CN109995220B - 一种提高反激式谐振开关电源ccm模式转换效率的方法 - Google Patents
一种提高反激式谐振开关电源ccm模式转换效率的方法 Download PDFInfo
- Publication number
- CN109995220B CN109995220B CN201711474027.4A CN201711474027A CN109995220B CN 109995220 B CN109995220 B CN 109995220B CN 201711474027 A CN201711474027 A CN 201711474027A CN 109995220 B CN109995220 B CN 109995220B
- Authority
- CN
- China
- Prior art keywords
- state
- signal
- onoff
- output
- duty
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/24—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Dc-Dc Converters (AREA)
Abstract
一种提高CCM模式下反激式谐振开关电源转换效率的控制方法,基于软开关反激谐振电路的控制系统,包括电流检测模块、状态检测模块、输出反馈模块、PWM模块以及驱动模块构成的控制系统与受控的开关电源连接起来构成闭环,该控制系统基于ONOFF控制方法,在软启动状态或ONOFF状态下对开关电源进行控制。电流检测模块、输出反馈模块采集实现恒压算法的基本参数,状态检测模块用于检测电路工作状态:软启动状态和ONOFF状态,PWM模块基于两个不同的工作状态对开关控制信号duty进行调制,经驱动模块输出合适的占空比,从而实现开关电源效率的提升。
Description
技术领域
本发明涉及开关电源领域,尤其涉及一种提高反激式准谐振开关电源CCM(电流连续模式)模式的转换效率的控制方法。
背景技术
开关电源一直朝着小型化、高频化、模块化、轻量化的方向发展。随着开关电源工作频率的不断上升,由于开关频率增大造成的开关损耗逐渐成为了一个严重的问题。因此,在开关电源的设计中,而需要仔细分析和处理开关损耗问题。
在谐振软开关电路中,理想状态下开关器件可以实现在零电压或零电流条件下切换,开关损耗为零。由此,在采用同一类型开关器件的条件下,谐振软开关电路的工作频率可以高出一个或几个数量级。采用准谐振技术控制开关管,使其在开关管两端电压最小时开通,在原边电流为零时关断开关管,可以很大程度地减少开关损耗,相比传统的反激式开关电源,可以很大程度提高效率;同时开通过程中因开关管承受的电压较低,产生的dv/dt也小,于是产生的EMI更小,可以有效减少电磁干扰等问题。另外,由于开关器件在零电压或零电流条件下动作,开关器件的动态过程大为改观,这也使得散热器尺寸有效减小,即可以明显减小设备尺寸及重量,开关器件可在高可靠性和高效率条件下工作。总而言之,准谐振开关技术具有很多优点,代表了开关电源的一个发展方向。而达到以上所述优点的前提就是准谐振开关电源电路中开关器件可以实现在准ZCS(零电流)或准ZVS(零电压)条件下切换,所以,精确实现开关器件在准ZCS(零电流)或者准ZVS(零电压)条件下切换,最大化降低开关损耗,便是设计的难点所在。
发明内容
为克服现有技术的局限和不足,本发明提出了一种提高反激式谐振开关电源CCM模式转换效率的方法,在CCM模式反激式谐振开关电源中精确实现原边MOS管的ZCS(零电流)关断以及准ZVS(零电压)开启,最大化降低原边MOS管的开关损耗,达到电源效率的提高。
为了实现上述目的,本发明采用的技术方案是:一种提高反激式谐振开关电源CCM模式转换效率的方法,基于软开关反激谐振电路的控制系统,其特征在于:包括电流检测模块、状态检测模块、PWM模块、输出反馈模块以及驱动模块构成的控制系统与受控的开关电源连接起来构成闭环,该控制系统基于ONOFF控制方法,在软启动状态或ONOFF状态下对开关电源进行控制,其中:
电流检测模块用于采集实现恒压算法的基本参数,包括一个比较器COMP1和一个D触发器D1,比较器COMP1的正端连接原边采样电阻电压Vs,负端接地,比较器COMP1输出信号VCOMP1连接D触发器D1的D输入端,D触发器D1的时钟端连接时钟信号CLK,作为系统的工作时钟CK,D触发器D1的输出端Q输出信号VCOMP1’,比较信号VCOMP1和VCOMP1’均输出给状态检测模块和PWM模块;
状态检测模块用于判断控制系统的工作状态是软启动状态还是ONOFF状态,包括一个计数器Counter1和一个D触发器D2,状态检测模块的输入信号为电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty,状态检测模块的输出信号为输出给输出反馈模块、PWM模块和驱动模块的工作状态信号State;定义State=0为软启动状态,State=1为ONOFF状态;D触发器D2的输入端D连接驱动模块输出的开关控制信号duty,时钟端输入时钟信号CLK作为系统的工作时钟CK,D触发器D2的输出端Q输出信号duty’、电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty以及D触发器D2的输出信号duty’均作为计数器Counter1的输入信号,计数器Counter1输出工作状态信号State;
输出反馈模块用于实现ONOFF状态下控制开关电源输出电压Vo的纹波大小,输出反馈模块的输入信号为副边输出电压Vo和状态检测模块输出的工作状态信号State,包括两个比较器COMP2和COMP3以及一个SR锁存器latch1,比较器COMP2将输出电压Vo与输出电压上限Vmax比较后输出VCOMP2连接至SR锁存器latch1的R端;比较器COMP3将输出电压下限Vmin与输出电压Vo比较输出VCOMP3连接至SR锁存器latch1的S端,比较器COMP2的正端接Vo,负端接输出电压上限Vmax,输出为VCOMP2,比较器COMP3的正端接输出电压下限Vmin,负端接Vo,输出为VCOMP3,SR锁存器latch1的Q端输出信号与状态控制信号State为一个与门and1的两个输入信号,与门的输出即为ONOFF使能信号Enable_ONOFF输出给驱动模块和PWM模块;
PWM模块用于控制开关电源的MOS管导通时间和关断时间,精确实现原边MOS管的零电流ZCS关断和准零电压ZVS开启,最大化降低原边MOS管的开关损耗;PWM模块的输入信号为输出反馈模块输出的ONOFF使能信号Enable_ONOFF、状态检测模块输出的工作状态信号State、电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty,PWM模块的输出信号为输入到驱动模块的MOS管关断信号Flag_off和MOS管开启信号Flag_on,以实现基于软启动及ONOFF两个不同的工作状态对开关控制信号duty进行调制;
驱动模块的输入为PWM模块输出的MOS管关断信号Flag_off和MOS管开启信号Flag_on以及状态检测模块输出的工作状态信号State和输出反馈模块输出的ONOFF使能信号Enable_ONOFF,驱动模块输出调制后的相应占空比开关控制信号duty,对开关电源功率管的开通和关断进行控制,实现开关电源效率的提升。
所述状态检测模块在系统上电后初始状态为State=0,当开关控制信号duty和电流检测模块输出信号VCOMP1、VCOMP1’满足:时,计数器开始计数counter1=counter1+1;当duty=0,且counter_Temp<counter1时,将计数器counter1的值赋给初始值赋为0的临时变量counter_Temp,即counter_Temp=counter1;当duty=0,且counter1=counter_Temp时,计数器counter1和counter_Temp全部清零;当counter1达到n时,5<=n<=20,即连续n个开关周期,原边电流在MOS管导通阶段均存在负电流,说明电路状态已经稳定,则输出工作状态信号State=1,即跳出软启动状态,进入ONOFF状态。
所述输出反馈模块在系统处于State=0即软启动状态时,ONOFF使能信号Enable_ONOFF置零;当系统处于State=1即ONOFF状态、且VCOMP2=1时ONOFF使能信号Enable_ONOFF=0,系统进入OFF状态,MOS管关断,初级绕组不会再向次级绕组传递能量,次级输出电压Vo开始下降,直至VCOMP3=1,ONOFF使能信号Enable_ONOFF=1,系统进入ON状态,MOS管开启,输出反馈模块将ONOFF使能信号Enable_ONOFF输出给驱动模块和PWM模块。
所述PWM模块包括三个计数器counter2、counter3、counter4和一个时间计数单元。计数器counter2是用来计数State=1即ONOFF状态下MOS管导通时原边电流零点个数,其输入信号为状态信号State、ONOFF使能信号Enable_ONOFF、占空比信号duty以及电流检测模块输出信号VCOMP1和VCOMP1’,输出为MOS管关断信号Flag_off,在State=1、Enable_ONOFF=1的情况下,当duty=1,时,计数器counter2开始计数;当duty=0时,计数器counter2清零,当计数器counter2=2时即输出MOS管关断信号Flag_off;计数器counter3用来计数State=0即软启动状态下MOS管导通时间以及State=1即ONOFF状态下()MOS管关闭时原边电流零点,其输入信号为状态信号State、ONOFF使能信号Enable_ONOFF、占空比信号duty以及电流检测模块输出信号VCOMP1和VCOMP1’,输出为MOS管开启信号Flag_on,当duty=0,时,计数器counter3开始计数;当duty=1时,计数器counter3清零,当counter3计数达到要求即可输出MOS管开启信号Flag_on。计数器counter4用于控制State=0即软启动状态下MOS管导通时间以及State=1即ONOFF状态下原边电流在MOS管导通阶段恒大于零,即时间长度Ttap=0时的MOS管关断,其输入信号为占空比信号duty,输出为MOS管关断信号Flag_off,当duty=1时,计数器counter4开始计数;当duty=0时,计数器counter4清零;时间计数单元用于计数State=1即ONOFF状态下的计数器counter2>=1且计数器counter2<=2时的时间长度Ttap,所以时间计数单元的输入信号是counter2和状态信号State,输出信号是时间长度Ttap,简单的说,计数器counter4和counter3分别用于控制State=0状态下的MOS管导通时间和MOS管关断时间;在State=1状态下,ONOFF使能信号Enable_ONOFF=1的前提下,由counter2和counter4共同控制MOS管导通时间,counter3控制MOS管关断时间,时间计数单元也是在State=1状态下工作;
若工作状态信号State=0,即系统处于软启动状态,系统给定导通时间Tonmax,此时一个开关周期内原边MOS管导通时间即为Tonmax,当计数器counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1并输入到驱动模块;当计数器counter3计数到4时,即为原边MOS管关闭后,原边电流的第四个零点,根据电容电压与电流的关系,此时对应原边MOS管关闭后漏源电压Vds谐振时的第二个谷底,即在这个时候导通MOS管可将开关损耗降到最低,此时将MOS管开启信号Flag_on置为1并输入到驱动模块;
若工作状态信号State=1,即系统处于ONOFF控制状态,当ONOFF使能信号Enable_ONOFF=1,计数器counter2=2或者Enable_ONOFF=1,计数器counter2=0,计数器counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1,并由时间计算单元计算计数器counter2>=1且计数器counter2<=2时的时间长度Ttap,当Ttap较大时,原边电流在MOS管导通阶段的负电流较大,并且负电流时间较长,返回电源的能量较大,传递给副边绕组的能量较少,系统整体效率较低,故当Ttap较小或者原边电流在MOS管导通时刚刚大于零时,即为最佳工作点,当系统工作点靠近最佳工作点时,系统整体效率较高,基于上述理论,系统给定一个Ttap的临界值Tset,若Ttap>Tset,当前工作点远离最佳工作点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第一个谷底处导通MOS管,即减小了MOS管关闭时间的同时也保证了在谷底导通,MOS管关断时间减小,则副边电流下降就减少,相应的下一工作周期原边电流整体被拉高,Ttap也就随之减小,使下一工作周期系统工作点靠近最佳工作点,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=2时,MOS管开启信号Flag_on置为1;若Ttap=0,当前工作周期原边电流在MOS管导通阶段恒大于零,即没有过零点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第二个谷底处,MOS管导通,下一工作周期整体拉低原边电流,使下一工作周期系统工作点靠近最佳工作点,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=4时,MOS管开启信号Flag_on置为1;若0<Ttap<=Tset,当前工作周期系统工作点较为理想,逼近最佳工作点,仍维持上一周期的工作状态,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=N时,N对应着上一工作周期的工作状态,若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第二个谷底处导通,则N=4;若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第一个谷底处导通,则N=2,MOS管开启信号Flag_on置为1;PWM模块将MOS管关断信号Flag_off以及MOS管开启信号Flag_on输出到驱动模块,以实现对开关管占空比信号duty的控制。
所述驱动模块包括一个SR锁存器latch2、两个反相器inverter1和inverter2及两个与门and2和and3,SR锁存器latch2的S端接MOS管导通信号Flag_on,R端接MOS管关断信号Flag_off,SR锁存器latch2的输出端Q端连接与门and2的一个输入端,状态控制信号State连接与门and3的一个输入端,ONOFF使能信号Enable_ONOFF经反相器inverter1后连接与门and3的另一个输入端,与门and3的输出经反相器inverter2后连接与门and2的另一个输入端,与门and2输出控制开关控制信号duty;
当工作状态信号State=0时,驱动模块在MOS管开启信号Flag_on=1时,将开关管占空比信号duty置1,即将原边MOS管导通,在MOS管关断信号Flag_off=1时,将开关管占空比信号duty置0,即将原边MOS管关断;当工作状态信号State=1,ONOFF使能信号Enable_ONOFF=0时,电路处于OFF状态,驱动模块将开关管占空比信号duty置0;当工作状态信号State=1,ONOFF使能信号Enable_ONOFF=1时,系统处于ON状态,驱动模块在MOS管开启信号Flag_on=1时,将开关管占空比信号duty置1,即将原边MOS管导通,在MOS管关断信号Flag_off=1时,将开关管占空比信号duty置0,即将原边MOS管关断;重复上述过程进行循环控制开关电源功率管的开通和关断,以使系统更加稳定,从而获得更高的工作效率。
本发明的优点及显著效果:
1、本发明提出的设计方法可以精确实现开关管零电流或者零电压切换,有效减少电源开关损耗,提高电源效率。
2、本发明提出的ONOFF控制方法能够将输出电压有效稳定在一定纹波范围,实现对输出电压的有效控制。
3、本发明能适用于隔离式或者非隔离开关电源电路结构,具备通用性,可复用性和可移植性。
附图说明
图1是本发明控制方法的系统结构框图;
图2是电流检测模块的结构框图;
图3a是状态检测模块流程图;
图3b是状态检测模块结构图;
图4a是输出反馈模块的结构框图;
图4b是输出反馈模块流程图;
图5a是PWM模块软启动状态算法流程图;
图5b是ONOFF控制状态时ON状态下一个开关周期的原边电流和MOS管漏源电压Vds波形,图中是在Vds的第二个谷底导通MOS管;
图5c是ONOFF控制状态时PWM模块下对MOS管导通时间的控制,图中示意了MOS管漏源电压Vds在第二个谷底导通和在第一个谷底导通相互切换的情况;
图5d是PWM模块ONOFF控制状态算法流程图;
图6a是驱动模块的结构框图;
图6b是驱动模块流程图;
图7是具有本发明的CCM模式反激式谐振开关电源的闭环电路结构图实例。
具体实施方式
本发明提高CCM模式下反激式谐振开关电源转换效率的控制系统如图1及图7,基于包括电流检测模块、状态检测模块、输出反馈模块、PWM模块以及驱动模块构成的控制系统,该控制系统与受控的开关电源连接起来构成一个闭环。
如图2所示,电流检测模块由一个比较器COMP1以及一个D触发器D1构成,比较器COMP1的正端连接原边采样电阻电压Vs,负端连接地,输出为VCOMP1,当原边电流IL从正值变为负值时,比较器输出VCOMP1则会从1变到0;D触发器D1的输入信号D为VCOMP1,输入时钟信号CLK为控制电路工作时钟CK,输出信号Q为VCOMP1’,则由即可判断原边电流的零点,并将其输出给状态检测模块以及PWM模块。
如图1所示,状态检测模块用于判断恒压控制系统的工作状态,State=0为软启动状态,State=1为ONOFF状态。状态检测模块工作流程可以由图3a概括,软启动初期,由于输出电压Vo较低,导致原边电流在导通阶段始终大于0,随着开关时间增加,原边电流稳定存在负电流时,说明系统已经稳定可以进入ONOFF控制状态。状态检测模块包括一个计数器Counter1和一个D触发器D2。系统上电后初始状态为State=0,当开关控制信号duty和电流检测模块输出信号VCOMP1,VCOMP1’满足: 时,说明在开关导通阶段原边电流存在负值,计数器开始计数counter1=counter1+1;如果在连续n(5<=n<=20)个开关周期MOS管导通阶段,原边电流均有过零点,则可说明电路已经稳定,可进入ONOFF控制状态,所以这里通过一个D触发器D2并引入一个初始值赋为0的临时变量counter_Temp,来判断counter1是否是在连续周期内增加,D触发器D2的输入信号D为开关控制信号duty,输入时钟信号CLK为控制电路工作时钟CK,输出信号Q为duty’。其电路结构如图3b所示,counter1部分由算法实现,当duty=0,且counter_Temp<counter1时,将计数器counter1的值赋给counter_Temp,即counter_Temp=counter1;当duty=0,且counter1=counter_Temp时,计数器counter1和counter_Temp全部清零。当counter1达到n(5<=n<=20)时,即连续n(5<=n<=20)个开关周期MOS管导通阶段,则输出工作状态信号State=1,即跳出软启动状态,进入到ONOFF状态,并将工作状态信号State输出给PWM模块,输出反馈模块以及驱动模块。
输出反馈模块主要用于稳定ONOFF状态下输出电压Vo纹波大小。如图4a所示,输出反馈模块包括两个比较器COMP2和COMP3以及一个SR锁存器latch1。COMP2的正端接Vo,负端接输出电压上限Vmax,当输出电压Vo超过上限Vmax,比较器COMP2输出VCOMP2=1,并接入到SR锁存器latch1的R端,将SR锁存器latch1输出信号Q1置零;COMP3的正端接输出电压下限Vmin,负端接Vo,当输出电压Vo低于下限Vmin,比较器COMP3输出VCOMP3=1,并接入到SR锁存器latch1的S端,将输出信号Q1置1。SR锁存器latch1的输出Q1与状态控制信号State输入到与门and1中,即可实现当State=0时,ONOFF使能信号Enable_ONOFF置零;当State=1时,即在ONOFF控制状态下,输出电压Vo超过上限Vmax,ONOFF使能信号Enable_ONOFF=0,电路进入OFF状态,MOS管关断,初级绕组不会再向次级绕组传递能量,输出电压Vo开始下降,直至输出电压Vo低于下限Vmin,ONOFF使能信号Enable_ONOFF=1,电路进入ON状态。如此循环将输出电压稳定在一定的纹波范围内。其工作流程大致如图4b所示。输出反馈模块将ONOFF使能信号Enable_ONOFF输出给驱动模块和PWM模块。
PWM模块用于控制MOS管导通时间和关断时间,精确实现原边MOS管的ZCS(零电流)关断以及准ZVS(零电压)开启。PWM模块包括三个计数器counter2,counter3,counter4和一个时间计数单元。时间计数单元用于计数State=1状态下的counter2>=1且counter2<=2时的时间长度Ttap;计数器counter2是用来计数MOS管导通阶段的原边电流零点个数,当duty=1,时,counter2开始计数;当duty=0时,counter2清零。计数器counter3用来计数MOS管关闭阶段的原边电流零点个数,当duty=0,时,counter3开始计数;当duty=1时,counter3清零。计数器counter4用于控制软启动状态下MOS管导通时间以及ONOFF状态下原边电流在MOS管导通阶段恒大于零(即Ttap=0)时的MOS管关断,当duty=1时,counter4开始计数;当duty=0时,counter4清零。
当控制系统处于软启动状态,即State=0,控制原边MOS管固定导通时间为Tonmax,当counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1并输入到驱动模块;然后由counter3计数原边MOS管关断后原边电流零点,当counter3=4时,即对应MOS管漏源电压Vds的第二个谷底,此时将MOS管开启信号Flag_on置为1并输入到驱动模块。图5a所示即为软启动状态下PWM模块工作流程。(几个计数器工作时间是否是什么时间)
当控制系统处于ONOFF控制状态即State=1时,如图5b所示为ONOFF控制状态下PWM模块工作流程。若ONOFF使能信号Enable_ONOFF=1,由计数器counter2计数MOS管导通阶段原边电流零点达到2时或者counter2=0,counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1。如图5c所示为计数器counter2计数MOS管导通阶段原边电流零点达到2时,MOS管关断信号Flag_off置为1。对于MOS管开启信号Flag_on何时置1,首先需要讨论最佳工作点的问题:在MOS管导通阶段,由时间计算单元计算counter2>=1且counter2<=2时的时间长度Ttap,当Ttap较小或者原边电流在MOS管导通时刚刚大于零时,电路的开关损耗较小且返回电源的能量较小,为电路的最佳工作点,电路整体效率较高。图5c示意了Ttap较小的情况,此时counter2=2时,MOS管关断信号Flag_off=1,实现零电流关断,并在MOS管关断后原边电流的第4个零点将MOS管开启信号Flag_on置为1,此时对应MOS管漏源电压Vds的第二个谷底,实现准零电压开启。所以,为保证电路始终工作在最佳工作点附近,系统给定一个Ttap的临界值Tset,在ONOFF使能信号Enable_ONOFF=1前提下,如图5b所示,若Ttap>Tset,说明当前工作点远离最佳工作点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第一个谷底处将MOS管导通,即counter3=2时,MOS管开启信号Flag_on置为1,这样保证了准零电压开启的同时减小了MOS管关断时间,整体拉高下一工作周期原边电流,减小Ttap,使下一工作周期电路工作点靠近最佳工作点;若Ttap=0,当前工作周期原边电流在MOS管导通阶段(此时的MOS管导通时间由Tonmax限制)恒大于零,即没有过零点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第二个谷底处将MOS管导通,即counter3=4时,MOS管开启信号Flag_on置为1,下一工作周期整体拉低原边电流,使下一工作周期电路工作点靠近最佳工作点;若0<Ttap<=Tset,当前工作周期电路工作点较为理想,逼近最佳工作点,仍维持上一周期的工作状态,即counter3=N时(N对应着上一工作周期的工作状态,若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第二个谷底处导通,则N=4;若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第一个谷底处导通,则N=2),MOS管开启信号Flag_on置为1。图5d示意了MOS管漏源电压Vds在第二个谷底导通和在第一个谷底导通相互切换的情况。PWM模块将MOS管关断信号Flag_off以及关MOS管开启信号Flag_on输出到驱动模块,以实现对开关管占空比信号duty的控制。
如图6a所示,驱动模块主要由一个SR锁存器latch2构成,SR锁存器latch2的S端接MOS管导通信号Flag_on,R端接MOS管关断信号Flag_off,输出端Q端输出信号Q2,并且与状态控制信号State、ONOFF使能信号Enable_ONOFF信号一起控制开关控制信号duty。其工作流程如图6b所示,工作状态信号State=0时,即软启动状态下,开关控制信号duty在MOS管开启信号Flag_on=1时置1,在MOS管关断信号Flag_off=1时duty置0。当工作状态信号State=1,即ONOFF控制状态下,ONOFF使能信号Enable_ONOFF=0时,电路处于OFF状态,开关管占空比信号duty置0;ONOFF使能信号Enable_ONOFF=1时,电路处于ON状态,开关控制信号duty在MOS管开启信号Flag_on=1时置1,在MOS管关断信号Flag_off=1时duty置0。重复上述过程进行循环控制开关电源功率管的开通和关断,以使系统更加稳定,从而获得更高的工作效率。
Claims (5)
1.一种提高反激式谐振开关电源CCM模式转换效率的方法,基于软开关反激谐振电路的控制系统,其特征在于:包括电流检测模块、状态检测模块、PWM模块、输出反馈模块以及驱动模块构成的控制系统与受控的开关电源连接起来构成闭环,该控制系统基于ONOFF控制方法,在软启动状态或ONOFF状态下对开关电源进行控制,其中:
电流检测模块用于采集实现恒压算法的基本参数,包括一个比较器COMP1和一个D触发器D1,比较器COMP1的正端连接原边采样电阻电压Vs,负端接地,比较器COMP1输出信号VCOMP1连接D触发器D1的D输入端,D触发器D1的时钟端连接时钟信号CLK,作为系统的工作时钟CK,D触发器D1的输出端Q输出信号VCOMP1’,比较信号VCOMP1和VCOMP1’均输出给状态检测模块和PWM模块;
状态检测模块用于判断控制系统的工作状态是软启动状态还是ONOFF状态,包括一个计数器Counter1和一个D触发器D2,状态检测模块的输入信号为电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty,状态检测模块的输出信号为输出给输出反馈模块、PWM模块和驱动模块的工作状态信号State;定义State=0为软启动状态,State=1为ONOFF状态;D触发器D2的输入端D连接驱动模块输出的开关控制信号duty,时钟端输入时钟信号CLK作为系统的工作时钟CK,D触发器D2的输出端Q输出信号duty’电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty以及D触发器D2的输出信号duty’均作为计数器Counter1的输入信号,计数器Counter1输出工作状态信号State;
输出反馈模块用于实现ONOFF状态下控制开关电源输出电压Vo的纹波大小,输出反馈模块的输入信号为副边输出电压Vo和状态检测模块输出的工作状态信号State,包括两个比较器COMP2和COMP3以及一个SR锁存器latch1,比较器COMP2将输出电压Vo与输出电压上限Vmax比较后输出VCOMP2连接至SR锁存器latch1的R端;比较器COMP3将输出电压下限Vmin与输出电压Vo比较输出VCOMP3连接至SR锁存器latch1的S端,比较器COMP2的正端接Vo,负端接输出电压上限Vmax,输出为VCOMP2,比较器COMP3的正端接输出电压下限Vmin,负端接Vo,输出为VCOMP3,SR锁存器latch1的Q端输出信号与状态控制信号State为一个与门and1的两个输入信号,与门的输出即为ONOFF使能信号Enable_ONOFF输出给驱动模块和PWM模块;
PWM模块用于控制开关电源的MOS管导通时间和关断时间,精确实现原边MOS管的零电流ZCS关断和准零电压ZVS开启,最大化降低原边MOS管的开关损耗;PWM模块的输入信号为输出反馈模块输出的ONOFF使能信号Enable_ONOFF、状态检测模块输出的工作状态信号State、电流检测模块输出的比较信号VCOMP1、VCOMP1’和驱动模块输出的开关控制信号duty,PWM模块的输出信号为输入到驱动模块的MOS管关断信号Flag_off和MOS管开启信号Flag_on,以实现基于软启动及ONOFF两个不同的工作状态对开关控制信号duty进行调制;
驱动模块的输入为PWM模块输出的MOS管关断信号Flag_off和MOS管开启信号Flag_on以及状态检测模块输出的工作状态信号State和输出反馈模块输出的ONOFF使能信号Enable_ONOFF,驱动模块输出调制后的相应占空比的开关控制信号duty,对开关电源MOS管的开通和关断进行控制,实现开关电源效率的提升。
2.根据权利要求1所述的提高反激式谐振开关电源CCM模式转换效率的方法,其特征在于:所述状态检测模块在系统上电后初始状态为State=0,当开关控制信号duty和电流检测模块输出信号VCOMP1、VCOMP1’满足:时,计数器开始计数counter1=counter1+1;当duty=0,且counter_Temp<counter1时,将计数器counter1的值赋给初始值赋为0的临时变量counter_Temp,即counter_Temp=counter1;当duty=0,且counter1=counter_Temp时,计数器counter1和counter_Temp全部清零;当counter1达到n时,5<=n<=20,即连续n个开关周期,原边电流在MOS管导通阶段均存在负电流,说明电路状态已经稳定,则输出工作状态信号State=1,即跳出软启动状态,进入ONOFF状态。
3.根据权利要求1所述的提高反激式谐振开关电源CCM模式转换效率的方法,其特征在于:所述输出反馈模块在系统处于State=0即软启动状态时,ONOFF使能信号Enable_ONOFF置零;当系统处于State=1即ONOFF状态、且VCOMP2=1时ONOFF使能信号Enable_ONOFF=0,系统进入OFF状态,MOS管关断,初级绕组不会再向次级绕组传递能量,次级输出电压Vo开始下降,直至VCOMP3=1,ONOFF使能信号Enable_ONOFF=1,系统进入ON状态,MOS管开启,输出反馈模块将ONOFF使能信号Enable_ONOFF输出给驱动模块和PWM模块。
4.根据权利要求1所述的提高反激式谐振开关电源CCM模式转换效率的方法,其特征在于:所述PWM模块包括三个计数器counter2、counter3、counter4和一个时间计数单元,计数器counter2是用来计数State=1即ONOFF状态下MOS管导通时原边电流零点个数,其输入信号为工作状态信号State、ONOFF使能信号Enable_ONOFF、开关控制信号duty以及电流检测模块输出信号VCOMP1和VCOMP1’,输出为MOS管关断信号Flag_off,在State=1、Enable_ONOFF=1的情况下,当duty=1,时,计数器counter2开始计数;当duty=0时,计数器counter2清零,当计数器counter2=2时即输出MOS管关断信号Flag_off;计数器counter3用来计数State=0即软启动状态下MOS管导通时间以及State=1即ONOFF状态下MOS管关闭时原边电流零点,其输入信号为工作状态信号State、ONOFF使能信号Enable_ONOFF、开关控制信号duty以及电流检测模块输出信号VCOMP1和VCOMP1’,输出为MOS管开启信号Flag_on,当duty=0,时,计数器counter3开始计数;当duty=1时,计数器counter3清零,当counter3计数达到要求即可输出MOS管开启信号Flag_on,计数器counter4用于控制State=0即软启动状态下MOS管导通时间以及State=1即ONOFF状态下原边电流在MOS管导通阶段恒大于零,即时间长度Ttap=0时的MOS管关断,其输入信号为开关控制信号duty,输出为MOS管关断信号Flag_off,当duty=1时,计数器counter4开始计数;当duty=0时,计数器counter4清零;时间计数单元用于计数State=1即ONOFF状态下的计数器counter2>=1且计数器counter2<=2时的时间长度Ttap,所以时间计数单元的输入信号是counter2和工作状态信号State,输出信号是时间长度Ttap,计数器counter4和counter3分别用于控制State=0状态下的MOS管导通时间和MOS管关断时间;在State=1状态下,ONOFF使能信号Enable_ONOFF=1的前提下,由counter2和counter4共同控制MOS管导通时间,counter3控制MOS管关断时间,时间计数单元也是在State=1状态下工作;
若工作状态信号State=0,即系统处于软启动状态,系统给定导通时间Tonmax,此时一个开关周期内原边MOS管导通时间即为Tonmax,当计数器counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1并输入到驱动模块;当计数器counter3计数到4时,即为原边MOS管关闭后,原边电流的第四个零点,根据电容电压与电流的关系,此时对应原边MOS管关闭后漏源电压Vds谐振时的第二个谷底,即在这个时候导通MOS管可将开关损耗降到最低,此时将MOS管开启信号Flag_on置为1并输入到驱动模块;
若工作状态信号State=1,即系统处于ONOFF控制状态,当ONOFF使能信号Enable_ONOFF=1,计数器counter2=2或者Enable_ONOFF=1,计数器counter2=0,计数器counter4计数到系统给定导通时间Tonmax时,MOS管关断信号Flag_off置为1,并由时间计算单元计算计数器counter2>=1且计数器counter2<=2时的时间长度Ttap,当Ttap较大时,原边电流在MOS管导通阶段的负电流较大,并且负电流时间较长,返回电源的能量较大,传递给副边绕组的能量较少,系统整体效率较低,故当Ttap较小或者原边电流在MOS管导通时刚刚大于零时,即为最佳工作点,当系统工作点靠近最佳工作点时,系统整体效率较高,系统给定一个Ttap的临界值Tset,若Ttap>Tset,当前工作点远离最佳工作点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第一个谷底处导通MOS管,即减小了MOS管关闭时间的同时也保证了在谷底导通,MOS管关断时间减小,则副边电流下降就减少,相应的下一工作周期原边电流整体被拉高,Ttap也就随之减小,使下一工作周期系统工作点靠近最佳工作点,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=2时,MOS管开启信号Flag_on置为1;若Ttap=0,当前工作周期原边电流在MOS管导通阶段恒大于零,即没有过零点,则本工作周期在原边MOS管关闭后漏源电压Vds谐振时的第二个谷底处,MOS管导通,下一工作周期整体拉低原边电流,使下一工作周期系统工作点靠近最佳工作点,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=4时,MOS管开启信号Flag_on置为1;若0<Ttap<=Tset,当前工作周期系统工作点较为理想,逼近最佳工作点,仍维持上一周期的工作状态,即当ONOFF使能信号Enable_ONOFF=1,计数器counter3=N时,N对应着上一工作周期的工作状态,若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第二个谷底处导通,则N=4;若上一工作周期,MOS管在关闭后漏源电压Vds谐振时的第一个谷底处导通,则N=2,MOS管开启信号Flag_on置为1;PWM模块将MOS管关断信号Flag_off以及MOS管开启信号Flag_on输出到驱动模块,以实现对开关控制信号duty的控制。
5.根据权利要求1所述的提高反激式谐振开关电源CCM模式转换效率的方法,其特征在于:所述驱动模块包括一个SR锁存器latch2、两个反相器inverter1和inverter2及两个与门and2和and3,SR锁存器latch2的S端接MOS管导通信号Flag_on,R端接MOS管关断信号Flag_off,SR锁存器latch2的输出端Q端连接与门and2的一个输入端,状态控制信号State连接与门and3的一个输入端,ONOFF使能信号Enable_ONOFF经反相器inverter1后连接与门and3的另一个输入端,与门and3的输出经反相器inverter2后连接与门and2的另一个输入端,与门and2输出开关控制信号duty;
当工作状态信号State=0时,驱动模块在MOS管开启信号Flag_on=1时,将开关控制信号duty置1,即将原边MOS管导通,在MOS管关断信号Flag_off=1时,将开关控制信号duty置0,即将原边MOS管关断;当工作状态信号State=1,ONOFF使能信号Enable_ONOFF=0时,电路处于OFF状态,驱动模块将开关控制信号duty置0;当工作状态信号State=1,ONOFF使能信号Enable_ONOFF=1时,系统处于ON状态,驱动模块在MOS管开启信号Flag_on=1时,将开关控制信号duty置1,即将原边MOS管导通,在MOS管关断信号Flag_off=1时,将开关控制信号duty置0,即将原边MOS管关断;重复上述过程进行循环控制开关电源MOS管的开通和关断,以使系统更加稳定,从而获得更高的工作效率。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711474027.4A CN109995220B (zh) | 2017-12-29 | 2017-12-29 | 一种提高反激式谐振开关电源ccm模式转换效率的方法 |
PCT/CN2018/125730 WO2019129291A1 (zh) | 2017-12-29 | 2018-12-29 | 一种提高反激式谐振开关电源ccm模式转换效率的方法 |
US16/959,001 US11323039B2 (en) | 2017-12-29 | 2018-12-29 | Method for improving conversion efficiency of CCM mode of flyback resonant switch power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711474027.4A CN109995220B (zh) | 2017-12-29 | 2017-12-29 | 一种提高反激式谐振开关电源ccm模式转换效率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109995220A CN109995220A (zh) | 2019-07-09 |
CN109995220B true CN109995220B (zh) | 2020-10-20 |
Family
ID=67066669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711474027.4A Active CN109995220B (zh) | 2017-12-29 | 2017-12-29 | 一种提高反激式谐振开关电源ccm模式转换效率的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11323039B2 (zh) |
CN (1) | CN109995220B (zh) |
WO (1) | WO2019129291A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111835093B (zh) * | 2020-09-17 | 2020-12-08 | 成都市易冲半导体有限公司 | 一种无线充电发射模块、系统以及低频信号传输方法 |
CN112491281B (zh) * | 2020-11-30 | 2022-08-09 | 杭州士兰微电子股份有限公司 | 开关电源及其控制电路和控制方法 |
CN113726174B (zh) * | 2021-07-29 | 2024-03-22 | 矽力杰半导体技术(杭州)有限公司 | 控制电路及应用其的谐振变换器 |
CN115173711A (zh) * | 2022-07-27 | 2022-10-11 | 成都芯源系统有限公司 | 隔离式开关变换器及其控制器和控制方法 |
CN118604439B (zh) * | 2024-08-02 | 2024-12-06 | 苏州元脑智能科技有限公司 | 转换效率测试方法、电路及降压转换效率测试电路 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638169A (zh) * | 2012-05-08 | 2012-08-15 | 矽力杰半导体技术(杭州)有限公司 | 一种反激式变换器的控制电路、控制方法以及应用其的交流-直流功率变换电路 |
CN103795254A (zh) * | 2012-10-29 | 2014-05-14 | 华润矽威科技(上海)有限公司 | 反激式开关电源装置及其恒压控制器 |
CN104660054A (zh) * | 2015-02-11 | 2015-05-27 | 东南大学 | 一种适用于原边反馈反激变换器的跳脉冲模式psm控制方法 |
CN104868737A (zh) * | 2014-02-26 | 2015-08-26 | 英飞凌科技奥地利有限公司 | 用于开关电源的系统和方法 |
CN105811780A (zh) * | 2016-05-03 | 2016-07-27 | 东南大学 | 一种原边反馈反激式变换器的输出电压恒压控制方法 |
CN105978344A (zh) * | 2016-06-06 | 2016-09-28 | 东南大学 | 一种提高原边反馈反激电源在ccm下输出恒压稳定性的方法 |
CN205911961U (zh) * | 2016-07-15 | 2017-01-25 | 深圳南云微电子有限公司 | 开关电源的副边控制电路 |
CN107154723A (zh) * | 2017-04-26 | 2017-09-12 | 东南大学 | 一种反激式电源ccm与dcm模式的恒流控制系统 |
CN206807287U (zh) * | 2016-12-22 | 2017-12-26 | 上海莱狮半导体科技有限公司 | 连续导通电流模式恒流驱动控制系统 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7233504B2 (en) * | 2005-08-26 | 2007-06-19 | Power Integration, Inc. | Method and apparatus for digital control of a switching regulator |
TW200740089A (en) * | 2006-03-07 | 2007-10-16 | Rohm Co Ltd | Capacitor charging apparatus |
US8213193B2 (en) * | 2006-12-01 | 2012-07-03 | O2Micro Inc | Flyback DC-DC converter with feedback control |
CN102364859B (zh) * | 2011-05-31 | 2014-11-26 | 杭州士兰微电子股份有限公司 | 开关电源控制装置及包含该控制装置的反激式开关电源 |
US9007786B2 (en) * | 2011-07-29 | 2015-04-14 | System General Corporation | Switching controller for flyback power converters without input capacitor |
US8665612B2 (en) * | 2012-07-10 | 2014-03-04 | Immense Advance Technology Corporation | Constant current controller |
US9350249B2 (en) | 2012-11-20 | 2016-05-24 | Texas Instruments Incorporated | Flyback power supply regulation apparatus and methods |
US8947894B2 (en) * | 2013-04-05 | 2015-02-03 | Infineon Technologies Austria Ag | Switched mode power supply including a flyback converter with primary side control |
TWI462442B (zh) * | 2013-04-26 | 2014-11-21 | Richtek Technology Corp | 電源轉換電路的控制電路及相關的控制方法 |
US20150016157A1 (en) * | 2013-07-09 | 2015-01-15 | Qi Cui Wei | Constant switching frequency discontinuous current mode average output current control scheme |
JP6545946B2 (ja) * | 2014-11-04 | 2019-07-17 | ローム株式会社 | スイッチングコンバータおよびその制御回路、それを用いた照明装置、電子機器 |
US9621029B2 (en) * | 2015-03-18 | 2017-04-11 | Stmicroelectronics S.R.L. | Method and device for high-power-factor flyback converter |
JP6561612B2 (ja) * | 2015-06-17 | 2019-08-21 | 富士電機株式会社 | スイッチング電源の制御装置 |
-
2017
- 2017-12-29 CN CN201711474027.4A patent/CN109995220B/zh active Active
-
2018
- 2018-12-29 US US16/959,001 patent/US11323039B2/en active Active
- 2018-12-29 WO PCT/CN2018/125730 patent/WO2019129291A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638169A (zh) * | 2012-05-08 | 2012-08-15 | 矽力杰半导体技术(杭州)有限公司 | 一种反激式变换器的控制电路、控制方法以及应用其的交流-直流功率变换电路 |
CN103795254A (zh) * | 2012-10-29 | 2014-05-14 | 华润矽威科技(上海)有限公司 | 反激式开关电源装置及其恒压控制器 |
CN104868737A (zh) * | 2014-02-26 | 2015-08-26 | 英飞凌科技奥地利有限公司 | 用于开关电源的系统和方法 |
CN104660054A (zh) * | 2015-02-11 | 2015-05-27 | 东南大学 | 一种适用于原边反馈反激变换器的跳脉冲模式psm控制方法 |
CN105811780A (zh) * | 2016-05-03 | 2016-07-27 | 东南大学 | 一种原边反馈反激式变换器的输出电压恒压控制方法 |
CN105978344A (zh) * | 2016-06-06 | 2016-09-28 | 东南大学 | 一种提高原边反馈反激电源在ccm下输出恒压稳定性的方法 |
CN205911961U (zh) * | 2016-07-15 | 2017-01-25 | 深圳南云微电子有限公司 | 开关电源的副边控制电路 |
CN206807287U (zh) * | 2016-12-22 | 2017-12-26 | 上海莱狮半导体科技有限公司 | 连续导通电流模式恒流驱动控制系统 |
CN107154723A (zh) * | 2017-04-26 | 2017-09-12 | 东南大学 | 一种反激式电源ccm与dcm模式的恒流控制系统 |
Non-Patent Citations (3)
Title |
---|
Buck类DC/DC变换器状态反馈精确线性化恒流控制方法;刘卓然 等;《中国电机工程学报》;20170120;第628-634页 * |
Simplify Modeling and Implement of A Hybrid Resonant Converter Operating in DCM and CCM with State Feedback Control;Rong-Tai Chen 等;《The 30th Annual Conference of the 1EEE Industrial Electronics Soclety》;20041106;第245-250页 * |
一种新型原边反馈反激式数字控制LED驱动电源设计;顾星煜 等;《电子器件》;20150430;第291-299页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2019129291A1 (zh) | 2019-07-04 |
CN109995220A (zh) | 2019-07-09 |
US11323039B2 (en) | 2022-05-03 |
US20200336070A1 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109995220B (zh) | 一种提高反激式谐振开关电源ccm模式转换效率的方法 | |
CN108390567B (zh) | 一种零电压开关Boost电路及其控制方法 | |
KR101000561B1 (ko) | 직렬 공진형 컨버터 | |
US20220069718A1 (en) | System and method for controlling active clamp flyback converter | |
CN103296892A (zh) | 谐振变换器的多模工作和控制 | |
TWI807472B (zh) | 適用於寬範圍輸出電壓的變換器及其控制方法 | |
TWI640152B (zh) | Dc/dc轉換裝置 | |
CN106787776A (zh) | 一种混合控制的llc谐振变换器 | |
CN205544948U (zh) | 一种混合控制的llc谐振变换器 | |
CN105207484A (zh) | 一种新型全桥llc空载及带载时的电压控制方法 | |
CN109450256B (zh) | 一种准谐振电源控制器 | |
CN114050725B (zh) | 一种应用于cllc双向dc/dc变换器反向轻载运行的控制方法 | |
TWI797813B (zh) | 適用於寬範圍輸出電壓的變換器及其控制方法 | |
WO2022062565A1 (zh) | 一种多模态软开关变换器及其控制方法 | |
CN113708633B (zh) | 一种反激变换器的控制方法、反激变换器及控制装置 | |
Hsieh et al. | A study on full-bridge zero-voltage-switched PWM converter: design and experimentation | |
CN113708631A (zh) | 一种反激变换器及其控制方法与控制装置 | |
CN104022672A (zh) | 用于软开关zvt变换器的自适应可调延时电路 | |
TWI841989B (zh) | 非對稱半橋返馳變換器電源及其控制晶片和控制方法 | |
CN118554764A (zh) | 一种启机控制装置、方法及开关电源 | |
CN117458860A (zh) | 一种宽输出llc谐振变换器拓扑结构与控制方法 | |
CN110445392B (zh) | 一种交错并联双管正激变换器及其调制策略 | |
CN112366947A (zh) | 一种高增益llc谐振变换器的控制电路 | |
CN107528477A (zh) | 一种准谐振软开关双管反激dc/dc变换器 | |
CN110943623A (zh) | Lclc谐振变换器的宽输出电压源电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |