CN109991849B - Design method of feedback controller with memory H-infinity output of time-lag LPV system - Google Patents
Design method of feedback controller with memory H-infinity output of time-lag LPV system Download PDFInfo
- Publication number
- CN109991849B CN109991849B CN201910269377.XA CN201910269377A CN109991849B CN 109991849 B CN109991849 B CN 109991849B CN 201910269377 A CN201910269377 A CN 201910269377A CN 109991849 B CN109991849 B CN 109991849B
- Authority
- CN
- China
- Prior art keywords
- matrix
- lpv
- time
- memory
- feedback controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011159 matrix material Substances 0.000 claims abstract description 107
- 238000003801 milling Methods 0.000 claims abstract description 24
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract 2
- 230000006870 function Effects 0.000 claims description 12
- 230000009471 action Effects 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 230000002441 reversible effect Effects 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 7
- 230000008859 change Effects 0.000 description 10
- 238000003754 machining Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及铣床铣削过程中的振动控制领域,具体是一种时滞LPV系统有记忆H∞输出反馈控制器设计方法。The invention relates to the field of vibration control in the milling process of a milling machine, in particular to a design method of a time-delay LPV system with a memory H ∞ output feedback controller.
背景技术Background technique
在机械加工过程中,加工工件的精度及表面粗糙度,刀具与机床使用寿命以及加工周期等均受刀具振动的影响,因此机械加工的振动控制成为加工过程中的重要问题;In the machining process, the precision and surface roughness of the machined workpiece, the service life of the tool and the machine tool, and the machining cycle are all affected by the tool vibration. Therefore, the vibration control of machining has become an important issue in the machining process;
LPV理论最早是由Shamma在1988年提出来的,其主要的目的就是将已有的线性控制设计依据扩展到非线性和时变系统;在现有的技术中,针对铣床铣削的工作过程,一般将其中的振动控制系统抽象成时滞LPV系统,然后针对时滞LPV系统设计相应控制器以减小振动对刀具及工件造成的影响;The LPV theory was first proposed by Shamma in 1988, and its main purpose is to extend the existing linear control design basis to nonlinear and time-varying systems; in the existing technology, for the milling process of milling machines, the general The vibration control system is abstracted into a time-delay LPV system, and then a corresponding controller is designed for the time-delay LPV system to reduce the impact of vibration on the tool and workpiece;
但是,现有控制器的设计方法一般采用鲁棒H∞状态反馈技术,该技术虽然能够保证系统满足H∞性能指标,但由于状态反馈需要获取被控对象的状态信息,在许多实际问题中,所考虑的状态变量是描述系统内部信息的一组变量,往往是不能直接测量的;有时即使系统的状态是可以直接测量的,但考虑到实施控制的成本和系统的可靠性等因素,如果可以用系统的输出反馈来达到闭环系统的性能要求,则更适合选择输出反馈的控制方式;另外现有的无记忆状态反馈控制器由于未引入系统的过去状态信息,时滞对系统产生的影响无法得到有效的控制,使得切削工具无法准确平稳的进行工作;因此,现有的控制器的设计方法存在很多缺陷。However, the existing controller design method generally adopts the robust H ∞ state feedback technology. Although this technology can ensure that the system meets the H ∞ performance index, because the state feedback needs to obtain the state information of the controlled object, in many practical problems, The state variables considered are a set of variables that describe the internal information of the system, and are often not directly measurable; sometimes even if the state of the system can be directly measured, considering factors such as the cost of implementing control and the reliability of the system, if it can be Using the output feedback of the system to meet the performance requirements of the closed-loop system is more suitable for selecting the control method of output feedback; in addition, the existing memoryless state feedback controller does not introduce the past state information of the system, so the time delay cannot affect the system. With effective control, the cutting tool cannot work accurately and smoothly; therefore, the existing controller design methods have many defects.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种时滞LPV系统有记忆H∞输出反馈控制器设计方法,从而可以设计出既不依赖于实时测量的状态信息,又具有干扰衰减、鲁棒稳定、闭环响应满足要求的控制器,使得切削的工件精度更高,切削表面更光滑;In view of this, the present invention provides a design method of a time-delay LPV system with a memory H ∞ output feedback controller, so that the state information that does not depend on real-time measurement can be designed, and the disturbance attenuation, robustness and stability, and closed-loop response are satisfied. The required controller makes the cutting workpiece more precise and the cutting surface smoother;
本发明提供如下技术方案:一种时滞LPV系统有记忆H∞输出反馈控制器设计方法,该方法包括:The present invention provides the following technical solutions: a design method of a memory H ∞ output feedback controller for a time-delay LPV system, the method comprising:
A、将铣床铣削过程的振动控制系统抽象为时滞LPV模型,通过模型转换得到时滞LPV系统的有记忆H∞输出反馈控制器求解问题的标准形式;A. The vibration control system of the milling process of the milling machine is abstracted as a time-delay LPV model, and the standard form of the memory H ∞ output feedback controller of the time-delay LPV system is obtained through model transformation;
B、引入松弛矩阵变量与二次Lyapunov泛函,将满足期望性能指标的有记忆H∞动态输出反馈控制问题转化为线性矩阵不等式框架内的有限维凸优化的问题;B. Introduce slack matrix variables and quadratic Lyapunov functionals to transform the memory H ∞ dynamic output feedback control problem satisfying the desired performance index into a finite-dimensional convex optimization problem within the framework of linear matrix inequality;
C、选择一种新的凸优化的方法,在给定的多胞LPV系统的顶点处,给出有限维的参数化线性矩阵不等式;C. Choose a new convex optimization method to give a finite-dimensional parametric linear matrix inequality at the vertices of a given multicellular LPV system;
D、求解所述线性矩阵不等式,得到对应的正定参数依赖矩阵X4和Y4;依次计算得到有记忆H∞动态输出反馈控制器的增益Ak,Bk,Ck,Dk,从而确定有记忆H∞输出反馈控制器K。D. Solve the linear matrix inequality to obtain the corresponding positive definite parameter dependence matrices X4 and Y4; calculate and obtain the gains A k , B k , C k , D k of the memory H ∞ dynamic output feedback controller in turn, so as to determine the memory H ∞ output feedback controller K.
较佳的,所述步骤A中包括:Preferably, the step A includes:
考虑铣床铣削过程中的振动控制系统,抽象为如下时滞LPV系统的状态空间模型:Considering the vibration control system in the milling process of the milling machine, the state space model of the following time-delay LPV system is abstracted:
其中,x(t)∈Rn为状态变量,u(t)∈Rr为控制输入,y(t)∈Rp是测量输出, z(t)∈Rr是被调输出,w(t)∈Rq为扰动输入,τ>0为已知时滞常数,φ(ρ)是给定的初始条件,假定系统矩阵为时变参数θ(t)的函数;为了表述方便以后以θ,θi(其中 i=1,···,s)代替θ(t),θi(t);Among them, x(t) ∈Rn is the state variable, u(t) ∈Rr is the control input, y(t) ∈Rp is the measurement output, z(t) ∈Rr is the adjusted output, w(t)∈Rr is the modulated output )∈R q is the disturbance input, τ>0 is the known time delay constant, φ(ρ) is the given initial condition, and the system matrix is assumed to be a function of the time-varying parameter θ(t); θ i (where i=1, . . . , s) replaces θ(t), θ i (t);
将上述LPV系统转化为如下多胞LPV模型:The above LPV system was transformed into the following multicellular LPV model:
对于系统(1),是系统所在的有界凸多面体顶点系统的集合, (Ai,A1i,B1i,B2i,C1i,C2i,Di,D1i,D2i)表示系统的第i个顶点系统,i=1,2,…,N,对LPV系统,考虑在反馈控制率中引入时滞项,设计鲁棒有记忆H∞动态输出反馈控制器K:For system (1), is the set of bounded convex polyhedron vertex systems where the system is located, (A i ,A 1i ,B 1i ,B 2i ,C 1i ,C 2i ,D i ,D 1i ,D 2i )represents the i-th vertex system of the system, i=1,2,...,N, for the LPV system, consider introducing a time delay term in the feedback control rate, and design a robust dynamic output feedback controller K with memory H ∞ :
其中:Ak、Bk、Ck、Dk是待确定的控制器参数矩阵,xk(t)∈Rn是控制器的状态,u(t)是控制输入;将控制器K代入到时滞LPV系统,得到闭环时滞LPV 系统C:Among them: A k , B k , C k , D k are the controller parameter matrix to be determined, x k (t)∈R n is the state of the controller, and u(t) is the control input; substitute the controller K into Time-delay LPV system, the closed-loop time-delay LPV system C is obtained:
其中:in:
Ccl(θ)=[C2(θ)+D(θ)Dk(θ)C1(θ) D(θ)Ck(θ)]C cl (θ)=[C 2 (θ)+D(θ)D k (θ)C 1 (θ) D(θ)C k (θ)]
Ccl1(θ)=[D(θ)Dk(θ)C1(θ) 0],Dcl(θ)=D2(θ)C cl1 (θ)=[D(θ)D k (θ)C 1 (θ) 0], D cl (θ)=D 2 (θ)
因此,如上述LPV系统设计有记忆H∞输出反馈控制器K的问题可以归纳为:设计有记忆H∞动态输出反馈控制器(2),使闭环系统(3)对调度参数θ在其所有取值范围内,满足下列指标:Therefore, the problem of designing a memory H ∞ output feedback controller K in the above-mentioned LPV system can be summarized as follows: design a memory H ∞ dynamic output feedback controller (2), so that the closed-loop system (3) can control the scheduling parameter θ in all its values. Within the value range, the following indicators are met:
(1).闭环系统内部是稳定的;(1). The interior of the closed-loop system is stable;
(2).H∞性能指标:对扰动输入信号w(t),给定一个性能指标γ>0,使从扰动输入w(t)到被控输出z(t)的闭环传递函数Twz(s)的H∞范数比γ小,也就是满足:(2).H∞ performance index: for the disturbance input signal w(t), given a performance index γ>0, make the closed-loop transfer function T wz from the disturbance input w(t) to the controlled output z(t) ( The H ∞ norm of s) is smaller than γ, that is, it satisfies:
较佳的,考虑步骤B包括:Preferably, consider that step B includes:
引理1.对于系统(1),若存在对称正定矩阵P(θ),矩阵Q满足线性矩阵不等式(4)
则闭环系统渐近稳定;Then the closed-loop system is asymptotically stable;
其中, in,
引理2.对于系统(1),若存在对称正定矩阵P(θ),矩阵Q以及给定的正标量γ,使得不等式(5)成立,则系统渐近稳定且满足H∞性能指标;
其中, in,
由以上可知,闭环时滞LPV系统(3)渐近稳定并且满足H∞性能指标γ的充分条件是存在对称正定矩阵P(θ),矩阵Q以及给定的正标量γ满足不等式(5),利用适当维的对称分块矩阵对不等式(5)进行全等变换,可得到不等式(6):It can be seen from the above that the sufficient condition for the closed-loop time-delay LPV system (3) to be asymptotically stable and to satisfy the H∞ performance index γ is the existence of a symmetric positive definite matrix P(θ), the matrix Q and the given positive scalar γ satisfy the inequality (5), Utilize a symmetric block matrix of appropriate dimension Congruent transformation of inequality (5), inequality (6) can be obtained:
其中: in:
矩阵不等式(6)可以写成:The matrix inequality (6) can be written as:
根据引理3,对于适当维随意矩阵M,N和单位矩阵I,下列条件是等价的:According to Lemma 3, for appropriate dimensional arbitrary matrices M, N and identity matrix I, the following conditions are equivalent:
(1). (1).
(2).存在适当维的松弛矩阵G使得下式成立(2). There is a slack matrix G of appropriate dimension such that the following formula holds
其中,令矩阵GT=[G1(θ) 0 0 0 G2(θ)],则上式即可转化成不等式(7)Among them, let matrix G T =[G 1 (θ) 0 0 0 G 2 (θ)], then the above formula can be transformed into inequality (7)
其中: in:
对矩阵不等式(7)应用Schur补引理得到推论2;Apply Schur's complement lemma to matrix inequality (7) to get Corollary 2;
推论2对于闭环时滞LPV系统(3),如果存在连续可微的对称正定矩阵函数 P(θ),对称正定矩阵Q,对称矩阵G1(θ)和G2(θ)以及给定的正标量γ,满足LMI(8):
则系统渐近稳定且满足H∞性能指标;Then the system is asymptotically stable and satisfies the H ∞ performance index;
其中: in:
定理1对于闭环时滞多胞LPV系统(3),若存在连续可微的对称正定矩阵函数和适当维矩阵Q1,Q2,S1(θ),S2(θ),X(θ),Y(θ),U(θ),和以及给定的正标量γ,满足LMI(9):
其中:in:
Γ19=-X(θ)-XT(θ), Γ 19 =-X(θ) -XT (θ),
Γ20=-I-U(θ),Γ21=-YT(θ)-Y(θ)Γ 20 =-IU(θ), Γ 21 =-Y T (θ)-Y(θ)
则满足式(2)的时滞LPV系统有记忆H∞动态输出反馈控制器系数矩阵可以由式(10)求得,其中矩阵X4(θ)和Y4(θ),由满秩分解求出;Then the time-delay LPV system satisfying equation (2) has memory H ∞ dynamic output feedback controller coefficient matrix can be obtained from equation (10), where the matrices X 4 (θ) and Y 4 (θ) are given by Full rank decomposition to find out;
其中:in:
为得上述不等式(9),假设G1=G2=G>0,所以G可逆,记为W=G-1,并将矩阵G和W分块表示为: In order to obtain the above inequality (9), it is assumed that G 1 =G 2 =G>0, so G is invertible, denoted as W=G -1 , and the matrices G and W are expressed in blocks as:
定义: definition:
根据以上定义可以很容易得到以下运算关系:According to the above definition, the following operational relationship can be easily obtained:
对不等式(8)左乘diag{ΛT(θ) I I I ΛT(θ) I ΛT(θ)},右乘矩阵 diag{Λ(θ)I I I Λ(θ) I Λ(θ)},得到不等式(13):Multiplying inequality (8) on the left by diag{Λ T (θ) III Λ T (θ) I Λ T (θ)} and right multiplying the matrix diag{Λ(θ)III Λ(θ) I Λ(θ)}, we get Inequality (13):
其中: in:
Δ2=ΛT(θ)GT(θ)Acl1(θ),Δ3=ΛT(θ)GT(θ)Bcl(θ),Δ 2 =Λ T (θ)G T (θ)A cl1 (θ),Δ 3 =Λ T (θ)G T (θ)B cl (θ),
Δ8=-ΛT(θ)G(θ)Λ(θ)-ΛT(θ)GT(θ)Λ(θ)Δ 8 =-Λ T (θ)G(θ)Λ(θ)-Λ T (θ)G T (θ)Λ(θ)
由式(11)和式(12)可以推出下面的关系式:From equations (11) and (12), the following relationship can be deduced:
其中:in:
Δ14=C2(θ)Y(θ)+D(θ)Dk(θ)C1(θ)Y(θ)+D(θ)Ck(θ)Y4(θ)Δ 14 =C 2 (θ)Y(θ)+D(θ)D k (θ)C 1 (θ)Y(θ)+D(θ)C k (θ)Y 4 (θ)
做如下的变量代换:Do the following variable substitutions:
则式(14)可以写成:The formula (14) can be written as:
根据以上推论,式(13)转化为定理1中的式(9);根据式(8)可知,闭环时滞 LPV系统在有记忆H∞动态输出反馈控制器的作用下渐近稳定,同时满足H∞性能指标。According to the above inference, Equation (13) is transformed into Equation (9) in
较佳的,考虑步骤C包括:Preferably, consider that step C includes:
为了降低保守性,选择一种新的凸优化方法,在给定的有界多胞LPV系统的顶点处,给出有限维数的参数化线性矩阵不等式;In order to reduce the conservatism, a new convex optimization method is chosen to give a parameterized linear matrix inequality of finite dimension at the vertices of a given bounded multicellular LPV system;
定理2对于闭环时滞多胞LPV系统(3),假设存在给定的正标量γ以及对称正定矩阵适当维矩阵Q1,Q2,S1i,S2i,Xi,Yi,Ui, Δij使式(16)和式(17)成立:
其中:in:
Γ20=-I-Ui,Γ21=-Yi T-Yi Γ 20 =-IU i , Γ 21 =-Y i T -Y i
则满足式(2)的时滞LPV系统有记忆H∞动态输出反馈控制器系数矩阵可以由式(10)求得;其中:Then the time-delay LPV system satisfying equation (2) has memory H∞ dynamic output feedback controller coefficient matrix can be obtained from equation (10); where:
较佳的,考虑步骤D包括:Preferably, consider that step D includes:
若上述不等式(16)、式(17)存在可行解,对满秩分解得到矩阵X4(θ)和Y4(θ);进一步求得有记忆H∞输出反馈控制器增益矩阵:If the above inequalities (16) and (17) have feasible solutions, then The full rank decomposition is used to obtain the matrices X 4 (θ) and Y 4 (θ); further, the gain matrix of the output feedback controller with memory H ∞ is obtained:
其中:in:
如上所见,在本发明中的时滞LPV系统有记忆H∞输出反馈控制器的设计方法中,针对铣床铣削过程中的振动控制系统的时滞LPV模型,将求解有记忆H∞输出反馈控制器的问题转化为求解线性矩阵不等式的问题,并通过求解不等式得到参数依赖矩阵X4和Y4,最终确定控制器K中的参数矩阵,从而可以设计出有记忆H∞输出反馈控制器;As can be seen above, in the design method of the memory H∞ output feedback controller of the time-delay LPV system in the present invention, for the time-delay LPV model of the vibration control system in the milling process of the milling machine, the memory H∞ output feedback control will be solved. The problem of the controller is transformed into the problem of solving the linear matrix inequalities, and the parameter dependence matrices X4 and Y4 are obtained by solving the inequalities, and the parameter matrix in the controller K is finally determined, so that the memory H∞ output feedback controller can be designed;
与现有技术相比,本发明的有益效果是该控制器既不依赖实时测量的状态信息,又具有干扰衰减、鲁棒稳定、闭环响应满足要求的特点,具有良好的动态性能和鲁棒性,使得切削的工件精度更高,切削表面更光滑。Compared with the prior art, the beneficial effect of the present invention is that the controller does not rely on real-time measured state information, and has the characteristics of interference attenuation, robust stability, closed-loop response meeting requirements, and good dynamic performance and robustness. , which makes the cutting workpiece with higher precision and smoother cutting surface.
附图说明Description of drawings
图1为时滞LPV系统有记忆H∞输出反馈控制器设计方法的流程示意图;Figure 1 is a schematic flow chart of the design method of a memory H ∞ output feedback controller for a time-delay LPV system;
图2为在有记忆H∞输出反馈控制器作用下,未加扰动时两个模块的位置变化曲线及变化率曲线;Figure 2 shows the position change curve and change rate curve of the two modules without disturbance under the action of the memory H∞ output feedback controller;
图3为在有记忆H∞输出反馈控制器作用下,加扰动后两个模块的位置变化曲线及变化率曲线;Figure 3 shows the position change curve and change rate curve of the two modules after disturbance under the action of the memory H∞ output feedback controller;
图4为在初始条件下不加控制器两个模块的位置变化曲线及变化率曲线;Fig. 4 is the position change curve and change rate curve of two modules without controller under the initial condition;
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明;In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples;
本发明中,提供了一种时滞LPV系统有记忆H∞输出反馈控制器设计方法,该方法适用于铣床铣削过程中振动控制的时滞LPV系统;In the present invention, a design method of a time-delay LPV system with a memory H ∞ output feedback controller is provided, and the method is suitable for a time-delay LPV system of vibration control in the milling process of a milling machine;
图1为本发明中的时滞LPV系统有记忆H∞输出反馈控制器设计方法的流程示意图,如图1所示,本发明实施例中的时滞LPV系统有记忆H∞输出反馈控制器设计方法,包括以下步骤:1 is a schematic flowchart of a design method of a memory H ∞ output feedback controller in a time-delay LPV system in the present invention. As shown in FIG. 1 , a time-delay LPV system in an embodiment of the present invention has a memory H ∞ output feedback controller design method, including the following steps:
步骤一,将铣床铣削过程的振动控制系统抽象为多胞时滞LPV模型,通过模型转换得到时滞LPV系统有记忆H∞输出反馈控制器求解问题的标准形式;
在本发明的技术方案中,可以先考虑将系统抽象成一个时滞LPV模型;In the technical solution of the present invention, the system can be abstracted into a time-delay LPV model first;
例如,较佳的,在本发明的具体实施例中,上述的步骤一包括:For example, preferably, in a specific embodiment of the present invention, the above-mentioned
考虑铣床铣削过程中的振动控制系统,抽象为时滞LPV系统状态空间模型:Considering the vibration control system in the milling process of the milling machine, it is abstracted as a time-delay LPV system state space model:
其中,系统状态x1,x2分别是刀具和机床的位置,τ>0为已知时滞常数,φ(ρ)是给定的初始条件,假定系统矩阵和时延h(θ(t))均为时变参数θ(t)的函数;为了表述方便以后以θ,θi(其中i=1,···,s)代替θ(t),θi(t);Among them, the system status x 1 , x 2 are the positions of the tool and the machine tool respectively, τ>0 is the known time delay constant, φ(ρ) is the given initial condition, assuming that the system matrix and the time delay h(θ(t)) are both The function of variable parameter θ(t); for the convenience of expression, θ(t), θi (t) will be replaced by θ, θ i (where i=1, . . . , s);
将上述LPV系统转化为如下多胞LPV模型:The above LPV system was transformed into the following multicellular LPV model:
对于系统(1),是系统所在的有界凸多面体顶点系统的集合, (Ai,A1i,B1i,B2i,C1i,C2i,Di,D1i,D2i)表示系统的第i个顶点系统,i=1,2,…,N,对 LPV系统,考虑在反馈控制率中引入时滞项,设计鲁棒有记忆H∞动态输出反馈控制器K:For system (1), is the set of bounded convex polyhedron vertex systems where the system is located, (A i ,A 1i ,B 1i ,B 2i ,C 1i ,C 2i ,D i ,D 1i ,D 2i )represents the i-th vertex system of the system, i=1,2,...,N, for the LPV system, consider introducing a time delay term in the feedback control rate, and design a robust dynamic output feedback controller K with memory H∞:
其中:Ak、Bk、Ck、Dk是待确定控制器参数矩阵,xk(t)∈Rn是控制器的状态, u(t)是控制输入;将控制器K代入到时滞LPV系统,得到闭环时滞LPV系统C:Among them: A k , B k , C k , D k are the controller parameter matrix to be determined, x k (t)∈R n is the state of the controller, u(t) is the control input; when the controller K is substituted into Hysteresis LPV system, the closed-loop time-delay LPV system C is obtained:
其中:in:
Ccl(θ)=[C2(θ)+D(θ)Dk(θ)C1(θ) D(θ)Ck(θ)]C cl (θ)=[C 2 (θ)+D(θ)D k (θ)C 1 (θ) D(θ)C k (θ)]
Ccl1(θ)=[D(θ)Dk(θ)C1(θ) 0],Dcl(θ)=D2(θ)C cl1 (θ)=[D(θ)D k (θ)C 1 (θ) 0], D cl (θ)=D 2 (θ)
因此,如上述LPV系统设计有记忆H∞输出反馈控制器K的问题可以归纳为:设计有记忆H∞动态输出反馈控制器(2),使闭环系统(3)对调度参数θ在其所有取值范围内,满足下列指标:Therefore, the problem of designing a memory H∞ output feedback controller K in the above-mentioned LPV system can be summarized as: designing a memory H∞ dynamic output feedback controller (2), so that the closed-loop system (3) can control the scheduling parameter θ in all its values. Within the value range, the following indicators are met:
(1).闭环系统内部是稳定的;(1). The interior of the closed-loop system is stable;
(2).H∞性能指标:对扰动输入信号w(t),给定一个性能指标γ>0,使从扰动输入w(t)到被控输出z(t)的闭环传递函数Twz(s)的H∞范数比γ小,也就是满足:(2).H∞ performance index: for the disturbance input signal w(t), given a performance index γ>0, make the closed-loop transfer function T wz from the disturbance input w(t) to the controlled output z(t) ( The H ∞ norm of s) is smaller than γ, that is, it satisfies:
即,如果求出Ak,Bk,Ck,Dk就可以得到有记忆H∞动态输出反馈控制器;That is, if A k , B k , C k , D k are obtained, the dynamic output feedback controller with memory H ∞ can be obtained;
因此,通过上述的模型转换,即可得到求解有记忆H∞动态输出反馈控制器的标准形式。Therefore, through the above model transformation, the standard form of the dynamic output feedback controller with memory H ∞ can be obtained.
步骤二,引入松弛矩阵变量与二次Lyapunov泛函,将满足期望性能指标的有记忆H∞鲁棒动态输出反馈控制问题转化为线性矩阵不等式框架内的有限维凸优化的问题;Step 2: Introduce slack matrix variables and quadratic Lyapunov functionals to transform the memory H∞ robust dynamic output feedback control problem satisfying the desired performance index into a finite-dimensional convex optimization problem within the framework of linear matrix inequalities;
在本发明的技术方案中,为了确定有记忆H∞鲁棒动态输出反馈控制器是否存在且稳定,可以先将上述时滞LPV系统的控制器求解问题转化为求解一个线性矩阵不等式的凸优化问题;In the technical solution of the present invention, in order to determine whether the memory H ∞ robust dynamic output feedback controller exists and is stable, the controller solution problem of the above-mentioned time-delay LPV system can be transformed into a convex optimization problem of solving a linear matrix inequality. ;
例如,较佳的,在本发明的具体实施例中,可以先引入引理1和引理2:For example, preferably, in a specific embodiment of the present invention,
引理1.对于系统(1),若存在对称正定矩阵P(θ),矩阵Q满足线性矩阵不等式(4)
则闭环系统渐近稳定;Then the closed-loop system is asymptotically stable;
其中, in,
引理2.对于系统(1),若存在对称正定矩阵P(θ),矩阵Q以及给定的正标量γ,使得线性矩阵不等式(5)成立,则系统渐近稳定且满足H∞性能指标;
其中, in,
由以上可知,闭环时滞LPV系统(3)渐近稳定并且满足H∞性能指标γ的充分条件是存在对称正定矩阵P(θ),矩阵Q以及给定的正标量γ满足不等式(5),利用适当维的对称分块矩阵对不等式(5)进行全等变换,可得到不等式(6):It can be seen from the above that the sufficient condition for the closed-loop time-delay LPV system (3) to be asymptotically stable and to satisfy the H∞ performance index γ is the existence of a symmetric positive definite matrix P(θ), the matrix Q and the given positive scalar γ satisfy the inequality (5), Utilize a symmetric block matrix of appropriate dimension Congruent transformation of inequality (5), inequality (6) can be obtained:
其中: in:
矩阵不等式(6)可以写成:The matrix inequality (6) can be written as:
根据引理3,对于适当维随意矩阵M,N和单位矩阵I,下列条件是等价的:According to Lemma 3, for appropriate dimensional arbitrary matrices M, N and identity matrix I, the following conditions are equivalent:
(1). (1).
(2).存在适当维的松弛矩阵G使得下式成立 (2). There is a slack matrix G of appropriate dimension such that the following formula holds
其中,令矩阵GT=[G1(θ) 0 0 0 G2(θ)],则上式即可转化成不等式(7)Among them, let matrix G T =[G 1 (θ) 0 0 0 G 2 (θ)], then the above formula can be transformed into inequality (7)
其中: in:
推论2对于闭环时滞LPV系统(3),如果存在连续可微的对称正定矩阵函数 P(θ),对称正定矩阵Q,对称矩阵G1(θ)和G2(θ)以及给定的正标量γ,满足LMI(8):Corollary 2 For a closed-loop time-delay LPV system (3), if there exists a continuously differentiable symmetric positive definite matrix function P(θ), a symmetric positive definite matrix Q, symmetric matrices G 1 (θ) and G 2 (θ) and a given positive definite matrix Scalar γ, satisfying LMI(8):
则系统渐近稳定且满足H∞性能指标;Then the system is asymptotically stable and satisfies the H ∞ performance index;
其中: in:
定理1对于闭环时滞多胞LPV系统(3),若存在连续可微的对称正定矩阵函数和适当维矩阵Q1,Q2,S1(θ),S2(θ),X(θ),Y(θ),U(θ), 和以及给定的正标量γ,满足LMI(9):
其中:in:
Γ19=-X(θ)-XT(θ), Γ 19 =-X(θ) -XT (θ),
Γ20=-I-U(θ),Γ21=-YT(θ)-Y(θ)Γ 20 =-IU(θ), Γ 21 =-Y T (θ)-Y(θ)
则满足式(2)的时滞LPV系统有记忆H∞动态输出反馈控制器系数矩阵可以由下式求得,其中矩阵X4和Y4,由满秩分解求出;Then the time-delay LPV system satisfying equation (2) has memory H∞ dynamic output feedback controller coefficient matrix can be obtained by the following equation, where the matrix X 4 and Y 4 are given by Full rank decomposition to find out;
其中:in:
为得上述不等式(9),假设G1=G2=G>0,所以G可逆,记为W=G-1,并将矩阵G和W分块表示为: In order to obtain the above inequality (9), it is assumed that G 1 =G 2 =G>0, so G is invertible, denoted as W=G -1 , and the matrices G and W are expressed in blocks as:
定义: definition:
根据以上定义可以很容易得到以下运算关系:According to the above definition, the following operational relationship can be easily obtained:
对不等式(8)左乘diag{ΛT(θ) I I I ΛT(θ) I ΛT(θ)},右乘矩阵 diag{Λ(θ)I I I Λ(θ) I Λ(θ)},得到线性矩阵不等式(13):Multiplying inequality (8) on the left by diag{Λ T (θ) III Λ T (θ) I Λ T (θ)} and right multiplying the matrix diag{Λ(θ)III Λ(θ) I Λ(θ)}, we get Linear matrix inequality (13):
其中: in:
Δ2=ΛT(θ)GT(θ)Acl1(θ),Δ3=ΛT(θ)GT(θ)Bcl(θ),Δ 2 =Λ T (θ)G T (θ)A cl1 (θ),Δ 3 =Λ T (θ)G T (θ)B cl (θ),
Δ8=-ΛT(θ)G(θ)Λ(θ)-ΛT(θ)GT(θ)Λ(θ)Δ 8 =-Λ T (θ)G(θ)Λ(θ)-Λ T (θ)G T (θ)Λ(θ)
由式(11)和式(12)可以推出下面的关系式:From equations (11) and (12), the following relationship can be deduced:
做如下的变量代换:Do the following variable substitutions:
其中:in:
Δ14=C2(θ)Y(θ)+D(θ)Dk(θ)C1(θ)Y(θ)+D(θ)Ck(θ)Y4(θ)Δ 14 =C 2 (θ)Y(θ)+D(θ)D k (θ)C 1 (θ)Y(θ)+D(θ)C k (θ)Y 4 (θ)
则式(14)可以写成:The formula (14) can be written as:
其中: in:
根据以上推论,式(13)转化为定理1中的式(9);根据式(8)可知,闭环时滞 LPV系统在有记忆H∞动态输出反馈控制器的作用下参数二次稳定,同时满足 H∞性能指标;According to the above inference, Equation (13) is transformed into Equation (9) in
因此可知,可以将时滞LPV系统的控制器求解问题转化为求解一个线性矩阵不等式的凸优化问题;当所述线性矩阵不等式有解时,有记忆H∞输出反馈控制器存在且稳定。Therefore, it can be seen that the controller solution problem of the time-delay LPV system can be transformed into a convex optimization problem of solving a linear matrix inequality; when the linear matrix inequality has a solution, a memory H∞ output feedback controller exists and is stable.
步骤三,选择一种新的凸优化的方法,在给定的多胞LPV系统的顶点处,给出有限维的参数化线性矩阵不等式;Step 3, select a new convex optimization method, and at the vertex of the given multicellular LPV system, give the parameterized linear matrix inequality of finite dimension;
在本发明的实施例中,可以使用多种具体的实施方式来实现步骤三,以下将以其中的一种实现方式为例,对本发明的技术方案进行详细的介绍;In the embodiment of the present invention, a variety of specific implementations can be used to implement step 3, and the following will take one of the implementations as an example to introduce the technical solution of the present invention in detail;
例如,较佳的,在本发明的具体实施例中,所述步骤三包括:For example, preferably, in a specific embodiment of the present invention, the step 3 includes:
为了降低保守性,选择一种新的凸优化方法,在给定的有界多胞LPV系统的顶点处,给出有限维数的参数化线性矩阵不等式;In order to reduce the conservatism, a new convex optimization method is chosen to give a parameterized linear matrix inequality of finite dimension at the vertices of a given bounded multicellular LPV system;
定理2对于闭环时滞多胞LPV系统(3),假设存在给定的正标量γ以及对称正定矩阵适当维矩阵Q1,Q2,S1i,S2i,Xi,Yi,Ui, Δij使式(16)和式(17)成立:
其中:in:
Γ20=-I-Ui,Γ21=-Yi T-Yi Γ 20 =-IU i , Γ 21 =-Y i T -Y i
则满足式(2)的时滞LPV系统有记忆H∞动态输出反馈控制器系数矩阵可以由式(9)求得;Then the time-delay LPV system satisfying equation (2) has memory H∞ dynamic output feedback controller coefficient matrix can be obtained from equation (9);
其中:in:
当上述不等式(16)和不等式(17)中的线性矩阵不等式有解时,则有记忆H∞动态输出反馈控制器存在。When the linear matrix inequalities in the above inequalities (16) and (17) have solutions, there is a memory H∞ dynamic output feedback controller.
步骤四,求解所述线性矩阵不等式,得到对应的正定参数依赖矩阵X4和 Y4;依次计算得到有记忆H∞动态输出反馈控制器的增益Ak,Bk,Ck,Dk,从而得到有记忆H∞输出反馈控制器K;Step 4: Solve the linear matrix inequality to obtain the corresponding positive definite parameter dependence matrices X4 and Y4; calculate and obtain the gains A k , B k , C k , D k of the memory H∞ dynamic output feedback controller in turn, so as to obtain the following equations: Memory H∞ output feedback controller K;
在本发明的技术方案中,可以使用多种具体的实施方式来实现上述的步骤四;以下将以其中的一种实现方式为例,对本发明的技术方案进行详细的介绍;In the technical solution of the present invention, a variety of specific implementations can be used to realize the above-mentioned
例如,较佳的,在本发明的具体实施例中,所述步骤四包括:For example, preferably, in a specific embodiment of the present invention, the fourth step includes:
若上述不等式(16)、式(17)存在可行解,则有记忆H∞输出反馈控制器存在且稳定,由MATLAB中的LMI工具箱判断控制器存在条件是否成立,因此可以通过求解所述线性矩阵不等式,得到对应的正定参数依赖矩阵X,Y和U;If there are feasible solutions to the above inequalities (16) and (17), the memory H∞ output feedback controller exists and is stable, and the LMI toolbox in MATLAB determines whether the controller existence conditions are established, so it can be solved by solving the linear Matrix inequality, get the corresponding positive definite parameter dependence matrix X, Y and U;
对满秩分解得到矩阵X4(θ)和Y4(θ);可以使用如下所述的公式确定有记忆H∞输出反馈控制器K中的参数:right Full-rank decomposition yields matrices X 4 (θ) and Y 4 (θ); the parameters in the output feedback controller K with memory H ∞ can be determined using the formulas described below:
其中:in:
综上可知,在本发明中的时滞LPV系统有记忆H∞输出反馈控制器的设计中,针对铣床铣削过程中的振动控制系统的时滞LPV模型,将求解有记忆H∞输出反馈控制器的问题转化为求解线性矩阵不等式的问题,并通过求解不等式得到参数依赖矩阵X4和Y4,最终确定控制器K中的参数矩阵,从而可以设计出有记忆H∞输出反馈控制器,既可以保证系统稳定,又能满足H∞性能指标,具有良好的动态性能和鲁棒性;为进一步说明本发明的优越性,提供相关仿真数据:H∞性能指标γ=1.3587以及参数依赖的有记忆H∞输出反馈控制器参数矩阵:To sum up, in the design of the time-delay LPV system with memory H∞ output feedback controller in the present invention, for the time-delay LPV model of the vibration control system in the milling process of the milling machine, the memory H∞ output feedback controller will be solved. The problem of solving linear matrix inequalities is transformed into the problem of solving linear matrix inequalities, and the parameter dependence matrices X4 and Y4 are obtained by solving the inequalities, and the parameter matrix in the controller K is finally determined, so that a memory H∞ output feedback controller can be designed, which can not only ensure the system It is stable and can meet the H∞ performance index, and has good dynamic performance and robustness; in order to further illustrate the advantages of the present invention, relevant simulation data are provided: H∞ performance index γ=1.3587 and parameter-dependent memory H∞ output Feedback controller parameter matrix:
CK1=[3.5526 1.3313 8.2361 9.9666],DK1=-4.6587C K1 = [3.5526 1.3313 8.2361 9.9666], D K1 = -4.6587
CK2=[12.71 -49.11 1.667 30.4025],DK2=-4.1305C K2 = [12.71 -49.11 1.667 30.4025], D K2 = -4.1305
此外,图2为在有记忆H∞输出反馈控制器作用下,未加扰动时两个模块的位置变化曲线及变化率曲线;图3为在有记忆H∞输出反馈控制器作用下,加扰动后两个模块的位置变化曲线及变化率曲线;对比图2和图3,发现有记忆H∞输出反馈控制器能有效的减弱扰动对系统造成的影响,提高工件切削精度和表面光滑度;作为对比,图4进一步证实本发明设计的有记忆输出反馈控制器的有效性;In addition, Figure 2 shows the position change curve and rate of change curve of the two modules without disturbance under the action of the H∞ output feedback controller with memory; Figure 3 shows the perturbation curve under the action of the H∞ output feedback controller with memory The position change curve and change rate curve of the latter two modules; comparing Figure 2 and Figure 3, it is found that the H∞ output feedback controller with memory can effectively reduce the influence of disturbance on the system, and improve the cutting accuracy and surface smoothness of the workpiece; In contrast, Fig. 4 further confirms the effectiveness of the memory output feedback controller designed by the present invention;
另外,由于本方法具有一定的通用性,所以通过使用该方法可以对所有可抽象为时滞LPV模型的实际物理系统设计有记忆H∞输出反馈控制器,以达到良好的控制效果;In addition, due to the generality of this method, a memory H∞ output feedback controller can be designed for all actual physical systems that can be abstracted as time-delay LPV models by using this method, so as to achieve a good control effect;
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明;因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the present invention; In all respects, the embodiments should be considered as exemplary and non-restrictive, the scope of the present invention is defined by the appended claims rather than the above description, and it is intended that All changes within the meaning and scope are intended to be embraced within the invention, and any reference signs in the claims shall not be construed as limiting the involved claim;
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described in terms of embodiments, not each embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole , the technical solutions in each embodiment can also be appropriately combined to form other implementations that can be understood by those skilled in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910269377.XA CN109991849B (en) | 2019-04-03 | 2019-04-03 | Design method of feedback controller with memory H-infinity output of time-lag LPV system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910269377.XA CN109991849B (en) | 2019-04-03 | 2019-04-03 | Design method of feedback controller with memory H-infinity output of time-lag LPV system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109991849A CN109991849A (en) | 2019-07-09 |
CN109991849B true CN109991849B (en) | 2022-05-24 |
Family
ID=67132390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910269377.XA Expired - Fee Related CN109991849B (en) | 2019-04-03 | 2019-04-03 | Design method of feedback controller with memory H-infinity output of time-lag LPV system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109991849B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111158241B (en) * | 2020-01-15 | 2022-07-15 | 哈尔滨工程大学 | Time-lag correlation H-infinity control method of linear singular system with uncertain time lag |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6636744B1 (en) * | 2000-04-20 | 2003-10-21 | Lucent Technologies Inc. | Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system |
CN102955428B (en) * | 2012-11-14 | 2015-12-09 | 华侨大学 | Based on the PI control method meeting setting point tracking and Disturbance Rejection performance of LPV model |
CA2913322C (en) * | 2013-06-14 | 2021-09-21 | Wallace E. Larimore | A method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions |
CN105182743B (en) * | 2015-07-23 | 2018-02-06 | 北京航空航天大学 | A kind of variable-gain decoupling control method based on robust H infinity |
CN106371313A (en) * | 2016-09-22 | 2017-02-01 | 哈尔滨理工大学 | A design method of H∞ state feedback controller with memory for time-delay LPV systems |
CN107153752A (en) * | 2017-06-13 | 2017-09-12 | 哈尔滨工业大学 | A kind of robust identification method of linear variation parameter's time lag system of metric data missing at random |
CN108319147B (en) * | 2018-03-13 | 2020-01-07 | 江南大学 | H∞ Fault Tolerant Control Method for a Class of Networked Linear Parameter Variation Systems with Short Delay and Packet Loss |
CN108388133A (en) * | 2018-03-21 | 2018-08-10 | 北京航空航天大学 | A kind of positive system Dynamic Output Feedback anti-interference control method based on positive full micr oprocessorism |
CN108427288B (en) * | 2018-04-25 | 2020-01-07 | 江南大学 | H∞ fault-tolerant control method for a class of networked linear parameter-variable systems with time-varying delay |
CN108549238A (en) * | 2018-05-16 | 2018-09-18 | 重庆大学 | Robust Variable gain control method based on polytope LPV system Buck converters |
CN108983618A (en) * | 2018-09-17 | 2018-12-11 | 江南大学 | PMSM robust H based on convex polytope∞Output feedback ontrol design method |
CN109507886A (en) * | 2018-12-26 | 2019-03-22 | 南京航空航天大学 | For the Robust Prediction fault tolerant control method of time-delay uncertainties system actuators failure |
-
2019
- 2019-04-03 CN CN201910269377.XA patent/CN109991849B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN109991849A (en) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kwakernaak | Asymptotic root loci of multivariable linear optimal regulators | |
CN111639422B (en) | Machine tool feeding system modeling method and device based on dynamics and neural network | |
CN106325075B (en) | The H of a kind of delay linear and time Parameters variation discrete system∞Control method | |
CN104516268A (en) | Robot calibrate error compensation method based on fuzzy nerve network | |
CN104614995B (en) | A kind of general design method of second-order system finite time sliding mode controller | |
CN111090945A (en) | A Design Method for Actuator and Sensor Fault Estimation for Switching Systems | |
CN105867138B (en) | A kind of stabilized platform control method and device based on PID controller | |
CN115407207A (en) | Online prediction method and system for lithium ion battery charge state | |
CN114114928A (en) | A fixed-time adaptive event-triggered control method for a piezoelectric micropositioning platform | |
CN111506036A (en) | Multivariate Hammerstein model identification method and system under heavy tail noise interference | |
CN109991849B (en) | Design method of feedback controller with memory H-infinity output of time-lag LPV system | |
Yang et al. | Thermal error modeling by integrating GWO and ANFIS algorithms for the gear hobbing machine | |
CN111158241B (en) | Time-lag correlation H-infinity control method of linear singular system with uncertain time lag | |
CN111797564A (en) | Method and system for obtaining correlation sample of high-dimensional distributed photovoltaic output | |
CN118010281A (en) | Machine tool complete machine full-space vibration visualization method and system | |
CN116244894B (en) | A power system transient simulation method and system based on large step size | |
Zhang et al. | Optimal model reduction of discrete-time descriptor systems | |
CN114527643A (en) | Fuzzy PID controller design method based on particle swarm optimization | |
CN107957685A (en) | A kind of neurodynamics method for solving Noise time-varying problem | |
Gupta et al. | Comparative analysis of techniques of order reduction for analysis of vehicle model | |
CN110825051B (en) | Multi-model control method of uncertainty system based on gap metric | |
CN118643350B (en) | Method and device for training non-steady-state following error prediction model based on probability distribution | |
CN116415434B (en) | Screw tap processing technique and system for high-strength steel | |
CN118582444B (en) | Hydraulic valve coordinated control system based on Internet of things | |
CN115986900A (en) | Hybrid energy storage system prediction control method and device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220524 |
|
CF01 | Termination of patent right due to non-payment of annual fee |