CN110010786A - Organic light-emitting display device - Google Patents
Organic light-emitting display device Download PDFInfo
- Publication number
- CN110010786A CN110010786A CN201811404480.2A CN201811404480A CN110010786A CN 110010786 A CN110010786 A CN 110010786A CN 201811404480 A CN201811404480 A CN 201811404480A CN 110010786 A CN110010786 A CN 110010786A
- Authority
- CN
- China
- Prior art keywords
- sub
- pixel
- light
- display device
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
- H10K59/8792—Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/38—Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/351—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/879—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Optical Filters (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
本发明公开了一种有机发光显示装置。其中基板划分为生成不同颜色的光的多个子像素。在基板的与所述多个子像素中的至少一个子像素的发光区对应的部分上设置有防漏光层。在基板的与所述多个子像素中的至少一个子像素对应的部分上设置有覆盖层,并且覆盖层包括具有多个凹部或多个凸部的微透镜。在覆盖层上设置有有机电致发光装置。
The invention discloses an organic light-emitting display device. Wherein the substrate is divided into a plurality of sub-pixels that generate light of different colors. A light-leakage prevention layer is provided on a portion of the substrate corresponding to a light-emitting region of at least one of the plurality of sub-pixels. A cover layer is provided on a portion of the substrate corresponding to at least one of the plurality of sub-pixels, and the cover layer includes a microlens having a plurality of concave portions or a plurality of convex portions. An organic electroluminescent device is arranged on the cover layer.
Description
本申请是名为“有机发光显示装置”、申请号为201610963440.6的中国专利申请的分案申请,201610963440.6是根据巴黎公约于2016年10月28日提交的中国专利申请。This application is a divisional application of a Chinese patent application entitled "Organic Light Emitting Display Device" with an application number of 201610963440.6, and 201610963440.6 is a Chinese patent application filed on October 28, 2016 according to the Paris Convention.
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求于2015年10月30日提交的韩国专利申请号10-2015-0152630和2016年8月31日提交的韩国专利申请号10-2016-0112123的优先权,在此通过引用将其如本文中完全阐述的一样并入本文中用于所有目的。This application claims priority to Korean Patent Application No. 10-2015-0152630 filed on October 30, 2015 and Korean Patent Application No. 10-2016-0112123 filed on August 31, 2016, which are incorporated herein by reference as Incorporated herein for all purposes as fully set forth herein.
技术领域technical field
本公开一般性涉及有机发光显示装置,并且更具体地涉及能够防止漏光的有机发光显示装置。The present disclosure relates generally to organic light emitting display devices, and more particularly, to organic light emitting display devices capable of preventing light leakage.
背景技术Background technique
有机发光显示装置可以制造为相对轻薄,这是由于在其中使用能够自身发光的有机电致发光(EL)装置或有机发光二极管(OLED),所以不需要单独的光源。此外,有机发光显示装置不仅在功耗方面有优势(由于它们在低电压下驱动),而且具有所期望的品质例如实现一系列颜色、快速响应速度、宽视角和高对比度的能力。因而,已经对用于下一代显示器的有机发光显示装置进行了积极的研究。The organic light emitting display device can be manufactured to be relatively thin and light, since a separate light source is not required since an organic electroluminescence (EL) device or an organic light emitting diode (OLED) capable of self-luminescence is used therein. Furthermore, organic light emitting display devices are not only advantageous in power consumption (since they are driven at low voltages), but also have desirable qualities such as the ability to achieve a range of colors, fast response speed, wide viewing angle and high contrast ratio. Accordingly, organic light emitting display devices for next-generation displays have been actively researched.
通过有机发光显示装置的有机发光层生成的光穿过有机发光显示装置的若干个部件从有机发光显示装置发射出。然而,通过有机发光层生成的光的一部分可能无法从有机发光显示装置射出,并且可能俘获在有机发光显示装置内,从而引起有机发光显示装置的光提取效率低的问题。Light generated by the organic light emitting layer of the organic light emitting display device is emitted from the organic light emitting display device through several components of the organic light emitting display device. However, a part of the light generated through the organic light emitting layer may not be emitted from the organic light emitting display device and may be trapped in the organic light emitting display device, thereby causing a problem of low light extraction efficiency of the organic light emitting display device.
具体地,在具有底部发光结构的有机发光显示装置的情况下,通过有机发光层生成的光的约50%通过阳电极的全内反射或光吸收可俘获在有机发光显示装置内,同时通过有机发光层生成的光的约30%通过基板的全内反射或光吸收可俘获在有机发光显示装置内。也就是说,通过有机发光层生成的光的约80%可俘获在有机发光显示装置内,并且仅约20%的光可以向外发射,从而导致光提取效率差。Specifically, in the case of an organic light emitting display device having a bottom emission structure, about 50% of the light generated by the organic light emitting layer may be trapped in the organic light emitting display device through total internal reflection or light absorption of the anode electrode, while passing through the organic light emitting layer. About 30% of the light generated by the light emitting layer may be trapped within the organic light emitting display device through total internal reflection or light absorption of the substrate. That is, about 80% of the light generated by the organic light emitting layer may be trapped within the organic light emitting display device, and only about 20% of the light may be emitted outward, resulting in poor light extraction efficiency.
为了提高有机发光显示装置的光提取效率,已经提出了将微透镜阵列(MLA)附接至有机发光显示装置的覆盖层的方法或在有机发光显示装置的覆盖层上形成微透镜的方法。In order to improve the light extraction efficiency of the organic light emitting display device, a method of attaching a microlens array (MLA) to a cover layer of the organic light emitting display device or a method of forming microlenses on the cover layer of the organic light emitting display device has been proposed.
当在有机发光显示装置的基板外设置MLA或者在覆盖层上形成微透镜时,通过有机发光层生成的光穿过基板到达偏振器,并且然后从偏振器反射为重新取向为朝向基板。此处,光的朝向基板行进的部分可以到达在其上生成不同颜色的光的相邻像素的微透镜处,从而引起漏光,这是有问题的。When MLA is disposed outside the substrate of the organic light emitting display device or microlenses are formed on the cover layer, light generated by the organic light emitting layer passes through the substrate to the polarizer, and is then reflected from the polarizer to be reoriented toward the substrate. Here, the portion of the light traveling towards the substrate can reach the microlenses of adjacent pixels on which light of different colors is generated, causing light leakage, which is problematic.
发明内容SUMMARY OF THE INVENTION
本公开的各个方面提供一种能够防止漏光同时提高光提取效率的有机发光显示装置。Various aspects of the present disclosure provide an organic light emitting display device capable of preventing light leakage while improving light extraction efficiency.
在本公开的一个方面,一种有机发光显示装置可以包括:基板,其划分为生成不同颜色的光的多个子像素;防漏光层,其设置在基板的与所述多个子像素中的至少一个子像素的发光区对应的部分上;覆盖层,其设置在基板的与所述多个子像素中的至少一个子像素对应的部分上并且包括具有多个凹部或多个凸部的微透镜;以及设置在覆盖层上的有机电致发光装置。In one aspect of the present disclosure, an organic light emitting display device may include: a substrate divided into a plurality of sub-pixels that generate light of different colors; a light-leakage prevention layer disposed on the substrate and at least one of the plurality of sub-pixels on a portion corresponding to a light-emitting area of a sub-pixel; a cover layer disposed on a portion of the substrate corresponding to at least one of the plurality of sub-pixels and including a microlens having a plurality of concave portions or a plurality of convex portions; and An organic electroluminescent device disposed on a cover layer.
至少在本公开的一些实施方案中,所述多个子像素可以划分为红色子像素、绿色子像素、蓝色子像素和白色子像素。防漏光层可以包括分别设置在多个子像素中的第一防漏光层至第四防漏光层。第一防漏光层至第四防漏光层中的至少两个防漏光层可以允许相同颜色的光从中通过。可替代地,第一防漏光层至第四防漏光层中的至少一个防漏光层可以允许与穿过第一防漏光层至第三防漏光层中的剩余防漏光层的至少一种颜色的光互补的至少一种颜色的光从中通过。At least in some embodiments of the present disclosure, the plurality of subpixels may be divided into red subpixels, green subpixels, blue subpixels, and white subpixels. The light leakage prevention layer may include first to fourth light leakage prevention layers respectively disposed in the plurality of sub-pixels. At least two light leakage preventing layers of the first to fourth light leakage preventing layers may allow light of the same color to pass therethrough. Alternatively, at least one light leakage preventing layer of the first to fourth light leakage preventing layers may be allowed to pass through at least one color of the remaining light leakage preventing layers of the first to third light leakage preventing layers. Light of at least one color of light complementary passes therethrough.
微透镜可以包括第一微透镜和第二微透镜,第二微透镜设置在多个子像素中的未设置有第一微透镜的至少一个子像素中,第二微透镜与第一微透镜相同或不同。微透镜还可以包括与第一微透镜或第二微透镜相同或与第一微透镜和第二微透镜不同的第三微透镜。The microlens may include a first microlens and a second microlens, the second microlens is disposed in at least one subpixel of the plurality of subpixels that is not provided with the first microlens, and the second microlens is the same as the first microlens or different. The microlenses may also include third microlenses that are the same as the first microlenses or the second microlenses or different from the first microlenses and the second microlenses.
至少在本公开的一些实施方案中,在有机发光显示装置中,在多个子像素中的至少一个子像素中可以未设置有防漏光层。在多个子像素中的至少一个子像素中可以未设置有第一微透镜。In at least some embodiments of the present disclosure, in an organic light emitting display device, a light leakage preventing layer may not be provided in at least one subpixel of the plurality of subpixels. The first microlens may not be provided in at least one of the plurality of subpixels.
根据如上阐述的本公开,有机发光显示装置包括设置在与多个子像素中的至少一个子像素的发光区对应的区域中的防漏光层,以防止或减少不同子像素或不同像素之间的漏光,同时防止由有机发光(EL)装置生成的光的提取效率降低。According to the present disclosure as set forth above, an organic light emitting display device includes a light leakage preventing layer disposed in a region corresponding to a light emitting area of at least one subpixel among a plurality of subpixels to prevent or reduce light leakage between different subpixels or between different pixels , while preventing a reduction in the extraction efficiency of light generated by an organic light emitting (EL) device.
此外,在根据本公开的有机发光显示装置中,多个像素中的每一个像素包括多个子像素,其中多个子像素设置有不同的微透镜或多个子像素中的至少一个子像素未设置有微透镜,从而可以根据子像素调整光提取效率并且可以防止漏光。Furthermore, in the organic light emitting display device according to the present disclosure, each of the plurality of pixels includes a plurality of sub-pixels, wherein the plurality of sub-pixels are provided with different microlenses or at least one of the plurality of sub-pixels is not provided with a micro-lens lens, so that light extraction efficiency can be adjusted according to sub-pixels and light leakage can be prevented.
附图说明Description of drawings
当结合附图时,本公开的上述和其他目的、特征和优点将通过下面的详细描述而得到更清楚的理解,在附图中:The above and other objects, features and advantages of the present disclosure will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
图1是示意性示出根据示例性实施方案的显示装置的框图;FIG. 1 is a block diagram schematically illustrating a display device according to an exemplary embodiment;
图2是示出根据第一示例性实施方案的有机发光显示装置的平面图;FIG. 2 is a plan view illustrating an organic light emitting display device according to the first exemplary embodiment;
图3是根据第一示例性实施方案的有机发光显示装置的沿图2的线A-B截取的截面图;3 is a cross-sectional view of the organic light emitting display device according to the first exemplary embodiment, taken along line A-B of FIG. 2;
图4是示出根据第二示例性实施方案的有机发光显示装置的平面图;4 is a plan view illustrating an organic light emitting display device according to a second exemplary embodiment;
图5是根据第二示例性实施方案的有机发光显示装置的沿图4的线C-D截取的截面图;5 is a cross-sectional view of the organic light emitting display device according to the second exemplary embodiment, taken along line C-D of FIG. 4;
图6是示出根据第三示例性实施方案的有机发光显示装置的平面图;FIG. 6 is a plan view illustrating an organic light emitting display device according to a third exemplary embodiment;
图7是根据第三示例性实施方案的有机发光显示装置的沿图6的线E-F截取的截面图;7 is a cross-sectional view of the organic light emitting display device according to the third exemplary embodiment, taken along line E-F of FIG. 6;
图8是示出根据第四示例性实施方案的有机发光显示装置的平面图;8 is a plan view illustrating an organic light emitting display device according to a fourth exemplary embodiment;
图9是根据第四示例性实施方案的有机发光显示装置的沿图8的线G-H截取的截面图;9 is a cross-sectional view of the organic light emitting display device according to the fourth exemplary embodiment, taken along line G-H of FIG. 8;
图10是示出根据第五示例性实施方案的有机发光显示装置的平面图;10 is a plan view illustrating an organic light emitting display device according to a fifth exemplary embodiment;
图11是根据第五示例性实施方案的有机发光显示装置的沿图10的线I-J截取的截面图;11 is a cross-sectional view of the organic light emitting display device according to the fifth exemplary embodiment, taken along line I-J of FIG. 10;
图12是示出根据第六示例性实施方案的有机发光显示装置的平面图;12 is a plan view illustrating an organic light emitting display device according to a sixth exemplary embodiment;
图13是根据第六示例性实施方案的有机发光显示装置的沿图12的线K-L截取的截面图;13 is a cross-sectional view of the organic light emitting display device according to the sixth exemplary embodiment, taken along line K-L of FIG. 12;
图14是示出根据第七示例性实施方案的有机发光显示装置的平面图;14 is a plan view illustrating an organic light emitting display device according to a seventh exemplary embodiment;
图15是根据第七示例性实施方案的有机发光显示装置的沿图14的线M-N截取的截面图;15 is a cross-sectional view of the organic light emitting display device according to the seventh exemplary embodiment, taken along line M-N of FIG. 14;
图16示出了根据一个替代实施方案的设置在第四子像素中的第四防漏光层和绝缘层的构造;以及FIG. 16 shows the configuration of a fourth light leakage preventing layer and an insulating layer disposed in a fourth subpixel according to an alternative embodiment; and
图17是示出本实施例和比较例中的有机发光显示装置的反射率降低效果的图。FIG. 17 is a diagram showing the reflectance reduction effect of the organic light emitting display devices in the present embodiment and the comparative example.
具体实施方式Detailed ways
现在将详细参照本公开的实施方案,其实例在附图中示出。提供本文所阐述的实施方案用于说明的目的以向本领域的技术人员充分传达本公开的构思。本公开不应该被解释为限于这些实施方案,并且可以以许多不同的形式来实施。在附图中,为清楚起见装置的尺寸和厚度可以被放大。贯穿整个文件,相同的附图标记和符号将用于指代相同或类似的部件。Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. The embodiments set forth herein are provided for illustrative purposes to fully convey the concept of the present disclosure to those skilled in the art. The present disclosure should not be construed as limited to these embodiments, and may be embodied in many different forms. In the drawings, the size and thickness of devices may be exaggerated for clarity. Throughout this document, the same reference numbers and symbols will be used to refer to the same or similar parts.
参照附图和实施方案的详细描述本公开的优点和特征及其实现方法将变得明显。本公开不应该被理解为限于本文所阐述的实施方案,而是可以以许多不同的形式来实施。确切地说,提供这些实施方案使得本公开将更透彻和完整,并且将向本领域的技术人员更好地传达本公开的范围。本公开的范围应当由所附的权利要求来限定。贯穿整个文件,相同的附图标记和符号将用于指代相同或类似的部件。在附图中,为清楚起见层和区域的尺寸和相对尺寸可以被夸大。Advantages and features of the present disclosure and methods for achieving the same will become apparent with reference to the accompanying drawings and the detailed description of the embodiments. The present disclosure should not be construed as limited to the embodiments set forth herein, but may be embodied in many different forms. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will better convey the scope of the disclosure to those skilled in the art. The scope of the present disclosure should be defined by the appended claims. Throughout this document, the same reference numbers and symbols will be used to refer to the same or similar parts. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
应理解的是,当元件或层称为在另一元件或层“上”时,它不仅可以“直接在”另一元件或层上,它也可以经由“介于中间的”元件或层“间接地在”另一元件或层上。相比之下,当元件或层称为“直接在”另一元件或层上时,应当理解的是,未插入介于中间的元件或层。It will be understood that when an element or layer is referred to as being "on" another element or layer, it can not only be "directly on" the other element or layer, but it may also be "intervening" via "intervening" elements or layers. Indirectly on" another element or layer. In contrast, when an element or layer is referred to as being "directly on" another element or layer, it will be understood that there are no intervening elements or layers.
为了方便描述如附图中所示元件或部件与另一元件或其他部件的关系,在本文中可以使用空间相关的术语,例如“在...下方”、“在...之下”、“在...下”、“下部”、“在...上方”和“上部”。空间相关的术语应当理解为包括除了附图中描述的取向之外的元件在使用或操作时的不同取向的术语。例如,当附图中所示的元件翻转时,则描述为在另一元件“下方”、“之下”或“下”的元件将定向为在另一元件“上方”。因此,示例性术语“在...下方”、“在...之下”或“在...下”可以包括上方和下方两个取向。To facilitate describing the relationship of an element or component to another element or component as illustrated in the figures, spatially relative terms such as "below", "under", "under", "lower", "above", and "upper". Spatially relative terms should be understood to include terms that include different orientations of elements in use or operation in addition to the orientation depicted in the figures. For example, when an element shown in the figures is turned over, elements described as "below", "beneath" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "below," "under," or "under" can encompass both an orientation of above and below.
此外,在本文中可以使用诸如“第一”、“第二”、“A”、“B”、“(a)”和“(b)”的术语来描述部件。然而,应当理解的是,这些术语仅用于区分一个部件与另一部件,并且部件的实质、次序、顺序或数量不受这些术语的限制。Additionally, terms such as "first," "second," "A," "B," "(a)," and "(b)" may be used herein to describe components. It should be understood, however, that these terms are only used to distinguish one element from another and that the substance, order, sequence, or number of elements are not limited by these terms.
图1是示意性示出根据示例性实施方案的显示装置的框图。参照图1,根据示例性实施方案的显示装置1000包括:显示面板1100,在其上沿第一方向即附图中的垂直方向布置有多个第一线VL1至VLm,并且沿第二方向即附图中的水平方向布置有多个第二线HL1至HLn;将第一信号提供至多个第一线VL1至VLm的第一驱动器电路1200;将第二信号提供至多个第二线HL1至HLn的第二驱动器电路1300;以及控制第一驱动器电路1200和第二驱动器电路1300的定时控制器1400。FIG. 1 is a block diagram schematically illustrating a display device according to an exemplary embodiment. 1 , a display device 1000 according to an exemplary embodiment includes a display panel 1100 on which a plurality of first lines VL1 to VLm are arranged in a first direction, ie, a vertical direction in the drawing, and along a second direction, ie, a vertical direction in the drawing. A plurality of second lines HL1 to HLn are arranged in the horizontal direction in the drawing; a first driver circuit 1200 that supplies a first signal to a plurality of first lines VL1 to VLm; a first driver circuit 1200 that supplies a second signal to the plurality of second lines HL1 to HLn Two driver circuits 1300; and a timing controller 1400 that controls the first driver circuit 1200 and the second driver circuit 1300.
通过沿第一方向布置的多个第一线VL1至VLm与沿第二方向布置的多个第二线HL1至HLn的交叉在显示面板1100上限定多个像素P。A plurality of pixels P are defined on the display panel 1100 by intersections of the plurality of first lines VL1 to VLm arranged in the first direction and the plurality of second lines HL1 to HLn arranged in the second direction.
第一驱动器电路1200和第二驱动器电路1300中的每一个可以包括至少一个驱动器集成电路(IC)以输出图像显示信号。Each of the first driver circuit 1200 and the second driver circuit 1300 may include at least one driver integrated circuit (IC) to output an image display signal.
例如,沿第一方向布置在显示面板1100上的多个第一线VL1至VLm可以是沿垂直方向布置的数据线以将数据电压(即第一信号)传送至沿垂直方向布置的像素列。第一驱动器电路1200可以是将数据电压提供至数据线的数据驱动器电路。For example, the plurality of first lines VL1 to VLm arranged in the first direction on the display panel 1100 may be data lines arranged in the vertical direction to transfer data voltages (ie, first signals) to the pixel columns arranged in the vertical direction. The first driver circuit 1200 may be a data driver circuit that supplies data voltages to data lines.
此外,例如,沿第二方向布置在显示面板1100上的多个第二线HL1至HLn可以是沿水平方向布置的栅极线以将扫描信号(即第二信号)传送至沿水平方向布置的像素行。第二驱动器电路可以是将扫描信号提供至栅极线的栅极驱动器。Also, for example, the plurality of second lines HL1 to HLn arranged in the second direction on the display panel 1100 may be gate lines arranged in the horizontal direction to transfer scan signals (ie, second signals) to the pixels arranged in the horizontal direction Row. The second driver circuit may be a gate driver that supplies scan signals to the gate lines.
显示面板1100具有设置在其上的焊盘,焊盘使得显示面板1100连接至第一驱动器电路1200和第二驱动器电路1300。当第一驱动器电路1200将第一信号提供至多个第一线VL1至VLm时,焊盘将第一信号传送至显示面板1100。以相同的方式,当第二驱动器电路1300将第二信号提供至多个第二线HL1至HLn时,焊盘将第二信号传送至显示面板1100。The display panel 1100 has pads disposed thereon that allow the display panel 1100 to be connected to the first driver circuit 1200 and the second driver circuit 1300 . When the first driver circuit 1200 provides the first signal to the plurality of first lines VL1 to VLm, the pad transmits the first signal to the display panel 1100 . In the same manner, when the second driver circuit 1300 supplies the second signal to the plurality of second lines HL1 to HLn, the pads transmit the second signal to the display panel 1100 .
每个像素包括一个或更多个子像素。由子像素限定的颜色可以是红色(R)、绿色(G)、蓝色(B)以及选择性地白色(W),但本公开不限于此。Each pixel includes one or more sub-pixels. The colors defined by the sub-pixels may be red (R), green (G), blue (B), and optionally white (W), but the present disclosure is not limited thereto.
在显示面板中,连接至控制每一个子像素以生成光的薄膜晶体管(TFT)的电极称为第一电极,而设置在显示面板的前表面上或覆盖两个或更多个像素的电极称为第二电极。当第一电极是阳极时,第二电极是阴极,反之亦然。下文中,第一电极将称为阳极并且第二电极将称为阴极,但本公开不限于此。In a display panel, the electrode connected to the thin film transistor (TFT) that controls each sub-pixel to generate light is called the first electrode, while the electrode disposed on the front surface of the display panel or covering two or more pixels is called the first electrode for the second electrode. When the first electrode is the anode, the second electrode is the cathode, and vice versa. Hereinafter, the first electrode will be referred to as an anode and the second electrode will be referred to as a cathode, but the present disclosure is not limited thereto.
有机发光显示装置可以根据电致发光装置的结构被分类为顶部发光型或底部发光型。尽管将参照底部发光型有机发光显示装置对下面的实施方案进行描述,但本公开不限于此。The organic light emitting display device may be classified into a top emission type or a bottom emission type according to the structure of the electroluminescence device. Although the following embodiments will be described with reference to a bottom emission type organic light emitting display device, the present disclosure is not limited thereto.
每一个子像素可以是其上设置有或未设置有具有单一颜色的滤色器的基底。滤色器将单个有机发光层的颜色转换成特定波长的颜色。此外,在每一个子像素中可以设置有光散射层以提高有机发光层的光提取效率。光散射层可以称为微透镜阵列、纳米图案、漫射图案、二氧化硅珠等。Each sub-pixel may be a substrate with or without a color filter having a single color disposed thereon. Color filters convert the color of a single organic light-emitting layer to a specific wavelength of color. In addition, a light scattering layer may be provided in each sub-pixel to improve the light extraction efficiency of the organic light emitting layer. The light scattering layer may be referred to as microlens arrays, nanopatterns, diffusing patterns, silica beads, and the like.
下文中,将参照微透镜阵列对散射层的实施方案进行描述。然而,本公开的示例性实施方案不限于此,并且用于散射光的各种结构可以与其相结合。Hereinafter, embodiments of the scattering layer will be described with reference to a microlens array. However, exemplary embodiments of the present disclosure are not limited thereto, and various structures for scattering light may be combined therewith.
下文中,将参照图2对根据第一示例性实施方案的有机发光显示装置进行描述。图2是示出根据第一示例性实施方案的有机发光显示装置的平面图。Hereinafter, an organic light emitting display device according to a first exemplary embodiment will be described with reference to FIG. 2 . FIG. 2 is a plan view illustrating an organic light emitting display device according to a first exemplary embodiment.
参照图2,在根据第一示例性实施方案的有机发光显示装置中,单个像素P包括多个子像素。具体地,单个像素P可以包括四(4)个子像素。在下面的示例性实施方案中,单个像素P将被描述为包括四个子像素。然而,示例性实施方案不限于此,并且可以全面地包括其中单个像素P包括两(2)个子像素至四(4)个子像素的所有配置。Referring to FIG. 2 , in the organic light emitting display device according to the first exemplary embodiment, a single pixel P includes a plurality of sub-pixels. Specifically, a single pixel P may include four (4) sub-pixels. In the following exemplary embodiments, a single pixel P will be described as including four sub-pixels. However, the exemplary embodiments are not limited thereto, and may comprehensively include all configurations in which a single pixel P includes two (2) sub-pixels to four (4) sub-pixels.
多个子像素(例如四个子像素)分别包括发光区EA11、EA21、EA31和EA41。例如,第一子像素包括第一发光区EA11,第二子像素包括第二发光区EA21,第三子像素包括第三发光区EA31,以及第四子像素包括第四发光区EA41。The plurality of sub-pixels (eg, four sub-pixels) include light-emitting areas EA11, EA21, EA31, and EA41, respectively. For example, the first subpixel includes a first light emitting area EA11, the second subpixel includes a second light emitting area EA21, the third subpixel includes a third light emitting area EA31, and the fourth subpixel includes a fourth light emitting area EA41.
虽然第一发光区至第四发光区EA11、EA21、EA31和EA41可以是从其中发射出红色(R)、绿色(G)、蓝色(B)和白色(W)波长范围的光的区,但是示例性实施方案不限于此。确切地说,可以采用在其中四个发光区EA11、EA21、EA31和EA41中的至少两个发光区发射与上述红色(R)、绿色(G)、蓝色(B)和白色(W)不同颜色的光的配置。Although the first to fourth light emitting regions EA11, EA21, EA31 and EA41 may be regions from which light of red (R), green (G), blue (B) and white (W) wavelength ranges are emitted, However, exemplary embodiments are not limited thereto. Specifically, at least two light-emitting regions among the four light-emitting regions EA11, EA21, EA31, and EA41 may be employed to emit light different from the above-mentioned red (R), green (G), blue (B), and white (W) Color configuration of light.
在发光区EA11、EA21、EA31和EA41中的每一个中设置有多个微透镜。设置在发光区EA11、EA21、EA31和EA41中的微透镜的形状可以是相同的,例如具有截面限定为例如直线、曲线或抛物线的锥状。微透镜可以提高有机EL装置的外部光提取效率。多个微透镜包括形成在覆盖层120中的多个第一凹部201和多个第一连接部202,多个第一连接部202中的每一个连接相邻的第一凹部201。A plurality of microlenses are provided in each of the light emitting areas EA11, EA21, EA31, and EA41. The shape of the microlenses disposed in the light emitting areas EA11, EA21, EA31 and EA41 may be the same, for example having a cone shape with a cross-section defined as, for example, a straight line, a curved line or a parabola. The microlens can improve the external light extraction efficiency of the organic EL device. The plurality of microlenses include a plurality of first concave portions 201 and a plurality of first connecting portions 202 formed in the cover layer 120 , each of the plurality of first connecting portions 202 connecting adjacent first concave portions 201 .
具有相同形状的微透镜布置在第一发光区至第四发光区EA11、EA21、EA31和EA41中。现将参照图3对此配置进行描述。Microlenses having the same shape are arranged in the first to fourth light emitting areas EA11 , EA21 , EA31 and EA41 . This configuration will now be described with reference to FIG. 3 .
图3是根据第一示例性实施方案的有机发光显示装置的沿图2的线A-B截取的截面图。参照图3,根据第一示例性实施方案的有机发光显示装置包括第一子像素至第四子像素SP1、SP2、SP3和SP4。FIG. 3 is a cross-sectional view of the organic light emitting display device according to the first exemplary embodiment, taken along line A-B of FIG. 2 . 3 , the organic light emitting display device according to the first exemplary embodiment includes first to fourth subpixels SP1 , SP2 , SP3 and SP4 .
当由EL装置生成的光向基板100行进时,一部分光可以到达生成不同颜色的光的相邻子像素的微透镜或另一相邻像素的微透镜,从而引起漏光。具体地,当显示装置设置有不具有滤色器的子像素时,由其他子像素所生成的大量的漏光成分可以到达不具有滤色器的子像素的微透镜以在视觉上被感知。具体地,当在白色(W)子像素中未设置滤色器时,通过另一子像素生成的漏光成分可以到达白色子像素的微透镜以被观察者视觉上感知,这是有问题的。When the light generated by the EL device travels toward the substrate 100, a part of the light may reach a microlens of an adjacent subpixel or a microlens of another adjacent pixel that generates light of different colors, thereby causing light leakage. Specifically, when the display device is provided with sub-pixels without color filters, a large amount of light leakage components generated by other sub-pixels may reach the microlenses of the sub-pixels without color filters to be visually perceived. Specifically, when a color filter is not provided in the white (W) subpixel, a light leakage component generated by another subpixel can reach the microlens of the white subpixel to be visually perceived by an observer, which is problematic.
为了克服这个问题,根据第一示例性实施方案的有机发光显示装置包括设置在分为第一子像素SP1至第四子像素SP4的基板100上的防漏光层110、111、112和113。更一般地,防漏光层是配置为防止或基本上减少不同子像素之间漏光的层,例如通过防止或基本上减少在子像素中产生的光的至少一部分到达不同子像素的相邻子像素。根据一些实施方案,防漏光层可以包括各种类型的防漏光层。在一些实施方案中,防漏光层可以包括如下中的至少一个:I型防漏光层,其配置为允许特定波长的光从中通过同时吸收剩余波长的光;II型防漏光层,其配置为允许特定波长的光从中通过同时吸收可见光的一部分以允许剩余的可见光从中通过;III型防漏光层,其配置为允许光从中通过或被反射同时改变光的光轴,然后通过偏振器吸收具有改变的光轴的光。在实施方案中,I型防漏光层选择性地允许特定颜色的光从中通过同时吸收剩余波长的光,从而大部分(例如至少60%)特定颜色的光从中通过,同时吸收大部分(例如至少60%)剩余波长的光。在实施方案中,III型防漏光层允许光从中通过或被反射,同时改变例如至少50%的光的光轴。具体地,第一防漏光层110设置在第一子像素SP1上,第二防漏光层111设置在第二子像素SP2上,第三防漏光层112设置在第三子像素SP3上,并且第四防漏光层113设置在第四子像素SP4上。To overcome this problem, the organic light emitting display device according to the first exemplary embodiment includes light leakage preventing layers 110 , 111 , 112 and 113 disposed on the substrate 100 divided into the first to fourth subpixels SP1 to SP4 . More generally, an anti-leakage layer is a layer configured to prevent or substantially reduce light leakage between different sub-pixels, for example by preventing or substantially reducing at least a portion of the light generated in a sub-pixel from reaching adjacent sub-pixels of different sub-pixels . According to some embodiments, the light leakage preventing layer may include various types of light leakage preventing layers. In some embodiments, the light leakage prevention layer may include at least one of the following: a type I light leakage prevention layer configured to allow light of a specific wavelength to pass therethrough while absorbing light of remaining wavelengths; a type II light leakage prevention layer configured to allow light of the remaining wavelengths to pass therethrough; Light of a specific wavelength passes therethrough while absorbing a portion of the visible light to allow the remaining visible light to pass therethrough; a type III anti-leakage layer, which is configured to allow light to pass therethrough or be reflected while changing the optical axis of the light, and then absorb through a polarizer with a changed Optical axis of light. In an embodiment, the Type I light-leakage preventing layer selectively allows light of a particular color to pass therethrough while absorbing light of the remaining wavelengths so that a majority (eg, at least 60%) of light of a particular color passes therethrough while absorbing a majority (eg, at least 60%) of light of a particular color therethrough. 60%) of the remaining wavelengths of light. In embodiments, the Type III anti-leakage layer allows light to pass therethrough or be reflected while changing the optical axis of the light, eg, by at least 50%. Specifically, the first anti-leakage layer 110 is disposed on the first sub-pixel SP1, the second anti-leakage layer 111 is disposed on the second sub-pixel SP2, the third anti-leakage layer 112 is disposed on the third sub-pixel SP3, and the third anti-leakage layer 111 is disposed on the second sub-pixel SP2. Four light leakage prevention layers 113 are disposed on the fourth sub-pixel SP4.
在包括第一防漏光层110至第四防漏光层113的基板100上设置有覆盖层120。在覆盖层120上设置有包括第一电极130、有机发光层140、和第二电极150的有机电致发光装置EL。A cover layer 120 is provided on the substrate 100 including the first light leakage preventing layer 110 to the fourth light leakage preventing layer 113 . An organic electroluminescence device EL including a first electrode 130 , an organic light emitting layer 140 , and a second electrode 150 is disposed on the cover layer 120 .
有机电致发光装置EL可以配置为与覆盖层120中的微透镜相对应,以提高发光区EA11、EA21、EA31和EA41中的外部光提取效率。发光区EA11、EA21、EA31和EA41由堤部图案160限定,堤部图案160配置为露出第一电极130的顶表面的预定部分。The organic electroluminescence device EL may be configured to correspond to the microlenses in the cover layer 120 to improve external light extraction efficiency in the light emitting regions EA11, EA21, EA31, and EA41. The light emitting areas EA11 , EA21 , EA31 and EA41 are defined by bank patterns 160 configured to expose predetermined portions of the top surfaces of the first electrodes 130 .
具体地,在发光区EA11、EA21、EA31和EA41中的每一个中覆盖层120包括多个微透镜。多个微透镜由多个第一凹部201和多个连接部202构成,连接部中的每一个连接相邻的第一凹部201。当在发光区EA11、EA21、EA31和EA41中有机电致发光装置EL配置为具有多个微透镜时,由于图案的特性,形成在覆盖层120中的多个凹部201赋予有机电致发光装置EL的表面凹陷弯曲部。Specifically, the cover layer 120 includes a plurality of microlenses in each of the light emitting areas EA11, EA21, EA31, and EA41. The plurality of microlenses are composed of a plurality of first concave portions 201 and a plurality of connecting portions 202 , and each of the connecting portions connects adjacent first concave portions 201 . When the organic electroluminescence device EL is configured to have a plurality of microlenses in the light emitting regions EA11, EA21, EA31, and EA41, the plurality of recesses 201 formed in the cover layer 120 imparts to the organic electroluminescence device EL due to the characteristics of the pattern. The surface is concave and curved.
第一防漏光层110至第四防漏光层113设置在第一子像素SP1至第四子像素SP4的对应于发光区EA11、EA21、EA31、和EA41的区域中。利用这种配置,根据第一示例性实施方案的有机发光显示装置可以防止或减少不同的子像素之间的漏光。此处,第一防漏光层110至第四防漏光层113可以允许特定波长的光从中通过,同时吸收剩余波长的光。此外,在第一防漏光层110至第四防漏光层113中的至少一个防漏光层比其他防漏光层薄,以提高其透射率以比其他防漏光层的透射率高。The first to fourth light leakage prevention layers 110 to 113 are disposed in regions of the first to fourth subpixels SP1 to SP4 corresponding to the light emitting areas EA11 , EA21 , EA31 , and EA41 . With this configuration, the organic light emitting display device according to the first exemplary embodiment can prevent or reduce light leakage between different sub-pixels. Here, the first to fourth light leakage preventing layers 110 to 113 may allow light of a specific wavelength to pass therethrough while absorbing light of remaining wavelengths. In addition, at least one light leakage prevention layer among the first to fourth light leakage prevention layers 110 to 113 is thinner than the other light leakage prevention layers to improve its transmittance to be higher than that of the other light leakage prevention layers.
下文中,通过利用第一防漏光层110至第四防漏光层113对防止漏光的原理进行详细描述,有机电致发光装置EL的第一电极130和有机发光层140的折射率可以比基板100和覆盖层120的折射率高。例如,基板100和覆盖层120的折射率为约1.5,而有机电致发光装置EL的第一电极130和有机发光层140的折射率在1.7至2.0的范围内。Hereinafter, the principle of preventing light leakage will be described in detail by using the first to fourth light leakage preventing layers 110 to 113 , the refractive indices of the first electrode 130 and the organic light emitting layer 140 of the organic electroluminescence device EL may be higher than those of the substrate 100 And the refractive index of the cover layer 120 is high. For example, the refractive indices of the substrate 100 and the cover layer 120 are about 1.5, and the refractive indices of the first electrode 130 and the organic light emitting layer 140 of the organic electroluminescence device EL are in the range of 1.7 to 2.0.
由有机发光层140生成的光800的一部分经第二电极150反射并且重新取向为朝向第一电极130,同时由有机发光层140生成的光的剩余部分朝向第一电极130发射。也就是说,由有机发光层140生成的光的大部分取向为朝向第一电极130。A portion of the light 800 generated by the organic light emitting layer 140 is reflected by the second electrode 150 and reoriented toward the first electrode 130 , while the remaining portion of the light generated by the organic light emitting layer 140 is emitted toward the first electrode 130 . That is, most of the light generated by the organic light emitting layer 140 is oriented toward the first electrode 130 .
由于有机发光层140的折射率基本上等于第一电极130的折射率,所以由有机发光层140生成的光的路径在有机发光层140与第一电极130之间的边界处未改变。由于第一电极130与覆盖层120之间的折射率的差异,当以等于或大于阈值角度的角度入射时,穿过第一电极130的光可以在第一电极130与覆盖层120之间的边界处完全反射。Since the refractive index of the organic light emitting layer 140 is substantially equal to the refractive index of the first electrode 130 , the path of light generated by the organic light emitting layer 140 is unchanged at the boundary between the organic light emitting layer 140 and the first electrode 130 . Due to the difference in the refractive index between the first electrode 130 and the capping layer 120 , when incident at an angle equal to or greater than the threshold angle, light passing through the first electrode 130 may be in the direction between the first electrode 130 and the capping layer 120 . Full reflection at the boundary.
在这种情况下,在第一电极130与覆盖层120之间的边界处完全反射的光被第二电极150再次反射,并且穿过有机发光层140和第一电极130,然后穿过基板100(基板100的折射率与覆盖层120的折射率基本上相同)到达设置在基板100的后表面上的偏振器(未示出)。然后光经偏振器(未示出)反射以重新取向为朝向基板100。In this case, the light completely reflected at the boundary between the first electrode 130 and the capping layer 120 is reflected again by the second electrode 150 , and passes through the organic light emitting layer 140 and the first electrode 130 , and then passes through the substrate 100 (The refractive index of the substrate 100 is substantially the same as that of the cover layer 120 ) to a polarizer (not shown) provided on the rear surface of the substrate 100 . The light is then reflected by a polarizer (not shown) to be reoriented towards the substrate 100 .
此外,在根据第一示例性实施方案的有机发光显示装置中,第一防漏光层110至第四防漏光层113设置在基板100上,更具体地,设置在对应于发光区EA11、EA21、EA31和EA41的区域中,以防止以大于全反射阈值角度的角度行进的光到达相邻子像素或另一像素的微透镜。In addition, in the organic light emitting display device according to the first exemplary embodiment, the first to fourth light leakage preventing layers 110 to 113 are provided on the substrate 100, more specifically, are provided corresponding to the light emitting areas EA11, EA21, In the area of EA31 and EA41, to prevent light traveling at an angle greater than the total reflection threshold angle from reaching the microlens of an adjacent sub-pixel or another pixel.
具体地,由有机发光层140生成的光800的一部分在第一电极130与覆盖层120之间的边界处被完全反射,并且然后经第二电极150反射以重新取向为朝向基板100。在这种情况下,以小于全反射阈值角度的角度行进的光800的一部分穿过覆盖层120和基板100,并且然后在基板100与偏振器(未示出)之间的边界处再反射以重新取向为朝向基板100。Specifically, a portion of the light 800 generated by the organic light emitting layer 140 is completely reflected at the boundary between the first electrode 130 and the capping layer 120 , and is then reflected by the second electrode 150 to be reoriented toward the substrate 100 . In this case, a portion of the light 800 traveling at an angle less than the total reflection threshold angle passes through the cover layer 120 and the substrate 100 and is then re-reflected at the boundary between the substrate 100 and the polarizer (not shown) to Reoriented towards substrate 100 .
随后,重新取向为朝向基板100的光的部分再次穿过基板100以到达设置在基板100上的第一防漏光层110至第四防漏光层113中之一。当光的所述部分到达第一防漏光层110至第四防漏光层113中之一时,光的所述部分由此被吸收。由于如上所述通过不同子像素或不同像素生成的光被防漏光层吸收,所以可以防止或减少从包括多个微透镜的有机发光显示装置的漏光。Subsequently, the portion of the light reoriented toward the substrate 100 passes through the substrate 100 again to reach one of the first to fourth light leakage preventing layers 110 to 113 disposed on the substrate 100 . When the portion of the light reaches one of the first to fourth light leakage preventing layers 110 to 113 , the portion of the light is thereby absorbed. Since light generated through different sub-pixels or different pixels is absorbed by the light leakage preventing layer as described above, light leakage from an organic light emitting display device including a plurality of microlenses can be prevented or reduced.
由于根据本实施方案的第一防漏光层110至第四防漏光层113的特征在于允许特定波长的光从中通过,同时吸收剩余波长的光,第一防漏光层110至第四防漏光层113可以允许漏光成分中特定波长的光从中通过,同时吸收漏光成分中剩余波长的光。例如,当允许蓝色光B从中通过的第四防漏光层113设置在第四子像素SP4中时,第四防漏光层113允许具有蓝色波长范围的光的漏光成分从中通过同时吸收具有剩余波长范围的光。在这种情况下,可以从第四子像素SP4发射出带蓝色的光。在蓝色光的效率低的显示装置的情况下,这因此可以补偿蓝色光。Since the first to fourth light leakage prevention layers 110 to 113 according to the present embodiment are characterized by allowing light of a specific wavelength to pass therethrough while absorbing light of the remaining wavelengths, the first to fourth light leakage prevention layers 110 to 113 It is possible to allow light of a specific wavelength in the leaked light component to pass therethrough, while absorbing light of the remaining wavelengths of the leaked light component. For example, when the fourth light leakage preventing layer 113 allowing the blue light B to pass therethrough is provided in the fourth sub-pixel SP4, the fourth light leakage preventing layer 113 allows the leakage light component of the light having the blue wavelength range to pass therethrough while absorbing the light having the remaining wavelengths therethrough range of light. In this case, bluish light can be emitted from the fourth sub-pixel SP4. In the case of display devices with low blue light efficiency, this can therefore compensate for blue light.
可替代地,第一防漏光层110至第四防漏光层113中的至少两个防漏光层可以允许相同颜色的光从中通过。例如,第一防漏光层110、第二防漏光层111和第三防漏光层112允许不同颜色的光从中通过,而第四防漏光层113允许与第一防漏光层至第三防漏光层110、111和112允许从中通过的光的颜色相同的颜色的光从中通过。Alternatively, at least two light leakage preventing layers of the first to fourth light leakage preventing layers 110 to 113 may allow light of the same color to pass therethrough. For example, the first anti-leakage layer 110, the second anti-leakage layer 111 and the third anti-leakage layer 112 allow light of different colors to pass therethrough, while the fourth anti-leakage layer 113 is allowed to communicate with the first to third anti-leakage layers 110, 111, and 112 allow light of the same color to pass therethrough to pass therethrough.
更具体地,第一防漏光层110允许红色(R)光从中通过,第二防漏光层111允许绿色(G)光从中通过,并且第三防漏光层112允许蓝色(B)光从中通过,同时第四防漏光层113允许红色光、绿色光和蓝色光中之一从中通过。在另一示例性实施方案或不同的示例性实施方案中,第四防漏光层113可以配置为比第一防漏光层至第三防漏光层110、111和112中的任一个薄以能够不仅允许红色光、绿色光、和蓝色光中的一个或更多个而且允许其他的可见光从中通过。此处,第一防漏光层至第三防漏光层110、111、和112中的每一个防漏光层对于特定波长范围的光的透射率可以为60%或更大,同时第四防漏光层113对于可见光的透射率可以为60%或更大。第一防漏光层至第三防漏光层110、111和112中的每一个防漏光层允许一种颜色的光从中通过,同时吸收其他颜色的光。More specifically, the first light leakage preventing layer 110 allows red (R) light to pass therethrough, the second light leakage preventing layer 111 allows green (G) light to pass therethrough, and the third light leakage preventing layer 112 allows blue (B) light to pass therethrough , while the fourth light leakage preventing layer 113 allows one of red light, green light and blue light to pass therethrough. In another exemplary embodiment or a different exemplary embodiment, the fourth light leakage preventing layer 113 may be configured to be thinner than any one of the first to third light leakage preventing layers 110 , 111 and 112 to be able to not only One or more of red, green, and blue light and other visible light are allowed to pass therethrough. Here, the transmittance of each of the first to third light leakage preventing layers 110 , 111 , and 112 to light of a specific wavelength range may be 60% or more, while the fourth light leakage preventing layer The transmittance of 113 to visible light may be 60% or more. Each of the first to third light leakage preventing layers 110 , 111 and 112 allows light of one color to pass therethrough while absorbing light of other colors.
当第一防漏光层110和第四防漏光层113允许相同颜色的光从中通过并且由第二子像素SP2或第三子像素SP3生成的漏光成分被取向为朝向第四子像素SP4时,漏光成分被第四防漏光层113吸收。这可以防止不同子像素或不同像素之间的漏光。此外,由于第四防漏光层113配置为比第一防漏光层至第三防漏光层110、111和112中的任一个薄,所以第四防漏光层113的可见光的透射率可以相对高。由于第四子像素SP4设置有相对薄的第四防漏光层113,所以第四子像素SP4可以具有比其他子像素高的水平的光透射率,同时能够防止漏光。When the first light leakage preventing layer 110 and the fourth light leakage preventing layer 113 allow light of the same color to pass therethrough and light leakage components generated by the second subpixel SP2 or the third subpixel SP3 are oriented toward the fourth subpixel SP4, light leaks The components are absorbed by the fourth light leakage preventing layer 113 . This can prevent light leakage between different sub-pixels or between different pixels. Furthermore, since the fourth light leakage preventing layer 113 is configured to be thinner than any one of the first to third light leakage preventing layers 110 , 111 and 112 , the transmittance of visible light of the fourth light leakage preventing layer 113 may be relatively high. Since the fourth sub-pixel SP4 is provided with the relatively thin fourth light leakage preventing layer 113, the fourth sub-pixel SP4 can have a higher level of light transmittance than other sub-pixels while preventing light leakage.
此外,当由第二子像素SP2或第三子像素SP3生成的绿色漏光成分或蓝色漏光成分被取向为朝向第四子像素SP4时,第四防漏光层113吸收绿色光或蓝色光,从而能够防止漏光。第四防漏光层113选择性地允许红色光从中通过,从而能够吸收由第二子像素SP2或第三子像素SP3生成的光。In addition, when the green light leakage component or the blue light leakage component generated by the second subpixel SP2 or the third subpixel SP3 is oriented toward the fourth subpixel SP4, the fourth light leakage preventing layer 113 absorbs the green light or the blue light, thereby Can prevent light leakage. The fourth light leakage preventing layer 113 selectively allows red light to pass therethrough, thereby being able to absorb light generated by the second subpixel SP2 or the third subpixel SP3.
此外,第一防漏光层110可以吸收由第二子像素SP2或第三子像素SP3生成的绿色漏光成分或蓝色漏光成分,并且第二防漏光层111可以吸收由第一子像素SP1或第三子像素SP3生成的红色漏光成分或蓝色漏光成分,同时第三防漏光层112可以吸收由第一子像素SP1或第二子像素SP2生成的红色漏光成分或绿色漏光成分。In addition, the first light leakage preventing layer 110 may absorb the green light leakage component or the blue light leakage component generated by the second subpixel SP2 or the third subpixel SP3, and the second light leakage preventing layer 111 may absorb the green light leakage component generated by the first subpixel SP1 or the third subpixel SP3. The red light leakage component or the blue light leakage component generated by the three sub-pixels SP3, and the third light leakage preventing layer 112 can absorb the red light leakage component or the green light leakage component generated by the first sub-pixel SP1 or the second sub-pixel SP2.
尽管在如上所述配置中第四防漏光层113已经示出为允许与第一防漏光层110允许从中通过的光的颜色相同的颜色的光从中通过,但是根据第一示例性实施方案的有机发光显示装置不限于此。确切地说,第四防漏光层113允许从中通过的光的颜色可以与第二防漏光层111或第三防漏光层112允许从中通过的光的颜色相同。Although the fourth light leakage preventing layer 113 has been shown in the configuration as described above to allow light of the same color as the light that the first light leakage preventing layer 110 allows to pass therethrough, the organic The light-emitting display device is not limited to this. Specifically, the color of the light that the fourth light leakage preventing layer 113 allows to pass therethrough may be the same as the color of the light that the second light leakage preventing layer 111 or the third light leakage preventing layer 112 allows to pass therethrough.
由于如上所述通过不同子像素或不同像素生成的光被防漏光层吸收,所以可以防止或减少从包括多个微透镜的有机发光显示装置的漏光。Since light generated through different sub-pixels or different pixels is absorbed by the light leakage preventing layer as described above, light leakage from an organic light emitting display device including a plurality of microlenses can be prevented or reduced.
此外,第一防漏光层110至第四防漏光层113不限于如上所示的配置。此处,第一防漏光层110至第四防漏光层113中的至少一个防漏光层允许从中通过的光的颜色可以与第一防漏光层110至第四防漏光层113中的其他防漏光层允许从中通过的光的颜色互补。In addition, the first to fourth light leakage preventing layers 110 to 113 are not limited to the configurations shown above. Here, at least one light leakage preventing layer of the first to fourth light leakage preventing layers 110 to 113 allows the color of light to pass therethrough to be different from other light leakage preventing layers of the first to fourth light leakage preventing layers 110 to 113 The layers allow complementary colors of light passing through them.
例如,第一防漏光层110、第二防漏光层111和第三防漏光层112可以允许不同颜色的光从中通过,而第四防漏光层113可以允许与穿过第一防漏光层至第三防漏光层110、111和112中之一的光的颜色互补的一种或多种颜色的光从中通过。For example, the first anti-leakage layer 110, the second anti-leakage layer 111, and the third anti-leakage layer 112 may allow light of different colors to pass therethrough, and the fourth anti-leakage layer 113 may allow and pass through the first anti-leakage layer to the Light of one or more colors of complementary colors of light of one of the three light leakage prevention layers 110 , 111 and 112 passes therethrough.
具体地,第四防漏光层113可以允许与绿色光互补的波长范围的光从中通过。换句话说,第四防漏光层113可以允许对应于在1931CIE-xy颜色坐标系中的坐标(0.35,0.1)至(0.55,3)的颜色的光(或波长范围的光)从中通过。Specifically, the fourth light leakage preventing layer 113 may allow light in a wavelength range complementary to green light to pass therethrough. In other words, the fourth light leakage preventing layer 113 may allow light (or light in a wavelength range) of colors corresponding to coordinates (0.35, 0.1) to (0.55, 3) in the 1931 CIE-xy color coordinate system to pass therethrough.
利用该配置,第四防漏光层113可以通过吸收由第一子像素至第三子像素SP1、SP2和SP3生成的红色漏光成分、绿色漏光成分或蓝色漏光成分来防止或减少不同子像素或不同像素之间的漏光。具体地,第四防漏光层113允许对应于在1931CIE-xy颜色坐标系中的坐标(0.35,0.1)至(0.55,3)的波长范围的光从中通过,同时吸收其他颜色的光,从而使漏光最小化。With this configuration, the fourth light leakage preventing layer 113 can prevent or reduce different subpixels or a Light leakage between different pixels. Specifically, the fourth light leakage preventing layer 113 allows light corresponding to the wavelength range of coordinates (0.35, 0.1) to (0.55, 3) in the 1931 CIE-xy color coordinate system to pass therethrough while absorbing light of other colors, thereby making Light leakage is minimized.
由于第四防漏光层113允许对应于在1931CIE-xy颜色坐标系中的坐标(0.35,0.1)至(0.55,3)的波长范围的光从中通过,所以第四防漏光层113可以防止或减少由设置在第四子像素SP4中的有机电致发光装置EL生成的光的损失。具体地,由于蓝色光和红色光的低效率吸收被最小化,所以可以防止在第四子像素SP4中的有机电致发光装置EL的发光效率被第四防漏光层113降低。Since the fourth light leakage preventing layer 113 allows light in the wavelength range corresponding to the coordinates (0.35, 0.1) to (0.55, 3) in the 1931 CIE-xy color coordinate system to pass therethrough, the fourth light leakage preventing layer 113 can prevent or reduce Loss of light generated by the organic electroluminescence device EL provided in the fourth subpixel SP4. Specifically, since the low-efficiency absorption of blue light and red light is minimized, the luminous efficiency of the organic electroluminescence device EL in the fourth subpixel SP4 can be prevented from being lowered by the fourth light leakage preventing layer 113 .
尽管根据第一示例性实施方案的有机发光显示装置的第四防漏光层113已经被描述为配置为允许与绿色光互补的波长范围的光从中通过,但是根据第一示例性实施方案的有机发光显示装置的第四防漏光层113不限于此,并且可以配置为允许与红色光或蓝色光互补的波长范围的光从中通过。Although the fourth light leakage preventing layer 113 of the organic light emitting display device according to the first exemplary embodiment has been described as being configured to allow light of a wavelength range complementary to green light to pass therethrough, the organic light emitting The fourth light leakage preventing layer 113 of the display device is not limited thereto, and may be configured to allow light of a wavelength range complementary to red light or blue light to pass therethrough.
如上所述,由于在第一子像素SP1至第四子像素SP4的对应于第一发光区至第四发光区EA11、EA21、EA31和EA41的区域中设置有第一防漏光层110至第四防漏光层113,所以根据第一示例性实施方案的有机发光显示装置可以防止或减少不同子像素或不同像素之间的漏光。As described above, since the first to fourth light-leakage preventing layers 110 to 4 are provided in the regions of the first to fourth sub-pixels SP1 to SP4 corresponding to the first to fourth light-emitting regions EA11 , EA21 , EA31 and EA41 The light leakage preventing layer 113, so the organic light emitting display device according to the first exemplary embodiment can prevent or reduce light leakage between different sub-pixels or between different pixels.
此外,由于第四防漏光层113允许对应于1931CIE-xy颜色坐标系中的坐标(0.35,0.1)至(0.55,3)的颜色的光(或波长范围的光)从中通过,所以根据第一示例性实施方案的有机发光显示装置可以防止或减少不同子像素或不同像素之间的漏光,同时防止有机电致发光装置的发光效率降低。Furthermore, since the fourth light leakage preventing layer 113 allows the light (or the light of the wavelength range) of the color corresponding to the coordinates (0.35, 0.1) to (0.55, 3) in the 1931 CIE-xy color coordinate system to pass therethrough, according to the first The organic light emitting display device of the exemplary embodiment may prevent or reduce light leakage between different sub-pixels or between different pixels, while preventing a reduction in luminous efficiency of the organic electroluminescent device.
下文中,将参照图4和图5对根据第二示例性实施方案的有机发光显示装置进行描述。图4是示出根据第二示例性实施方案的有机发光显示装置的平面图。Hereinafter, an organic light emitting display device according to a second exemplary embodiment will be described with reference to FIGS. 4 and 5 . FIG. 4 is a plan view illustrating an organic light emitting display device according to a second exemplary embodiment.
根据第二示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件。将省略一些部件的描述,这是因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the second exemplary embodiment may include the same components as those of the aforementioned embodiments. The description of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图4,根据第二示例性实施方案的有机发光显示装置与根据第一示例性实施方案的有机发光显示装置基本相同,除了设置在至少一个发光区中的微透镜的形状之外。4 , the organic light emitting display device according to the second exemplary embodiment is substantially the same as the organic light emitting display device according to the first exemplary embodiment except for the shape of microlenses disposed in at least one light emitting region.
具体地,第一子像素至第四子像素中的每一个子像素包括第一发光区至第四发光区EA11、EA21、EA32和EA41。布置在第一发光区至第四发光区EA11、EA21、EA32和EA41中的至少一个发光区中的微透镜的形状可以与布置在剩余的发光区上的微透镜的那些形状不同。Specifically, each of the first to fourth subpixels includes first to fourth light emitting areas EA11 , EA21 , EA32 and EA41 . The shapes of the microlenses arranged in at least one of the first to fourth light emitting regions EA11 , EA21 , EA32 and EA41 may be different from those of the microlenses arranged on the remaining light emitting regions.
参照图4,第一微透镜布置在第一发光区EA11、第二发光区EA21和第四发光区EA41中,同时第二微透镜布置在第三发光区EA32中。第一微透镜的形状可以与第二微透镜的形状不同。4, the first microlenses are arranged in the first light emitting area EA11, the second light emitting area EA21 and the fourth light emitting area EA41, while the second microlenses are arranged in the third light emitting area EA32. The shape of the first microlens may be different from the shape of the second microlens.
具体地,第一微透镜包括多个第一凹部201和多个第一连接部202,第一连接部中的每一个连接相邻的第一凹部201。第二微透镜包括多个第二凹部301和多个第二连接部302,第二连接部中的每一个连接相邻的第一凹部301。Specifically, the first microlens includes a plurality of first concave portions 201 and a plurality of first connecting portions 202 , and each of the first connecting portions connects adjacent first concave portions 201 . The second microlens includes a plurality of second concave portions 301 and a plurality of second connecting portions 302 , and each of the second connecting portions connects adjacent first concave portions 301 .
此处,第一凹部201的直径D(最大直径)、深度H、半峰宽(FWHM)、相邻凹部之间的间隙G、坡度S、以及纵横比A/R中的至少一个可以与第二凹部301的对应的一个不同。FWHM是指凹部在最大深度的一半处测量的凹部的全宽度。纵横比A/R是指由凹部的深度H除以凹部的最大半径D/2所得的值。Here, at least one of the diameter D (maximum diameter), depth H, full width at half maximum (FWHM), gap G between adjacent recesses, slope S, and aspect ratio A/R of the first recess 201 may be the same as the The corresponding one of the two recesses 301 is different. FWHM refers to the full width of the recess measured at half the maximum depth of the recess. The aspect ratio A/R refers to a value obtained by dividing the depth H of the concave portion by the maximum radius D/2 of the concave portion.
尽管在图4和图5中第二微透镜的第二凹部301的直径D2示出为小于第一微透镜的第一凹部201的直径D1,但是第二示例性实施方案不限于此。可以采用其中第一凹部201的形状与第二凹部301的形状不同的任何配置。Although the diameter D2 of the second concave portion 301 of the second microlens is shown to be smaller than the diameter D1 of the first concave portion 201 of the first microlens in FIGS. 4 and 5 , the second exemplary embodiment is not limited thereto. Any configuration in which the shape of the first recess 201 is different from the shape of the second recess 301 may be employed.
现将参照图5对此配置进行详细描述。图5是根据第二示例性实施方案的有机发光显示装置的沿图4的线C-D截取的截面图。参照图5,具有相同形状的第一微透镜布置在第一发光区EA11、第二发光区EA21和第四发光区EA41中。具有与第一微透镜不同的形状的第二微透镜布置在第三发光区EA32中。This configuration will now be described in detail with reference to FIG. 5 . FIG. 5 is a cross-sectional view of the organic light emitting display device according to the second exemplary embodiment, taken along line C-D of FIG. 4 . 5, first microlenses having the same shape are arranged in the first light emitting area EA11, the second light emitting area EA21 and the fourth light emitting area EA41. A second microlens having a different shape from the first microlens is arranged in the third light emitting area EA32.
第二微透镜的第二凹部301的直径D2可以小于第一微透镜的第一凹部201的直径D1。微透镜的凹部装配到覆盖层120中以提高外部光提取效率,并且根据微透镜的凹部的形状的光路的改变是提高光提取效率的主要因素。因此,光效率可以根据微透镜的凹部的直径D而不同。The diameter D2 of the second concave portion 301 of the second microlens may be smaller than the diameter D1 of the first concave portion 201 of the first microlens. The concave portion of the microlens is fitted into the cover layer 120 to improve the external light extraction efficiency, and the change of the optical path according to the shape of the concave portion of the microlens is a major factor for improving the light extraction efficiency. Therefore, the light efficiency may differ according to the diameter D of the concave portion of the microlens.
具体地,由于布置在第三发光区EA32中的第二微透镜的第二凹部301的直径D2小于布置在第一发光区EA11、第二发光区EA21和第四发光区EA41中的第一微透镜的第一凹部201的直径D1,所以在从有机电致发光装置EL的第三发光区EA32产生的光到达微透镜结构处的频率可以增加。由此,可以进一步提高其中可以设置有具有低效率的有机电致发光装置EL的子像素的光提取效率。Specifically, since the diameter D2 of the second concave portion 301 of the second microlens arranged in the third light emitting area EA32 is smaller than that of the first microlenses arranged in the first light emitting area EA11, the second light emitting area EA21 and the fourth light emitting area EA41 The diameter D1 of the first concave portion 201 of the lens, so the frequency at which the light generated from the third light emitting area EA32 of the organic electroluminescent device EL reaches the microlens structure can be increased. Thereby, the light extraction efficiency of the sub-pixel in which the organic electroluminescence device EL with low efficiency can be disposed can be further improved.
此外,由于在第一子像素至第四子像素SP1、SP2、SP3和SP4中设置有第一防漏光层110至第四防漏光层113,所以可以防止或减少不同子像素或不同像素之间的漏光。In addition, since the first to fourth light leakage prevention layers 110 to 113 are provided in the first to fourth subpixels SP1 , SP2 , SP3 and SP4 , it is possible to prevent or reduce the difference between different subpixels or between different pixels. of light leakage.
下文中,将参照图6和图7对根据第三示例性实施方案的有机发光显示装置进行描述。图6是示出根据第三示例性实施方案的有机发光显示装置的平面图,并且图7是根据第三示例性实施方案的有机发光显示装置的沿图6的线E-F截取的截面图。Hereinafter, an organic light emitting display device according to a third exemplary embodiment will be described with reference to FIGS. 6 and 7 . 6 is a plan view illustrating an organic light emitting display device according to a third exemplary embodiment, and FIG. 7 is a cross-sectional view of the organic light emitting display device according to the third exemplary embodiment, taken along line E-F of FIG. 6 .
根据第三示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件,除非另外说明。将省略一些部件的描述,这是因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the third exemplary embodiment may include the same components as those of the aforementioned embodiments unless otherwise specified. Descriptions of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图6和图7,在根据第三示例性实施方案的有机发光显示装置中,包括在单个像素P中的四个发光区EA11、EA21、EA33和EA42中的至少一个发光区可以具有未设置防漏光层的区域。此外,四个发光区EA11、EA21、EA33和EA42中的至少一个发光区可以具有未设置微透镜的区域。6 and 7 , in the organic light emitting display device according to the third exemplary embodiment, at least one of the four light emitting areas EA11 , EA21 , EA33 and EA42 included in a single pixel P may have an undisposed area of the anti-leakage layer. In addition, at least one of the four light emitting areas EA11, EA21, EA33, and EA42 may have an area where microlenses are not provided.
例如,第一发光区EA1l和第二发光区EA21中的每一个发光区包括防漏光层,而第三发光区EA33或第四发光区EA42不包括防漏光层。此外,第一发光区EA11和第二发光区EA21中的每一个发光区包括微透镜,而第三发光区EA33或第四发光区EA42不包括微透镜。也就是说,包括其中未设置有防漏光层的区域的发光区可以未包括微透镜。For example, each of the first light emitting area EA11 and the second light emitting area EA21 includes a light leakage preventing layer, while the third light emitting area EA33 or the fourth light emitting area EA42 does not include a light leakage preventing layer. In addition, each of the first light emitting area EA11 and the second light emitting area EA21 includes a microlens, while the third light emitting area EA33 or the fourth light emitting area EA42 does not include a microlens. That is, the light emitting region including the region in which the light leakage preventing layer is not provided may not include the microlens.
根据第三示例性实施方案的有机发光显示装置不限于此,并且包括防漏光层的发光区可以未包括微透镜。The organic light emitting display device according to the third exemplary embodiment is not limited thereto, and the light emitting region including the light leakage preventing layer may not include a microlens.
具体地,第一发光区EA11和第二发光区EA21中的每一个发光区包括第一防漏光层110和第二防漏光层111。相比之下,第三发光区EA33或第四发光区EA42都不包括防漏光层。Specifically, each of the first light emitting area EA11 and the second light emitting area EA21 includes a first light leakage preventing layer 110 and a second light leakage preventing layer 111 . In contrast, neither the third light emitting area EA33 nor the fourth light emitting area EA42 includes a light leakage preventing layer.
在第一发光区EA11和第二发光区EA21中,覆盖层220设置有具有相同形状的微透镜。此外,在第三发光区EA33和第四发光区EA42中,覆盖层220可以未设置微透镜。In the first light emitting area EA11 and the second light emitting area EA21, the cover layer 220 is provided with microlenses having the same shape. In addition, in the third light emitting area EA33 and the fourth light emitting area EA42, the cover layer 220 may not be provided with a microlens.
也就是说,在第三发光区EA33和第四发光区EA42中,覆盖层220可以形成为平坦的。因此,第一电极230、有机发光层240和第二电极250也形成为平坦的。That is, in the third light emitting area EA33 and the fourth light emitting area EA42, the capping layer 220 may be formed to be flat. Therefore, the first electrode 230, the organic light emitting layer 240 and the second electrode 250 are also formed to be flat.
此处,在第四发光区EA42中未设置防漏光层或微透镜。由于在最易受漏光的第四子像素SP4中未设置微透镜,所以可以防止由生成不同颜色的光的子像素生成的漏光成分通过设置在第四子像素SP4中的微透镜被提取,由此没有漏光成分被视觉上感知。Here, no light leakage preventing layer or microlenses are provided in the fourth light emitting area EA42. Since the microlens is not provided in the fourth subpixel SP4 which is most susceptible to light leakage, it is possible to prevent the leakage light components generated by the subpixels that generate light of different colors from being extracted by the microlens provided in the fourth subpixel SP4 by This no light leakage component is visually perceived.
如上所述,为防止漏光在第四子像素SP4中未设置微透镜,从而使得可以省略第四子像素SP4中的防漏光层的配置。As described above, in order to prevent light leakage, no microlenses are provided in the fourth subpixel SP4, so that the configuration of the light leakage prevention layer in the fourth subpixel SP4 can be omitted.
尽管在图6和图7中示出了其中在第三发光区EA33中既不设置防漏光层也不设置微透镜的配置,但是根据第三示例性实施方案的有机发光显示装置不限于此。确切地说,不仅在第四子像素SP4中而且在第一子像素至第三子像素SP1、SP2和SP3中的一个中可以既不设置微透镜也不设置防漏光层。Although a configuration in which neither a light leakage preventing layer nor a microlens is provided in the third light emitting area EA33 is shown in FIGS. 6 and 7 , the organic light emitting display device according to the third exemplary embodiment is not limited thereto. Specifically, neither the microlens nor the light leakage preventing layer may be provided not only in the fourth subpixel SP4 but also in one of the first to third subpixels SP1 , SP2 and SP3 .
由此不仅在第四子像素中而且在易受漏光的其他子像素中可以防止将以其他方式引起漏光的光通过微透镜被向外提取。Thereby, not only in the fourth sub-pixel but also in other sub-pixels susceptible to light leakage, light that would otherwise cause light leakage can be prevented from being extracted outward through the microlens.
下文中,将参照图8和图9对根据第四示例性实施方案的有机发光显示装置进行描述。图8是示出根据第四示例性实施方案的有机发光显示装置的平面图,并且图9是根据第四示例性实施方案的有机发光显示装置的沿图8的线G-H截取的截面图。Hereinafter, an organic light emitting display device according to a fourth exemplary embodiment will be described with reference to FIGS. 8 and 9 . 8 is a plan view illustrating an organic light emitting display device according to a fourth exemplary embodiment, and FIG. 9 is a cross-sectional view of the organic light emitting display device according to the fourth exemplary embodiment, taken along line G-H of FIG. 8 .
根据第四示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件,除非另外说明。将省略一些部件的描述,因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the fourth exemplary embodiment may include the same components as those of the aforementioned embodiments unless otherwise specified. Descriptions of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图8和图9,根据第四示例性实施方案的有机发光显示装置具有布置在包括于单个像素P中的多个发光区EA12、EA21、EA33和EA42中的至少两个发光区中的微透镜。根据第四示例性实施方案的有机发光显示装置与根据第三示例性实施方案的有机发光显示装置的不同之处在于布置在至少一个发光区中的微透镜的形状与布置在剩余的发光区上的微透镜的形状不同。8 and 9 , the organic light emitting display device according to the fourth exemplary embodiment has microscopic light emitting areas arranged in at least two of the plurality of light emitting areas EA12, EA21, EA33 and EA42 included in a single pixel P. lens. The organic light emitting display device according to the fourth exemplary embodiment is different from the organic light emitting display device according to the third exemplary embodiment in that the shape of the microlenses arranged in at least one light emitting region and the shape of the microlenses arranged on the remaining light emitting regions The shape of the microlenses is different.
具体地,第一子像素至第四子像素分别包括第一发光区EA12、第二发光区EA21、第三发光区EA33和第四发光区EA42。微透镜布置在第一发光区至第四发光区EA12、EA21、EA33和EA42中的至少两个发光区中。在至少两个发光区中,布置在一个发光区中的微透镜的形状可以与布置在剩余的发光区上的微透镜的形状不同。此外,防漏光层和微透镜可以布置在至少一个发光区中。Specifically, the first to fourth sub-pixels respectively include a first light-emitting area EA12, a second light-emitting area EA21, a third light-emitting area EA33 and a fourth light-emitting area EA42. Microlenses are arranged in at least two of the first to fourth light emitting areas EA12 , EA21 , EA33 and EA42 . In at least two light-emitting regions, the shape of the microlenses arranged in one light-emitting region may be different from the shape of the microlenses arranged on the remaining light-emitting regions. Also, a light leakage prevention layer and a microlens may be arranged in at least one light emitting area.
例如,在第一发光区EA12中布置有第二微透镜,在第二发光区EA21中布置有第一微透镜,并且在第三发光区EA33和第四光发光区EA42中没有布置微透镜。此处,第一微透镜的形状可以与第二微透镜的形状不同。For example, the second microlenses are arranged in the first light emitting area EA12, the first microlenses are arranged in the second light emitting area EA21, and the microlenses are not arranged in the third light emitting area EA33 and the fourth light emitting area EA42. Here, the shape of the first microlens may be different from the shape of the second microlens.
具体地,设置在第一发光区EA12中的第二微透镜的第二凹部301的直径D2小于第一微透镜的第一凹部201的直径D1。因此,每单位面积的第一发光区EA12中第二微透镜的数目大于每单位面积的第二发光区EA21中第一微透镜的数目。Specifically, the diameter D2 of the second concave portion 301 of the second microlens disposed in the first light emitting area EA12 is smaller than the diameter D1 of the first concave portion 201 of the first microlens. Therefore, the number of the second microlenses in the first light emitting area EA12 per unit area is greater than the number of the first microlenses in the second light emitting area EA21 per unit area.
如上所述,布置在其中设置有具有较低效率的电致发光装置的第一发光区EA12中的微透镜的数目比布置在第二发光区EA21中的微透镜的数目大,从而增加了由电致发光装置EL(330、340和350)生成的光到达微透镜的频率。这可以因此增加第一发光区EA12的发光效率,从而降低功耗。As described above, the number of microlenses arranged in the first light emitting area EA12 in which the electroluminescent device having lower efficiency is disposed is larger than the number of microlenses arranged in the second light emitting area EA21, thereby increasing the number of microlenses arranged in the first light emitting area EA12. The frequency at which the light generated by the electroluminescent devices EL (330, 340 and 350) reaches the microlenses. This can thus increase the light emitting efficiency of the first light emitting area EA12, thereby reducing power consumption.
下文中,将参照图10和图11对根据第五示例性实施方案的有机发光显示装置进行描述。图10是示出根据第五示例性实施方案的有机发光显示装置的平面图,并且图11是根据第五示例性实施方案的有机发光显示装置的沿图10的线I-J截取的截面图。Hereinafter, an organic light emitting display device according to a fifth exemplary embodiment will be described with reference to FIGS. 10 and 11 . 10 is a plan view illustrating an organic light emitting display device according to a fifth exemplary embodiment, and FIG. 11 is a cross-sectional view of the organic light emitting display device according to the fifth exemplary embodiment, taken along line I-J of FIG. 10 .
根据第五示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件,除非另外说明。将省略一些部件的描述,因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the fifth exemplary embodiment may include the same components as those of the aforementioned embodiments unless otherwise specified. Descriptions of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图10和图11,根据第五示例性实施方案的有机发光显示装置具有布置在包括于单个像素P中的多个发光区EA12、EA21、EA34和EA42中的至少三个发光区中的覆盖层420上的微透镜。10 and 11 , the organic light emitting display device according to the fifth exemplary embodiment has overlays arranged in at least three light emitting areas of a plurality of light emitting areas EA12 , EA21 , EA34 and EA42 included in a single pixel P Microlenses on layer 420.
设置在至少一个发光区中的微透镜的形状可以与布置在剩余的发光区上的微透镜的形状不同。在一些实施方案中,设置在至少一个发光区中的微透镜的形状可以与布置在剩余发光区中的一个发光区上的微透镜的形状相同。The shape of the microlenses disposed in at least one light emitting area may be different from the shape of the microlenses disposed on the remaining light emitting areas. In some embodiments, the shape of the microlenses disposed in the at least one light-emitting region may be the same as the shape of the microlenses disposed on one of the remaining light-emitting regions.
在包括在像素P中的多个发光区EA12、EA21、EA34和EA42中,在至少一个发光区中设置有微透镜,而在剩余的发光区中未设置微透镜。Among the plurality of light emitting areas EA12, EA21, EA34, and EA42 included in the pixel P, microlenses are provided in at least one light emitting area, and no microlenses are provided in the remaining light emitting areas.
例如,在第一发光区EA12、第二发光区EA21和第三发光区EA34中设置有微透镜,而在第四发光区EA42中未设置微透镜。For example, microlenses are provided in the first light emitting area EA12, the second light emitting area EA21, and the third light emitting area EA34, while no microlenses are provided in the fourth light emitting area EA42.
在第一发光区EA12、第二发光区EA21和第三发光区EA34中分别设置有第二微透镜、第一微透镜和第三微透镜。第一微透镜至第三微透镜的形状彼此不同。A second microlens, a first microlens and a third microlens are provided in the first light emitting area EA12, the second light emitting area EA21 and the third light emitting area EA34, respectively. The shapes of the first to third microlenses are different from each other.
具体地,第一微透镜的第一凹部201的直径D1大于第二微透镜的第二凹部301的直径D2,而第二微透镜的第二凹部301的直径D2大于第三微透镜的第三凹部401的直径D3。Specifically, the diameter D1 of the first concave portion 201 of the first microlens is larger than the diameter D2 of the second concave portion 301 of the second microlens, and the diameter D2 of the second concave portion 301 of the second microlens is larger than the third diameter D2 of the third microlens Diameter D3 of the recessed portion 401 .
因此,每单位面积的第三发光区EA34中的微透镜的数目大于每单位面积的第一发光区EA12中的微透镜的数目,每单位面积的第一发光区EA12中的微透镜的数目大于每单位面积的第二发光区EA21中的微透镜的数目。Therefore, the number of microlenses in the third light-emitting area EA34 per unit area is greater than the number of microlenses in the first light-emitting area EA12 per unit area, and the number of microlenses in the first light-emitting area EA12 per unit area is greater than The number of microlenses in the second light emitting area EA21 per unit area.
由第三发光区EA34中的电致发光装置EL(430、440、450)生成的光将到达微透镜的频率大于由第一发光区EA12或第二发光区EA21中的电致发光装置EL生成的光将到达微透镜的频率,而由第一发光区EA12中的电致发光装置EL生成的光将到达微透镜的频率大于由第二发光区EA21中的电致发光装置EL生成的光将到达微透镜的概率。The frequency with which the light generated by the electroluminescent devices EL (430, 440, 450) in the third light emitting area EA34 will reach the microlenses is greater than that generated by the electroluminescent devices EL in the first light emitting area EA12 or the second light emitting area EA21 The frequency at which the light will reach the microlenses, and the light generated by the electroluminescent device EL in the first light-emitting area EA12 will reach the microlens at a frequency greater than the light generated by the electroluminescent device EL in the second light-emitting area EA21 will The probability of reaching the microlens.
也就是说,根据第五示例性实施方案的有机发光显示装置根据设置在发光区中的电致发光装置的效率而具有不同形状的微透镜,从而发光效率可以根据发光区而得到提高。That is, the organic light emitting display device according to the fifth exemplary embodiment has microlenses of different shapes according to the efficiency of the electroluminescent device disposed in the light emitting region, so that the light emitting efficiency can be improved according to the light emitting region.
尽管在图10和图11中所示的配置中第一微透镜的第一凹部201、第二微透镜的第二凹部301和第三微透镜的第三凹部401已被描述为具有不同的直径,但是本公开不限于此,并且可以具有如下任何配置:其中第一凹部至第三凹部中的一个凹部的直径、深度、FWHM、相邻凹部之间的间隙、坡度、以及纵横比中的至少一个与其他凹部中对应的一个不同。Although the first concave portion 201 of the first microlens, the second concave portion 301 of the second microlens, and the third concave portion 401 of the third microlens have been described as having different diameters in the configurations shown in FIGS. 10 and 11 , but the present disclosure is not limited thereto, and may have any configuration in which at least one of the diameter, depth, FWHM, gap between adjacent recesses, slope, and aspect ratio of one of the first to third recesses is One is different from the corresponding one in the other recesses.
下文中,将参照图12和图13对根据第六示例性实施方案的有机发光显示装置进行描述。图12是示出根据第六示例性实施方案的有机发光显示装置的平面图,并且图13是根据第六示例性实施方案的有机发光显示装置的沿图12的线K-L截取的截面图。Hereinafter, an organic light emitting display device according to a sixth exemplary embodiment will be described with reference to FIGS. 12 and 13 . 12 is a plan view illustrating an organic light emitting display device according to a sixth exemplary embodiment, and FIG. 13 is a cross-sectional view of the organic light emitting display device according to the sixth exemplary embodiment, taken along line K-L of FIG. 12 .
根据第六示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件,除非另外说明。将省略一些部件的描述,因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the sixth exemplary embodiment may include the same components as those of the aforementioned embodiments unless otherwise specified. Descriptions of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图12和图13,在根据第六示例性实施方案的有机发光显示装置中,单个像素P包括多个发光区EA11、EA22、EA31和EA41,其中在第一发光区EA11、第三发光区EA31和第四发光区EA41中布置有微透镜,而在第二发光区EA22中没有布置微透镜。12 and 13 , in the organic light emitting display device according to the sixth exemplary embodiment, a single pixel P includes a plurality of light emitting areas EA11 , EA22 , EA31 and EA41 , wherein the first light emitting area EA11 , the third light emitting area Microlenses are arranged in EA31 and the fourth light emitting area EA41, while no microlenses are arranged in the second light emitting area EA22.
在基板100的对应于发光区EA11、EA22、EA31、EA41的部分上设置有第一防漏光层110、第二防漏光层111、第三防漏光层112和第四防漏光层113。A first anti-leakage layer 110 , a second anti-leakage layer 111 , a third anti-leakage layer 112 and a fourth anti-leakage layer 113 are disposed on portions of the substrate 100 corresponding to the light-emitting areas EA11 , EA22 , EA31 , and EA41 .
当用于生成绿色光的电致发光装置EL(530、540、550)设置在第二发光区EA22中时,多个微透镜设置在发光效率比第二发光区EA22的发光效率低的第一发光区EA11、第三发光区EA31和第四发光区EA41中。由此,可以提高发光效率。When the electroluminescence device EL ( 530 , 540 , 550 ) for generating green light is disposed in the second light emitting area EA22 , the plurality of microlenses are disposed in the first light emitting area having a lower luminous efficiency than that of the second light emitting area EA22 In the light emitting area EA11, the third light emitting area EA31 and the fourth light emitting area EA41. Thereby, the luminous efficiency can be improved.
下文中,将参照图14和图15对根据第七示例性实施方案的有机发光显示装置进行描述。图14是示出根据第七示例性实施方案的有机发光显示装置的平面图,并且图15是根据第七示例性实施方案的有机发光显示装置的沿图14的线M-N截取的截面图。Hereinafter, an organic light emitting display device according to a seventh exemplary embodiment will be described with reference to FIGS. 14 and 15 . 14 is a plan view illustrating an organic light emitting display device according to a seventh exemplary embodiment, and FIG. 15 is a cross-sectional view of the organic light emitting display device according to the seventh exemplary embodiment, taken along line M-N of FIG. 14 .
根据第七示例性实施方案的有机发光显示装置可以包括与前述实施方案的那些有机发光显示装置相同的部件,除非另外说明。将省略一些部件的描述,因为它们与前述实施方案的那些描述是相同的。此外,下文中相同的附图标记或符号将用于指代相同或类似的部件。The organic light emitting display device according to the seventh exemplary embodiment may include the same components as those of the aforementioned embodiments unless otherwise specified. Descriptions of some components will be omitted because they are the same as those of the foregoing embodiment. Furthermore, the same reference numerals or symbols will be used hereinafter to refer to the same or similar parts.
参照图14,根据第七示例性实施方案的有机发光显示装置具有布置在包括于单个像素P中的多个发光区EA11、EA21、EA31和EA43中的每一个中的微透镜。此外,在包括在单个像素P的子像素中,防漏光层可以设置在包括微透镜的覆盖层320之下。14 , the organic light emitting display device according to the seventh exemplary embodiment has microlenses arranged in each of a plurality of light emitting areas EA11 , EA21 , EA31 and EA43 included in a single pixel P. In addition, in the sub-pixels included in the single pixel P, the light leakage prevention layer may be disposed under the cover layer 320 including the microlenses.
在单个像素P中,设置在至少一个子像素中的防漏光层可以由与设置在其他子像素中的防漏光层的材料不同的材料形成。这可以因此减小特定子像素的反射率并且减少漏光。In a single pixel P, the light leakage prevention layer provided in at least one subpixel may be formed of a material different from that of the light leakage prevention layer provided in the other subpixels. This can thus reduce the reflectivity of specific sub-pixels and reduce light leakage.
现将参照图15对此配置进行描述。参照图15,在根据第七示例性实施方案的有机发光显示装置中,设置在单个像素的多个子像素中的至少一个子像素中的第四防漏光层210可以由光反射材料形成。此外,设置在单个像素中的多个子像素的其他子像素中的第一防漏光层至第三防漏光层110、111和112分别允许红色光、绿色光和蓝色光从中通过。This configuration will now be described with reference to FIG. 15 . 15 , in the organic light emitting display device according to the seventh exemplary embodiment, the fourth light leakage preventing layer 210 provided in at least one subpixel of the plurality of subpixels of a single pixel may be formed of a light reflective material. In addition, the first to third light leakage preventing layers 110 , 111 and 112 provided in other subpixels of the plurality of subpixels in a single pixel allow red light, green light and blue light to pass therethrough, respectively.
具体地,在有机发光显示装置的基板100上设置有绝缘层200。第一防漏光层至第四防漏光层110、111、112和210设置在绝缘层200的对应于子像素SP1、SP2、SP3和SP4的发光区EA11、EA21、EA31和EA43的部分上。设置在第一子像素至第三子像素SP1、SP2和SP3中的第一防漏光层至第三防漏光层110、111和112分别允许红色光、绿色光、蓝色光从中通过。此外,设置在第四子像素SP4中的第四防漏光层210可以反射光。Specifically, the insulating layer 200 is provided on the substrate 100 of the organic light emitting display device. The first to fourth light leakage preventing layers 110 , 111 , 112 and 210 are disposed on portions of the insulating layer 200 corresponding to the light emitting regions EA11 , EA21 , EA31 and EA43 of the sub-pixels SP1 , SP2 , SP3 and SP4 . The first to third light leakage preventing layers 110 , 111 and 112 disposed in the first to third subpixels SP1 , SP2 and SP3 respectively allow red light, green light and blue light to pass therethrough. In addition, the fourth light leakage preventing layer 210 disposed in the fourth subpixel SP4 may reflect light.
设置在第四子像素SP4中的第四防漏光层210可以由两个或更多个层构成。具体地,设置在第四子像素SP4中的第四防漏光层210包括设置在绝缘层200上的第一金属层211和设置在第一金属层211上的第二金属层212。此处,绝缘层200可以是由选自但不限于硅氮化物(SiNx)和硅氧化物(SiO2)中之一形成的无机绝缘层。The fourth light leakage preventing layer 210 disposed in the fourth subpixel SP4 may be composed of two or more layers. Specifically, the fourth light leakage prevention layer 210 disposed in the fourth sub-pixel SP4 includes a first metal layer 211 disposed on the insulating layer 200 and a second metal layer 212 disposed on the first metal layer 211 . Here, the insulating layer 200 may be an inorganic insulating layer formed of one selected from, but not limited to, silicon nitride (SiN x ) and silicon oxide (SiO 2 ).
由于如上所述由两个或更多个金属层构成的第四防漏光层210设置在第四子像素SP4中,所以由除了第四子像素SP4之外的子像素生成的漏光成分可以经第一金属层211或第二金属层212反射以重新取向为朝向基板100,从而到达设置在基板100之下的偏振器(未示出)。Since the fourth light leakage preventing layer 210 composed of two or more metal layers is disposed in the fourth subpixel SP4 as described above, light leakage components generated by subpixels other than the fourth subpixel SP4 can be passed through the fourth subpixel SP4. A metal layer 211 or a second metal layer 212 reflects to be reoriented toward the substrate 100 to reach a polarizer (not shown) disposed under the substrate 100 .
经第一金属层211或第二金属层212反射的漏光成分被重新取向,使得其路径与偏振器(未示出)的光轴不同,由此被俘获在显示装置内而没有从基板100中提取。也就是说,由第一金属层211或第二金属层212重新取向的漏光成分被俘获在显示装置内,从而漏光成分不被观察者在视觉上感知。The leaked light component reflected by the first metal layer 211 or the second metal layer 212 is reoriented so that its path is different from the optical axis of the polarizer (not shown), thereby being trapped within the display device without being extracted from the substrate 100 extract. That is, the light leakage components reoriented by the first metal layer 211 or the second metal layer 212 are trapped in the display device, so that the light leakage components are not visually perceived by the observer.
换句话说,当在第四子像素SP4中未设置第四防漏光层210时,由剩余的子像素所生成的漏光成分可以在基板100与偏振器(未示出)之间的边界处被重新取向以到达第四子像素SP4的微透镜。已经到达微透镜的光可以由微透镜从基板100提取,从而导致漏光。也就是说,微透镜可以将已经到达微透镜的光的光轴转换成与偏振器(未示出)的光轴同轴,由此光可以从基板100中提取以被观察者视觉上感知。In other words, when the fourth light leakage preventing layer 210 is not provided in the fourth subpixel SP4, light leakage components generated by the remaining subpixels may be blocked at the boundary between the substrate 100 and the polarizer (not shown) Re-orientation to reach the microlens of the fourth sub-pixel SP4. Light that has reached the microlenses may be extracted from the substrate 100 by the microlenses, resulting in light leakage. That is, the microlens can convert the optical axis of the light that has reached the microlens to be coaxial with the optical axis of the polarizer (not shown), whereby the light can be extracted from the substrate 100 to be visually perceived by the observer.
另外,当外部光850从基板100的外侧进入第四子像素SP4时,外部光850可以经第一金属层211或第二金属层212反射以重新取向为朝向基板100。由于外部光850的光轴改变,同时外部光850被第一金属层211或第二金属层212反射,所以外部光850未穿过设置在基板100的底表面上的偏振器(未示出)。由于外部光850不能射出该显示装置,所以可以减小外部光850的反射率。In addition, when the external light 850 enters the fourth subpixel SP4 from the outside of the substrate 100 , the external light 850 may be reflected by the first metal layer 211 or the second metal layer 212 to be reoriented toward the substrate 100 . Since the optical axis of the external light 850 is changed while the external light 850 is reflected by the first metal layer 211 or the second metal layer 212 , the external light 850 does not pass through a polarizer (not shown) provided on the bottom surface of the substrate 100 . Since the external light 850 cannot exit the display device, the reflectivity of the external light 850 can be reduced.
第一金属层211可以由具有负电容率/介电常数(permittivity)或负介电常数的材料形成。第一金属层211的介电常数的绝对值可以大于绝缘层200的介电常数的绝对值。The first metal layer 211 may be formed of a material having a negative permittivity/permittivity or a negative permittivity. The absolute value of the dielectric constant of the first metal layer 211 may be greater than the absolute value of the dielectric constant of the insulating layer 200 .
第一金属层211可以由具有负介电常数的碱土金属形成,其绝对值大于绝缘层200的介电常数的绝对值。然而,根据本实施方案的第一金属层211的材料不限于此。例如,第一金属层211可以由具有负介电常数的选自如下的至少一种材料形成:铍(Be)、钙(Ca)、钡(Ba)、锶(Sr)、镭(Ra)、锂(Li)、钠(Na)、和镁(Mg)。The first metal layer 211 may be formed of an alkaline earth metal having a negative dielectric constant whose absolute value is greater than the absolute value of the dielectric constant of the insulating layer 200 . However, the material of the first metal layer 211 according to the present embodiment is not limited thereto. For example, the first metal layer 211 may be formed of at least one material having a negative dielectric constant selected from beryllium (Be), calcium (Ca), barium (Ba), strontium (Sr), radium (Ra), Lithium (Li), Sodium (Na), and Magnesium (Mg).
由金属形成的第二金属层212设置在第一金属层211上。第二金属层212可以由选自银(Ag)、铝(Al)和金(Au)中的至少一种形成。The second metal layer 212 formed of metal is disposed on the first metal layer 211 . The second metal layer 212 may be formed of at least one selected from silver (Ag), aluminum (Al), and gold (Au).
当光到达绝缘层与具有高介电常数的金属层之间的边界处时,入射光可以由金属层吸收或其大部分可以由于非发射等离子体模式而损失,从而降低透射率。根据非发射等离子体模式,光损失是由以下引起的:用作反射器的金属层的表面上的电子振荡和由有机电致发光装置生成的光的波长的干涉,以及金属层的吸收。也就是说,当用作反射器的绝缘层和金属层被设置成彼此接触时,光在绝缘层与金属层之间的边界处损失,从而降低了透射率。When light reaches the boundary between the insulating layer and the metal layer with high dielectric constant, the incident light can be absorbed by the metal layer or most of it can be lost due to non-emissive plasmonic modes, thereby reducing transmittance. According to the non-emissive plasmonic mode, light loss is caused by electron oscillation on the surface of the metal layer serving as a reflector and interference of wavelengths of light generated by the organic electroluminescent device, and absorption by the metal layer. That is, when the insulating layer and the metal layer serving as the reflector are placed in contact with each other, light is lost at the boundary between the insulating layer and the metal layer, thereby reducing transmittance.
相比之下,设置在绝缘层200与第二金属层212之间的第四子像素SP4中设置有具有负介电常数的第一金属层211,并且第一金属层211的介电常数的绝对值大于绝缘层200的介电常数的绝对值。这种配置可以因此减少光损失量,从而提高第四子像素SP4的透射率。因此,由电致发光装置EL生成的光可以从基板100通过由第一金属层211和第二金属层212构成的第四防漏光层210向外提取。In contrast, the fourth sub-pixel SP4 disposed between the insulating layer 200 and the second metal layer 212 is provided with the first metal layer 211 having a negative permittivity, and the permittivity of the first metal layer 211 is The absolute value is greater than the absolute value of the dielectric constant of the insulating layer 200 . This configuration can thus reduce the amount of light loss, thereby improving the transmittance of the fourth sub-pixel SP4. Therefore, the light generated by the electroluminescent device EL can be extracted outward from the substrate 100 through the fourth light leakage preventing layer 210 composed of the first metal layer 211 and the second metal layer 212 .
具体地,由于第一金属层211的介电常数是负的,所以第一金属层211的折射率可以是负的。更具体地,折射率可以表示为介电常数和磁导率的乘积的平方根。由于第一金属层211的介电常数为负值,所以第一金属层211的折射率也可以是负值。Specifically, since the dielectric constant of the first metal layer 211 is negative, the refractive index of the first metal layer 211 may be negative. More specifically, the refractive index can be expressed as the square root of the product of permittivity and permeability. Since the dielectric constant of the first metal layer 211 is a negative value, the refractive index of the first metal layer 211 may also be a negative value.
具有负折射率的材料允许光从中通过而不反射或吸收入射光。此外,第一金属层211和第二金属层212可以配置为显著薄。例如,第一金属层211和第二金属层212中的每一个金属层的厚度可以可在1nm至30nm的范围内。由于第一金属层211和第二金属层212形成为薄的,所以第四防漏光层210的透射率可以得到提高。Materials with a negative index of refraction allow light to pass therethrough without reflecting or absorbing incident light. Furthermore, the first metal layer 211 and the second metal layer 212 may be configured to be significantly thin. For example, the thickness of each of the first metal layer 211 and the second metal layer 212 may be in the range of 1 nm to 30 nm. Since the first metal layer 211 and the second metal layer 212 are formed thin, the transmittance of the fourth light leakage preventing layer 210 can be improved.
当由电致发光装置EL生成的光通过覆盖层320到达第四防漏光层210中的第二金属层212时,所述光的一部分经第二金属层212反射,而所述光的剩余部分通过第二金属层212到达第一金属层211。如上所述,第一金属层211不反射或吸收光,使得光可以从基板100通过第一金属层211向外提取。When the light generated by the electroluminescent device EL passes through the cover layer 320 and reaches the second metal layer 212 in the fourth light leakage preventing layer 210, a part of the light is reflected by the second metal layer 212, and the remaining part of the light is The first metal layer 211 is reached through the second metal layer 212 . As described above, the first metal layer 211 does not reflect or absorb light, so that light can be extracted outward from the substrate 100 through the first metal layer 211 .
因此,由于设置在基板100上的绝缘层200和设置在绝缘层200上的第一金属层211和第二金属层212,可以减少漏光成分和反射率,同时通过电致发光装置EL生成的光的透射率可以得到提高。Therefore, due to the insulating layer 200 provided on the substrate 100 and the first metal layer 211 and the second metal layer 212 provided on the insulating layer 200, it is possible to reduce the leakage light component and reflectivity, while the light generated by the electroluminescence device EL can be reduced The transmittance can be improved.
绝缘层200和设置在第四子像素SP4中的第四防漏光层210的配置不限于上述结构。The configuration of the insulating layer 200 and the fourth light leakage preventing layer 210 provided in the fourth subpixel SP4 is not limited to the above-mentioned structure.
下文中,将参照图16对根据可替代的实施方案的绝缘层和设置在第四子像素中的第四防漏光层进行描述。图16示出了根据可替代的实施方案的绝缘层和设置在第四子像素中的第四防漏光层的结构。Hereinafter, an insulating layer and a fourth light leakage preventing layer provided in the fourth subpixel according to an alternative embodiment will be described with reference to FIG. 16 . FIG. 16 shows the structure of an insulating layer and a fourth light leakage preventing layer disposed in a fourth subpixel according to an alternative embodiment.
参照图16,在根据可替代的实施方案的显示装置中,绝缘层300设置在基板100的对应于第一子像素至第三子像素SP1、SP2和SP3的部分上,并且在绝缘层300上设置有第一防漏光层至第三防漏光层110、111、和112。16 , in a display device according to an alternative embodiment, an insulating layer 300 is provided on portions of the substrate 100 corresponding to the first to third subpixels SP1 , SP2 and SP3 , and on the insulating layer 300 First to third light leakage preventing layers 110 , 111 , and 112 are provided.
在设置在第一子像素至第三子像素SP1、SP2和SP3中的第一防漏光层至第三防漏光层110、111和112上设置有包括微透镜的覆盖层420。在覆盖层420上设置有包括第一电极430、有机发光层440和第二电极450的电致发光装置EL。A cover layer 420 including microlenses is provided on the first to third light leakage preventing layers 110 , 111 and 112 provided in the first to third subpixels SP1 , SP2 and SP3 . An electroluminescent device EL including a first electrode 430 , an organic light-emitting layer 440 and a second electrode 450 is disposed on the cover layer 420 .
此外,在基板100的对应于第四子像素SP4的部分上设置有第四防漏光层310。第四防漏光层310包括第三金属层311和第四金属层312。在第四金属层312上设置有绝缘层300的一部分,所述绝缘层300的一部分与设置在第一子像素至第三子像素SP1、SP2和SP3中的绝缘层300的部分一体地形成。也就是说,待设置在第四子像素SP4中的绝缘层300可以使用在第一子像素至第三子像素SP1、SP2和SP3中形成绝缘层300的过程来形成,而无任何另外的过程。In addition, a fourth light leakage preventing layer 310 is provided on a portion of the substrate 100 corresponding to the fourth sub-pixel SP4. The fourth light leakage prevention layer 310 includes a third metal layer 311 and a fourth metal layer 312 . A part of the insulating layer 300 is provided on the fourth metal layer 312, and the part of the insulating layer 300 is formed integrally with the part of the insulating layer 300 provided in the first to third subpixels SP1, SP2 and SP3. That is, the insulating layer 300 to be provided in the fourth subpixel SP4 may be formed using the process of forming the insulating layer 300 in the first to third subpixels SP1, SP2 and SP3 without any additional process .
包括微透镜的覆盖层420设置在第四子像素SP4的绝缘层300上,并且包括第一电极430、有机发光层440、以及第二电极450的电致发光装置EL设置在覆盖层420上。设置在第一子像素SP1至第四子像素SP4中的第一电极430、有机发光层440、以及第二电极450的形状可以基于设置在覆盖层420上的微透镜的形貌来确定。The cover layer 420 including the microlenses is disposed on the insulating layer 300 of the fourth sub-pixel SP4 , and the electroluminescent device EL including the first electrode 430 , the organic light emitting layer 440 , and the second electrode 450 is disposed on the cover layer 420 . The shapes of the first electrode 430 , the organic light emitting layer 440 , and the second electrode 450 disposed in the first to fourth subpixels SP1 to SP4 may be determined based on the topography of the microlenses disposed on the capping layer 420 .
设置在第四子像素SP4中的第三金属层311和第四金属层312中的每一个可以由一个或更多个层构成。第三金属层311可以由金属形成。例如,第三金属层311可以由选自银(Ag)、铝(Al)和金(Au)中的至少一种形成。Each of the third metal layer 311 and the fourth metal layer 312 provided in the fourth subpixel SP4 may be composed of one or more layers. The third metal layer 311 may be formed of metal. For example, the third metal layer 311 may be formed of at least one selected from silver (Ag), aluminum (Al), and gold (Au).
第四金属层312可以由具有负介电常数的碱土金属形成,其绝对值大于绝缘层300的介电常数的绝对值。然而,根据本实施方案的第四金属层312的材料不限于此。例如,第四金属层312可以由具有负介电常数的选自如下的至少一种材料形成:铍(Be)、钙(Ca)、钡(Ba)、锶(Sr)、镭(Ra)、锂(Li)、钠(Na)和镁(Mg)。The fourth metal layer 312 may be formed of an alkaline earth metal having a negative dielectric constant whose absolute value is greater than the absolute value of the dielectric constant of the insulating layer 300 . However, the material of the fourth metal layer 312 according to the present embodiment is not limited thereto. For example, the fourth metal layer 312 may be formed of at least one material having a negative dielectric constant selected from beryllium (Be), calcium (Ca), barium (Ba), strontium (Sr), radium (Ra), Lithium (Li), Sodium (Na), and Magnesium (Mg).
此外,第三金属层311和第四金属层312可以配置为显著薄。例如,第三金属层311和第四金属层312中的每一个的厚度可以在1nm至30nm的范围内。由于第三金属层311和第四金属层312形成为薄的,所以第四防漏光层310的透射率可以得到提高。In addition, the third metal layer 311 and the fourth metal layer 312 may be configured to be significantly thin. For example, the thickness of each of the third metal layer 311 and the fourth metal layer 312 may be in the range of 1 nm to 30 nm. Since the third metal layer 311 and the fourth metal layer 312 are formed thin, the transmittance of the fourth light leakage preventing layer 310 can be improved.
如上所述,在第四子像素SP4中,第三金属层311设置在基板100上,第四金属层312设置在第三金属层311上,并且绝缘层300设置在第四金属层312上。这可以因此减少漏光成分和反射率,同时提高由有机电致发光装置EL生成的光的透射率。As described above, in the fourth subpixel SP4 , the third metal layer 311 is provided on the substrate 100 , the fourth metal layer 312 is provided on the third metal layer 311 , and the insulating layer 300 is provided on the fourth metal layer 312 . This can thus reduce leakage light components and reflectivity, while increasing the transmittance of light generated by the organic electroluminescence device EL.
在有机发光显示装置中,可以使用任何配置,只要设置在至少一个子像素中的防漏光层是由金属形成的两个或更多个层构成即可,其中具有负介电常数(其绝对值大于绝缘层的介电常数的绝对值)的一个金属层设置在绝缘层与具有较高水平的反射率的另一金属层之间。In the organic light emitting display device, any configuration can be used as long as the light leakage preventing layer provided in at least one sub-pixel is composed of two or more layers formed of a metal having a negative dielectric constant (the absolute value of which is) A metal layer greater than the absolute value of the dielectric constant of the insulating layer) is disposed between the insulating layer and another metal layer having a higher level of reflectivity.
下文中,将对本实施例的有机发光显示装置的反射率降低效果与比较例的有机发光显示装置的反射率降低效果进行比较。图17是示出本实施例和比较例中的有机发光显示装置的反射率降低效果的图。Hereinafter, the reflectance reduction effect of the organic light emitting display device of the present embodiment will be compared with the reflectance reduction effect of the organic light emitting display device of the comparative example. FIG. 17 is a diagram showing the reflectance reduction effect of the organic light emitting display devices in the present embodiment and the comparative example.
参照图17,将对其中每个有机发光显示装置仅具有高水平反射率的金属层被设置为防漏光层的有机发光显示装置(比较例)与其中每个有机发光显示装置的防漏光层包括彼此堆叠的第一金属层和第二金属层的有机发光显示装置(本实施例)进行比较,其中第一金属层具有负介电常数,其绝对值大于与防漏光层接触的绝缘层的介电常数的绝对值,并且第二金属层具有较高水平的反射率。Referring to FIG. 17 , an organic light emitting display device (comparative example) in which only a metal layer having a high level of reflectivity in each organic light emitting display device is provided as a light leakage preventing layer and the light leakage preventing layer of each organic light emitting display device including The organic light emitting display device (the present embodiment) in which the first metal layer and the second metal layer are stacked on each other is compared, wherein the first metal layer has a negative dielectric constant whose absolute value is greater than that of the insulating layer in contact with the light leakage prevention layer. the absolute value of the electrical constant, and the second metal layer has a higher level of reflectivity.
在图17中,x轴表示外部光到有机发光显示装置的入射角度,y轴表示有机发光显示装置的反射率。具有较高水平的反射率的金属层由银(Ag)形成,并且具有负介电常数(其绝对值大于与防漏光层接触的绝缘层的介电常数的绝对值)的金属层由钙(Ca)形成。In FIG. 17 , the x-axis represents the incident angle of external light to the organic light-emitting display device, and the y-axis represents the reflectance of the organic light-emitting display device. The metal layer having a higher level of reflectance is formed of silver (Ag), and the metal layer having a negative dielectric constant (the absolute value of which is larger than the absolute value of the dielectric constant of the insulating layer in contact with the light leakage prevention layer) is formed of calcium ( Ca) formation.
在具有微透镜的有机发光显示装置中,当外部光以大角度(例如40°或更大的角度)入射时,外部光通过微透镜扩散以在视觉上被观察者感知。因此,如在上述实施方案中,需要通过使用防漏光层等改变外部光的光轴来防止入射到有机发光显示装置的外部光射出显示装置。In an organic light emitting display device with microlenses, when external light is incident at a large angle (eg, an angle of 40° or more), the external light is diffused through the microlenses to be visually perceived by an observer. Therefore, as in the above-described embodiments, it is necessary to prevent the external light incident to the organic light emitting display device from exiting the display device by changing the optical axis of the external light using a light leakage preventing layer or the like.
然而,如图17所示,当外部光以大角度(例如40°或更大的角度)入射到有机发光显示装置时,应当理解,比较例的包括仅由银(Ag)形成的5nm和10nm的防漏光层的有机发光显示装置反射约5%至约30%的外部光。这意味着入射到显示装置的外部光的光轴与偏振器的光轴的差异比率仅为约5%至约30%。However, as shown in FIG. 17 , when external light is incident on the organic light emitting display device at a large angle (eg, an angle of 40° or more), it should be understood that the comparative example includes 5 nm and 10 nm formed of only silver (Ag) The organic light emitting display device of the light leakage prevention layer reflects about 5% to about 30% of external light. This means that the difference ratio of the optical axis of the external light incident to the display device and the optical axis of the polarizer is only about 5% to about 30%.
相比之下,应当理解,本实施例的包括其中钙(Ca)和银(Ag)分别以5nm至10nm的厚度分层的防漏光层的有机发光显示装置反射约50%至约80%的以大角度入射的外部光。这意味着入射到显示装置的外部光的光轴与偏振器的光轴的差异比率为约50%至约80%。In contrast, it should be understood that the organic light emitting display device of the present embodiment including the light leakage preventing layer in which calcium (Ca) and silver (Ag) are respectively layered with a thickness of 5 nm to 10 nm reflects about 50% to about 80% of the External light incident at a large angle. This means that the difference ratio of the optical axis of the external light incident to the display device and the optical axis of the polarizer is about 50% to about 80%.
如上所述,应当理解,本实施例的有机发光显示装置的每个防漏光层比比较例的有机发光显示装置的每个防漏光层反射的外部光量大。也就是说,通过设置在本实施例的有机发光显示装置的每一个中的防漏光层反射的外部光的量的增加使外部光的光轴与偏振器的光轴不同,由此减少了射出显示装置的光的量。因此,这能够降低外部光的反射率。As described above, it should be understood that the amount of external light reflected by each light leakage preventing layer of the organic light emitting display device of the present embodiment is larger than that of each light leakage preventing layer of the organic light emitting display device of the comparative example. That is, by increasing the amount of external light reflected by the light leakage preventing layer provided in each of the organic light emitting display devices of the present embodiment, the optical axis of the external light is made different from the optical axis of the polarizer, thereby reducing the output Displays the amount of light from the device. Therefore, this can reduce the reflectance of external light.
根据以上所阐述的本公开,有机发光显示装置包括设置在对应于多个子像素中的至少一个子像素中的发光区的区域中的防漏光层,以防止或减少不同子像素或不同像素之间的漏光,同时防止由有机电致发光(EL)装置生成的光的提取效率降低。According to the present disclosure set forth above, an organic light emitting display device includes an anti-leakage layer disposed in a region corresponding to a light emitting region in at least one of a plurality of subpixels to prevent or reduce different subpixels or between different pixels leakage of light, while preventing a reduction in the extraction efficiency of light generated by organic electroluminescence (EL) devices.
此外,在根据本公开的有机发光显示装置中,多个像素中的每一个像素包括多个子像素,其中多个子像素包括不同的微透镜或多个子像素中的至少一个子像素未设置有微透镜,从而可以根据子像素调整光提取效率并且可以防止漏光。Furthermore, in the organic light emitting display device according to the present disclosure, each of the plurality of pixels includes a plurality of sub-pixels, wherein the plurality of sub-pixels include different microlenses or at least one sub-pixel of the plurality of sub-pixels is not provided with a microlens , so that light extraction efficiency can be adjusted according to sub-pixels and light leakage can be prevented.
在本公开中描述的特征、结构和效果包括在至少一个实施方案中,但不必限于特定实施方案。本领域技术人员可以通过组合或修改这些特征、结构和效果来将在特定实施方案中所示的特征、结构和效果应用于另一实施方案。应当理解,所有这样的组合和修改都包括在本公开的范围内。The features, structures, and effects described in this disclosure are included in at least one embodiment, but are not necessarily limited to a particular embodiment. Those skilled in the art can apply the features, structures and effects shown in a particular embodiment to another embodiment by combining or modifying these features, structures and effects. It should be understood that all such combinations and modifications are included within the scope of the present disclosure.
虽然为了说明的目的对本公开的示例性实施方案进行了描述,但是本领域技术人员将理解,在不脱离本公开的实质特征的情况下,各种修改和应用都是可以的。例如,可以对示例性实施方案的具体部件进行各种修改。Although the exemplary embodiments of the present disclosure have been described for illustrative purposes, those skilled in the art will appreciate that various modifications and applications are possible without departing from the essential characteristics of the present disclosure. For example, various modifications may be made to specific components of the exemplary embodiments.
本发明至少提供以下方案:The present invention provides at least the following solutions:
方案1.一种有机发光显示装置,包括:Scheme 1. An organic light-emitting display device, comprising:
基板,所述基板划分为生成不同颜色的光的多个子像素;a substrate divided into a plurality of sub-pixels that generate light of different colors;
防漏光层,所述防漏光层设置在所述基板的与所述多个子像素中的至少一个子像素的发光区对应的部分上;a light-leakage prevention layer, the light-leakage prevention layer is disposed on a portion of the substrate corresponding to a light-emitting region of at least one sub-pixel of the plurality of sub-pixels;
覆盖层,所述覆盖层设置在所述基板的与所述多个子像素中的至少一个子像素对应的部分上,并且包括具有多个凹部或多个凸部的微透镜;以及a cover layer disposed on a portion of the substrate corresponding to at least one sub-pixel of the plurality of sub-pixels, and including a microlens having a plurality of concave portions or a plurality of convex portions; and
设置在所述覆盖层上的有机电致发光装置。An organic electroluminescent device disposed on the cover layer.
方案2.根据方案1所述的有机发光显示装置,其中Scheme 2. The organic light-emitting display device according to scheme 1, wherein
所述多个子像素划分为红色子像素、绿色子像素、蓝色子像素和白色子像素,以及the plurality of sub-pixels are divided into red sub-pixels, green sub-pixels, blue sub-pixels and white sub-pixels, and
所述防漏光层包括分别设置在所述多个子像素中的第一防漏光层至第四防漏光层,所述第一防漏光层至所述第四防漏光层中的至少一个防漏光层比所述第一防漏光层至所述第四防漏光层中的其他防漏光层薄。The light leakage prevention layer includes a first light leakage prevention layer to a fourth light leakage prevention layer respectively disposed in the plurality of sub-pixels, and at least one light leakage prevention layer from the first light leakage prevention layer to the fourth light leakage prevention layer It is thinner than other light leakage preventing layers in the first light leakage preventing layer to the fourth light leakage preventing layer.
方案3.根据方案2所述的有机发光显示装置,其中所述第一防漏光层至所述第四防漏光层中的至少两个防漏光层允许相同颜色的光从中通过。Aspect 3. The organic light emitting display device according to Aspect 2, wherein at least two light leakage preventing layers of the first to fourth light leakage preventing layers allow light of the same color to pass therethrough.
方案4.根据方案2所述的有机发光显示装置,其中所述第一防漏光层至所述第四防漏光层中的至少一个防漏光层允许与穿过所述第一防漏光层至所述第四防漏光层中的剩余防漏光层的至少一种颜色的光互补的至少一种颜色的光从中通过。Scheme 4. The organic light emitting display device according to scheme 2, wherein at least one light leakage prevention layer from the first light leakage prevention layer to the fourth light leakage prevention layer is allowed to pass through the first light leakage prevention layer to the fourth light leakage prevention layer. Light of at least one color complementary to light of at least one color of the remaining light leakage preventing layers in the fourth light leakage preventing layer passes therethrough.
方案5.根据方案2所述的有机发光显示装置,其中所述微透镜包括第一微透镜和第二微透镜,所述第二微透镜设置在所述多个子像素中未设置有所述第一微透镜的至少一个子像素中,所述第二微透镜与所述第一微透镜相同或不同。Scheme 5. The organic light emitting display device according to scheme 2, wherein the microlens comprises a first microlens and a second microlens, and the second microlens is provided in the plurality of sub-pixels without the first microlens being provided In at least one sub-pixel of a microlens, the second microlens is the same as or different from the first microlens.
方案6.根据方案5所述的有机发光显示装置,其中所述第二微透镜的所述多个凸部的直径、高度、半峰宽、坡度和纵横比、以及相邻凸部之间的距离中的至少一个不同于所述第一微透镜的所述多个凸部的直径、高度、半峰宽、坡度和纵横比、以及相邻凸部之间的距离中的对应者。Item 6. The organic light emitting display device according to Item 5, wherein diameters, heights, half widths, slopes, and aspect ratios of the plurality of convex portions of the second microlenses, and the distance between adjacent convex portions At least one of the distances is different from a corresponding one of a diameter, a height, a full width at half maximum, a slope, and an aspect ratio of the plurality of convex portions of the first microlens, and a distance between adjacent convex portions.
方案7.根据方案5所述的有机发光显示装置,其中所述第二微透镜的所述多个凹部的直径、深度、半峰宽、坡度和纵横比、以及相邻凹部之间的距离中的至少一个不同于所述第一微透镜的所述多个凹部的直径、深度、半峰宽、坡度和纵横比、以及相邻凹部之间的距离中的对应者。Aspect 7. The organic light emitting display device according to Aspect 5, wherein the diameter, depth, half-peak width, slope and aspect ratio of the plurality of recesses of the second microlens, and distances between adjacent recesses are among the At least one of the plurality of recesses of the first microlens is different from a corresponding one of a diameter, a depth, a half-peak width, a slope and an aspect ratio, and a distance between adjacent recesses.
方案8.根据方案5所述的有机发光显示装置,其中所述微透镜还包括设置在所述多个子像素中的未设置有所述第一微透镜也未设置有所述第二微透镜的至少一个子像素中的第三微透镜,所述第三微透镜设置为与所述第一微透镜或所述第二微透镜相同或与所述第一微透镜和所述第二微透镜不同。Aspect 8. The organic light emitting display device according to Aspect 5, wherein the microlens further comprises a plurality of sub-pixels provided with neither the first microlens nor the second microlens. a third microlens in at least one sub-pixel, the third microlens being arranged to be the same as the first microlens or the second microlens or different from the first microlens and the second microlens .
方案9.根据方案7所述的有机发光显示装置,其中所述第三微透镜的所述多个凸部的直径、高度、半峰宽、坡度和纵横比、以及相邻凸部之间的距离中的至少一个不同于所述第一微透镜或所述第二微透镜的所述多个凸部的直径、高度、半峰宽、坡度和纵横比、以及相邻凸部之间的距离中的对应者。Aspect 9. The organic light emitting display device according to Aspect 7, wherein diameters, heights, full widths at half maximums, slopes, and aspect ratios of the plurality of convex portions of the third microlenses, and the distance between adjacent convex portions At least one of the distances is different from the diameter, height, half width, slope, and aspect ratio of the plurality of convex portions of the first microlens or the second microlens, and the distance between adjacent convex portions counterpart in .
方案10.根据方案7所述的有机发光显示装置,其中第三微透镜的所述多个凹部的直径、深度、半峰宽、坡度和纵横比、以及相邻凹部之间的距离中的至少一个不同于所述第一微透镜和所述第二微透镜的所述多个凹部的直径、深度、半峰宽、坡度和纵横比、以及相邻凹部之间的距离中的对应者。Item 10. The organic light emitting display device according to Item 7, wherein at least one of the diameter, depth, half width, slope, and aspect ratio of the plurality of recesses of the third microlens, and a distance between adjacent recesses a corresponding one of diameter, depth, half-peak width, slope and aspect ratio of the plurality of recesses, and distance between adjacent recesses, of the first microlens and the second microlens.
方案11.根据方案1所述的有机发光显示装置,其中所述多个子像素划分为红色子像素、绿色子像素、蓝色子像素和白色子像素,在所述红色子像素、所述绿色子像素、所述蓝色子像素和所述白色子像素中的至少一个子像素中未设置有所述防漏光层。Aspect 11. The organic light emitting display device according to Aspect 1, wherein the plurality of sub-pixels are divided into red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels, and the red sub-pixels, the green sub-pixels The light leakage prevention layer is not provided in at least one of the pixel, the blue sub-pixel and the white sub-pixel.
方案12.根据方案11所述的有机发光显示装置,其中在所述红色子像素、所述绿色子像素、所述蓝色子像素和所述白色子像素中的未设置有所述防漏光层的所述至少一个子像素中未设置所述微透镜。Aspect 12. The organic light emitting display device according to Aspect 11, wherein the light leakage prevention layer is not provided in the red sub-pixel, the green sub-pixel, the blue sub-pixel and the white sub-pixel The microlens is not provided in the at least one sub-pixel of .
方案13.根据方案12所述的有机发光显示装置,其中所述红色子像素、所述绿色子像素、所述蓝色子像素和所述白色子像素中的未设置有所述防漏光层也未设置有所述微透镜的所述至少一个子像素为白色子像素。Aspect 13. The organic light emitting display device according to Aspect 12, wherein the red sub-pixel, the green sub-pixel, the blue sub-pixel and the white sub-pixel are not provided with the light leakage prevention layer. The at least one sub-pixel not provided with the microlens is a white sub-pixel.
方案14.根据方案1所述的有机发光显示装置,其中所述多个子像素中的至少一个子像素中未设置有所述微透镜。Aspect 14. The organic light emitting display device of aspect 1, wherein the microlens is not disposed in at least one subpixel of the plurality of subpixels.
方案15.根据方案1所述的有机发光显示装置,其中设置在所述多个子像素中的所述至少一个子像素中的所述防漏光层包括第一金属层和第二金属层或者包括第三金属层和第四金属层。Aspect 15. The organic light emitting display device according to aspect 1, wherein the light leakage prevention layer disposed in the at least one sub-pixel of the plurality of sub-pixels includes a first metal layer and a second metal layer or includes a first metal layer and a second metal layer. Three metal layers and a fourth metal layer.
方案16.根据方案15所述的有机发光显示装置,还包括:Item 16. The organic light-emitting display device according to Item 15, further comprising:
设置在所述基板上的绝缘层;以及an insulating layer disposed on the substrate; and
设置在所述多个子像素中的所述至少一个子像素中的所述第一金属层和所述第二金属层,所述第一金属层设置在所述绝缘层上并且包括一个或更多个层,所述第二金属层设置在所述第一金属层上并且包括一个或更多介层。the first metal layer and the second metal layer disposed in the at least one subpixel of the plurality of subpixels, the first metal layer disposed on the insulating layer and including one or more The second metal layer is disposed on the first metal layer and includes one or more vias.
方案17.根据方案16所述的有机发光显示装置,其中所述第一金属层的介电常数为负的,所述第一金属层的介电常数的绝对值比所述绝缘层的介电常数的绝对值大。Item 17. The organic light emitting display device according to Item 16, wherein the dielectric constant of the first metal layer is negative, and the absolute value of the dielectric constant of the first metal layer is greater than the dielectric constant of the insulating layer The absolute value of the constant is large.
方案18.根据方案16所述的有机发光显示装置,其中所述第二金属层由选自银(Ag)、铝(AI)和金(Au)中的至少之一形成,以及所述第一金属层由选自铍(Be)、钙(Ca)、钡(Ba)、锶(Sr)、镭(Ra)、锂(Li)、钠(Na)和镁(Mg)中的至少之一形成。Item 18. The organic light emitting display device of Item 16, wherein the second metal layer is formed of at least one selected from silver (Ag), aluminum (AI), and gold (Au), and the first metal layer is formed of The metal layer is formed of at least one selected from beryllium (Be), calcium (Ca), barium (Ba), strontium (Sr), radium (Ra), lithium (Li), sodium (Na), and magnesium (Mg) .
方案19.根据方案15所述的有机发光显示装置,包括:Item 19. The organic light-emitting display device according to Item 15, comprising:
设置在所述基板上的在所述多个子像素中的所述至少一个子像素中的所述第三金属层;the third metal layer in the at least one subpixel of the plurality of subpixels disposed on the substrate;
设置在所述第三金属层上的所述第四金属层;以及the fourth metal layer disposed on the third metal layer; and
设置在所述第四金属层上的绝缘层。an insulating layer disposed on the fourth metal layer.
方案20.根据方案19所述的有机发光显示装置,其中所述第四金属层的介电常数为负的,所述第四金属层的介电常数的绝对值比所述绝缘层的介电常数的绝对值大。Item 20. The organic light emitting display device according to item 19, wherein the dielectric constant of the fourth metal layer is negative, and the absolute value of the dielectric constant of the fourth metal layer is greater than the dielectric constant of the insulating layer The absolute value of the constant is large.
方案21.根据方案19所述的有机发光显示装置,其中所述第三金属层由选自银(Ag)、铝(Al)和金(Au)中的至少之一形成,以及所述第四金属层由选自铍(Be)、钙(Ca)、钡(Ba)、锶(Sr)、镭(Ra)、锂(Li)、钠(Na)和镁(Mg)中的至少之一形成。Item 21. The organic light emitting display device of Item 19, wherein the third metal layer is formed of at least one selected from silver (Ag), aluminum (Al), and gold (Au), and the fourth metal layer is formed of at least one selected from the group consisting of silver (Ag), aluminum (Al), and gold (Au) The metal layer is formed of at least one selected from beryllium (Be), calcium (Ca), barium (Ba), strontium (Sr), radium (Ra), lithium (Li), sodium (Na), and magnesium (Mg) .
方案22.根据方案19所述的有机发光显示装置,其中在所述多个子像素中不同于所述至少一个子像素的剩余子像素中,所述绝缘层设置在所述基板上,以及所述防漏光层设置在所述绝缘层上,Item 22. The organic light emitting display device of Item 19, wherein in remaining sub-pixels of the plurality of sub-pixels different from the at least one sub-pixel, the insulating layer is disposed on the substrate, and the an anti-light leakage layer is arranged on the insulating layer,
其中所述绝缘层的设置在所述至少一个子像素中的部分与所述绝缘层的设置在所述剩余子像素中的剩余部分一体地形成。Wherein the portion of the insulating layer disposed in the at least one sub-pixel is integrally formed with the remaining portion of the insulating layer disposed in the remaining sub-pixels.
方案23.根据方案1所述的有机发光显示装置,其中所述防漏光层包括如下中的至少之一:I型防漏光层,所述I型防漏光层配置为允许特定波长的光从中通过同时吸收剩余波长的光;II型防漏光层,所述II型防漏光层配置为允许特定波长的光从中通过同时吸收可见光的一部分以允许剩余的可见光从中通过;以及III型防漏光层,所述III型防漏光层配置为允许光从中通过或被反射同时改变光的光轴,具有改变的光轴的光能够随后为偏振器吸收。Aspect 23. The organic light emitting display device according to aspect 1, wherein the light leakage prevention layer comprises at least one of the following: an I-type light leakage prevention layer, the I type light leakage prevention layer configured to allow light of a specific wavelength to pass therethrough Simultaneously absorbs the remaining wavelengths of light; a Type II light-leakage prevention layer configured to allow specific wavelengths of light to pass therethrough while absorbing a portion of the visible light to allow the remaining visible light to pass therethrough; and a Type III light-leakage prevention layer, so The Type III anti-leakage layer is configured to allow light to pass therethrough or to be reflected while changing the optical axis of the light, the light having the changed optical axis can then be absorbed by the polarizer.
方案24.根据方案23所述的有机发光显示装置,其中所述防漏光层包括II型防漏光层和III型防漏光层中的至少之一、以及至少一个I型防漏光层。Aspect 24. The organic light emitting display device of aspect 23, wherein the light leakage prevention layer comprises at least one of a type II light leakage prevention layer and a type III light leakage prevention layer, and at least one type I light leakage prevention layer.
方案25.根据方案23所述的有机发光显示装置,其中所述I型防漏光层选择性地允许特定颜色的光从中通过同时吸收剩余波长的光,由此大部分的所述特定颜色从中通过同时大部分的所述剩余波长的光被吸收。Item 25. The organic light emitting display device according to item 23, wherein the I-type light leakage prevention layer selectively allows light of a specific color to pass therethrough while absorbing light of remaining wavelengths, whereby most of the specific color passes therethrough At the same time most of the remaining wavelengths of light are absorbed.
方案26.根据方案23所述的有机发光显示装置,其中所述III型防漏光层允许光从中通过或被反射同时改变所述光的光轴。Item 26. The organic light emitting display device according to item 23, wherein the type III light leakage preventing layer allows light to pass therethrough or be reflected while changing an optical axis of the light.
Claims (20)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0152630 | 2015-10-30 | ||
KR20150152630 | 2015-10-30 | ||
KR1020160112123A KR102737441B1 (en) | 2015-10-30 | 2016-08-31 | Organic Light Emitting Diode Display Device |
KR10-2016-0112123 | 2016-08-31 | ||
CN201610963440.6A CN107039598B (en) | 2015-10-30 | 2016-10-28 | Organic light-emitting display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610963440.6A Division CN107039598B (en) | 2015-10-30 | 2016-10-28 | Organic light-emitting display device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110010786A true CN110010786A (en) | 2019-07-12 |
CN110010786B CN110010786B (en) | 2021-08-31 |
Family
ID=58740539
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610963440.6A Active CN107039598B (en) | 2015-10-30 | 2016-10-28 | Organic light-emitting display device |
CN201811404480.2A Active CN110010786B (en) | 2015-10-30 | 2016-10-28 | Organic Light Emitting Display Device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610963440.6A Active CN107039598B (en) | 2015-10-30 | 2016-10-28 | Organic light-emitting display device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6487898B2 (en) |
KR (2) | KR102737441B1 (en) |
CN (2) | CN107039598B (en) |
GB (1) | GB2564588B (en) |
TW (2) | TWI647871B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002731A (en) * | 2020-07-29 | 2020-11-27 | 合肥视涯技术有限公司 | Display panel |
TWI846234B (en) * | 2021-12-30 | 2024-06-21 | 南韓商Lg顯示器股份有限公司 | Display apparatus |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102383928B1 (en) * | 2017-08-31 | 2022-04-06 | 엘지디스플레이 주식회사 | Electroluminescent Display Device |
CN109427859B (en) * | 2017-08-31 | 2023-10-27 | 乐金显示有限公司 | Organic light emitting display device |
US10903282B2 (en) * | 2017-09-29 | 2021-01-26 | Lg Display Co., Ltd. | Organic light emitting display device |
KR102540135B1 (en) * | 2017-12-19 | 2023-06-02 | 엘지디스플레이 주식회사 | Organic light emitting diodes display |
DE112019001693T5 (en) * | 2018-03-30 | 2020-12-10 | Sony Semiconductor Solutions Corporation | DISPLAY DEVICE, METHOD OF MANUFACTURING A DISPLAY DEVICE, AND ELECTRONIC DEVICE |
KR102622792B1 (en) * | 2018-08-30 | 2024-01-08 | 엘지디스플레이 주식회사 | Light emitting display device |
US20200135799A1 (en) * | 2018-10-24 | 2020-04-30 | Innolux Corporation | Display device |
CN110010792B (en) * | 2019-04-09 | 2022-07-29 | 合肥鑫晟光电科技有限公司 | OLED display substrate, manufacturing method thereof and display device |
TWI691109B (en) | 2019-05-09 | 2020-04-11 | 友達光電股份有限公司 | Display apparatus and manufacturing method thereof |
CN110444687A (en) * | 2019-08-14 | 2019-11-12 | 昆山国显光电有限公司 | Display panel and preparation method thereof |
KR102752574B1 (en) * | 2019-10-08 | 2025-01-08 | 엘지디스플레이 주식회사 | Display device |
KR20210077476A (en) * | 2019-12-17 | 2021-06-25 | 엘지디스플레이 주식회사 | Light emitting display apparatus |
KR102785582B1 (en) * | 2019-12-17 | 2025-03-21 | 엘지디스플레이 주식회사 | Light emitting display apparatus |
KR20210079007A (en) * | 2019-12-19 | 2021-06-29 | 엘지디스플레이 주식회사 | Organic Light Emitting Diode Display Device |
KR102770498B1 (en) * | 2019-12-31 | 2025-02-18 | 엘지디스플레이 주식회사 | Organic light emitting display apparatus |
KR20220028556A (en) | 2020-08-28 | 2022-03-08 | 엘지디스플레이 주식회사 | Organic light emitting display device |
CN112133735B (en) * | 2020-09-30 | 2022-11-18 | 厦门天马微电子有限公司 | Display panel and display device |
KR20230032512A (en) * | 2021-08-31 | 2023-03-07 | 엘지디스플레이 주식회사 | Light emitting display device |
KR20240085531A (en) * | 2022-12-08 | 2024-06-17 | 주식회사 포스코 | Austenitic stainless steel and method for manufacturing the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040253413A1 (en) * | 2003-02-28 | 2004-12-16 | Yasuko Baba | Optical filter and organic EL display using the same |
CN1838425A (en) * | 2005-02-28 | 2006-09-27 | 三星Sdi株式会社 | Electroluminescence display device |
CN100525558C (en) * | 2004-04-30 | 2009-08-05 | 三洋电机株式会社 | Light-emitting display |
US20090206733A1 (en) * | 2008-02-18 | 2009-08-20 | Samsung Electronics Co., Ltd. | Organic light emitting diode display and method of manufacturing the same |
US20100060148A1 (en) * | 2008-09-11 | 2010-03-11 | Young-In Hwang | Organic light emitting diode display |
US20140184972A1 (en) * | 2013-01-03 | 2014-07-03 | Samsung Display Co., Ltd. | Display panel and liquid crystal display including the same |
CN104134678A (en) * | 2013-04-30 | 2014-11-05 | 三星显示有限公司 | Organic light emitting diode display |
CN104183624A (en) * | 2014-07-31 | 2014-12-03 | 京东方科技集团股份有限公司 | Transparent display panel and manufacturing method thereof, and transparent display apparatus |
US20140353626A1 (en) * | 2013-06-04 | 2014-12-04 | Samsung Electronics Co., Ltd. | Optical films for reducing color shift and organic light-emitting display devices employing the same |
KR20150077279A (en) * | 2013-12-27 | 2015-07-07 | 엘지디스플레이 주식회사 | Organic light emitting display device and method of manufacturing the same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4027164B2 (en) * | 2002-06-21 | 2007-12-26 | 株式会社日立製作所 | Display device |
KR100669686B1 (en) * | 2002-08-26 | 2007-01-17 | 삼성에스디아이 주식회사 | Organic electroluminescent display and manufacturing method |
JP2004363049A (en) * | 2003-06-06 | 2004-12-24 | Seiko Epson Corp | Method for manufacturing organic electroluminescence display device, organic electroluminescence display device, and display device including organic electroluminescence display device |
JP2007207656A (en) * | 2006-02-03 | 2007-08-16 | Dainippon Printing Co Ltd | Organic el-display |
JP2012252984A (en) * | 2011-06-07 | 2012-12-20 | Canon Inc | Display device |
KR101936211B1 (en) * | 2012-04-26 | 2019-01-08 | 엘지디스플레이 주식회사 | Organic light emitting display device having micro lens |
JP5935607B2 (en) * | 2012-09-04 | 2016-06-15 | 大日本印刷株式会社 | Color filter forming substrate and organic EL display device |
KR102014885B1 (en) * | 2012-12-26 | 2019-08-28 | 삼성디스플레이 주식회사 | Organic light emitting display and manufacturing method thereof |
JP2015069700A (en) * | 2013-09-26 | 2015-04-13 | 株式会社ジャパンディスプレイ | Display device |
KR102178863B1 (en) * | 2014-06-27 | 2020-11-13 | 엘지디스플레이 주식회사 | White organic light emitting display device |
KR102251840B1 (en) * | 2014-08-14 | 2021-05-13 | 엘지디스플레이 주식회사 | Organic lighting emitting display device with anti reflective panel |
KR102405943B1 (en) * | 2014-11-11 | 2022-06-07 | 엘지디스플레이 주식회사 | Color Filter Array Substrate and Method For Fabricating the Same, and Organic Light Emitting Diode Display Device Using the Same |
DE102016116119B4 (en) * | 2015-08-31 | 2021-03-18 | Lg Display Co., Ltd. | Organic light emitting diode display device |
KR101808715B1 (en) * | 2015-09-23 | 2017-12-14 | 엘지디스플레이 주식회사 | Organic light emitting display device |
-
2016
- 2016-08-31 KR KR1020160112123A patent/KR102737441B1/en active Active
- 2016-10-27 GB GB1815130.8A patent/GB2564588B/en active Active
- 2016-10-28 CN CN201610963440.6A patent/CN107039598B/en active Active
- 2016-10-28 CN CN201811404480.2A patent/CN110010786B/en active Active
- 2016-12-27 JP JP2016252304A patent/JP6487898B2/en active Active
- 2016-12-28 TW TW105143677A patent/TWI647871B/en active
- 2016-12-28 TW TW107124840A patent/TWI713213B/en active
-
2024
- 2024-11-28 KR KR1020240173252A patent/KR20250003379A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040253413A1 (en) * | 2003-02-28 | 2004-12-16 | Yasuko Baba | Optical filter and organic EL display using the same |
CN100525558C (en) * | 2004-04-30 | 2009-08-05 | 三洋电机株式会社 | Light-emitting display |
CN1838425A (en) * | 2005-02-28 | 2006-09-27 | 三星Sdi株式会社 | Electroluminescence display device |
US20090206733A1 (en) * | 2008-02-18 | 2009-08-20 | Samsung Electronics Co., Ltd. | Organic light emitting diode display and method of manufacturing the same |
US20100060148A1 (en) * | 2008-09-11 | 2010-03-11 | Young-In Hwang | Organic light emitting diode display |
US20140184972A1 (en) * | 2013-01-03 | 2014-07-03 | Samsung Display Co., Ltd. | Display panel and liquid crystal display including the same |
CN104134678A (en) * | 2013-04-30 | 2014-11-05 | 三星显示有限公司 | Organic light emitting diode display |
US20140353626A1 (en) * | 2013-06-04 | 2014-12-04 | Samsung Electronics Co., Ltd. | Optical films for reducing color shift and organic light-emitting display devices employing the same |
KR20150077279A (en) * | 2013-12-27 | 2015-07-07 | 엘지디스플레이 주식회사 | Organic light emitting display device and method of manufacturing the same |
CN104183624A (en) * | 2014-07-31 | 2014-12-03 | 京东方科技集团股份有限公司 | Transparent display panel and manufacturing method thereof, and transparent display apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112002731A (en) * | 2020-07-29 | 2020-11-27 | 合肥视涯技术有限公司 | Display panel |
TWI846234B (en) * | 2021-12-30 | 2024-06-21 | 南韓商Lg顯示器股份有限公司 | Display apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201813152A (en) | 2018-04-01 |
GB2564588B (en) | 2020-03-25 |
GB201815130D0 (en) | 2018-10-31 |
KR102737441B1 (en) | 2024-12-04 |
JP6487898B2 (en) | 2019-03-20 |
JP2018037391A (en) | 2018-03-08 |
CN107039598B (en) | 2019-01-01 |
CN107039598A (en) | 2017-08-11 |
TWI713213B (en) | 2020-12-11 |
KR20170052455A (en) | 2017-05-12 |
CN110010786B (en) | 2021-08-31 |
KR20250003379A (en) | 2025-01-07 |
TW201841362A (en) | 2018-11-16 |
TWI647871B (en) | 2019-01-11 |
GB2564588A (en) | 2019-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110010786B (en) | Organic Light Emitting Display Device | |
US10396129B2 (en) | Organic light emitting display device | |
TWI596763B (en) | Organic light emitting diode display device | |
CN106887527B (en) | Organic LED display device and its Organic Light Emitting Diode | |
US11552275B2 (en) | Organic light-emitting display device including microlenses and method of fabricating the same | |
US20120268042A1 (en) | Display apparatus | |
US20120256562A1 (en) | Display apparatus | |
US10522659B2 (en) | Array substrate and display panel including the same | |
KR101968570B1 (en) | Organic Light Emitting Diode Display Device | |
US20250057026A1 (en) | Organic light emitting display apparatus including light guiding part | |
KR102614071B1 (en) | Organic Light Emitting Display Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |