CN109995295A - Multi-motor parallel drive control method and system - Google Patents
Multi-motor parallel drive control method and system Download PDFInfo
- Publication number
- CN109995295A CN109995295A CN201910226499.0A CN201910226499A CN109995295A CN 109995295 A CN109995295 A CN 109995295A CN 201910226499 A CN201910226499 A CN 201910226499A CN 109995295 A CN109995295 A CN 109995295A
- Authority
- CN
- China
- Prior art keywords
- motor
- controller
- value
- turntable
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000001360 synchronised effect Effects 0.000 claims description 25
- 230000009466 transformation Effects 0.000 claims description 15
- 230000004907 flux Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 235000005749 Anthriscus sylvestris Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/04—Arrangements for controlling or regulating the speed or torque of more than one motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/04—Arrangements for controlling or regulating the speed or torque of more than one motor
- H02P2006/045—Control of current
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及电机驱动控制技术领域,尤其涉及一种多电机并行驱动控制方法及系统。The invention relates to the technical field of motor drive control, in particular to a method and system for parallel drive control of multiple motors.
背景技术Background technique
随着空间目标观测需求的提高,大口径望远镜应运而生,比较典型的望远镜有8.2米口径的VLT,10米口径的Keck和10.4米口径的GTC等。随着望远镜口径的增大,对驱动控制系统提出了更高的要求,传统的整装式永磁同步电机无法满足更大口径望远镜控制系统的驱动能力要求。进一步,多永磁同步电机并行驱动机构具有驱动力矩大、易于实现等优点,成为大口径望远镜驱动机构的首选。但是,多永磁同步电机并行驱动机构也并非十全十美,其缺点在于,多永磁同步电机并行控制系统中存在的电机齿槽力矩、摩擦力矩、母线电压纹波引起的力矩波动等扰动力矩,严重影响了大口径望远镜的控制精度。With the increasing demand for space target observation, large-aperture telescopes have emerged. Typical telescopes include the 8.2-meter-diameter VLT, the 10-meter-diameter Keck, and the 10.4-meter-diameter GTC. As the diameter of the telescope increases, higher requirements are placed on the drive control system, and the traditional integral permanent magnet synchronous motor cannot meet the drive capability requirements of the control system of the larger diameter telescope. Further, the parallel drive mechanism of the multi-permanent magnet synchronous motor has the advantages of large driving torque and easy implementation, and has become the first choice for the drive mechanism of large-diameter telescopes. However, the parallel drive mechanism of the multi-permanent-magnet synchronous motor is not perfect. It affects the control accuracy of large aperture telescopes.
发明内容SUMMARY OF THE INVENTION
有鉴于此,为解决现有技术中扰动力矩影响电机控制精度的问题,本发明提供一种多电机并行驱动控制方法,其包括速度控制器、电机组、转台控制器和转台,所述多电机并行驱动控制方法包括如下步骤:In view of this, in order to solve the problem that the disturbance torque affects the control accuracy of the motor in the prior art, the present invention provides a multi-motor parallel drive control method, which includes a speed controller, a motor group, a turntable controller and a turntable. The parallel drive control method includes the following steps:
步骤S1,所述速度控制器以速度误差Δω作为输入值计算出电机组电流参考值 Step S1, the speed controller uses the speed error Δω as the input value to calculate the current reference value of the motor group
步骤S2,将所述电机组电流参考值与扰动力矩的补偿电流值icom求差,得到电机组电流控制器的参考值 Step S2, set the current reference value of the motor group Calculate the difference with the compensation current value i com of the disturbance torque to obtain the reference value of the motor unit current controller
步骤S3,通过所述电机组电流控制器的参考值控制各个电机输出合力矩Te;Step S3, pass the reference value of the motor group current controller control each motor to output the resultant torque Te ;
步骤S4,以所述合力矩Te与所述扰动力矩TL的差值作为所述转台控制器上的驱动力矩T,通过所述驱动力矩T控制所述转台。In step S4, the difference between the resultant torque T e and the disturbance torque T L is used as the driving torque T on the turntable controller, and the turntable is controlled by the driving torque T.
较佳地,在步骤S1中,速度误差Δω为参考速度ω*与所述转台控制器的输出速度反馈值ω的差值。Preferably, in step S1, the speed error Δω is the difference between the reference speed ω * and the output speed feedback value ω of the turntable controller.
较佳地,所述扰动力矩的补偿电流值icom由扰动力矩的估计值除以力矩系数得到;所述扰动力矩的估计值是由所述扰动补偿器以所述转台的位置值θ和电机组电流控制器的参考值为输入计算得到的。Preferably, the compensation current value i com of the disturbance torque is determined by the estimated value of the disturbance torque Divided by the torque coefficient to obtain; the estimated value of the disturbance torque is the reference value of the position value θ of the turntable and the motor unit current controller by the disturbance compensator Calculated for the input.
较佳地,所述力矩系数表示为: Preferably, the moment coefficient is expressed as:
其中,p为电机的磁极对数,ΨPM为电机的磁通。Among them, p is the number of pole pairs of the motor, and Ψ PM is the magnetic flux of the motor.
较佳地,所述扰动补偿器执行计算的数学表达式为:Preferably, the mathematical expression for the calculation performed by the disturbance compensator is:
其中,γ1和γ2分别为速度低通滤波器系数,s为复变量,ω(s)为转台速度的变量,θ(s)为转台位置的复变量,为扰动力矩估计值的复变量,p为电机的磁极对数,ΨPM为电机的磁通,J为转台的转动惯量,为电流控制器的参考值的复变量。Among them, γ 1 and γ 2 are the velocity low-pass filter coefficients, respectively, s is the complex variable, ω(s) is the variable of the speed of the turntable, θ(s) is the complex variable of the position of the turntable, is the complex variable of the estimated value of disturbance torque, p is the number of pole pairs of the motor, Ψ PM is the magnetic flux of the motor, J is the moment of inertia of the turntable, A complex variable that is the reference value of the current controller.
较佳地,所述电机组包括n个电机,所述电机为永磁同步电机,通过基于母线电压补偿的电机电流控制器控制所述电机,所述基于母线电压补偿的电机电流控制器包括d轴PI控制器和q轴PI控制器,所述基于母线电压补偿的电机电流控制器能够执行如下步骤:Preferably, the motor group includes n motors, the motors are permanent magnet synchronous motors, and the motors are controlled by a motor current controller based on bus voltage compensation, and the motor current controller based on bus voltage compensation includes d Axis PI controller and q-axis PI controller, the motor current controller based on bus voltage compensation can perform the following steps:
步骤S11,d轴PI控制器以为参考值且以电流id为反馈值计算得到d轴电压值dout;q轴PI控制器以为参考值且以电流iq为反馈值计算得到q轴电压值qout;In step S11, the d-axis PI controller uses is the reference value and the current id is used as the feedback value to calculate the d -axis voltage value dout; the q-axis PI controller uses is the reference value and the q-axis voltage value qout is calculated by taking the current i q as the feedback value;
步骤S12,将d轴电压值dout进行母线电压补偿,以得到d-q坐标系中的电压值vd;将q轴电压值qout进行母线电压补偿,以得到d-q坐标系中的电压值vq;Step S12, perform bus voltage compensation on the d-axis voltage value doout to obtain the voltage value v d in the dq coordinate system; perform bus voltage compensation on the q-axis voltage value qout to obtain the voltage value v q in the dq coordinate system;
步骤S13,对d-q坐标系中的电压值vd进行派克Park逆变换,以得到α-β坐标系中的电压vβ;对d-q坐标系中的电压值vq进行Park逆变换,以得到α-β坐标系中的电压vα;Step S13, perform inverse Park transform on the voltage value v d in the dq coordinate system to obtain the voltage v β in the α-β coordinate system; perform inverse Park transform on the voltage value v q in the dq coordinate system to obtain α - the voltage v α in the beta coordinate system;
步骤S14,将电压vα和电压vβ进行控制矢量脉宽调制,调制信号控制对永磁同步电机100三相电压va、vb和vc的调节。In step S14, the voltage v α and the voltage v β are controlled by vector pulse width modulation, and the modulation signal controls the adjustment of the three-phase voltages v a , v b and vc of the permanent magnet synchronous motor 100 .
较佳地,在步骤S11中,电流iq是根据永磁同步电机的电角度θe,对电流iα进行Park变换得到的;电流id是根据永磁同步电机的电角度θe,对电流iβ进行Park变换得到的;电流iα是永磁同步电机的A相电流ia经过克拉克Clarke变换得到的;电流iβ是永磁同步电机的B相电流ib经过Clarke变换得到的。Preferably, in step S11, the current i q is obtained by performing Park transformation on the current i α according to the electrical angle θ e of the permanent magnet synchronous motor; the current id is obtained according to the electrical angle θ e of the permanent magnet synchronous motor, The current i β is obtained by the Park transformation; the current i α is obtained by the Clarke transformation of the A-phase current i a of the permanent magnet synchronous motor; the current i β is obtained by the Clarke transformation of the B -phase current ib of the permanent magnet synchronous motor.
较佳地,在步骤S12中,d-q坐标系中的电压值vd表示为:Preferably, in step S12, the voltage value v d in the dq coordinate system is expressed as:
其中,vset为所需的母线电压,vdc为母线电压检测值;Among them, v set is the required bus voltage, and v dc is the bus voltage detection value;
在步骤S12中,d-q坐标系中的电压值vq表示为:In step S12, the voltage value vq in the dq coordinate system is expressed as:
其中,vset为所需的母线电压,vdc为对应母线电压检测值。Among them, v set is the required bus voltage, and v dc is the detected value of the corresponding bus voltage.
本发明还提供一种基于扰动补偿的多电机并行驱动控制系统,其包括速度控制器、第一运算器、电机组、第二运算器、转台控制器、转台、扰动补偿器和第三运算器;所述第一运算器分别与所述速度控制器、所述电机组和所述扰动补偿器连接,所述第二运算器分别与所述电机组和所述转台控制器连接,所述第三运算器分别与所述速度控制器和所述转台控制器连接,所述转台分别与所述转台控制器和所述扰动补偿器连接;The present invention also provides a multi-motor parallel drive control system based on disturbance compensation, which includes a speed controller, a first operator, a motor group, a second operator, a turntable controller, a turntable, a disturbance compensator and a third operator ; The first arithmetic unit is respectively connected with the speed controller, the motor unit and the disturbance compensator, the second arithmetic unit is respectively connected with the motor unit and the turntable controller, and the first arithmetic unit is respectively connected with the motor unit and the turntable controller. Three arithmetic units are respectively connected with the speed controller and the turntable controller, and the turntable is respectively connected with the turntable controller and the disturbance compensator;
所述速度控制器用于以速度误差Δω作为输入值计算出电机组电流参考值所述第一运算器用于将电机组电流参考值与扰动力矩的补偿电流值icom求差,得到电机组电流控制器的参考值所述电机组用于依据电机组电流控制器的参考值输出合力矩Te;所述第二运算器用于计算合力矩Te与扰动力矩TL的差值,以得到驱动力矩T;所述转台控制器通过驱动力矩T控制所述转台运动;所述转台控制器的输出速度ω反馈给所述第三运算器;所述第三运算器用于计算速度误差Δω;所述扰动补偿器用于计算扰动力矩的补偿电流值icom。The speed controller is used to calculate the current reference value of the motor group with the speed error Δω as the input value The first arithmetic unit is used to convert the motor group current reference value Calculate the difference with the compensation current value i com of the disturbance torque to obtain the reference value of the motor unit current controller The motor group is used for the reference value of the current controller according to the motor group Output the resultant torque T e ; the second calculator is used to calculate the difference between the resultant torque T e and the disturbance torque TL to obtain the driving torque T; the turntable controller controls the turntable movement through the driving torque T; the The output speed ω of the turntable controller is fed back to the third calculator; the third calculator is used to calculate the speed error Δω; the disturbance compensator is used to calculate the compensation current value i com of the disturbance torque.
与现有技术比较本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
多电机并行驱动控制方法和控制系统通过增加扰动力矩的补偿实现了对多电机并行控制系统中的电机齿槽力矩和摩擦力矩的有效补偿,增加了电机控制精度,解决了扰动力矩影响电机控制精度的问题。The multi-motor parallel drive control method and control system realize effective compensation for the motor cogging torque and friction torque in the multi-motor parallel control system by increasing the compensation of the disturbance torque, increase the motor control accuracy, and solve the problem that the disturbance torque affects the motor control accuracy. The problem.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明中多电机并行驱动控制方法的流程图;Fig. 1 is the flow chart of the multi-motor parallel drive control method in the present invention;
图2为本发明中多电机并行驱动控制方法的原理图;2 is a schematic diagram of a multi-motor parallel drive control method in the present invention;
图3为本发明中扰动补偿器的原理图;3 is a schematic diagram of a disturbance compensator in the present invention;
图4为本发明中基于母线电压补偿的电机电流控制器的原理框图。FIG. 4 is a schematic block diagram of a motor current controller based on bus voltage compensation in the present invention.
附图标记:Reference number:
1、速度控制器;2、第一运算器;3、电机组;4、第二运算器;1. Speed controller; 2. First calculator; 3. Motor group; 4. Second calculator;
5、转台控制器;6、转台;7、扰动补偿器;8、第三运算器;5. Turntable controller; 6. Turntable; 7. Disturbance compensator; 8. Third calculator;
31、电机;50、d轴PI控制器;60、q轴PI控制器;100、永磁同步电机。31, motor; 50, d-axis PI controller; 60, q-axis PI controller; 100, permanent magnet synchronous motor.
具体实施方式Detailed ways
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。The above and other technical features and advantages of the present invention will be described in more detail below with reference to the accompanying drawings.
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "first" and "second" are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two unless expressly and specifically defined otherwise.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, terms such as "installation", "connection", "connection", "fixation" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention.
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as specific system structures and technologies are set forth in order to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.
在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solutions of the present invention, the following specific embodiments are used for description.
实施例一Example 1
本发明提供一种多电机并行驱动控制方法,特别适用于存在多种扰动因素的多永磁同步电机并行驱动控制系统。进一步适用于存在多种扰动因素的望远镜多永磁同步电机并行驱动控制系统。The invention provides a multi-motor parallel drive control method, which is particularly suitable for a multi-permanent magnet synchronous motor parallel drive control system with multiple disturbance factors. It is further suitable for the parallel drive control system of the multi-permanent magnet synchronous motor of the telescope with multiple disturbance factors.
图1为本发明中多电机并行驱动控制方法的流程图;图2为本发明中多电机并行驱动控制方法的原理图。如图1和图2所示,本发明提出的一种多电机并行驱动控制方法,其包括如下步骤:FIG. 1 is a flow chart of a multi-motor parallel drive control method in the present invention; FIG. 2 is a schematic diagram of the multi-motor parallel drive control method in the present invention. As shown in FIG. 1 and FIG. 2 , a multi-motor parallel drive control method proposed by the present invention includes the following steps:
步骤S1,速度控制器1以速度误差Δω作为输入值计算出电机组电流参考值 Step S1, the speed controller 1 uses the speed error Δω as the input value to calculate the current reference value of the motor group
步骤S2,将电机组电流参考值与扰动力矩的补偿电流值icom求差,得到电机组电流控制器的参考值 Step S2, set the current reference value of the motor group Calculate the difference with the compensation current value i com of the disturbance torque to obtain the reference value of the motor unit current controller
步骤S3,通过电机组电流控制器的参考值控制各个电机输出合力矩Te;Step S3, pass the reference value of the motor group current controller control each motor to output the resultant torque Te ;
步骤S4,以合力矩Te与扰动力矩TL的差值作为转台控制器5上的驱动力矩T,通过驱动力矩T控制转台6。In step S4, the difference between the resultant torque T e and the disturbance torque TL is used as the driving torque T on the turntable controller 5, and the turntable 6 is controlled by the driving torque T.
进一步,在执行步骤S1之前,先计算参考速度ω*与速度反馈值ω的误差值,该误差值即为速度误差Δω。Further, before step S1 is performed, the error value between the reference speed ω * and the speed feedback value ω is calculated, and the error value is the speed error Δω.
在驱动力矩T的控制作用下,转台控制器5的输出速度ω精确跟随参考速度ω*的变化。Under the control of the driving torque T, the output speed ω of the turntable controller 5 precisely follows the change of the reference speed ω * .
在本实施例中,由电机组输出合力矩Te,电机组由n个电机组成,电机的数量由实际驱动力矩需求决定,对各个电机实行并行驱动控制。各个电机均设有有电机电流控制器,各个电机电流控制器以电机组电流控制器的参考值为参考分别控制各个电机输出力矩,各个电机输出力矩叠加即为电机组的输出合力矩Te。各个电机输出力矩可以分别用Te1、Te2……Ten表示。In this embodiment, the combined torque Te is output by the motor group, the motor group is composed of n motors, the number of motors is determined by the actual driving torque demand, and parallel driving control is implemented for each motor. Each motor is provided with a motor current controller, and each motor current controller is based on the reference value of the motor group current controller. In order to control the output torque of each motor separately for reference, the superposition of the output torque of each motor is the output torque Te of the motor group. The output torque of each motor can be represented by T e1 , T e2 . . . T en respectively.
扰动补偿器7以转台6的位置值θ和电机组电流控制器的参考值为输入,计算得到扰动力矩的估计值扰动力矩的估计值除以力矩系数得到扰动力矩的补偿电流值icom。力矩系数表示为: The disturbance compensator 7 uses the position value θ of the turntable 6 and the reference value of the motor group current controller is the input, the estimated value of the disturbance torque is calculated Estimated value of disturbance torque The compensation current value i com of the disturbance torque is obtained by dividing by the torque coefficient. The moment coefficient is expressed as:
图3为本发明中扰动补偿器的原理图。如图3所示,该扰动补偿器7的原理是基于负载的转动惯量和编码器位置反馈数据来计算系统的多种扰动力矩,并据此产生一个扰动补偿量,然后反馈到电机组电流控制器的参考输入端,以优化最终的电流给定值,从而达到抑制系统扰动的目的。FIG. 3 is a schematic diagram of a disturbance compensator in the present invention. As shown in Figure 3, the principle of the disturbance compensator 7 is to calculate various disturbance torques of the system based on the moment of inertia of the load and the feedback data of the encoder position, and generate a disturbance compensation amount accordingly, which is then fed back to the current control of the motor group The reference input terminal of the device is used to optimize the final current given value, so as to achieve the purpose of suppressing system disturbance.
扰动补偿器7执行计算的数学表达式为:The mathematical expression for the calculation performed by the disturbance compensator 7 is:
其中,γ1和γ2分别为速度低通滤波器系数,s为复变量,ω(s)为转台速度的变量,θ(s)为转台位置的复变量,为扰动力矩估计值的复变量,p为电机31的磁极对数,ΨPM为电机31的磁通,J为转台的转动惯量,为电流控制器的参考值的复变量。Among them, γ 1 and γ 2 are the velocity low-pass filter coefficients, respectively, s is the complex variable, ω(s) is the variable of the speed of the turntable, θ(s) is the complex variable of the position of the turntable, is the complex variable of the estimated value of the disturbance torque, p is the number of pole pairs of the motor 31, Ψ PM is the magnetic flux of the motor 31, J is the moment of inertia of the turntable, A complex variable that is the reference value of the current controller.
图4为本发明中基于母线电压补偿的电机电流控制器的原理框图。如图4所示,进一步,本实施例中的驱动电机优选为永磁同步电机,基于永磁同步电机电流控制器均采用基于空间矢量的控制算法,但是,该控制算法受电机母线电压波动的影响比较明显,会引起较大的电机力矩波动,因此需要对母线电压进行软件补偿。基于母线电压补偿的电机电流控制器的执行如下步骤:FIG. 4 is a schematic block diagram of a motor current controller based on bus voltage compensation in the present invention. As shown in FIG. 4 , further, the drive motor in this embodiment is preferably a permanent magnet synchronous motor, and the current controller based on the permanent magnet synchronous motor adopts a control algorithm based on space vector, but the control algorithm is affected by the voltage fluctuation of the motor bus. The influence is obvious, which will cause large motor torque fluctuations, so it is necessary to perform software compensation for the bus voltage. The implementation of the motor current controller based on bus voltage compensation is as follows:
步骤S11,基于母线电压补偿的电机电流控制器包括d轴PI控制器50和q轴PI控制器60,d轴PI控制器50以为参考值且以电流id为反馈值计算得到d轴电压值dout;q轴PI控制器60以为参考值且以电流iq为反馈值计算得到q轴电压值qout。Step S11, the motor current controller based on bus voltage compensation includes a d-axis PI controller 50 and a q-axis PI controller 60, and the d-axis PI controller 50 is is the reference value and takes the current id as the feedback value to calculate the d -axis voltage value dout; the q-axis PI controller 60 uses is the reference value and takes the current i q as the feedback value to calculate the q-axis voltage value qout.
步骤S12,将d轴电压值dout进行母线电压补偿,以得到d-q坐标系中的电压值vd;将q轴电压值qout进行母线电压补偿,以得到d-q坐标系中的电压值vq;Step S12, perform bus voltage compensation on the d-axis voltage value doout to obtain the voltage value v d in the dq coordinate system; perform bus voltage compensation on the q-axis voltage value qout to obtain the voltage value v q in the dq coordinate system;
步骤S13,对d-q坐标系中的电压值vd进行Park逆变换,以得到α-β坐标系中的电压vβ;对d-q坐标系中的电压值vq进行Park逆变换,以得到α-β坐标系中的电压vα;Step S13, perform inverse Park transformation on the voltage value v d in the dq coordinate system to obtain the voltage v β in the α-β coordinate system; perform inverse Park transformation on the voltage value v q in the dq coordinate system to obtain α- the voltage v α in the beta coordinate system;
步骤S14,将电压vα和电压vβ进行控制矢量脉宽调制(SVPWN),调制信号控制对永磁同步电机100三相电压va、vb和vc的调节。In step S14, the voltage v α and the voltage v β are controlled by vector pulse width modulation (SVPWN), and the modulation signal controls the adjustment of the three-phase voltages v a , v b and v c of the permanent magnet synchronous motor 100 .
在步骤S11中,电流iq是根据永磁同步电机100的电角度θe,对电流iα进行Park变换得到的;电流id是根据永磁同步电机100的电角度θe,对电流iβ进行Park变换得到的。而α-β坐标系中的电流iα是永磁同步电机100的A相电流ia经过Clarke变换得到的;α-β坐标系中的电流iβ是永磁同步电机100的B相电流ib经过Clarke变换得到的。In step S11, the current i q is obtained by performing Park transformation on the current i α according to the electrical angle θ e of the permanent magnet synchronous motor 100 ; β is obtained by Park transform. The current i α in the α-β coordinate system is obtained by Clarke transformation of the A-phase current i a of the permanent magnet synchronous motor 100 ; the current i β in the α-β coordinate system is the B-phase current i of the permanent magnet synchronous motor 100 b is obtained by Clarke transformation.
Park变换即为派克变换,也译帕克变换,英语表述为Park's Transformation。Clarke变换为克拉克变换。Park transformation is Park's transformation, also translated Park's transformation, the English expression is Park's Transformation. Clarke transform is Clarke transform.
在步骤S11中,为了保证永磁同步电机输出最大的力矩,采用的电流控制方式。In step S11, in order to ensure the maximum torque output by the permanent magnet synchronous motor, adopt current control method.
在步骤S12中,d-q坐标系中的电压值vd表示为:In step S12, the voltage value v d in the dq coordinate system is expressed as:
其中,vset为所需的母线电压,vdc为母线电压检测值。Among them, v set is the required bus voltage, and v dc is the detected value of the bus voltage.
在步骤S12中,d-q坐标系中的电压值vq表示为:In step S12, the voltage value vq in the dq coordinate system is expressed as:
其中,vset为所需的母线电压,vdc为对应母线电压检测值。Among them, v set is the required bus voltage, and v dc is the detected value of the corresponding bus voltage.
本发明专利通过设计扰动补偿器实现了对多电机并行控制系统中的电机齿槽力矩和摩擦力矩的有效补偿,同时考虑了母线电压纹波对电机力矩波动的补偿,适用于存在多种扰动因素的多电机并行驱动的大口径望远镜控制系统。The patent of the present invention realizes the effective compensation of the motor cogging torque and friction torque in the multi-motor parallel control system by designing the disturbance compensator, and considers the compensation of the motor torque fluctuation caused by the bus voltage ripple, which is suitable for the existence of various disturbance factors. The control system of a large aperture telescope driven by multiple motors in parallel.
本发明提供一种基于扰动补偿的多电机并行驱动控制系统,该系统能够执行上述的一种多电机并行驱动控制方法。基于扰动补偿的多电机并行驱动控制系统,其包括:The present invention provides a multi-motor parallel drive control system based on disturbance compensation, which can implement the above-mentioned multi-motor parallel drive control method. A multi-motor parallel drive control system based on disturbance compensation, which includes:
速度控制器1、第一运算器2、电机组3、第二运算器4、转台控制器5、转台6、扰动补偿器7和第三运算器8。第一运算器2分别与速度控制器1、电机组3和扰动补偿器7连接,第二运算器4分别与电机组3和转台控制器5连接,第三运算器8分别与速度控制器1和转台控制器5连接。转台6分别与转台控制器5和扰动补偿器7连接。Speed controller 1 , first arithmetic unit 2 , motor group 3 , second arithmetic unit 4 , turntable controller 5 , turntable 6 , disturbance compensator 7 and third arithmetic unit 8 . The first arithmetic unit 2 is respectively connected with the speed controller 1, the motor unit 3 and the disturbance compensator 7, the second arithmetic unit 4 is respectively connected with the motor unit 3 and the turntable controller 5, and the third arithmetic unit 8 is respectively connected with the speed controller 1 Connect to the turntable controller 5. The turntable 6 is respectively connected with the turntable controller 5 and the disturbance compensator 7 .
速度控制器1用于以速度误差Δω作为输入值计算出电机组电流参考值第一运算器2用于将电机组电流参考值与扰动力矩的补偿电流值icom求差,得到电机组电流控制器的参考值电机组3用于依据电机组电流控制器的参考值输出合力矩Te;第二运算器4用于计算合力矩Te与扰动力矩TL的差值,以得到驱动力矩T;转台控制器5通过驱动力矩T控制转台6运动。转台控制器5的输出速度ω反馈给第三运算器8。第三运算器8用于计算参考速度ω*与转台控制器5的输出速度ω的差值,以获得速度误差Δω。扰动补偿器7用于计算扰动力矩的补偿电流值icom。The speed controller 1 is used to calculate the current reference value of the motor group with the speed error Δω as the input value The first calculator 2 is used to convert the current reference value of the motor group Calculate the difference with the compensation current value i com of the disturbance torque to obtain the reference value of the motor unit current controller Motor group 3 is used as a reference value according to the motor group current controller Output the resultant torque T e ; the second calculator 4 is used to calculate the difference between the resultant torque T e and the disturbance torque TL to obtain the driving torque T; the turntable controller 5 controls the turntable 6 to move through the driving torque T. The output speed ω of the turntable controller 5 is fed back to the third arithmetic unit 8 . The third calculator 8 is used to calculate the difference between the reference speed ω * and the output speed ω of the turntable controller 5 to obtain the speed error Δω. The disturbance compensator 7 is used to calculate the compensation current value i com of the disturbance torque.
本发明通过设计扰动补偿器实现了对多电机并行控制系统中的电机齿槽力矩和摩擦力矩的有效补偿,另外,本发明考虑了母线电压纹波对电机力矩波动的补偿,因此,本发明提供的基于扰动补偿的多电机并行驱动控制系统和多电机并行驱动控制方法适用于存在多种扰动因素的多电机并行驱动的大口径望远镜控制系统。The present invention realizes effective compensation for the motor cogging torque and friction torque in the multi-motor parallel control system by designing the disturbance compensator. In addition, the present invention considers the compensation of the motor torque fluctuation caused by the bus voltage ripple. Therefore, the present invention provides The multi-motor parallel drive control system based on disturbance compensation and the multi-motor parallel drive control method are suitable for the control system of the multi-motor parallel drive large aperture telescope with multiple disturbance factors.
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it is still possible to implement the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910226499.0A CN109995295A (en) | 2019-03-25 | 2019-03-25 | Multi-motor parallel drive control method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910226499.0A CN109995295A (en) | 2019-03-25 | 2019-03-25 | Multi-motor parallel drive control method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109995295A true CN109995295A (en) | 2019-07-09 |
Family
ID=67131472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910226499.0A Pending CN109995295A (en) | 2019-03-25 | 2019-03-25 | Multi-motor parallel drive control method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109995295A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113726228A (en) * | 2021-08-30 | 2021-11-30 | 西安安凡达智能电机有限公司 | Multi-motor synchronous control method and multi-motor synchronous control system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6901320B2 (en) * | 2003-01-15 | 2005-05-31 | Visteon Global Technologies, Inc. | Friction compensation in a vehicle steering system |
JP6041075B2 (en) * | 2014-10-10 | 2016-12-07 | 株式会社安川電機 | Electric motor control device |
CN106549407A (en) * | 2016-12-28 | 2017-03-29 | 江苏金风科技有限公司 | The control method and equipment of the super capacitor in micro-capacitance sensor |
CN106911280A (en) * | 2017-03-13 | 2017-06-30 | 江苏大学 | Permanent-magnetism linear motor method for controlling position-less sensor based on new disturbance observer |
CN108242905A (en) * | 2018-03-09 | 2018-07-03 | 核工业理化工程研究院 | Using the control method and control system of the permanent magnet synchronous motor of large rotating inertia |
-
2019
- 2019-03-25 CN CN201910226499.0A patent/CN109995295A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6901320B2 (en) * | 2003-01-15 | 2005-05-31 | Visteon Global Technologies, Inc. | Friction compensation in a vehicle steering system |
JP6041075B2 (en) * | 2014-10-10 | 2016-12-07 | 株式会社安川電機 | Electric motor control device |
CN106549407A (en) * | 2016-12-28 | 2017-03-29 | 江苏金风科技有限公司 | The control method and equipment of the super capacitor in micro-capacitance sensor |
CN106911280A (en) * | 2017-03-13 | 2017-06-30 | 江苏大学 | Permanent-magnetism linear motor method for controlling position-less sensor based on new disturbance observer |
CN108242905A (en) * | 2018-03-09 | 2018-07-03 | 核工业理化工程研究院 | Using the control method and control system of the permanent magnet synchronous motor of large rotating inertia |
Non-Patent Citations (3)
Title |
---|
曲立志: "基于无电解电容驱动器的空调永磁电机控制策略研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 * |
纪科辉等: "采用扰动转矩观测器的低速电机伺服系统", 《中国电机工程学报》 * |
邓永停等: "基于扰动力矩观测器的大口径望远镜低速控制", 《光学精密工程》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113726228A (en) * | 2021-08-30 | 2021-11-30 | 西安安凡达智能电机有限公司 | Multi-motor synchronous control method and multi-motor synchronous control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107359837B (en) | Permanent magnet synchronous motor torque control method based on sliding mode observer and active disturbance rejection | |
CN105680754B (en) | A kind of rectangular axis current phasor composite controller of permagnetic synchronous motor | |
CN107786140B (en) | A robust fault-tolerant predictive control method and device considering loss of field fault | |
CN113691186B (en) | Position angle compensation method for rotor control without position sensor of permanent magnet synchronous motor | |
CN110798116B (en) | Motor vector composite controller based on armature model independent feedforward compensation | |
CN107883990B (en) | Zero calibration method and system for permanent magnet synchronous motor rotary transformer for electric automobile | |
WO2021174582A1 (en) | Position sensorless permanent magnet synchronous motor control method and automobile power system | |
CN107276473B (en) | Permanent-magnet synchronous motor with five degrees of freedom without bearing Fuzzy Neural Network Decoupling controller | |
CN105227025A (en) | A kind of permagnetic synchronous motor low carrier is than control system without position sensor and control method thereof | |
CN111585491A (en) | Torque compensation method for permanent magnet synchronous motor | |
CN113067505B (en) | Method for compensating voltage vector in control process of permanent magnet synchronous motor | |
CN109560741B (en) | Permanent magnet synchronous motor system based on measurement error compensator and compensation method | |
CN108809185B (en) | Method and system for controlling motor torque of electric automobile | |
CN104158457A (en) | Torque calibration method for AC induction motor of electric vehicle | |
CN108649850B (en) | Current control method of built-in permanent magnet synchronous motor of UDE | |
JP5964613B2 (en) | Control circuit for motor drive inverter circuit and inverter device provided with the control circuit | |
CN106452256B (en) | On-Line Correction Method of Asynchronous Motor Parameters Based on Rotor Flux Observer | |
CN109995295A (en) | Multi-motor parallel drive control method and system | |
CN110112965A (en) | A kind of permanent magnet synchronous motor back-EMF observer method | |
DE102013202770A1 (en) | CONTROL DEVICE FOR AN ELECTRICITY MOTOR | |
CN110007228A (en) | A kind of permanent magnet synchronous motor scaling method based on torque and reactive power measurement | |
CN117997188A (en) | Self-adaptive high-order terminal sliding mode observer and sensorless control method of permanent magnet synchronous motor based on same | |
CN108540031B (en) | Rotating speed estimation method and torque control system of bearingless synchronous reluctance motor | |
CN114564053B (en) | Control method of control moment gyro frame system based on induction synchronizer error compensation | |
CN115622458A (en) | A Data-Driven Preset Performance Control Method for Permanent Magnet Synchronous Motors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190709 |
|
RJ01 | Rejection of invention patent application after publication |