and light load (DCM).
如图5所示,在Vin>Vop且重负载(CCM)下的操作模式,于第一操作时相P1下,开关SW1与SW3为导通,因而电感电流IL上升。在第二操作时相P2下,开关SW1与SWP为导通,电感电流IL上升,而且,正输出Vop产生于电容C32之上。在第四操作时相P4下,开关SW3与SWN导通,因此电感电流IL下降。在第四操作时相P4下,负输出Von产生于电容C33之上。As shown in FIG. 5 , in the operation mode under the condition of Vin>Vop and heavy load (CCM), in the first operation phase P1, the switches SW1 and SW3 are turned on, so the inductor current IL increases. In the second operation phase P2, the switches SW1 and SWP are turned on, the inductor current IL increases, and the positive output Vop is generated on the capacitor C32. In the fourth operation phase P4, the switches SW3 and SWN are turned on, so the inductor current IL decreases. In the fourth operating phase P4, the negative output Von is generated on the capacitor C33.
相似地,在Vin≈Vop且重负载(CCM)下的操作模式,于第一操作时相P1下,开关SW1与SW3为导通,因而电感电流IL上升。在第二操作时相P2下,开关SW1与SWP为导通,但电感电流IL持平,而且,正输出Vop产生于电容C32之上。在第四操作时相P4下,开关SW3与SWN导通,因此电感电流IL下降。在第四操作时相P4下,负输出Von产生于电容C33之上。Similarly, in the operation mode under Vin≈Vop and heavy load (CCM), in the first operation phase P1, the switches SW1 and SW3 are turned on, so the inductor current IL increases. In the second operation phase P2, the switches SW1 and SWP are turned on, but the inductor current IL remains the same, and the positive output Vop is generated on the capacitor C32. In the fourth operation phase P4, the switches SW3 and SWN are turned on, so the inductor current IL decreases. In the fourth operating phase P4, the negative output Von is generated on the capacitor C33.
相似地,在Vin<Vop且重负载(CCM)下的操作模式,于第一操作时相P1下,开关SW1与SW3为导通,因而电感电流IL上升。在第二操作时相P2下,开关SW1与SWP为导通,但电感电流IL下降,而且,正输出Vop产生于电容C32之上。在第四操作时相P4下,开关SW3与SWN导通,因此电感电流IL下降。在第四操作时相P4下,负输出Von产生于电容C33之上。Similarly, in the operation mode of Vin<Vop and heavy load (CCM), in the first operation phase P1, the switches SW1 and SW3 are turned on, so the inductor current IL increases. In the second operation phase P2, the switches SW1 and SWP are turned on, but the inductor current IL decreases, and the positive output Vop is generated on the capacitor C32. In the fourth operation phase P4, the switches SW3 and SWN are turned on, so the inductor current IL decreases. In the fourth operating phase P4, the negative output Von is generated on the capacitor C33.
在Vin>Vop且轻负载(DCM)下的操作模式下的操作时相P1、P2与P4相似于Vin>Vop且重负载(CCM)下的操作模式下的操作时相P1、P2与P4。然而,在第四操作时相P4之后,电感电流IL接近0。在第五操作时相P5下,不对电感L31充磁,此可藉由将电感L31的至少一端浮接而达成,或者将电感L31的两端彼此短路而达成。The operating phases P1 , P2 and P4 in the operating mode under Vin>Vop and light load (DCM) are similar to the operating phases P1 , P2 and P4 in the operating mode under Vin>Vop and heavy load (CCM). However, after the fourth operating phase P4, the inductor current IL approaches zero. In the fifth operation phase P5, the inductor L31 is not magnetized, which can be achieved by floating at least one end of the inductor L31, or short-circuiting the two ends of the inductor L31.
在Vin<Vop且轻负载(DCM)下的操作模式下的操作时相P1、P2与P4相似于Vin<Vop且重负载(CCM)下的操作模式下的操作时相P1、P2与P4。然而,在第四操作时相P4之后,电感电流IL接近0。在第五操作时相P5下,不对电感L31充磁,此可藉由将电感L31的至少一端浮接而达成,或者将电感L31的两端彼此短路而达成。The operating phases P1 , P2 and P4 in the operating mode under Vin<Vop and light load (DCM) are similar to the operating phases P1 , P2 and P4 in the operating mode under Vin<Vop and heavy load (CCM). However, after the fourth operating phase P4, the inductor current IL approaches zero. In the fifth operation phase P5, the inductor L31 is not magnetized, which can be achieved by floating at least one end of the inductor L31, or short-circuiting the two ends of the inductor L31.
因而,在本案实施例中,藉由回应于两个反馈信号(Vop_FB与Von_FB)以及电感电流IL,来控制所有开关SW1、SW2、SW3、SWP与SWN。Therefore, in the present embodiment, all switches SW1 , SW2 , SW3 , SWP and SWN are controlled by responding to the two feedback signals (Vop_FB and Von_FB) and the inductor current IL.
在重负载(CCM)下,控制顺序是P1、P2与P4,其中,第一操作时相P1开始于各时脉周期的开始,且结束于信号Cp的上升边缘(亦即,Vsum接近VEAp);第二操作时相P2开始于第一操作时相P1的结束,且结束于信号Cn的上升边缘(亦即,Vsum接近VEAn);以及,第四操作时相P4开始于第二操作时相P2的结束,且结束于下一时脉周期的开始。Under heavy load (CCM), the control sequence is P1, P2 and P4, where the first operating phase P1 starts at the beginning of each clock cycle and ends at the rising edge of signal Cp (ie, Vsum is close to VEAp) ; the second operating phase P2 starts at the end of the first operating phase P1 and ends with the rising edge of the signal Cn (ie, Vsum approaches VEAn); and the fourth operating phase P4 starts at the second operating phase The end of P2 and the beginning of the next clock cycle.
在轻负载(DCM)下,控制顺序是P1、P2、P4与P5,其中,第一操作时相P1开始于各时脉周期的开始,且结束于信号Cn的上升边缘(亦即,Vsum接近VEAn);第二操作时相P2开始于第一操作时相P1的结束,且结束于信号Cpn的上升边缘(亦即,Vsum接近VEApn);第四操作时相P4开始于第二操作时相P2的结束,且结束于电感电流IL放电至接近0;以及,第五操作时相P5开始于第四操作时相P4的结束,且结束于下一时脉周期的开始。At light load (DCM), the control sequence is P1, P2, P4, and P5, where the first operating phase P1 begins at the beginning of each clock cycle and ends at the rising edge of signal Cn (ie, Vsum is close to VEAn); the second operation phase P2 starts at the end of the first operation phase P1 and ends at the rising edge of the signal Cpn (ie, Vsum approaches VEApn); the fourth operation phase P4 starts at the second operation phase The end of P2 and the discharge of the inductor current IL to near 0; and the fifth operation phase P5 begins at the end of the fourth operation phase P4 and ends at the beginning of the next clock cycle.
现将说明,输入电压Vin由锂电池所提供的例子,其中,输入电压Vin的初始电压是4.2V,而所需要的正输出Vop是3.6V。开始时,输入电压Vin高于正输出Vop,本案实施例的SIBO升降压转换器300操作于Vin>Vop且重负载(CCM)的操作模式下。接着,因为锂电流提供电力给SIBO升降压转换器300,输入电压Vin(由锂电池所输出)逐渐变低。当输入电压Vin逐渐变低至几乎接近正输出Vop时,本案实施例的SIBO升降压转换器300操作于Vin≈Vop且重负载(CCM)的操作模式下。当输入电压Vin更逐渐变低而低于正输出Vop时,本案实施例的SIBO升降压转换器300操作于Vin<Vop且重负载(CCM)的操作模式下。An example in which the input voltage Vin is provided by a lithium battery will now be described, wherein the initial voltage of the input voltage Vin is 4.2V, and the required positive output Vop is 3.6V. Initially, the input voltage Vin is higher than the positive output Vop, and the SIBO buck-boost converter 300 of the present embodiment operates in the operating mode of Vin>Vop and heavy load (CCM). Next, the input voltage Vin (output by the lithium battery) gradually becomes lower as the lithium current provides power to the SIBO buck-boost converter 300 . When the input voltage Vin gradually decreases to almost close to the positive output Vop, the SIBO buck-boost converter 300 of the present embodiment operates in the Vin≈Vop and heavy load (CCM) operating mode. When the input voltage Vin gradually becomes lower than the positive output Vop, the SIBO buck-boost converter 300 of the present embodiment operates in the Vin<Vop and heavy load (CCM) operating mode.
简言之,本案实施例的SIBO升降压转换器300中,通过一个电感、多个电容与多个开关,可以产生两个输出电压(正输出Vop与负输出Von)。In short, in the SIBO buck-boost converter 300 of this embodiment, two output voltages (positive output Vop and negative output Von) can be generated through one inductor, multiple capacitors and multiple switches.
图6显示本案实施例与现有两级SIBO转换器的能量转换效率比较图,此图以Vop=2.8V为例。如图6所示,本案实施例的SIBO升降压转换器具有平滑且高能量转换效率(几乎介于85%-88%之间)。相较于现有两级SIBO转换器100的能量转换效率(介于55%-88%之间),本案实施例的SIBO升降压转换器能量转换效率获得显著改良。FIG. 6 shows a comparison diagram of the energy conversion efficiency between the embodiment of the present invention and the existing two-stage SIBO converter, and this diagram takes Vop=2.8V as an example. As shown in FIG. 6 , the SIBO buck-boost converter of this embodiment has smooth and high energy conversion efficiency (almost between 85%-88%). Compared with the energy conversion efficiency of the existing two-stage SIBO converter 100 (between 55%-88%), the energy conversion efficiency of the SIBO buck-boost converter of the embodiment of the present invention is significantly improved.
综上所述,虽然本发明已以实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视后附的申请专利范围所界定者为准。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029733.6A CN110034678A (en) | 2018-01-12 | 2018-01-12 | Single inductance double-polarity control type of voltage step-up/down converter and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810029733.6A CN110034678A (en) | 2018-01-12 | 2018-01-12 | Single inductance double-polarity control type of voltage step-up/down converter and its control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110034678A true CN110034678A (en) | 2019-07-19 |
Family
ID=67234378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810029733.6A Pending CN110034678A (en) | 2018-01-12 | 2018-01-12 | Single inductance double-polarity control type of voltage step-up/down converter and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110034678A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113808531A (en) * | 2021-06-25 | 2021-12-17 | 博发电子股份有限公司 | Single-inductor buck-boost bipolar multi-output converter and control method thereof |
CN114094826A (en) * | 2021-09-10 | 2022-02-25 | 珠海智融科技股份有限公司 | Method, system, equipment and medium for improving efficiency of buck-boost controller |
CN114696600A (en) * | 2020-12-30 | 2022-07-01 | 瑞鼎科技股份有限公司 | Power supply and control method of power conversion circuit |
CN114710020A (en) * | 2022-03-21 | 2022-07-05 | 西安电子科技大学 | Soft start control method suitable for SIBO switching power supply |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136590A (en) * | 2006-08-31 | 2008-03-05 | 沃福森微电子有限公司 | DC-DC converter circuit and method and apparatus including same |
KR20100012234A (en) * | 2008-07-28 | 2010-02-08 | (주)제이디에이테크놀로지 | Dc/dc converter |
CN103325346A (en) * | 2012-03-22 | 2013-09-25 | 联咏科技股份有限公司 | Driving control method and correlative source electrode driver |
US20150222235A1 (en) * | 2014-02-04 | 2015-08-06 | Cirrus Logic, Inc. | Switched mode amplifier |
CN105075090A (en) * | 2013-02-14 | 2015-11-18 | 德克萨斯仪器股份有限公司 | Buck-boost converter with buck-boost transition switching control |
-
2018
- 2018-01-12 CN CN201810029733.6A patent/CN110034678A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136590A (en) * | 2006-08-31 | 2008-03-05 | 沃福森微电子有限公司 | DC-DC converter circuit and method and apparatus including same |
KR20100012234A (en) * | 2008-07-28 | 2010-02-08 | (주)제이디에이테크놀로지 | Dc/dc converter |
CN103325346A (en) * | 2012-03-22 | 2013-09-25 | 联咏科技股份有限公司 | Driving control method and correlative source electrode driver |
CN105075090A (en) * | 2013-02-14 | 2015-11-18 | 德克萨斯仪器股份有限公司 | Buck-boost converter with buck-boost transition switching control |
US20150222235A1 (en) * | 2014-02-04 | 2015-08-06 | Cirrus Logic, Inc. | Switched mode amplifier |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114696600A (en) * | 2020-12-30 | 2022-07-01 | 瑞鼎科技股份有限公司 | Power supply and control method of power conversion circuit |
CN113808531A (en) * | 2021-06-25 | 2021-12-17 | 博发电子股份有限公司 | Single-inductor buck-boost bipolar multi-output converter and control method thereof |
CN114094826A (en) * | 2021-09-10 | 2022-02-25 | 珠海智融科技股份有限公司 | Method, system, equipment and medium for improving efficiency of buck-boost controller |
CN114710020A (en) * | 2022-03-21 | 2022-07-05 | 西安电子科技大学 | Soft start control method suitable for SIBO switching power supply |
CN114710020B (en) * | 2022-03-21 | 2024-04-16 | 西安电子科技大学 | A soft start control method suitable for SIBO switching power supply |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI644300B (en) | Sibo buck-boost converter and control method thereof | |
US10014778B1 (en) | SIBO buck-boost converter and control method thereof | |
US10790742B1 (en) | Multi-level power converter with improved transient load response | |
US11011991B1 (en) | Regulation loop circuit | |
US8058859B2 (en) | Pulse frequency modulation methods and circuits | |
US7940031B2 (en) | Switching power supply circuitry | |
US9484758B2 (en) | Hybrid bootstrap capacitor refresh technique for charger/converter | |
US7528589B2 (en) | Step-up DC/DC converter and electronic appliance therewith | |
WO2014101077A1 (en) | Dc/dc module of lcd driving circuit | |
US11228243B2 (en) | Power converter with reduced RMS input current | |
KR20110033949A (en) | DC / DC voltage converter | |
US10103620B1 (en) | SIBO boost converter and operation method thereof | |
CN110034678A (en) | Single inductance double-polarity control type of voltage step-up/down converter and its control method | |
US10447154B2 (en) | PWM control scheme for providing minimum on time | |
JP2017153348A (en) | DC-DC converter | |
CN117375422A (en) | Buck-Boost converter mode switching circuit | |
EP4187764A1 (en) | Charging circuit | |
CN211701858U (en) | Pulse sequence controlled PCCM Buck converter | |
US20240146197A1 (en) | Buck-boost converter and control method therefor | |
CN118748510A (en) | Mode conversion control circuit and control method of four-switch buck-boost converter | |
CN211791267U (en) | A Cascaded Boost DC-DC Converter | |
US11949331B2 (en) | Dual path split-capacitor power converter | |
US20220416661A1 (en) | Simbo buck-boost inverting converter and control method thereof | |
US20230037874A1 (en) | Inverting Buck-Boost Converter | |
CN115173704A (en) | Switching power supply and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190719 |