CN110021003B - Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device - Google Patents
Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device Download PDFInfo
- Publication number
- CN110021003B CN110021003B CN201910114389.5A CN201910114389A CN110021003B CN 110021003 B CN110021003 B CN 110021003B CN 201910114389 A CN201910114389 A CN 201910114389A CN 110021003 B CN110021003 B CN 110021003B
- Authority
- CN
- China
- Prior art keywords
- image
- images
- diffusion
- nerve fiber
- anisotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明涉及医学成像技术,特别涉及一种实现各向异性图像,弥散包络面图像和神经分布图像融合的方法。该方法包括,根据核磁共振数据获取相应的各向异性图像,弥散包络面图像和神经分布图像,再结合三种图像各自的特点完成图像融合。本发明适用于分析重建大脑内复杂的生物组织结构,在脑科学,神经科学,医学成像等方面有重要应用价值。
The invention relates to medical imaging technology, in particular to a method for realizing fusion of anisotropic images, diffusion envelope surface images and nerve distribution images. The method includes acquiring corresponding anisotropic images, diffusion envelope images and nerve distribution images according to nuclear magnetic resonance data, and then combining the respective characteristics of the three images to complete image fusion. The invention is suitable for analyzing and reconstructing the complex biological tissue structure in the brain, and has important application value in brain science, neuroscience, medical imaging and the like.
Description
技术领域technical field
本发明涉及神经科学以及医学图像处理的交叉领域,具体的,涉及处理核磁共振成像中 的各向异性图像,弥散包络面图像与神经分布图像融合的方法及相应的图像处理装置,以及 包含该图像处理装置的磁共振成像设备。该方法和装置适用于脑结构与功能的研究,脑部疾 病的诊断与治疗,及临床神经外科手术的术前规划等。The invention relates to the cross field of neuroscience and medical image processing, in particular, to a method for processing anisotropic images in nuclear magnetic resonance imaging, a diffusion envelope image and a nerve distribution image, and a corresponding image processing device, as well as a method including the Magnetic resonance imaging equipment of an image processing apparatus. The method and device are suitable for the study of brain structure and function, the diagnosis and treatment of brain diseases, and the preoperative planning of clinical neurosurgery.
背景技术Background technique
核磁共振成像(MRI)是利用核磁共振原理,根据所释放的能量在物质内部不同结构环 境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核 的位置和种类,据此可以绘制成物体内部的结构图像。弥散张量成像(DTI),是一种描述大 脑结构的新方法,是核磁共振成像(MRI)的特殊形式。即依据大脑等生物组织内水分子的弥 散运动,判断组织结构及神经纤维的分布。弥散张量成像图可以揭示脑瘤如何影响神经细胞 连接,引导医疗人员进行大脑手术。它还可以揭示同中风、多发性硬化症、精神分裂症、阅 读障碍等疾病有关的细微反常变化。此外,还有高角坐标分辨率成像,增强弥散张量成像等 类似的方法。其中,增强弥散张量成像是我们发明的一种适用于重构神经复杂分布区域神经 纤维束的医学成像方法,该方法采用一种自选独立变量个数的高阶张量模型来描述体元内的 弥散运动,并结合高阶张量分解理论求解体元内纤维数的方向。Magnetic resonance imaging (MRI) is based on the principle of nuclear magnetic resonance. According to the different attenuation of the released energy in different structural environments inside the material, the electromagnetic wave emitted by the external gradient magnetic field can be detected, and the position of the atomic nucleus that constitutes the object can be known. and types, according to which the structure image inside the object can be drawn. Diffusion tensor imaging (DTI), a new method to describe the structure of the brain, is a special form of magnetic resonance imaging (MRI). That is, according to the diffusion movement of water molecules in biological tissues such as the brain, the tissue structure and the distribution of nerve fibers are judged. Diffusion tensor imaging maps can reveal how brain tumors affect nerve cell connections, leading to brain surgery. It can also reveal subtle abnormal changes associated with stroke, multiple sclerosis, schizophrenia, dyslexia, and more. In addition, there are high angular coordinate resolution imaging, enhanced diffusion tensor imaging and similar methods. Among them, enhanced diffusion tensor imaging is a medical imaging method invented by us that is suitable for reconstructing nerve fiber bundles in complex distribution areas of nerves. The diffusion motion of , and the direction of the number of fibers in the voxel are solved by combining the higher-order tensor decomposition theory.
弥散(diffusion)是指分子的随机不规则运动,是人体内水分子重要的活动形式,又 称布朗运动。弥散是一个三维过程,分子沿空间某一方向弥散的距离受生物组织结构的影响, 可以将弥散的方式分为两种:一种是指在完全均匀的介质中,分子的运动由于没有障碍,向 各个方向运动的距离是相等的,此种弥散方式称为各向同性(isotropic)弥散,如在纯水 中水分子的弥散即为各向同性弥散,在人脑组织中,脑脊液及大脑灰质中水分子的弥散近似 各向同性弥散。另一种弥散具有方向依赖性,在按一定方向排列的组织中,分子向各个方向 弥散的距离不相等,称为各向异性(anisotropic)弥散。为了描述水分子弥散运动的各向 异性程度,常常利用各向异性分数(fractional anisotropy,FA)、相对各向异性(relative anisotropy,RA)、容积比指数(volume ratio,VR)等参数定量分析各项异性。根据大 脑内各处的各项异性参数做出的图像在脑部疾病的诊断中有着重要应用。其中,FA图像观 察到的大脑白质纤维结构最清楚,灰白质分界好,且FA值与髓鞘的完整性,纤维的致密性 及平行性呈正相关,故FA值的应用最为广泛。此外,弥散运动包络面也是描述体元内水分 子弥散运动情况的有效手段,即:由测量体元中心释放的水分子在单位时间内经由弥散运动 形成的空间包络面。与各项异性参数相比,弥散运动包络面更加完整全面的反映了水分子的 弥散运动受生物组织内部结构的影响,具有重要的物理和临床意义。在传统的弥散张量成像 中,弥散运动包络面为椭球面;在高角坐标分辨率成像中,弥散运动为一系列椭球面的组合; 在增强弥散张量成像技术中,复原体元内的弥散运动包络面是完成神经纤维束重构的关键步 骤之一。Diffusion refers to the random and irregular motion of molecules, which is an important form of activity of water molecules in the human body, also known as Brownian motion. Diffusion is a three-dimensional process, and the distance of molecules diffusing in a certain direction in space is affected by the structure of biological tissues. The diffusion methods can be divided into two types: one means that in a completely homogeneous medium, the movement of molecules has no obstacles because there are no obstacles. The distance of movement in all directions is equal. This type of dispersion is called isotropic dispersion. For example, the dispersion of water molecules in pure water is isotropic dispersion. In human brain tissue, cerebrospinal fluid and cerebral gray matter The dispersion of water molecules is approximately isotropic. Another kind of dispersion is direction-dependent. In an organization arranged in a certain direction, the diffusion distance of molecules in all directions is unequal, which is called anisotropic dispersion. In order to describe the degree of anisotropy of the dispersion motion of water molecules, parameters such as fractional anisotropy (FA), relative anisotropy (RA), and volume ratio (VR) are often used to quantitatively analyze each Items of the opposite sex. Images based on anisotropic parameters throughout the brain have important applications in the diagnosis of brain diseases. Among them, the structure of white matter fibers in the brain observed by FA images is the clearest, and the demarcation between gray and white matter is good, and the FA value is positively correlated with the integrity of the myelin sheath, the compactness and parallelism of the fibers, so the FA value is the most widely used. In addition, the diffusion motion envelope surface is also an effective means to describe the diffusion motion of water molecules in the voxel, that is, the spatial envelope surface formed by the diffusion motion of water molecules released from the center of the voxel in unit time. Compared with the anisotropic parameters, the diffusion motion envelope surface reflects the influence of the diffusion motion of water molecules by the internal structure of biological tissue more completely and comprehensively, which has important physical and clinical significance. In traditional diffusion tensor imaging, the envelope of diffusion motion is an ellipsoid; in high-angle coordinate resolution imaging, the diffusion motion is a combination of a series of ellipsoids; in enhanced diffusion tensor imaging, the Diffuse motion envelope is one of the key steps to complete the reconstruction of nerve fiber bundles.
纤维束示踪成像(Fiber tractography,简称FT),是在弥散张量成像基础上发展起来 的一项新技术,可用于无损检测大脑内神经纤维束的方向及完整性。其基本原理为从任一测 量体元(即种子点)出发,沿着该体元内神经纤维束的方向行进指定长度到达下一个体元, 继续上述操作。直至到达测量空间的边界;或体元内的各项异性参数低于阈值;或连接的两 个体元内神经纤维束的夹角大于的阈值(一般为60度)。将这一系列体元内神经纤维束的方 向在空间中连接起来,便得到了一条神经纤维束在空间中的整体走向。纤维束示踪成像技术 能够实现脑内神经纤维分布的三维重构,其对于脑内结构与功能的研究,临床脑部疾病的诊 断,手术导航与术前规划具有极其重要的意义。Fiber tractography (FT) is a new technology developed on the basis of diffusion tensor imaging, which can be used to non-destructively detect the direction and integrity of nerve fiber tracts in the brain. The basic principle is to start from any measurement voxel (that is, the seed point), travel along the direction of the nerve fiber bundle in the voxel for a specified length to the next voxel, and continue the above operation. Until the boundary of the measurement space is reached; or the anisotropy parameter in the voxel is lower than the threshold; or the angle between the nerve fiber bundles in the connected two voxels is greater than the threshold (usually 60 degrees). By connecting the directions of the nerve fiber bundles in this series of voxels in space, the overall direction of a nerve fiber bundle in space is obtained. Fiber tract tracing imaging technology can realize the three-dimensional reconstruction of the distribution of nerve fibers in the brain, which is of great significance for the study of brain structure and function, the diagnosis of clinical brain diseases, surgical navigation and preoperative planning.
各向异性图像能够给出切片平面内灰白质的整体分布;相比而言,弥散包络面图像更加 完整,能全面的反应切片平面内各处弥散运动的各向异性,进而可以大致推测出该处的组织 结构;神经分布图像可以帮助医师与研究人员直观的观测脑部神经纤维的空间分布与走向, 细致完整的刻画了脑内神经组织的结构和各功能区域的连接情况。三种图像分别从灰白质分 布,局部各向异性与神经纤维分布三个不同的方面反映了大脑内部复杂的生物组织结构。为 了对这三种信息进行充分利用,需要对上述三种图像进行一定的融合处理。但三种图像的维 度不同:各向异性图像是二维图像,神经分布图像是三维图像,弥散包络面图像介于二维和 三维之间(待测体元分布于二维平面之上,每个体元内的弥散包络面图像是三维的),这对 图像融合造成了一定的困难。The anisotropy image can give the overall distribution of gray and white matter in the slice plane; in comparison, the diffusion envelope image is more complete, and can comprehensively reflect the anisotropy of the diffusion motion in the slice plane, which can be roughly inferred. The tissue structure and nerve distribution images can help doctors and researchers to observe the spatial distribution and direction of nerve fibers in the brain intuitively, and describe the structure of nerve tissue in the brain and the connection of various functional areas in a detailed and complete manner. The three images respectively reflect the complex biological tissue structure inside the brain from three different aspects: gray and white matter distribution, local anisotropy and nerve fiber distribution. In order to make full use of these three kinds of information, it is necessary to perform certain fusion processing on the above three kinds of images. But the dimensions of the three images are different: the anisotropic image is a two-dimensional image, the neural distribution image is a three-dimensional image, and the diffusion envelope image is between two-dimensional and three-dimensional (the voxels to be measured are distributed on a two-dimensional plane, The diffusion envelope image within each voxel is three-dimensional), which causes certain difficulties for image fusion.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提出了一种有效完成各向异性图像,弥散包络面图像与神经 分布图像融合的处理方法。具体的,本发明是这样实现的。In order to solve the above problems, the present invention proposes a processing method for effectively completing the fusion of anisotropic images, diffusion envelope surface images and neural distribution images. Specifically, the present invention is implemented in this way.
一种图像处理方法,用于实现各向异性图像、弥散包络面图像与神经纤维分布图像的融合处 理,其特征在于包括如下步骤:A kind of image processing method, is used for realizing the fusion processing of anisotropic image, diffusion envelope surface image and nerve fiber distribution image, it is characterized in that comprising the steps:
步骤1.获取对象的核磁共振数据;Step 1. Obtain the NMR data of the object;
步骤2.对所述核磁共振数据进行处理,获得对象的每个体元内的弥散运动包络面;Step 2. Process the nuclear magnetic resonance data to obtain the diffusion motion envelope surface in each voxel of the object;
步骤3.计算所述每个体元内神经纤维束的方向和各向异性参数;Step 3. Calculate the direction and anisotropy parameters of the nerve fiber bundles in each voxel;
步骤4.根据计算出的各向异性参数,生成选择的切片平面内的各向异性图像;Step 4. According to the calculated anisotropy parameters, generate an anisotropic image in the selected slice plane;
步骤5.在所述选择的切片平面内,选取各向异性参数大于阈值的体元内的弥散运动包络面, 生成弥散包络面图像;Step 5. In the selected slice plane, select the diffusion motion envelope surface in the voxel whose anisotropy parameter is greater than the threshold, and generate a diffusion envelope surface image;
步骤6.在所述选择的切片平面内,选取各向异性参数大于阈值的体元为种子点,从种子点 出发,根据所述神经纤维束的方向重构神经纤维分布图像;Step 6. in the slice plane of the described selection, choose the voxel whose anisotropy parameter is greater than the threshold value to be the seed point, from the seed point, reconstruct the nerve fiber distribution image according to the direction of the nerve fiber bundle;
步骤7.将所述选择的切片平面内的各向异性图像、弥散包络面图像以及神经分布图像进行 融合。Step 7. Fusion of the anisotropic image, diffusion envelope image and neural distribution image in the selected slice plane.
根据本发明的一个方面,提供了一种有效的图像处理装置,用于对各向异性图像,弥散包络 面图像与神经纤维分布图像进行融合,其特征在于包含以下单元:According to one aspect of the present invention, an effective image processing device is provided for merging the anisotropic image, the diffusion envelope surface image and the nerve fiber distribution image, which is characterized by comprising the following units:
采样单元,用于获取对象的核磁共振数据;a sampling unit for acquiring nuclear magnetic resonance data of the object;
计算单元,用于获得对象的每个体元内的弥散运动包络面,并计算神经纤维束的方向及各向 异性参数;a calculation unit, used to obtain the diffuse motion envelope surface in each voxel of the object, and calculate the direction and anisotropy parameters of the nerve fiber bundle;
图像生成单元,用于分别生成各向异性图像,弥散包络面图像和神经纤维分布图像;an image generation unit for generating anisotropic images, diffusion envelope images and nerve fiber distribution images respectively;
融合单元,用于实现各向异性图像,弥散包络面图像和神经纤维分布图像的融合。The fusion unit is used to realize the fusion of anisotropic images, diffusion envelope images and nerve fiber distribution images.
根据本发明的另一个方面,提供一种磁共振成像设备,其包括根据本发明的实施例的图像处 理装置。According to another aspect of the present invention, there is provided a magnetic resonance imaging apparatus including an image processing apparatus according to an embodiment of the present invention.
附图说明Description of drawings
图1是根据本发明所述的图像融合方法的流程图;1 is a flowchart of an image fusion method according to the present invention;
图2是根据本发明所述的图像融合处理装置的配置示例框图;2 is a block diagram of an example configuration of an image fusion processing apparatus according to the present invention;
图3是根据本发明实施例的磁共振成像设备的配置示例的框图;3 is a block diagram of a configuration example of a magnetic resonance imaging apparatus according to an embodiment of the present invention;
图4是本发明实施步骤S150中所述各向异性图像的示意图;FIG. 4 is a schematic diagram of the anisotropic image described in the implementation step S150 of the present invention;
图5是本发明实施步骤S180中所述各向异性图像和弥散包络面图像融合的局部示意图;5 is a partial schematic diagram of fusion of the anisotropic image and the diffusion envelope surface image described in the implementation step S180 of the present invention;
图6是本发明实施步骤S180中所述三种图像融合的局部示意图;6 is a partial schematic diagram of the three types of image fusion described in the implementation step S180 of the present invention;
图7是本发明最终实现的各向异性图像,弥散包络面图像与神经分布图像融合的示意图;7 is a schematic diagram of fusion of anisotropic image, diffusion envelope surface image and neural distribution image finally realized by the present invention;
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发 明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用 于限定本发明。In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1所示,是本发明的图像融合方法的流程图,其包括以下步骤:As shown in Figure 1, it is a flow chart of the image fusion method of the present invention, which includes the following steps:
步骤S110:采集对象的核磁共振数据。在单位球面上选取有限个采样方向,在每个体 元内,利用核磁共振技术测量采样方向上信号的衰减强度,即核磁共振数据。Step S110: Collect nuclear magnetic resonance data of the object. A finite number of sampling directions are selected on the unit sphere, and in each voxel, the attenuation intensity of the signal in the sampling direction is measured by nuclear magnetic resonance technology, that is, nuclear magnetic resonance data.
步骤S120:选择核磁共振数据的处理方法,获得对象的每个体元内的弥散运动包络面。 如:弥散张量成像(DTI),高角坐标分辨率成像(HARDI),增强弥散张量成像(EDTI)等。 现以增强弥散张量成像(EDTI)为例:Step S120: Select a processing method for the nuclear magnetic resonance data, and obtain the diffusion motion envelope surface in each voxel of the object. Such as: diffusion tensor imaging (DTI), high angular coordinate resolution imaging (HARDI), enhanced diffusion tensor imaging (EDTI) and so on. Now take enhanced diffusion tensor imaging (EDTI) as an example:
(a)根据步骤S110得到的信号衰减强度计算各个方向上的弥散系数D, (a) Calculate the dispersion coefficient D in each direction according to the signal attenuation intensity obtained in step S110,
b为仪器参数,S0为原始信号强度,S为测量强度。b is the instrument parameter, S 0 is the original signal strength, and S is the measured strength.
(b)根据弥散系数D计算各个方向上单位时间内(1s)的弥散位移x,(b) Calculate the dispersion displacement x per unit time (1s) in each direction according to the dispersion coefficient D,
(c)由(b)中有限个方向上的弥散位移重构该体元内的弥散运动包络面。对于一个三维 的包络面,取其内部一点建立坐标系,则该图形可以表示为径长r和方向单位向量之间的 函数关系即给定方向可由确定该方向上的径长r。而函数可以展开成如下的形式:(c) Reconstructs the diffuse motion envelope within this voxel from the diffuse displacements in (b) in a finite number of directions. For a three-dimensional envelope surface, take its inner point to establish a coordinate system, then the graph can be expressed as a path length r and a direction unit vector functional relationship between i.e. a given direction by Determine the path length r in this direction. while the function It can be expanded into the following form:
其中,D1,D2...Dr分别为矢量(一阶张量),二阶张量…r阶张量。上述分解的形式类似于 泰勒展开(x替换为高阶导数替换为高阶张量)。根据高阶张量分解理论中的不可约分 解,任意高阶张量都可以分解为一系列不可约张量的组合,最终可以表示为一系列不 可约张量和单位向量的缩并之和。Among them, D 1 , D 2 ... D r are vectors (first-order tensors), second-order tensors ... r-order tensors, respectively. The form of the above decomposition is similar to the Taylor expansion (x is replaced by higher-order derivatives are replaced with higher-order tensors). According to the irreducible decomposition in the higher-order tensor decomposition theory, any higher-order tensor can be decomposed into a series of irreducible tensors, can finally be represented as a series of irreducible tensors and unit vectors The sum of the contractions.
设弥散运动包络面为 为空间参数,则根据上述理论可做如下分解:Let the diffusion motion envelope be is a spatial parameter, then according to the above theory, it can be decomposed as follows:
其中,为三维空间中一组完备正交的展开基底。am为展开系数,由包络面与给定基底积分可得。具体的,展开基底可取为三维球谐函数,其数学表达式如下:in, is a set of fully orthogonal unfolded bases in three-dimensional space. a m is the expansion coefficient, determined by the envelope surface with a given base Points are available. Specifically, the expanded basis can be taken as a three-dimensional spherical harmonic function, and its mathematical expression is as follows:
其中in
为三维球谐函数(Pm,r为勒让德多项式),am,r,bm,r为展开系数。此外, 展开基底也可取为小波函数,脊波函数等完备正交的函数族。 is a three-dimensional spherical harmonic function (P m,r is Legendre polynomial), a m,r , b m,r are expansion coefficients. In addition, the expansion base can also be taken as a complete orthogonal function family such as wavelet function and ridgelet function.
通过有限个方向上的弥散位移重构弥散运动包络面的具体步骤如下:The specific steps for reconstructing the diffuse motion envelope surface through the diffuse displacement in a finite number of directions are as follows:
(c1)在单位球面上划分网格,网格的节点即为测量方向。基底函数(以三维球谐展开为例)与节点方向上的弥散位移(在(b)中得到)已知,通过插值方法及离 散积分计算展开系数am,r,bm,r:在每个网格内,由节点方向上的弥散位移通过线性插值得到网格中心处的弥散位移;用网格中心处的弥散位移,三角函数值和基底函数值代替整个网格 上的sinrθ,cosrθ与由函数值乘网格面积近似计算am,r,bm,r表达式中的积分在该网格上的值;遍历所有网格,将其上积分值求和,即可得到展开系数am,r,bm,r。(c1) The grid is divided on the unit sphere, and the nodes of the grid are the measurement directions. basis function (taking the three-dimensional spherical harmonic expansion as an example) and the dispersion displacement in the nodal direction (obtained in (b)) are known, the expansion coefficients a m,r , b m,r are calculated by the interpolation method and discrete integration: in each net In the grid, the dispersion displacement at the center of the grid is obtained by linear interpolation from the dispersion displacement in the direction of the nodes; the dispersion displacement at the center of the grid, the trigonometric function value and the basis function value are used to replace the values of the entire grid. sinrθ, cosrθ and Calculate the value of the integral on the grid by multiplying the function value by the grid area approximately; traverse all grids and sum the integral values on them to get the expansion coefficient a m,r ,b m,r .
(c2)由基底和(c1)中算出的am,r,bm,r复原弥散运动包络面 (c2) by the substrate and a m,r , b m,r calculated in (c1) to restore the diffuse motion envelope
对于一般的基底函数,上式可写为:For a general basis function, the above formula can be written as:
其中,n即为展开阶数,需要综合考虑基底函数,精度要求,计算成本等因素合理选择, 至此,通过计算弥散系数,弥散位移及展开系数,完成复原各体元内的弥散运动包络面。Among them, n is the expansion order, and it is necessary to comprehensively consider the basis function, accuracy requirements, calculation costs and other factors. .
步骤S130:根据所选的核磁共振数据的处理方法,如上文中提到的增强弥散张量成像, 计算体元内神经纤维束的方向。将参数的取值范围等分为若干份,得 到单位球面上一系列均匀分布的点。遍历包络面,由计算各点对应方向上的弥散位 移,并比较相邻点对应方向上弥散位移的大小;若某点对应方向上的弥散位移大于其所有相 邻点(对应方向上的弥散位移),则该方向为包络面上弥散位移取极大值的方向;还可以通 过直接由对求导数,确定极大值方向。极大值方向即为体元内神经纤维束的方 向。Step S130: Calculate the direction of the nerve fiber bundle in the voxel according to the selected processing method of the nuclear magnetic resonance data, such as the enhanced diffusion tensor imaging mentioned above. set the parameter range of values Divide into several equal parts to obtain a series of uniformly distributed points on the unit sphere. Traverse the envelope surface, given by Calculate the dispersion displacement in the corresponding direction of each point, and compare the size of the dispersion displacement in the corresponding direction of the adjacent points; if the dispersion displacement in the corresponding direction of a point is greater than all its adjacent points (the dispersion displacement in the corresponding direction), then the direction Take the direction of the maximum value for the diffusion displacement on the envelope surface; it can also be obtained directly by right Take the derivative to determine the direction of the maxima. The direction of the maximum value is the direction of the nerve fiber bundle in the voxel.
步骤S140:根据所选的核磁共振数据的处理方法,如本实施例中提到的增强弥散张量 成像,利用获得的弥散运动包络面来计算各向异性参数。记弥散运动包络面上矢径r的最大 值为maxr,最小值为minr,平均值为meanr,则各向异性参数f可定义为:Step S140: According to the selected processing method of the nuclear magnetic resonance data, such as the enhanced diffusion tensor imaging mentioned in this embodiment, use the obtained diffusion motion envelope to calculate the anisotropy parameter. Note that the maximum value of the vector radius r on the diffuse motion envelope surface is maxr, the minimum value is minr, and the average value is meanr, then the anisotropy parameter f can be defined as:
f=(maxr-minr)/meanr。注意:这里的各向异性参数也可以通过其他方式计算。f=(maxr-minr)/meanr. Note: The anisotropy parameter here can also be calculated in other ways.
步骤S150:选择当前研究的切片,做出该切片平面内的各向异性(参数)图像。如图4, 根据复原的弥散运动包络面计算各向异性参数,各向异性参数如S140中所定义,将各向异 性参数的取值范围线性映射至0~255(最小值对应0,最大值对应255),输出以各向异性参 数为灰度值的图像。Step S150: Select the slice currently under study, and make an anisotropic (parametric) image in the slice plane. As shown in Figure 4, the anisotropy parameter is calculated according to the restored diffusion motion envelope. The anisotropy parameter is as defined in S140. The value corresponds to 255), and the image with the anisotropy parameter as the gray value is output.
步骤S160:在所选切片平面内,提取各向异性参数大于阈值A的体元。本例中,该阈值取为0.2,对一般情况,该阈值可取为0-1中任意实数。在选取的体元内画出步骤S120 中得到的对应的弥散运动包络面,即做出该平面内的弥散包络面图像。Step S160: In the selected slice plane, extract voxels whose anisotropy parameter is greater than the threshold value A. In this example, the threshold is taken as 0.2, and in general, the threshold can be taken as any real number between 0 and 1. The corresponding diffusion motion envelope surface obtained in step S120 is drawn in the selected voxel, that is, an image of the diffusion envelope surface in the plane is made.
步骤S170:选取切片平面内各向异性参数大于阈值A的体元为种子点,从种子点依次 出发,利用纤维示踪成像方法(注意,也可以采用其他重构方法)完成神经纤维的重构。沿 着种子点内神经纤维束的方向行进指定长度到达下一个体元,继续上述操作。直至到达测量 空间的边界;或体元内的各向异性系数小于阈值A;或连接的两个体元内神经纤维束的夹角 大于阈值B。在本例中,该阈值B取为60度,对于一般情况,该阈值B的取值范围为45— 90度。将这一系列体元内神经纤维束的方向在空间中连接起来,便得到了一条神经纤维束 在空间中的整体走向。Step S170: Select the voxel whose anisotropy parameter in the slice plane is greater than the threshold value A as the seed point, start from the seed point in sequence, and use the fiber tracing imaging method (note that other reconstruction methods can also be used) to complete the reconstruction of the nerve fiber . Travel along the direction of the nerve fiber bundle in the seed point for the specified length to the next voxel, and continue the above operation. Until the boundary of the measurement space is reached; or the anisotropy coefficient in the voxel is less than the threshold A; or the angle between the nerve fiber bundles in the two connected voxels is greater than the threshold B. In this example, the threshold B is set to be 60 degrees, and for a general case, the value range of the threshold B is 45-90 degrees. By connecting the directions of the nerve fiber bundles in this series of voxels in space, the overall direction of a nerve fiber bundle in space is obtained.
步骤S180:如图5,将步骤S160所画的弥散运动包络面图像置于步骤S150所述各向异 性图像中,完成各向异性图像和弥散包络面图像的融合;如图5,再将步骤S170中重构的神经纤维束的种子点依次对准步骤S150所述各向异性图像中相应的体元,完成各向异性图像,弥散包络面图像与神经分布图像三种的融合。Step S180: As shown in Fig. 5, place the diffusion motion envelope image drawn in step S160 in the anisotropic image described in step S150 to complete the fusion of the anisotropic image and the diffusion envelope image; as shown in Fig. 5, and then Align the seed points of the reconstructed nerve fiber bundles in step S170 with the corresponding voxels in the anisotropic image in step S150 to complete the fusion of the anisotropic image, the diffusion envelope image and the nerve distribution image.
如图2所示,是本发明的图像处理装置的结构示意图。本发明实施例的图像处理装置 200包括采样单元210,计算单元220,绘图单元230和融合单元240。在上文对图像融合方法的描述过程中,已经公开了一些步骤的具体实施过程,下文中,在不重复已经讨论过的某些细节的情况下给出图像融合处理装置各单元的概述。具体的:图像融合处理装置200包括:As shown in FIG. 2 , it is a schematic structural diagram of the image processing apparatus of the present invention. The image processing apparatus 200 in the embodiment of the present invention includes a sampling unit 210, a calculation unit 220, a drawing unit 230, and a fusion unit 240. In the above description of the image fusion method, the specific implementation process of some steps has been disclosed, and below, an overview of each unit of the image fusion processing apparatus is given without repeating some of the details that have been discussed. Specifically: the image fusion processing apparatus 200 includes:
采样单元210:用于采集核磁共振数据。在单位球面上选取有限个采样方向,在每个体 元内,利用核磁共振技术测量采样方向上信号的衰减强度。Sampling unit 210: used to collect nuclear magnetic resonance data. A finite number of sampling directions are selected on the unit sphere, and in each voxel, the attenuation intensity of the signal in the sampling direction is measured by nuclear magnetic resonance technology.
计算单元220:用于复原体元内的弥散运动包络面,计算神经纤维束方向及各向异性参 数。选择合适的核磁共振数据处理方法,以增强弥散张量成像(EDTI)法为例:Calculation unit 220: used to restore the diffusion motion envelope surface in the voxel, and calculate the direction and anisotropy parameters of the nerve fiber bundle. Choose an appropriate NMR data processing method, taking enhanced diffusion tensor imaging (EDTI) as an example:
(1)根据所述信号衰减强度计算体元内各采样方向上的弥散系数D;(1) Calculate the dispersion coefficient D in each sampling direction in the voxel according to the signal attenuation strength;
(2)根据弥散系数D计算所述体元内各采样方向上单位时间内的弥散位移x;(2) Calculate the dispersion displacement x per unit time in each sampling direction in the voxel according to the dispersion coefficient D;
(3)选择基底函数以及展开阶数n,结合各采样方向上的弥散位移x复原所述体元内 的弥散运动包络面设真实的弥散运动包络面为做如下分 解; 为基底函数,根据选择的展开阶数n,由采样方向 上单位时间内的弥散位移x,通过线性插值,二次插值或多项式插值等方法和离散积分计算 展开系数am,结合基底函数复原所述体元内的弥散运动包络面 (3) Select the basis function and the expansion order n, combined with the diffusion displacement x in each sampling direction to restore the diffusion motion envelope surface in the voxel Let the real diffuse motion envelope be Do the following decomposition; is the basis function, according to the selected expansion order n, from the dispersion displacement x per unit time in the sampling direction, through linear interpolation, quadratic interpolation or polynomial interpolation and other methods and discrete integration to calculate the expansion coefficient a m , combined with the basis function recover the diffuse motion envelope within the voxel
(4)根据复原的弥散运动包络面确定体元内神经纤维束的方向:搜索复原的弥散运动包络 面上的极大值,确定极大值方向;或通过直接对复原的弥散包络面求导数,确定极大值方向。 该极大值方向即为体元内神经纤维束的方向。(4) Determine the direction of the nerve fiber bundle in the voxel according to the restored diffusion motion envelope surface: search for the maximum value on the restored diffusion motion envelope surface, and determine the direction of the maximum value; Find the derivative of the surface to determine the direction of the maximum value. The direction of the maximum value is the direction of the nerve fiber bundle in the voxel.
(5)记包络面上矢径r的最大值为maxr,最小值为minr,平均值为meanr,则各向异性参 数f可定义为:f=(maxr-minr)/meanr。(5) The maximum value of the vector radius r on the envelope surface is maxr, the minimum value is minr, and the average value is meanr, then the anisotropy parameter f can be defined as: f=(maxr-minr)/meanr.
图像生成单元230:用于分别绘制各向异性(参数)图像,弥散包络面图像和神经分布 图像:Image generation unit 230: used to draw anisotropic (parametric) images, diffusion envelope images and neural distribution images respectively:
选择当前研究的切片,做出以各向异性参数为灰度值的图像;Select the slice of the current study and make an image with the anisotropy parameter as the gray value;
在所选切片平面内,提取各向异性参数大于阈值的体元,在体元的位置上画出相应的弥 散运动包络面,做出弥散包络面图像;In the selected slice plane, extract the voxels whose anisotropy parameter is greater than the threshold value, draw the corresponding diffusion motion envelope surface at the position of the voxel, and make the diffusion envelope surface image;
选取切片平面内各向异性参数大于阈值的体元为种子点,从种子点依次出发,利用纤维 示踪成像方法完成神经纤维束的重构。沿着种子点内神经纤维束的方向行进指定长度到达下 一个体元,继续上述操作。直至到达测量空间的边界;或体元内的各向异性系数小于阈值A; 或连接的两个体元内神经纤维束的夹角大于阈值B。在本例中,该阈值B取为60度,对于 一般情况,该阈值的取值范围为45—90度。将这一系列体元内神经纤维束的方向在空间中 连接起来,便得到了一条神经纤维束在空间中的整体走向。遍历所有种子点,即得到神经分 布图像。The voxels whose anisotropy parameters in the slice plane are greater than the threshold are selected as seed points, and the reconstruction of nerve fiber bundles is completed by the fiber tracing imaging method starting from the seed points. Follow the direction of the nerve fiber bundle in the seed point to travel the specified length to the next voxel, and continue the above operation. Until the boundary of the measurement space is reached; or the anisotropy coefficient in the voxel is less than the threshold A; or the angle between the nerve fiber bundles in the two connected voxels is greater than the threshold B. In this example, the threshold B is taken as 60 degrees, and in general, the threshold value ranges from 45 to 90 degrees. By connecting the directions of the nerve fiber bundles in this series of voxels in space, the overall direction of a nerve fiber bundle in space is obtained. Traverse all the seed points to get the neural distribution image.
融合单元240:用于实现上述三种图像的融合。将所画的弥散运动包络面图像置于各向 异性图像中,再将重构的神经纤维束的种子点依次对准各向异性图像中相应的体元,完成各 向异性图像,弥散包络面图像与神经分布图像三者的融合。Fusion unit 240: used to realize the fusion of the above three kinds of images. The drawn diffusion motion envelope image is placed in the anisotropic image, and then the seed points of the reconstructed nerve fiber bundles are aligned with the corresponding voxels in the anisotropic image to complete the anisotropic image. The fusion of network image and neural distribution image.
此外,本公开的实施例还包括磁共振成像设备。如图3所示,磁共振成像设备300包括 图像融合处理装置200。图像融合处理装置200可以是参照图2的实施例的配置。In addition, embodiments of the present disclosure also include magnetic resonance imaging apparatuses. As shown in FIG. 3 , the magnetic resonance imaging apparatus 300 includes an image fusion processing apparatus 200 . The image fusion processing apparatus 200 may be the configuration of the embodiment with reference to FIG. 2 .
作为一个示例,上述图像融合方法的各个步骤以及上述图像融合处理装置的各个组成模 块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可 以从存储介质或网络向具有专用硬件结构的计算机安装构成用于实施上述方法的软件的程 序,该计算机在安装有各种程序时,能够执行各种功能等。As an example, each step of the above image fusion method and each component module and/or unit of the above image fusion processing apparatus may be implemented as software, firmware, hardware or a combination thereof. When implemented by software or firmware, a program constituting software for implementing the above-described method can be installed from a storage medium or a network to a computer having a dedicated hardware configuration, and the computer can execute various functions when various programs are installed. Wait.
本发明还提出一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取 并执行时,可执行上述根据本发明实施例的神经成像方法。The present invention also provides a program product storing machine-readable instruction codes. When the instruction code is read and executed by the machine, the above-mentioned neuroimaging method according to the embodiment of the present invention can be executed.
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本 发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。Correspondingly, a storage medium for carrying the above-mentioned program product storing the machine-readable instruction code is also included in the disclosure of the present invention. The storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用 相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合, 或替代其它实施方式中的特征。In the above description of specific embodiments of the invention, features described and/or illustrated for one embodiment may be used in the same or similar manner in one or more other embodiments as the features of the other embodiments. In combination with, or in place of, features in other embodiments.
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, element, step or component, but does not exclude the presence or addition of one or more other features, elements, steps or components.
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领 域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任 何其他限定。尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露,但是, 应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在 所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进 或者等同物也应当被认为包括在本发明的保护范围内。In the above-described embodiments and examples, reference numerals composed of numbers are used to represent various steps and/or units. Those of ordinary skill in the art should understand that these reference numerals are only for convenience of description and drawing, and do not represent their order or any other limitation. While the present invention has been disclosed above by way of descriptions of specific embodiments thereof, it should be understood that all embodiments and examples described above are illustrative and not restrictive. Various modifications, improvements or equivalents of the present invention may be devised by those skilled in the art within the spirit and scope of the appended claims. Such modifications, improvements or equivalents should also be considered to be included within the scope of protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910114389.5A CN110021003B (en) | 2019-02-14 | 2019-02-14 | Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910114389.5A CN110021003B (en) | 2019-02-14 | 2019-02-14 | Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110021003A CN110021003A (en) | 2019-07-16 |
CN110021003B true CN110021003B (en) | 2021-02-02 |
Family
ID=67188993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910114389.5A Active CN110021003B (en) | 2019-02-14 | 2019-02-14 | Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110021003B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110801203B (en) * | 2019-10-30 | 2022-02-15 | 天津大学 | Human cranial nerve fiber tracking method based on local features |
CN111067567B (en) * | 2019-12-16 | 2021-01-19 | 清华大学 | Elastic imaging method and device for measuring anisotropic elastic properties of nerves |
CN114418982B (en) * | 2022-01-14 | 2022-11-01 | 太原理工大学 | A construction method of DTI multi-parameter fusion brain network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653349A (en) * | 2002-05-15 | 2005-08-10 | 皇家飞利浦电子股份有限公司 | Diffusion tensor magnetic resonance imaging including local weighted interpolation |
CN103230274A (en) * | 2013-03-06 | 2013-08-07 | 北京师范大学 | Computing method of dispersion magnetic resonance image and analysis method based on computing method |
CN105842642A (en) * | 2016-03-17 | 2016-08-10 | 天津大学 | Fractional anisotropy microstructure characteristic extraction method based on kurtosis tensor and apparatus thereof |
CN106204562A (en) * | 2016-07-04 | 2016-12-07 | 西安交通大学 | A kind of method of the arched roof white matter segmentation merged based on fMRI Yu DTI |
-
2019
- 2019-02-14 CN CN201910114389.5A patent/CN110021003B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1653349A (en) * | 2002-05-15 | 2005-08-10 | 皇家飞利浦电子股份有限公司 | Diffusion tensor magnetic resonance imaging including local weighted interpolation |
CN103230274A (en) * | 2013-03-06 | 2013-08-07 | 北京师范大学 | Computing method of dispersion magnetic resonance image and analysis method based on computing method |
CN105842642A (en) * | 2016-03-17 | 2016-08-10 | 天津大学 | Fractional anisotropy microstructure characteristic extraction method based on kurtosis tensor and apparatus thereof |
CN106204562A (en) * | 2016-07-04 | 2016-12-07 | 西安交通大学 | A kind of method of the arched roof white matter segmentation merged based on fMRI Yu DTI |
Non-Patent Citations (10)
Title |
---|
A 3D Wavelet Fusion Approach for the Reconstruction of Isotropic-Resolution MR Images From Orthogonal Anisotropic-Resolution Scans;Iman Aganj等;《Magnetic Resonance in Medicine 67》;20121231;第1167-1172页 * |
Diffusion tensor imaging of midline posterior fossa malformations;Elysa Widjaja等;《Pediatr Radiol》;20061231;第510-517页 * |
Free-Breathing Diffusion Tensor Imaging and Tractography of the Human Heart in Healthy Volunteers Using Wavelet-Based Image Fusion;Hongjiang Wei等;《IEEE TRANSACTIONS ON MEDICAL IMAGING》;20141231;第1-11页 * |
Semilobar Holoprosencephaly Seen with Diffusion Tensor Imaging and Fiber Tracking;Nancy Rollins;《AJNR Am J Neuroradiol》;20050930;第2148-2152页 * |
Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture;Carlo Pierpaoli等;《NeuroImage》;20011231;第1174-1185页 * |
White Matter Fiber Tractography Via Anisotropic Diffusion Simulation in the Human Brain;Ning Kang等;《IEEE TRANSACTIONS ON MEDICAL IMAGING》;20050930;第24卷(第9期);第1127-1137页 * |
基于白质纤维束的统计模型计算及其在慢性疼痛中的应用;穆俊娅等;《第19届心理学大会摘要集》;20161231;第121-122页 * |
正常成人腰骶段神经根的磁共振弥散张量成像定量分析;李丽艳等;《肌肉骨骼影像学》;20181231;第63-67页 * |
磁共振扩散张量成像在颅内良恶性肿瘤诊断及手术中的临床应用研究;张瑞云;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20190115(第12期);E060-139 * |
结构及功能多模态磁共振成像对内侧颞叶癫痫工作记忆损害的研究;魏方圆等;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20130415(第4期);E070-6 * |
Also Published As
Publication number | Publication date |
---|---|
CN110021003A (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Descoteaux et al. | Multiple q-shell diffusion propagator imaging | |
JP6211104B2 (en) | System and method for performing tomographic image acquisition and reconstruction | |
Alexander | An introduction to computational diffusion MRI: the diffusion tensor and beyond | |
Canales‐Rodríguez et al. | Mathematical description of q‐space in spherical coordinates: exact q‐ball imaging | |
US9645212B2 (en) | Fiber tractography using entropy spectrum pathways | |
Rathi et al. | Multi-shell diffusion signal recovery from sparse measurements | |
Bertero et al. | Inverse problems in biomedical imaging: modeling and methods of solution | |
CN110021003B (en) | Image processing method, image processing apparatus, and nuclear magnetic resonance imaging device | |
US11131737B2 (en) | Joint estimation diffusion imaging (JEDI) | |
EP2147330B1 (en) | Image processing method | |
US10324154B2 (en) | Generalized spherical deconvolution in diffusion magnetic resonance imaging | |
CN110018432B (en) | Diffusion tensor-based neural imaging method and device and magnetic resonance imaging equipment | |
Canales-Rodríguez et al. | Diffusion orientation transform revisited | |
Tian et al. | Q‐space truncation and sampling in diffusion spectrum imaging | |
Prčkovska et al. | Optimal acquisition schemes in high angular resolution diffusion weighted imaging | |
Ghosh et al. | A polynomial approach for maxima extraction and its application to tractography in HARDI | |
Gholipour et al. | Maximum a posteriori estimation of isotropic high-resolution volumetric MRI from orthogonal thick-slice scans | |
Lacerda et al. | Diffusion in realistic biophysical systems can lead to aliasing effects in diffusion spectrum imaging | |
JP7321703B2 (en) | Image processing device and magnetic resonance imaging device | |
Radhakrishnan et al. | A practical evaluation of measures derived from compressed sensing diffusion spectrum imaging | |
Radhakrishnan et al. | Establishing the Validity of Compressed Sensing Diffusion Spectrum Imaging | |
Ye et al. | Box spline based 3d tomographic reconstruction of diffusion propagators from mri data | |
Wang et al. | Real time tracking of exterior and interior organ surfaces using sparse sampling of the exterior surfaces | |
Kerkelä | Quantifying Brain Microstructure with Diffusion MRI: An Assessment of Microscopic Anisotropy Imaging | |
EP4510924A2 (en) | Determining rotational invariants of cumulant expansion from one or more acquisitions which can be minimal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |