CN110002005B - A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method - Google Patents
A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method Download PDFInfo
- Publication number
- CN110002005B CN110002005B CN201910161273.7A CN201910161273A CN110002005B CN 110002005 B CN110002005 B CN 110002005B CN 201910161273 A CN201910161273 A CN 201910161273A CN 110002005 B CN110002005 B CN 110002005B
- Authority
- CN
- China
- Prior art keywords
- module
- standardized
- processing module
- special
- satellite system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000012545 processing Methods 0.000 claims description 124
- 238000004891 communication Methods 0.000 claims description 112
- 230000006870 function Effects 0.000 claims description 84
- 238000004364 calculation method Methods 0.000 claims description 83
- 238000005259 measurement Methods 0.000 claims description 37
- 238000009826 distribution Methods 0.000 claims description 35
- 230000005540 biological transmission Effects 0.000 claims description 28
- 238000003860 storage Methods 0.000 claims description 19
- 230000004048 modification Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 10
- 230000033228 biological regulation Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/66—Arrangements or adaptations of apparatus or instruments, not otherwise provided for
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Relay Systems (AREA)
Abstract
本发明实施例公开了一种可重构的微纳卫星系统架构及卫星系统重构方法;该可重构的微纳卫星系统包括:通用模组,包括多个实现所述卫星系统所有功能需求均需要使用的共用模块;专用模组,包括多个与所述卫星系统单一功能需求对应的且仅实现对应的单一功能需求所需要使用的专用模块;标准化总线,用于连接所述通用模组中的共用模块以及所述专用模组中的专用模块。
The embodiment of the present invention discloses a reconfigurable micro-nano satellite system architecture and a satellite system reconstruction method; the reconfigurable micro-nano satellite system includes: a general module, including a plurality of modules to achieve all functional requirements of the satellite system A common module that needs to be used; special modules, including a plurality of special modules corresponding to the single function requirements of the satellite system and only required to realize the corresponding single function requirements; standardized bus, used to connect the general module The shared modules in and the dedicated modules in the dedicated modules.
Description
技术领域technical field
本发明涉及航天技术领域,尤其涉及一种可重构的微纳卫星系统架构及卫星系统重构方法。The invention relates to the field of aerospace technology, in particular to a reconfigurable micro-nano satellite system architecture and a satellite system reconstruction method.
背景技术Background technique
随着卫星功能多样化的发展,卫星所承载的功能越来越多。而在传统卫星设计领域,卫星中的某一特定的系统仅承担预先定义的功能,如果某一特定功能所对应的系统损坏,则卫星整体即失去此项功能。尽管可以通过在卫星中增加冗余备份以提高卫星的可靠性,但对于卫星中的每个功能系统,都需要相应增加对应的备份系统,从而增加了卫星系统的设计复杂程度,还增加了整星的体积质量,造成卫星制造成本的增加。而且通过功能备份方式提高卫星的可靠性,那么还需要地面配套设备的额外支持,由此就需对现有地面站设备进行升级改造,增加了系统复杂度。With the diversified development of satellite functions, satellites carry more and more functions. In the field of traditional satellite design, a specific system in the satellite only undertakes a predefined function. If the system corresponding to a specific function is damaged, the entire satellite will lose this function. Although the reliability of the satellite can be improved by adding redundant backups to the satellite, for each functional system in the satellite, a corresponding backup system needs to be added accordingly, which increases the design complexity of the satellite system and increases the overall The volume mass of the satellite increases the cost of satellite manufacturing. In addition, to improve the reliability of satellites by means of function backup, additional support from ground supporting equipment is required. Therefore, it is necessary to upgrade the existing ground station equipment, which increases the complexity of the system.
为了避免上述情况发生,目前已出现针对特定的功能范围内的部分功能进行重构的卫星系统,也就是说,针对若干个功能相近的系统,通过增加少量功能模块的方法,使得每个系统可以通过注入对应功能的软件,使其实现若干项功能其中的一种。该方案对于星务计算机,可通过上注软件方式在轨修改功能,实现在星务管理、姿轨控计算、载荷数据简单处理等功能之间切换;但由于硬件架构限制,该方案只能实现有限的功能备份,不能对不同载荷实现备份功能,例如无法实现测控系统信号处理器的功能备份,对于提高卫星系统的整体可靠性的帮助不大,仍然需要增加相应的功能备份。In order to avoid the above situation, there have been satellite systems that reconstruct some functions within a specific functional range. That is to say, for several systems with similar functions, by adding a small number of functional modules, each system can be By injecting the software of the corresponding function, it can realize one of several functions. For the star service computer, the program can switch between functions such as star service management, attitude and orbit control calculation, and simple processing of payload data by adding software on-orbit modification functions. The limited function backup cannot realize the backup function for different loads. For example, the function backup of the signal processor of the measurement and control system cannot be realized. It is not helpful to improve the overall reliability of the satellite system. It is still necessary to increase the corresponding function backup.
目前出现的一种同构星务系统冷备份切换方法,可以通过外部控制电路控制两套冷备份状态星务计算机切换,并通过外部控制电路保存当前状态。这种方法不仅需要两套计算机及外围配套电路,还需要增加外部控制电路,从而增加系统复杂程度和可能出现的故障点。A cold backup switching method of a homogeneous star service system that has appeared at present can control the switching of two sets of cold backup state star service computers through an external control circuit, and save the current state through the external control circuit. This method not only requires two sets of computers and peripheral supporting circuits, but also needs to increase the external control circuit, thereby increasing the complexity of the system and the possible failure points.
对于微纳卫星来说,由于卫星体积小,并且能量、星内空间非常有限,因此通常并没有空间增加额外备份系统,从而致使卫星的可靠性大大降低;基于此,只能通过制造时的测试筛选来保证可靠性,从而导致卫星寿命通常较短,难以满足长寿命及高可靠性需求。For micro-nano satellites, due to the small size of the satellite and the very limited energy and space inside the satellite, there is usually no space to add additional backup systems, which greatly reduces the reliability of the satellite. Based on this, it can only pass the test at the time of manufacture. Screening is used to ensure reliability, which results in that satellite life is usually short, and it is difficult to meet the requirements of long life and high reliability.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例期望提供一种可重构的微纳卫星系统架构及卫星系统重构方法,不仅能够提高卫星系统的可靠性,而且还减少了重构所需的备份电路和器件数量,节约了卫星空间,降低了卫星的能量需求。In view of this, the embodiments of the present invention are expected to provide a reconfigurable micro-nano satellite system architecture and a satellite system reconstruction method, which can not only improve the reliability of the satellite system, but also reduce the backup circuits and devices required for reconstruction The number of satellites saves space and reduces the energy requirements of satellites.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
第一方面,本发明实施例提供了一种可重构的微纳卫星系统,所述卫星系统包括:In a first aspect, an embodiment of the present invention provides a reconfigurable micro-nano satellite system, where the satellite system includes:
通用模组,包括多个实现所述卫星系统所有功能需求均需要使用的共用模块;A general module, including a plurality of shared modules required to realize all functional requirements of the satellite system;
专用模组,包括多个与所述卫星系统单一功能需求对应的且仅实现对应的单一功能需求所需要使用的专用模块;Special modules, including a plurality of special modules corresponding to the single function requirements of the satellite system and only required to realize the corresponding single function requirements;
标准化总线,用于连接所述通用模组中的共用模块以及所述专用模组中的专用模块。The standardized bus is used to connect the common module in the general module and the special module in the special module.
第二方面,本发明实施例一种卫星系统重构方法,所述方法应用于第一方面所述的卫星系统,所述方法包括:In a second aspect, an embodiment of the present invention provides a satellite system reconstruction method. The method is applied to the satellite system described in the first aspect, and the method includes:
通用模组中的每个计算处理模块通过软件在轨上注入不同的功能需求,以使每个计算处理模块控制与自身所注入的功能需求所对应的专用模块;Each computing processing module in the general module injects different functional requirements on the rail through software, so that each computing processing module controls the dedicated module corresponding to the functional requirements injected by itself;
当第一计算处理模块发生故障时,关闭所述第一计算处理模块,并从除所述第一计算处理模块之外的其他计算处理模块中确定第二计算处理模块;When the first calculation and processing module fails, the first calculation and processing module is turned off, and a second calculation and processing module is determined from other calculation and processing modules except the first calculation and processing module;
通过软件上注的方式修改第二计算处理模块对应的专用模块;其中,修改后的第二计算处理模块对应的专用模块包括修改之前所述第二计算处理模块对应的专用模块和所述第一计算处理模块在故障前对应的专用模块。Modify the special module corresponding to the second calculation processing module by means of software annotation; wherein, the special module corresponding to the second calculation processing module after modification includes the special module corresponding to the second calculation processing module before the modification and the first calculation processing module. The special module corresponding to the calculation processing module before the failure.
本发明实施例提供了一种可重构的微纳卫星系统架构及卫星系统重构方法;将传统卫星系统中,针对所有功能需求都能够使用的共用模块形成通用模组,将仅针对某个单一功能需求使用的专用模块形成专用模组。与传统卫星系统相比,在实现卫星系统的功能需求时,降低了通用模组与专用模组之间的耦合度,并且在提高卫星系统可靠性的过程中,仅需要对通用模组或者专用模组中的组件进行备份,将可靠性备份的粒度由系统级下降至组件级,降低了实现卫星系统功能需求的系统复杂度,减少了卫星系统的资源浪费,降低功耗以及卫星系统的质量。The embodiments of the present invention provide a reconfigurable micro-nano satellite system architecture and a satellite system reconstruction method; in the traditional satellite system, common modules that can be used for all functional requirements are formed into a general module, and only a certain A dedicated module used for a single functional requirement forms a dedicated module. Compared with the traditional satellite system, when the functional requirements of the satellite system are realized, the coupling between the general module and the special module is reduced, and in the process of improving the reliability of the satellite system, only the general module or special module is required. The components in the module are backed up, and the granularity of reliability backup is reduced from the system level to the component level, which reduces the system complexity for realizing the functional requirements of the satellite system, reduces the waste of resources of the satellite system, reduces the power consumption and the quality of the satellite system. .
附图说明Description of drawings
图1为现有的卫星系统中卫星平台的架构示意图;1 is a schematic diagram of the architecture of a satellite platform in an existing satellite system;
图2为本发明实施例提出的一种可重构的微纳卫星系统架构示意图;2 is a schematic diagram of the architecture of a reconfigurable micro-nano satellite system proposed by an embodiment of the present invention;
图3为本发明实施例提出的一种通用模组的组成示意图;3 is a schematic diagram of the composition of a general module proposed in an embodiment of the present invention;
图4为本发明实施例提出的一种标准化总线的组成示意图;4 is a schematic diagram of the composition of a standardized bus proposed in an embodiment of the present invention;
图5为本发明实施例提出的一种计算处理模块的组成示意图;FIG. 5 is a schematic diagram of the composition of a computing processing module proposed by an embodiment of the present invention;
图6为本发明实施例提出的一种专用模组的组成示意图;6 is a schematic diagram of the composition of a special module proposed by an embodiment of the present invention;
图7为本发明实施例提出的一种星敏器的组成示意图;7 is a schematic diagram of the composition of a star sensor proposed in an embodiment of the present invention;
图8A为本发明实施例提出的一种数传分系统的组成示意图;8A is a schematic diagram of the composition of a data transmission and distribution system proposed by an embodiment of the present invention;
图8B为本发明实施例提出的一种相机分系统的组成示意图;FIG. 8B is a schematic diagram of the composition of a camera subsystem according to an embodiment of the present invention;
图8C为本发明实施例提出的一种存储分系统的组成示意图;8C is a schematic diagram of the composition of a storage subsystem proposed by an embodiment of the present invention;
图9为本发明实施例提出的一种卫星系统重构方法流程示意图;9 is a schematic flowchart of a method for reconstructing a satellite system proposed by an embodiment of the present invention;
图10为本发明实施例提出的一种卫星系统架构示意图。FIG. 10 is a schematic diagram of a satellite system architecture according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
对于一个完整的卫星系统来说,可以包括卫星平台以及卫星载荷,卫星载荷搭载在卫星平台上。参见图1,其示出了现有的卫星系统中卫星平台的架构示意,在当前现有的卫星系统中,包括多个分系统,以图1所示的架构为例,卫星系统1可以包括测控分系统11、综合电子分系统12、姿态及飞行轨道控制(以下简称姿轨控)分系统13及供配电分系统14。每个分系统都包括以下组件:CPU、通信接口电路以及供电接口电路。各分系统之间通过系统通信总线15实现卫星系统内部通信,供配电分系统14通过系统配电总线16向其余分系统的供电电路接口供电,从而为其余分系统的功能实现提供电能。从图1中可以看出,在卫星系统架构内,各分系统耦合紧密,并且各分系统的CPU相互独立,即各系统的CPU仅负责实现自身所在系统的功能。举例来说,综合电子分系统12中的综合电子CPU负责整星遥测采集转发,遥控接收执行,姿轨控计算等功能;测控分系统11中的测控CPU实现射频信号调制解调功能;供配电分系统14中的电源控制CPU实现状态采集及监测,帆板分流控制,蓄电池充电控制,电压转换及配电控制等功能。此外,每个分系统都需要独立CPU及配套的外围电路(如供电接口电路和通信接口电路)。如需提高可靠性,只能通过分系统级的备份来实现,也就是在对某个分系统进行备份的过程中,需要对该分系统中的所有组件均进行备份。通常每个分系统都会有一套备份分系统,这样整个卫星平台系统就需要5至6套CPU及对应的外围电路。此外,如果需要进一步地提高可靠性,那就只能通过增加分系统级备份实现,这进一步增加了资源浪费,不利于卫星系统重量、功耗及体积的优化。For a complete satellite system, it can include a satellite platform and a satellite payload, and the satellite payload is carried on the satellite platform. Referring to FIG. 1, it shows a schematic diagram of the architecture of a satellite platform in an existing satellite system. In the current existing satellite system, a plurality of subsystems are included. Taking the architecture shown in FIG. 1 as an example, the satellite system 1 may include The measurement and control subsystem 11 , the integrated electronic subsystem 12 , the attitude and flight trajectory control (hereinafter referred to as the attitude and trajectory control) subsystem 13 and the power supply and distribution subsystem 14 . Each subsystem includes the following components: CPU, communication interface circuit, and power supply interface circuit. The internal communication of the satellite system is realized between the sub-systems through the system communication bus 15, and the power supply and distribution sub-system 14 supplies power to the power supply circuit interfaces of the remaining sub-systems through the system power distribution bus 16, thereby providing electrical energy for the functions of the remaining sub-systems. As can be seen from Figure 1, in the satellite system architecture, each sub-system is tightly coupled, and the CPUs of each sub-system are independent of each other, that is, the CPU of each system is only responsible for implementing the functions of its own system. For example, the integrated electronic CPU in the integrated electronic sub-system 12 is responsible for the whole satellite telemetry acquisition and forwarding, remote control reception and execution, attitude and orbit control calculation and other functions; The power control CPU in the power sub-system 14 realizes functions such as state acquisition and monitoring, windsurfing shunt control, battery charging control, voltage conversion and power distribution control. In addition, each subsystem requires an independent CPU and supporting peripheral circuits (such as power supply interface circuit and communication interface circuit). To improve reliability, it can only be achieved through subsystem-level backup, that is, in the process of backing up a subsystem, all components in the subsystem need to be backed up. Usually, each subsystem will have a set of backup subsystems, so that the entire satellite platform system needs 5 to 6 sets of CPUs and corresponding peripheral circuits. In addition, if it is necessary to further improve the reliability, it can only be achieved by adding sub-system-level backup, which further increases the waste of resources and is not conducive to the optimization of the weight, power consumption and volume of the satellite system.
针对图1的架构,需要说明的是,通常CPU的计算能力会有较大的冗余,配套的外围电路的能力也存在较大的余量,但由于图1所示的架构限制了每个CPU仅能够实现自身所在系统的功能,过剩的计算能力以及外围电路能力无法用于其他分系统的功能实现,也无法作为备份用途。For the architecture of Figure 1, it should be noted that the computing power of the CPU usually has a large redundancy, and the capacity of the supporting peripheral circuits also has a large margin, but the architecture shown in Figure 1 limits each The CPU can only realize the functions of the system in which it is located, and the excess computing power and peripheral circuit capabilities cannot be used to realize the functions of other subsystems, nor can they be used for backup purposes.
面对上述问题,基于CPU具有可软件编程实现功能重构的能力以及供电接口电路和通信接口电路的功能较为单一以能在不同系统间通用这两个特点,本发明实施例提出了一种可重构的微纳卫星系统架构,参见图2,其示出了该可重构的微纳卫星系统2架构可以包括:In the face of the above problems, based on the CPU's ability to realize function reconfiguration through software programming and the relatively simple functions of the power supply interface circuit and the communication interface circuit, which can be used in different systems, the embodiment of the present invention proposes a method that can The reconfigured micro/nano satellite system architecture, see FIG. 2, which shows that the reconfigurable micro/
通用模组21,包括多个实现所述卫星系统2所有功能需求均需要使用的共用模块;The
专用模组22,包括多个用于与所述卫星系统2单一功能需求对应的且仅实现所述对应的单一功能需求所需要使用的专用模块;The
标准化总线23,用于连接所述通用模组21中的共用模块以及专用模组22中的专用模块。The
通过图2所提供的微纳卫星系统2,将传统卫星系统中,包括卫星平台以及卫星载荷,针对所有功能需求都能够使用的共用模块形成通用模组21,将仅针对某个单一功能需求使用的专用模块形成专用模组22。与传统卫星系统相比,在实现卫星系统的功能需求时,降低了通用模组21与专用模组22之间的耦合度,并且在提高卫星系统可靠性的过程中,仅需要对通用模组21或者专用模组22中的组件进行备份,将可靠性备份的粒度由系统级下降至组件级,降低了实现卫星系统功能需求的系统复杂度,减少了卫星系统的资源浪费,降低功耗以及卫星系统的质量。Through the
对于图2所示的卫星系统,在一种可能的实现方式中,参见图3,所述通用模组21的种类包括:计算处理模块211以及接口扩展模块212;其中,For the satellite system shown in FIG. 2, in a possible implementation manner, referring to FIG. 3, the types of the
所述计算处理模块211,配置为针对所述卫星系统2的各种功能需求进行数据计算、信号处理以及控制指令的生成;也就是说,所述计算处理模块211具有星务管理、姿轨控制、测控、导航、数传以及电源管理等能力,并且还能够对获取的信号进行信号处理;The
所述接口扩展模块212,配置为将所述通用模组21以及所述专用模组22中的非标准接口转换为标准化接口;The interface expansion module 212 is configured to convert the non-standard interfaces in the
参见图4,所述标准化总线23,包括标准化模块通信总线231和标准化配电总线232。Referring to FIG. 4 , the
对于该实现方式,优选地,参见图5,所述计算处理模块211可以包括通用CPU 2111以及CPU接口电路2112;其中,For this implementation, preferably, referring to FIG. 5 , the
所述通用CPU 2111,具体可以配置用于整星遥测数据的采集与转发、地面遥控命令的接收与执行、和姿态与飞行轨道计算;The general-purpose CPU 2111 can be specifically configured for the collection and forwarding of telemetry data of the whole satellite, the reception and execution of ground remote control commands, and the calculation of attitude and flight trajectory;
以及,接收载荷信号并对载荷信号进行处理,包括卫星的星务管理、姿轨控制、测控、导航以及数传;And, receiving payload signals and processing payload signals, including satellite management, attitude and orbit control, measurement and control, navigation and data transmission;
以及射频信号的调制与解调处理;And the modulation and demodulation processing of radio frequency signals;
以及供配电状态的采集与检测、帆板分流控制、蓄电池充电控制、电压转化、和配电控制;As well as the collection and detection of power supply and distribution status, windsurfing shunt control, battery charging control, voltage conversion, and power distribution control;
所述CPU接口电路2112,配置用于通过所述标准化模块通信总线接收所述专用模组22发送的数据及信号;The CPU interface circuit 2112 is configured to receive data and signals sent by the
以及通过所述标准化模块通信总线向所述专用模组22发送对应的控制指令。and sending corresponding control instructions to the
针对上述通用CPU 2111,在具体实施时,每个所述通用CPU 2111均能够访问所有的专用模块22;每个通用CPU 2111通过软件在轨上注入不同的功能需求,以使每个通用CPU2111能够控制与自身所注入的功能需求所对应的专用模块;每个通用CPU 2111均能够被关闭。With respect to the general-purpose CPU 2111 described above, during specific implementation, each general-purpose CPU 2111 can access all the special-
可以理解地,由于传统的卫星架构中,卫星内部的软件配置均由各分系统的CPU来进行实现,通常来说,一个CPU会伴随至少一项软件配置项。通过减少卫星系统中总CPU数量,可以减少重复的软件配置项,例如,传统卫星架构中,平台和载荷均具有温度、电压电流采集软件,用于实现温度控制、状态监控。而采用本发明实施例所提出的卫星系统,其内部的软件配置均由通用CPU来进行实现,也就是通过通用CPU来同时实现采集平台和载荷的温度、电压电流等遥测参数,从而减少卫星系统软件配置项,从而简化程序复杂度。It is understandable that, in the traditional satellite architecture, the software configuration inside the satellite is implemented by the CPU of each sub-system. Generally speaking, one CPU is accompanied by at least one software configuration item. By reducing the total number of CPUs in the satellite system, repeated software configuration items can be reduced. For example, in the traditional satellite architecture, both the platform and the payload have temperature, voltage and current acquisition software for temperature control and status monitoring. However, with the satellite system proposed in the embodiment of the present invention, the internal software configuration is implemented by a general-purpose CPU, that is, the general-purpose CPU is used to simultaneously collect telemetry parameters such as the temperature, voltage and current of the platform and the load, thereby reducing the number of satellite systems. Software configuration items to simplify program complexity.
需要说明的是,上述通用CPU为具有逻辑控制功能的器件的统称,可包括CPU(中央处理器),DSP(数字信号处理器),FPGA(现场可编程逻辑门阵列),以及其他能够通过编程实现控制、运算、处理等功能的器件、模块或系统。It should be noted that the above-mentioned general-purpose CPU is a general term for devices with logic control functions, which may include CPU (Central Processing Unit), DSP (Digital Signal Processor), FPGA (Field Programmable Logic Gate Array), and other programmable logic gate arrays. A device, module or system that realizes functions such as control, operation, and processing.
需要说明的是,对于单个功能需求来说,每个通用CPU 2111的计算能力是冗余的,因此,可以使得每个通用CPU 2111对应控制多个专用模块,从而节省了通用CPU 2111的设置数量,也因此减少了通用CPU 2111所需的外围电路数量,从而降低了卫星系统的资源消耗,节约了卫星空间,减轻了卫星系统质量。在正常工作状态下,每个通用CPU 2111仅负责自身对应的专用模块,当某个通用CPU 2111出现故障时,关闭故障的通用CPU 2111,并通过软件上注修改的方式,使得一个非故障的通用CPU 2111在负责自身对应的专用模块的同时,还负责故障的通用CPU 2111所负责的对应的专用模块。具体选择非故障的通用CPU2111的方法,可以获取所有非故障的通用CPU 2111在负责各自对应的专用模块时还剩余的计算能力,选取剩余计算能力最多的非故障的通用CPU 2111来额外负责故障的通用CPU2111所负责的对应的专用模块。从而可以使得发生故障时,无需进行系统级备份,仅通过通用CPU这种组件之间的切换与备份来提高卫星系统的可靠性。It should be noted that, for a single functional requirement, the computing power of each general-purpose CPU 2111 is redundant. Therefore, each general-purpose CPU 2111 can be made to control a plurality of dedicated modules correspondingly, thereby saving the number of general-purpose CPUs 2111 to set. Therefore, the number of peripheral circuits required by the general-purpose CPU 2111 is reduced, thereby reducing the resource consumption of the satellite system, saving the satellite space, and reducing the quality of the satellite system. Under normal working conditions, each general-purpose CPU 2111 is only responsible for its own corresponding dedicated module. When a general-purpose CPU 2111 fails, the general-purpose CPU 2111 in failure is turned off, and a non-faulty general-purpose CPU 2111 is turned off by means of software modification. While the general-purpose CPU 2111 is responsible for its own corresponding special-purpose module, it is also responsible for the corresponding special-purpose module that the faulty general-purpose CPU 2111 is responsible for. The specific method of selecting a non-faulty general-purpose CPU 2111 can obtain the remaining computing power of all the non-faulty general-purpose CPUs 2111 when they are responsible for their corresponding dedicated modules, and select the non-faulty general-purpose CPU 2111 with the most remaining computing power to be additionally responsible for the faulty general-purpose CPU 2111. The corresponding special-purpose module that the general-purpose CPU 2111 is responsible for. Therefore, in the event of a failure, there is no need to perform system-level backup, and the reliability of the satellite system can be improved only through switching and backup between components such as a general-purpose CPU.
进一步地,对于所述计算处理模块211和所述专用模块均通过总线隔离器连接到所述标准化总线,以使得所述计算处理模块211或专用模块由于故障被关闭时,被关闭的计算处理模块211或专用模块不影响所述标准化总线的正常通信。Further, both the
对于图2所示的卫星系统,在一种可能的实现方式中,在所述标准化总线中,所述标准化模块通信总线具有备份通信总线,所述通用模组中的共用模块内以及所述专用模组中的专用模块内均通过独立的接口电路分别与所述标准化模块通信总线和所述备份通信总线相连接;For the satellite system shown in FIG. 2, in a possible implementation manner, in the standardized bus, the standardized module communication bus has a backup communication bus, the common module in the general module and the dedicated communication bus The dedicated modules in the module are connected with the standardized module communication bus and the backup communication bus through independent interface circuits respectively;
当所述标准化模块通信总线出现故障时,所述通用模组中的共用模块以及所述专用模组中的专用模块均切换至所述备份通信总线进行通信;或者,所述专用模组中的专用模块接收所述计算处理模块传输的选择指令,并基于所述选择指令的指示选择所述标准化模块通信总线或所述备份通信总线进行通信。When the standardized module communication bus fails, the common module in the general module and the special module in the special module are switched to the backup communication bus for communication; or, the special module in the The dedicated module receives the selection instruction transmitted by the computing processing module, and selects the standardized module communication bus or the backup communication bus for communication based on the instruction of the selection instruction.
可以理解地,为提高通信可靠性,可将标准化模块通信总线进行备份设计,此时,每个共用模块或专用模块均能够提供两个相互独立的通信总线接口,分别连接至两条互相备份的标准化模块通信总线,两条互相备份的通信总线功能相同,每条标准化模块通信总线均能够完整实现模块之间的通信功能。因此,在一条标准化模块通信总线出现问题时,共用模块或专用模块均能够自动切换至另一条标准化模块通信总线来实现通信工作,也可在接收由计算单元模块发送的选择指令后,基于所述选择指令的指示选择实现通信功能所使用的标准化模块通信总线。Understandably, in order to improve communication reliability, the standardized module communication bus can be designed as a backup. At this time, each shared module or dedicated module can provide two mutually independent communication bus interfaces, which are respectively connected to two mutually backup communication bus interfaces. Standardized module communication bus, two mutually backup communication buses have the same function, and each standardized module communication bus can fully realize the communication function between modules. Therefore, when there is a problem with one standardized module communication bus, either the shared module or the dedicated module can automatically switch to another standardized module communication bus to realize the communication work, or after receiving the selection instruction sent by the computing unit module, based on the The indication of the selection command selects the standardized modular communication bus used to implement the communication function.
对于图2所示的卫星系统,在一种可能的实现方式中,参见图6,所述专用模组22的种类,包括测控功能模块221、供配电模块222、姿轨控模块223和载荷功能模块224;For the satellite system shown in FIG. 2 , in a possible implementation manner, referring to FIG. 6 , the types of the
其中,所述测控功能模块221,配置为在通过天线接收遥控信号后,对接收到的遥控信号通过基带解码得到遥控命令,并将所述遥控命令通过所述标准化模块通信总线231发送至所述计算处理模块211;The measurement and control function module 221 is configured to, after receiving the remote control signal through the antenna, decode the received remote control signal through baseband to obtain a remote control command, and send the remote control command to the
以及,通过所述标准化模块通信总线231接收由所述计算处理模块211传输的遥测数据,对所述遥测数据通过基带合成为遥测信号,并将所述遥测信号通过天线向外部发射;And, receive the telemetry data transmitted by the
所述供配电模块222,配置用于将电源组件的工作状态通过所述标准化模块通信总线231传输至所述计算处理模块;The power supply and
以及,通过所述标准化模块通信总线231接收由所述计算处理模块211传输的控制命令,并执行所述控制命令的指示;And, receive the control command transmitted by the
以及,通过所述标准化配电总线232向所述共用模块以及专用模块提供电能;and, providing power to the common module and the dedicated module through the standardized power distribution bus 232;
所述姿轨控模块223,配置为采集所述卫星系统的姿态与飞行轨道参数,并将所述参数通过所述标准化模块通信总线231传输至所述计算处理模块211;The attitude and
所述载荷功能模块224,配置为通过所述计算处理模块211传输的控制命令实现对应的卫星载荷功能。The load function module 224 is configured to implement the corresponding satellite load function through the control command transmitted by the
对于上述四种专用模组,在具体实施过程中,所述测控功能模块221,包括天线、测控射频器、测控基带以及测控接口电路。因此,对于上述测控功能模块211的功能,具体可以描述为:测控射频器在通过天线接收遥控信号后,测控基带对接收到的遥控信号通过基带解码得到遥控命令,测控接口电路将所述遥控命令通过所述标准化模块通信总线231发送至所述计算处理模块211;以及,测控接口电路通过所述标准化模块通信总线231接收由所述计算处理模块211传输的遥测数据,通过测控基带对所述遥测数据合成为遥测信号,测控射频器将所述遥测信号通过天线向外部发射。For the above four special modules, in a specific implementation process, the measurement and control function module 221 includes an antenna, a measurement and control radio frequency device, a measurement and control baseband, and a measurement and control interface circuit. Therefore, the function of the above-mentioned measurement and
所述供配电模块222,包括分流器、充电控制器和标准化电压调节及配电单元。因此,对于上述供配电模块222的功能,具体可以描述为:将电源组件的工作状态通过所述标准化模块通信总线231传输至所述计算处理模块;以及,通过所述标准化模块通信总线231接收由所述计算处理模块211传输的控制命令,分流器、充电控制器和标准化电压调节单元执行所述控制命令的指示;以及,配电单元通过所述标准化配电总线232向所述共用模块以及专用模块提供电能。详细来说,电源组件可以包括光伏模组,比如太阳能电池板,光伏模组将光能转换为电能后,通过分流器传输至充电控制器,通过充电控制器向蓄电池供电。The power supply and
所述姿轨控模块223,包括飞轮、星敏器、陀螺仪和磁力矩器。其功能具体可以描述为:通过飞轮、星敏器、陀螺仪和磁力矩器采集卫星系统2的姿态与飞行轨道参数,并将参数传输至计算处理模块211。The attitude and
在传统卫星系统中,由于星敏器、陀螺仪、飞轮等姿轨控组件中均包括CPU、接口电路、电源供电电路及相应的专用模块,如电机、图像传感器等,因此,对于本发明实施例中,同样可以对姿轨控组件划分为通用组件以及专有组件,从而使得在卫星平台和载荷单机之间共用CPU、接口电路、电源供电电路等通用电路组件,以实现全系统可重构卫星架构,在不降低可靠性的同时大大减少卫星星上元器件数量及电路复杂程度。以星敏器为例,图7为传统卫星系统中星敏器内部电路功能模块示意,其中包括图像传感器,CPU,接口电路,供电电路等。通过将星敏器中能够进行通用的组件设计为通用模组,仅保留星敏感器内部图像传感器和接口电路,将CPU与供电电路的功能通过通用模组中的共用模块来代替,从而减少了星敏器的电路复杂程度。In the traditional satellite system, since the attitude and orbit control components such as star sensors, gyroscopes, and flywheels all include CPU, interface circuit, power supply circuit and corresponding special modules, such as motors, image sensors, etc., for the implementation of the present invention In the example, the attitude and orbit control components can also be divided into general components and proprietary components, so that common circuit components such as CPU, interface circuit, power supply circuit, etc. are shared between the satellite platform and the single payload, so as to achieve full system reconfiguration. The satellite architecture greatly reduces the number of components and circuit complexity on the satellite without reducing reliability. Taking the star sensor as an example, Fig. 7 is a schematic diagram of the internal circuit function modules of the star sensor in the traditional satellite system, including an image sensor, a CPU, an interface circuit, a power supply circuit, and the like. By designing the common components in the star sensor as a general module, only the internal image sensor and interface circuit of the star sensor are retained, and the functions of the CPU and power supply circuit are replaced by the common module in the general module, thereby reducing the number of The circuit complexity of the star sensor.
所述载荷功能模块224,相应于卫星平台所搭载的卫星载荷,在传统卫星系统中,卫星载荷也具有与传统卫星平台中各分系统相似的电路功能模块。在卫星平台中,具体的卫星载荷可以包括数传分系统、相机分系统以及存储分系统。以数传分系统为例,参见图8A所示,传统的数传分系统可以包括宽带射频通道,数传射频基带,CPU、用于信号处理的FPGA,接口电路和供电电路等部分。本实施例中,通过将CPU、接口电路、供电电路从系统中分离出来成为共用模块,并且通过FPGA将数传射频基带接口转换为标准化接口,并在FPGA内完成信号处理、调制与解调功能,从而在所述载荷功能模块224中,数传模块用于实现所述数传分系统对应的载荷功能,数传模块可以包括宽带射频通道、数传射频基带和接口电路。以相机分系统为例,参见图8B,传统的相机分系统可以包括镜头组件、图像传感器、CPU、用于信号处理的FPGA,接口电路和供电电路等部分。在本实施例中,同样将CPU、接口电路、供电电路从系统中分离出来成为共用模块,并且通过FPGA将数传射频基带接口转换为标准化接口,并在FPGA内完成信号处理、调制与解调功能,从而在所述载荷功能模块224中,相机模块用于实现所述相机分系统对应的载荷功能,相机模块可以包括镜头组件、图像传感器和接口电路。以存储分系统为例,参见图8C,传统的存储分系统包括闪存阵列、CPU、用于信号处理的FPGA,接口电路和供电电路等部分。同样对于存储分系统来说,按照上述数传模块以及相机模块所进行的共用模块分离过程,在所述载荷功能模块224中,得到存储模块以实现所述相机分系统对应的载荷功能,存储模块可以包括闪存阵列和接口电路。在对卫星载荷分系统按照上述方案进行共用模块分离之后,能够减少载荷功能模块的电路复杂程度,进而减少卫星载荷分系统的质量与功耗。The load function module 224 corresponds to the satellite load carried on the satellite platform. In the traditional satellite system, the satellite load also has circuit function modules similar to those of the subsystems in the traditional satellite platform. In the satellite platform, the specific satellite payload may include a data transmission sub-system, a camera sub-system and a storage sub-system. Taking the data transmission sub-system as an example, as shown in FIG. 8A , a traditional data transmission sub-system may include a broadband radio frequency channel, a data transmission radio frequency baseband, a CPU, an FPGA for signal processing, an interface circuit, and a power supply circuit. In this embodiment, the CPU, the interface circuit, and the power supply circuit are separated from the system into a common module, and the digital radio frequency baseband interface is converted into a standardized interface through the FPGA, and the signal processing, modulation and demodulation functions are completed in the FPGA. Therefore, in the load function module 224, the data transmission module is used to implement the corresponding load function of the data transmission sub-system, and the data transmission module may include a broadband radio frequency channel, a data transmission radio frequency baseband and an interface circuit. Taking a camera subsystem as an example, referring to FIG. 8B , a traditional camera subsystem may include a lens assembly, an image sensor, a CPU, an FPGA for signal processing, an interface circuit, and a power supply circuit. In this embodiment, the CPU, the interface circuit, and the power supply circuit are also separated from the system into a shared module, and the digital radio frequency baseband interface is converted into a standardized interface through the FPGA, and signal processing, modulation and demodulation are completed in the FPGA. Therefore, in the payload function module 224, the camera module is used to implement the payload function corresponding to the camera subsystem, and the camera module may include a lens assembly, an image sensor and an interface circuit. Taking the storage subsystem as an example, referring to FIG. 8C , a traditional storage subsystem includes a flash memory array, a CPU, an FPGA for signal processing, an interface circuit, a power supply circuit, and the like. Also for the storage subsystem, according to the shared module separation process performed by the data transmission module and the camera module, in the load function module 224, a storage module is obtained to realize the load function corresponding to the camera subsystem, and the storage module A flash memory array and interface circuitry may be included. After the satellite payload subsystem is separated from the shared modules according to the above scheme, the circuit complexity of the payload function module can be reduced, thereby reducing the quality and power consumption of the satellite payload subsystem.
此外,由于载荷分系统之间的通信数据量通常较大,为避免卫星载荷之间的通信数据量对卫星平台的通信造成影响,优选地,所述标准化总线,还包括标准化高速通信总线,配置为传输所述载荷功能模块之间的载荷数据;In addition, since the amount of communication data between the payload subsystems is usually large, in order to avoid the influence of the amount of communication data between the satellite payloads on the communication of the satellite platform, preferably, the standardized bus further includes a standardized high-speed communication bus. In order to transmit the payload data between the payload function modules;
相应地,所述数传模块、相机模块以及存储模块中的接口电路包括高速通信接口电路和低速通信接口电路;其中,所述高速通信接口电路与所述标准化高速通信总线相连接,所述低速通信接口电路与所述标准化模块通信总线相连。Correspondingly, the interface circuits in the data transmission module, the camera module and the storage module include a high-speed communication interface circuit and a low-speed communication interface circuit; wherein, the high-speed communication interface circuit is connected with the standardized high-speed communication bus, and the low-speed communication interface circuit is connected to the standard high-speed communication bus. A communication interface circuit is connected to the standardized modular communication bus.
需要说明的是,在卫星载荷功能模块之间增加标准化高速通信总线来实现不同卫星载荷间通信。因此,卫星载荷功能模块同时具有标准化模块通信总线和标准化高速通信总线,标准化模块通信总线用于传输控制数据和遥测数据,标准化高速通信总线用于传输载荷数据。相应地,在各种卫星载荷功能模块中,通信接口电路也可以对应地划分为高速通信接口电路和低速通信接口电路;所述高速通信接口电路与所述标准化高速通信总线相连接,所述低速通信接口电路与所述标准化模块通信总线相连,从而避免高低速数据之间的相互影响。It should be noted that a standardized high-speed communication bus is added between the satellite payload function modules to realize communication between different satellite payloads. Therefore, the satellite payload function module has both a standardized modular communication bus and a standardized high-speed communication bus. The standardized modular communication bus is used to transmit control data and telemetry data, and the standardized high-speed communication bus is used to transmit payload data. Correspondingly, in various satellite load function modules, the communication interface circuit can also be correspondingly divided into a high-speed communication interface circuit and a low-speed communication interface circuit; the high-speed communication interface circuit is connected with the standardized high-speed communication bus, and the low-speed communication interface circuit is The communication interface circuit is connected with the standardized module communication bus, so as to avoid the mutual influence between high and low speed data.
针对上述四种专用模组,通过对卫星平台以及卫星载荷进行联合设计,将卫星平台和卫星载荷的共用模块进行通用化设计,可在不影响功能和可靠性的情况下最大限度的减少卫星使用元器件数量,降低卫星整体设计复杂程度。For the above four special modules, through the joint design of the satellite platform and the satellite load, the common module of the satellite platform and the satellite load is universally designed, which can minimize the use of satellites without affecting the function and reliability. The number of components reduces the overall design complexity of the satellite.
对于上述四种专用模组,在具体实施过程中,可以在每种专用模块中均对应的包括一个备份专用模块。从而当某种专用模块中的某个专用模块发生故障时,可以将故障的专用模块关闭,并且将故障的专用模块功能切换到备份专用模块。需要说明的是,由于专用模块之间的备份不涉及共用模块,因此,降低了专用模块与共用模块之间的耦合,可以提供低成本、低复杂度的提高可靠性的方法,实现全卫星系统可重构卫星架构。For the above four special modules, in the specific implementation process, each special module may include a backup special module correspondingly. Therefore, when a certain special module in a certain special module fails, the fault special module can be turned off, and the function of the fault special module can be switched to the backup special module. It should be noted that since the backup between the dedicated modules does not involve the shared modules, the coupling between the dedicated modules and the shared modules is reduced, a low-cost and low-complexity method for improving reliability can be provided, and an all-satellite system can be realized. Reconfigurable satellite architecture.
通过上述技术方案,可以看出当某一功能需求发生故障时,无需针对实现故障的功能需求的全部组件进行备份切换,而仅需要对共用模块或专用模块进行切换,从而降低了系统的电路复杂度,减少了资源浪费,提高了资源的利用率。Through the above technical solutions, it can be seen that when a certain functional requirement fails, there is no need to perform backup switching for all components that meet the functional requirement of the fault, but only the shared module or dedicated module needs to be switched, thereby reducing the circuit complexity of the system. It reduces the waste of resources and improves the utilization rate of resources.
基于前述技术方案相同的发明构思,参见图9,其示出了本发明实施例提供的一种卫星系统重构方法,该方法可以应用于前述技术方案中任一示例所述的卫星系统,所述方法包括:Based on the same inventive concept as the foregoing technical solutions, see FIG. 9 , which shows a method for reconstructing a satellite system provided by an embodiment of the present invention. The method can be applied to the satellite system described in any of the foregoing technical solutions. The methods described include:
S901:通用模组中的每个计算处理模块通过软件在轨上注入不同的功能需求,以使每个计算处理模块控制与自身所注入的功能需求所对应的专用模块;S901: Each computing processing module in the general module injects different functional requirements on the rail through software, so that each computing processing module controls a dedicated module corresponding to the functional requirements injected by itself;
S902:当第一计算处理模块发生故障时,关闭所述第一计算处理模块,并从除所述第一计算处理模块之外的其他计算处理模块中确定第二计算处理模块;S902: when the first computing and processing module fails, turn off the first computing and processing module, and determine a second computing and processing module from other computing and processing modules except the first computing and processing module;
S903:通过软件上注的方式修改第二计算处理模块对应的专用模块;其中,修改后的第二计算处理模块对应的专用模块包括修改之前所述第二计算处理模块对应的专用模块和所述第一计算处理模块在故障前对应的专用模块。S903: Modify the special module corresponding to the second calculation processing module by means of software annotation; wherein, the special module corresponding to the second calculation processing module after modification includes the special module corresponding to the second calculation processing module before modification and the special module corresponding to the second calculation processing module before modification. A dedicated module corresponding to the first calculation processing module before the failure.
对于图9所示的技术方案,在一种可能的实现方式中,该方法还可以包括:在专用模组中,当一种专用模块中的一个专用模块出现故障时,将故障的专用模块关闭,并将该种类专用模块中的备份专用模块接替所述故障的专用模块。For the technical solution shown in FIG. 9 , in a possible implementation manner, the method may further include: in a dedicated module, when a dedicated module in a dedicated module fails, shutting down the faulty dedicated module , and replace the faulty dedicated module with the backup dedicated module in this type of dedicated module.
对于图9所示的技术方案,在一种可能的实现方式中,计算处理模块和专用模块均通过总线隔离器连接到标准化总线上,从而可以使得所述计算处理模块或专用模块由于故障被关闭时,被关闭的计算处理模块或专用模块不影响所述标准化总线的正常通信。For the technical solution shown in FIG. 9 , in a possible implementation manner, both the computing processing module and the dedicated module are connected to the standardized bus through a bus isolator, so that the computing processing module or the dedicated module can be shut down due to a fault At the time, the closed computing processing module or special-purpose module does not affect the normal communication of the standardized bus.
结合上述任一实施例提出以下具体示例,可以理解地,以下具体示例仅对上述任一实施例的具体实施进行示例性阐述,并非对上述任一实施例的技术方案进行限定。The following specific examples are provided in conjunction with any of the above-mentioned embodiments. It can be understood that the following specific examples are only illustrative for the specific implementation of any of the above-mentioned embodiments, and do not limit the technical solutions of any of the above-mentioned embodiments.
参见图10所示的卫星系统架构示意,在以下具体示例中,计算处理模块11的数量为2,分别为11a和11b,每个计算处理模块11均包括通用CPU和CPU接口电路;接口扩展模块12的数量为2,分别是12a和12b,每个接口扩展模块12均包括接口扩展电路;测控功能模块21的数量为2,分别是21a和21b,每个测控功能模块21均包括天线、测控射频器、测控基带以及测控接口电路;供配电模块22以及姿轨控模块23的数量均为1;供配电模块22,包括分流器、充电控制器和标准化电压调节及配电单元;姿轨控模块23包括飞轮、星敏器、陀螺仪和磁力矩器中的专用部件,比如飞轮中的电机组件和电压电流采样电路,星敏器中的图像传感器和接口电路,陀螺仪中的角速度传感器和接口电路,磁力矩器中的电磁线圈和接口电路。而卫星载荷以数传模块24、相机模块25以及存储模块26为例,数传模块24中包括宽带射频通信电路、数传射频基带以及接口电路;相机模块25包括镜头组件、图像传感器以及接口电路;存储模块26包括闪存阵列和接口电路。Referring to the schematic diagram of the satellite system architecture shown in FIG. 10, in the following specific example, the number of calculation processing modules 11 is 2, namely 11a and 11b, and each calculation processing module 11 includes a general CPU and a CPU interface circuit; an interface expansion module The number of 12 is 2, which are 12a and 12b respectively, and each interface expansion module 12 includes an interface expansion circuit; the number of measurement and
卫星载荷与卫星平台的各模块之间通过标准化模块通信总线相连接且相互通信,并且各模块可以通过总线隔离器连接到标准化模块通信总线上;而卫星载荷的各模块之间还通过标准化高速通信总线相连接,以实现载荷数据之间的传输,因此,对于卫星载荷的各模块来说,比如数传模块24、相机模块25以及存储模块26,其中的接口电路可以包括高速通信接口电路和低速通信接口电路;其中,所述高速通信接口电路与所述标准化高速通信总线相连接,所述低速通信接口电路与所述标准化模块通信总线相连。The satellite payload and the modules of the satellite platform are connected and communicate with each other through the standardized module communication bus, and each module can be connected to the standardized module communication bus through the bus isolator; and the modules of the satellite payload are also communicated with each other through standardized high-speed communication. The bus is connected to realize the transmission of payload data. Therefore, for each module of the satellite payload, such as the data transmission module 24, the camera module 25, and the storage module 26, the interface circuit may include high-speed communication interface circuit and low-speed communication interface circuit. A communication interface circuit; wherein the high-speed communication interface circuit is connected with the standardized high-speed communication bus, and the low-speed communication interface circuit is connected with the standardized module communication bus.
供配电模块22通过标准化配电总线向其他模块供电。需要说明的是,在以下具体示例中,标准化模块通信总线以及标准化配电总线具体可以是控制器局域网络(CAN,Controller Area Network)总线,各模块之间所连接的拓扑结构可以是总线结构、星型结构等,以下具体示例中不做赘述。The
具体示例一Specific example one
以图10所示的卫星系统架构为例,由于通用CPU的计算能力能够控制测控功能模块21、供配电模块22、姿轨控模块23、数传模块24、相机模块25以及存储模块26,因此,在实现卫星系统的功能需求时,可以仅通过单个的计算处理模块11来控制测控功能模块21、供配电模块22、姿轨控模块23、数传模块24、相机模块25以及存储模块26。在本具体示例中,首先,通过软件在轨上注的方式将卫星系统的功能需求注入计算处理模块11a,那么计算处理模块11a就能够根据注入的功能需求对测控功能模块21a、供配电模块22以及姿轨控模块23进行控制;接着,当计算处理模块11a发生故障时,可以将计算处理模块11a关闭,并且同样通过软件在轨上注的方式将卫星系统的功能需求注入到计算处理模块11b,此时,就能够通过计算处理模块11b对测控功能模块21a、供配电模块22以及姿轨控模块23进行控制。Taking the satellite system architecture shown in FIG. 10 as an example, since the computing power of the general-purpose CPU can control the measurement and
另外由于计算处理模块11a关闭,因此,总线隔离器保证关闭的计算处理模块11a不会影响标准化模块通信总线的正常通信。In addition, since the calculation processing module 11a is closed, the bus isolator ensures that the closed calculation processing module 11a will not affect the normal communication of the standardized module communication bus.
具体示例二Specific example two
以图10所示的卫星系统架构为例,在正常工作状态下,计算处理模块11a能够根据注入的功能需求对测控功能模块21a、供配电模块22、姿轨控模块23、数传模块24、相机模块25以及存储模块26进行控制。当计算处理模块11a的计算能力下降,无法控制测控功能模块21、供配电模块22、姿轨控模块23、数传模块24、相机模块25以及存储模块26时,同样可以通过软件在轨上注的方式将卫星系统的部分功能需求注入到计算处理模块11b,以测控功能模块21a为例,可以使计算处理模块11a控制供配电模块22以及姿轨控模块23;而计算处理模块11b控制测控功能模块21。Taking the satellite system architecture shown in FIG. 10 as an example, under normal working conditions, the calculation processing module 11a can monitor and control the measurement and control function module 21a, the power supply and
具体示例三Specific example three
以图10所示的卫星系统架构为例,在正常工作状态下,计算处理模块11a控制供配电模块22、姿轨控模块23、数传模块24、相机模块25以及存储模块26,计算处理模块11b控制测控功能模块21。当计算处理模块11a发生故障而关闭时,同样可以通过软件在轨上注的方式将计算处理模块11a所对应的部分功能需求注入到计算处理模块11b,从而使得计算处理模块11b对测控功能模块21a、供配电模块22以及姿轨控模块23进行控制。Taking the satellite system architecture shown in FIG. 10 as an example, in a normal working state, the calculation processing module 11a controls the power supply and
另外由于计算处理模块11a关闭,因此,总线隔离器保证关闭的计算处理模块11a不会影响标准化模块通信总线的正常通信。In addition, since the calculation processing module 11a is closed, the bus isolator ensures that the closed calculation processing module 11a will not affect the normal communication of the standardized module communication bus.
对于传统的卫星平台系统来说,在功能需求实现过程中,当CPU发生故障时,由于是分系统级粒度的备份,那么通常会将发生故障的CPU所处的功能分系统切换至备份的功能分系统。For the traditional satellite platform system, in the process of realizing the functional requirements, when the CPU fails, because it is a backup at the system-level granularity, the functional subsystem where the faulty CPU is located is usually switched to the backup function. sub-system.
而在上述具体示例中,由于是组件级粒度的备份,当CPU发生故障时,仅需要切换至备份的通用CPU即可,从而降低了卫星功能备份所耗费的资源。In the above specific example, since it is a component-level granular backup, when a CPU fails, it only needs to switch to the backup general-purpose CPU, thereby reducing the resources consumed by the satellite function backup.
需要说明的是:本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。It should be noted that the technical solutions described in the embodiments of the present invention may be combined arbitrarily unless there is a conflict.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910161273.7A CN110002005B (en) | 2019-03-04 | 2019-03-04 | A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910161273.7A CN110002005B (en) | 2019-03-04 | 2019-03-04 | A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110002005A CN110002005A (en) | 2019-07-12 |
CN110002005B true CN110002005B (en) | 2020-08-14 |
Family
ID=67166330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910161273.7A Active CN110002005B (en) | 2019-03-04 | 2019-03-04 | A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110002005B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022082275A1 (en) * | 2020-10-22 | 2022-04-28 | Endurosat Joint Stock Company | Unified platform for nanosatellite systems |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110426721B (en) * | 2019-08-05 | 2021-06-15 | 哈尔滨工业大学 | On-orbit self-reconfiguration method for modular reconfigurable satellites based on graph theory and A* algorithm |
CN110920935A (en) * | 2019-12-18 | 2020-03-27 | 哈尔滨工业大学 | A plug-and-play intelligent core system |
CN111224728B (en) * | 2020-01-13 | 2020-09-18 | 北京空间飞行器总体设计部 | Health time estimation method suitable for satellite reconfigurable stand-alone equipment |
CN111891398B (en) * | 2020-08-13 | 2022-03-11 | 中国人民解放军国防科技大学 | A Flexible and Universal Intelligent Satellite Hardware Architecture |
CN112350764B (en) * | 2020-09-30 | 2021-09-24 | 军事科学院系统工程研究院网络信息研究所 | Comprehensive communication system suitable for stratospheric lift-off platform |
CN112614325B (en) * | 2020-12-07 | 2022-03-29 | 上海卫星工程研究所 | Separated microsatellite measurement and control system, method and medium |
CN113204188B (en) * | 2021-04-26 | 2022-07-19 | 中国人民解放军国防科技大学 | Multimode-driven quick-response satellite switching instruction system and design and application method thereof |
CN113434292A (en) * | 2021-06-25 | 2021-09-24 | 山东航天电子技术研究所 | Intelligent micro-nano satellite system architecture and system reconstruction method |
CN113815904B (en) * | 2021-09-06 | 2023-11-10 | 中国科学院微小卫星创新研究院 | A modular energy system that can be maintained and replaced on orbit |
CN113867446B (en) * | 2021-10-21 | 2022-04-26 | 北京微纳星空科技有限公司 | Micro-nano satellite control system and micro-nano satellite |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8775674B2 (en) * | 2009-02-27 | 2014-07-08 | Telecom Recovery | Systems and methods for seamless communications recovery and backup using networked communication devices |
JP5851746B2 (en) * | 2011-07-12 | 2016-02-03 | 三菱重工業株式会社 | Flight control device, spacecraft, and reference path correction method |
CN202217270U (en) * | 2011-09-01 | 2012-05-09 | 中国空间技术研究院 | A bus for payload subsystem data transfer |
CN102520715B (en) * | 2011-12-28 | 2013-10-23 | 北京航空航天大学 | A Generalized Satellite Ground Overall Control Test System |
CN103699069A (en) * | 2013-12-06 | 2014-04-02 | 上海卫星工程研究所 | Advanced electronic integrated system for microsatellite |
CN104572330B (en) * | 2015-01-07 | 2017-11-07 | 航天东方红卫星有限公司 | The autonomous restoration methods of machine are cut in the quick in-orbit reset of satellite Star Service central computer |
CN104850530B (en) * | 2015-05-21 | 2018-05-29 | 西北工业大学 | A kind of cube star spaceborne computer |
CN105045672B (en) * | 2015-07-24 | 2018-07-06 | 哈尔滨工业大学 | A kind of multi-level fault tolerance based on SRAM FPGA reinforces satellite information processing system |
-
2019
- 2019-03-04 CN CN201910161273.7A patent/CN110002005B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022082275A1 (en) * | 2020-10-22 | 2022-04-28 | Endurosat Joint Stock Company | Unified platform for nanosatellite systems |
Also Published As
Publication number | Publication date |
---|---|
CN110002005A (en) | 2019-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110002005B (en) | A reconfigurable micro-nano satellite system architecture and satellite system reconstruction method | |
CN111309477B (en) | Satellite in-orbit data processing system and method | |
CN102053882B (en) | Heterogeneous satellite-borne fault-tolerant computer based on COTS (Commercial Off The Shelf) device | |
CN101833536B (en) | A Reconfigurable Spaceborne Computer with Redundant Arbitration Mechanism | |
CN103944629B (en) | A kind of satellite Integrated Electronic System | |
CN110040263B (en) | Micro satellite information system based on CAN bus | |
CN112046787A (en) | Domain-based microsatellite system | |
CN102096657B (en) | System-on-chip (SOC)-based micro information processing module | |
CN102590733B (en) | Circuitry built-in test device based on boundary scanning mechanism | |
CN108199939A (en) | A kind of restructural satellite Integrated Electronic System | |
CN112073277A (en) | Standard module based satellite integrated electronic system design method | |
CN118707624B (en) | Satellite load data processing system of star-masking sea-reversing integrated machine | |
CN104850530B (en) | A kind of cube star spaceborne computer | |
CN111891398A (en) | A Flexible and Universal Intelligent Satellite Hardware Architecture | |
Hanafi et al. | FPGA-based secondary on-board computer system for low-earth-orbit nano-satellite | |
Speretta et al. | Modular architecture for satellites | |
CN113434292A (en) | Intelligent micro-nano satellite system architecture and system reconstruction method | |
CN117650824A (en) | Integrated comprehensive electronic unit of small satellite | |
CN115757261A (en) | Satellite-borne high-computation-force load integrated processing framework based on AI chip | |
CN112859687A (en) | Integrated satellite integrated electronic system | |
Zuo et al. | FPGA Remote Reconfiguration Technology for Space Applications in Embedded Systems | |
CN116443273B (en) | A kind of aerospace electronic integrated general processor and method based on on-orbit flight | |
Jiang et al. | Design of Onboard Avionics Based on Commercial Off-the-Shelf Parts for TianQi-2 Nanosatellite | |
CN116737649B (en) | Multi-layer redundancy reconfigurable computing system of commercial spacecraft and implementation method | |
Yu et al. | OBDH Technology of Lunar Lander |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Feng Inventor after: Feng Tianyu Inventor after: Cao Xibin Inventor after: Chen Jian Inventor after: Wei Mingchuan Inventor after: Qiu Shi Inventor after: Guo Jinsheng Inventor before: Cao Xibin Inventor before: Feng Tianyu Inventor before: Wang Feng Inventor before: Chen Jian Inventor before: Wei Mingchuan Inventor before: Qiu Shi Inventor before: Guo Jinsheng |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |