[go: up one dir, main page]

CN109991844B - A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation - Google Patents

A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation Download PDF

Info

Publication number
CN109991844B
CN109991844B CN201910325121.6A CN201910325121A CN109991844B CN 109991844 B CN109991844 B CN 109991844B CN 201910325121 A CN201910325121 A CN 201910325121A CN 109991844 B CN109991844 B CN 109991844B
Authority
CN
China
Prior art keywords
transformation
coordinate system
component
axis component
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910325121.6A
Other languages
Chinese (zh)
Other versions
CN109991844A (en
Inventor
邵振国
杨少华
郑文迪
陈飞雄
周琪琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910325121.6A priority Critical patent/CN109991844B/en
Publication of CN109991844A publication Critical patent/CN109991844A/en
Application granted granted Critical
Publication of CN109991844B publication Critical patent/CN109991844B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种采用内嵌式解耦同步参考坐标变换的d‑q解耦控制器设计方法,包括以下步骤:步骤S1:提取三相静止坐标系下的交流量;步骤S2:进行外层同步参考坐标系变换;步骤S3:将d‑q参考坐标系下直流目标量和谐波干扰量进行相位移动至三相量;步骤S4:进行内嵌同步参考坐标系变换;步骤S5:对直流目标量和谐波干扰量进行解耦,得到直流目标量;步骤S6:判断纹波含量是否满足精度要求,若是,则进入步骤S7,否则返回步骤S3;步骤S7:将直流目标量输入值d‑q解耦控制器中。本发明可以在有背景谐波的情况下,准确简便的实现同步参考坐标系变换。

Figure 201910325121

The present invention relates to a d-q decoupling controller design method adopting embedded decoupling synchronous reference coordinate transformation, comprising the following steps: step S1: extracting the AC quantity in a three-phase static coordinate system; Synchronous reference coordinate system transformation; Step S3: phase-shift the DC target quantity and harmonic interference quantity in the d-q reference coordinate system to three-phase quantities; Step S4: carry out the embedded synchronous reference coordinate system transformation; Step S5: DC The target quantity and the harmonic interference quantity are decoupled to obtain the DC target quantity; Step S6: determine whether the ripple content meets the accuracy requirement, if so, go to Step S7, otherwise return to Step S3; Step S7: Input the DC target quantity to the value d ‑q in the decoupling controller. The present invention can accurately and simply realize the transformation of the synchronous reference coordinate system under the condition of background harmonics.

Figure 201910325121

Description

一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设 计方法A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation

技术领域technical field

本发明涉及电力系统领域,特别适用于需要使用坐标变换的控制器设计领域,提出了一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法。The invention relates to the field of electric power systems, and is particularly suitable for the field of controller design that needs to use coordinate transformation.

背景技术Background technique

基于同步参考坐标系变换的d-q解耦控制器在电力系统中的应用非常广泛,例如锁相环(Phase-Locked Loop,PLL)。由于背景谐波的存在,会使同步参考坐标系变换的结果夹杂纹波分量,这对后续的d-q解耦控制器造成很大的影响。准确实现同步参考坐标系变换,使解耦后的d-轴、q-轴分量唯一对应正序基波分量,这是d-q解耦控制器设计、运行的重要依据。The d-q decoupling controller based on synchronous reference frame transformation is widely used in power systems, such as phase-locked loop (PLL). Due to the existence of background harmonics, the result of the synchronous reference coordinate system transformation will be mixed with ripple components, which will have a great impact on the subsequent d-q decoupling controller. Accurately realize the transformation of the synchronous reference coordinate system, so that the decoupled d-axis and q-axis components only correspond to the positive sequence fundamental wave component, which is an important basis for the design and operation of the d-q decoupling controller.

传统的d-q解耦控制器采用的同步参考坐标变换方法主要有单同步参考坐标系法(Single Synchronous Reference Frame,SSRF)与解耦双同步旋转坐标系法(DecoupledDouble Synchronous Reference Frame,DDSRF)。这两种方法都无法完全摆脱背景谐波对坐标变换带来的不良影响。SSRF会使背景谐波按照派克变换的传变规律向d-轴和q-轴分量传递。DDSRF使用低通滤波器(Low Pass Filter,LPF)对背景谐波进行了简单的处理,但是还是没有避免背景谐波由三相静止坐标系向变换后的同步参考坐标系进行传递。The traditional d-q decoupling controller adopts the synchronous reference coordinate transformation method mainly includes the single synchronous reference frame method (Single Synchronous Reference Frame, SSRF) and the decoupled double synchronous rotating frame method (DDSRF). Neither of these two methods can completely get rid of the adverse effects of background harmonics on coordinate transformation. SSRF will make the background harmonics transfer to the d-axis and q-axis components according to the transmission law of Parker transform. DDSRF uses a low pass filter (LPF) to simply deal with the background harmonics, but it still does not prevent the background harmonics from being transmitted from the three-phase stationary coordinate system to the transformed synchronous reference coordinate system.

SSRF是利用派克变换(abc-to-dq0)将电信号从静止的三相坐标系变换到旋转的同步坐标系当中,其原理表达式如下所示:SSRF uses Parker transformation (abc-to-dq0) to transform electrical signals from a stationary three-phase coordinate system to a rotating synchronous coordinate system. Its principle expression is as follows:

udq=T3s-dq(θ)uabc u dq =T 3s-dq (θ)u abc

其中,in,

Figure BDA0002036013650000021
Figure BDA0002036013650000021

从表达式分析可得:背景谐波能通过派克变换的谐波传变规律馈入坐标变换后的d-轴和q-轴。SSRF无法对背景谐波进行处理,故基于SSRF的d-q解耦控制器存在严重不足。From the expression analysis, it can be obtained that the background harmonic energy can be fed into the d-axis and q-axis after the coordinate transformation through the harmonic transfer law of Parker transformation. SSRF cannot deal with the background harmonics, so the d-q decoupling controller based on SSRF has serious deficiencies.

DDSRF技术的基本原理是用双同步旋转坐标变换消去负序基波分量,用低通滤波器的方法去除谐波分量,从而达到输出信号完全不包括负序基波分量的目的。The basic principle of DDSRF technology is to eliminate the negative-sequence fundamental component by double synchronous rotation coordinate transformation, and use the low-pass filter method to remove the harmonic component, so as to achieve the purpose that the output signal does not include the negative-sequence fundamental component at all.

为抵消负序基波分量,该方法对usabc通过正向和反向同步旋转坐标变换得到dq坐标系和d-1q-1坐标系中的分量

Figure BDA0002036013650000022
Figure BDA0002036013650000023
将这两个分量可分别记作为正序基波分量、负序基波分量和谐波分量的叠加,表示为
Figure BDA0002036013650000024
Figure BDA0002036013650000025
其中
Figure BDA0002036013650000026
对应正序基波分量,
Figure BDA0002036013650000027
对应负序基波分量,
Figure BDA0002036013650000028
对应谐波分量。In order to cancel the negative-sequence fundamental component, this method obtains the components in the dq coordinate system and the d -1 q -1 coordinate system through forward and reverse synchronous rotation coordinate transformation for u sabc
Figure BDA0002036013650000022
and
Figure BDA0002036013650000023
These two components can be recorded as the superposition of the positive sequence fundamental component, the negative sequence fundamental component and the harmonic component, respectively, expressed as
Figure BDA0002036013650000024
and
Figure BDA0002036013650000025
in
Figure BDA0002036013650000026
Corresponding to the positive-sequence fundamental component,
Figure BDA0002036013650000027
Corresponding to the negative sequence fundamental component,
Figure BDA0002036013650000028
corresponding to the harmonic components.

其中,

Figure BDA0002036013650000029
Figure BDA00020360136500000210
存在一定关系:in,
Figure BDA0002036013650000029
and
Figure BDA00020360136500000210
There is a certain relationship:

Figure BDA00020360136500000211
Figure BDA00020360136500000211

Figure BDA00020360136500000212
Figure BDA00020360136500000212

根据以上关系可设计出能够抵消负序基波分量的同步参考坐标变换方法DDSRF。其原理框图如图1所示。According to the above relationship, a synchronous reference coordinate transformation method DDSRF can be designed which can cancel the negative sequence fundamental wave component. Its principle block diagram is shown in Figure 1.

通过以上分析可知:DDSRF技术相较于SRF具有很强优越性,可以完全抵消负序基波分量。适用于电网存在负序基波分量和极其少量谐波分量的不平衡状态。然而DDSRF没有解决谐波的问题,只是通过LPF来进行滤波。It can be seen from the above analysis that DDSRF technology has strong advantages compared with SRF, and can completely cancel the negative sequence fundamental wave component. It is suitable for the unbalanced state in which the negative sequence fundamental wave component and a very small amount of harmonic components exist in the power grid. However, DDSRF does not solve the problem of harmonics, and only filters through LPF.

综上,基于DDSRF技术的d-q解耦控制器存在以下不足之处:针对不同的背景谐波情况需要不断进行参数调整;经过LPF与后续控制器相结合可能会造成零极点分布的改变,进而造成控制器稳定性出现问题;背景谐波污染情况复杂的时候无法实现完全滤除。To sum up, the d-q decoupling controller based on DDSRF technology has the following shortcomings: continuous parameter adjustment is required for different background harmonic conditions; the combination of LPF and subsequent controllers may cause changes in the distribution of zero and poles, which in turn causes There is a problem with the stability of the controller; when the background harmonic pollution is complicated, it cannot be completely filtered out.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明的目的是提出一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,使d-q解耦控制器适用于背景谐波复杂的情况,可以在有背景谐波的情况下,准确简便的实现同步参考坐标系变换。In view of this, the purpose of the present invention is to propose a d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation, so that the d-q decoupling controller is suitable for the situation with complex background harmonics, which can be used in the background. In the case of harmonics, the synchronous reference coordinate system transformation can be realized accurately and easily.

本发明采用以下方案实现:一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,具体包括以下步骤:The present invention adopts the following scheme to realize: a d-q decoupling controller design method adopting embedded decoupling synchronous reference coordinate transformation, which specifically includes the following steps:

步骤S1:提取三相静止坐标系下的交流量;Step S1: extracting the AC quantity in the three-phase stationary coordinate system;

步骤S2:进行外层同步参考坐标系变换;Step S2: transform the outer layer synchronous reference coordinate system;

步骤S3:将d-q参考坐标系下直流目标量和谐波干扰量进行相位移动至三相量;Step S3: phase-shift the DC target quantity and the harmonic interference quantity in the d-q reference coordinate system to the three-phase quantity;

步骤S4:进行内嵌同步参考坐标系变换;Step S4: transform the embedded synchronous reference coordinate system;

步骤S5:对直流目标量和谐波干扰量进行解耦,得到直流目标量;Step S5: decoupling the DC target quantity and the harmonic interference quantity to obtain the DC target quantity;

步骤S6:判断纹波含量是否满足精度要求,若是,则进入步骤S7,否则返回步骤S3;Step S6: judging whether the ripple content meets the accuracy requirements, if so, go to step S7, otherwise return to step S3;

步骤S7:将直流目标量输入值d-q解耦控制器中。Step S7: Input the DC target quantity into the value d-q decoupling controller.

进一步地,步骤S3具体包括以下步骤:Further, step S3 specifically includes the following steps:

步骤S31:对比三相谐波的定义为:Step S31: Compare the definition of three-phase harmonics as:

Figure BDA0002036013650000041
Figure BDA0002036013650000041

对ua(t)=h(ωt+θ)函数进行平移,分别向不同方向平移t=1/3fn,其中fn的基波频率为50Hz,得到下式:Translate the u a (t)=h(ωt+θ) function, and translate t=1/3f n in different directions respectively, where the fundamental frequency of f n is 50Hz, and the following formula is obtained:

Figure BDA0002036013650000042
Figure BDA0002036013650000042

步骤S32:联立步骤S31中的两个公式得到:Step S32: Combine the two formulas in Step S31 to obtain:

Figure BDA0002036013650000043
Figure BDA0002036013650000043

进一步地,步骤S4具体为:采用下式对含有谐波的三相电气量进行内嵌同步参考坐标系变换:Further, step S4 is specifically: using the following formula to carry out the embedded synchronous reference coordinate system transformation on the three-phase electrical quantities containing harmonics:

udq0_new=T3s-dq(θ)u3s_newu dq0_new =T 3s-dq (θ)u 3s_new ;

式中,udq0_new表示经内层变换后的d-q参考坐标系分量,T3s-dq(θ)表示派克变换矩阵,u3s_new表示外层变换的结果进行相位移动后的三相静止参考坐标系分量。In the formula, u dq0_new represents the dq reference coordinate system component after the inner layer transformation, T 3s-dq (θ) represents the Parker transformation matrix, and u 3s_new represents the phase-shifted three-phase stationary reference coordinate system component of the outer layer transformation result. .

进一步地,步骤S5具体包括以下步骤:Further, step S5 specifically includes the following steps:

步骤S51:内层旋转坐标系的d轴、q轴分量是对应于外层旋转坐标系的纹波干扰量,如下式:Step S51: the d-axis and q-axis components of the inner rotating coordinate system are the ripple interference amount corresponding to the outer rotating coordinate system, as follows:

Figure BDA0002036013650000044
Figure BDA0002036013650000044

Figure BDA0002036013650000045
Figure BDA0002036013650000045

Figure BDA0002036013650000051
Figure BDA0002036013650000051

Figure BDA0002036013650000052
Figure BDA0002036013650000052

Figure BDA0002036013650000053
Figure BDA0002036013650000053

Figure BDA0002036013650000054
Figure BDA0002036013650000054

Figure BDA0002036013650000055
Figure BDA0002036013650000055

Figure BDA0002036013650000056
Figure BDA0002036013650000056

式中,

Figure BDA0002036013650000057
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure BDA0002036013650000058
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure BDA0002036013650000059
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure BDA00020360136500000510
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure BDA00020360136500000511
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure BDA00020360136500000512
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure BDA00020360136500000513
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure BDA00020360136500000514
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure BDA00020360136500000515
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure BDA00020360136500000516
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序基波分量;
Figure BDA00020360136500000517
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure BDA0002036013650000061
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure BDA0002036013650000062
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure BDA0002036013650000063
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure BDA0002036013650000064
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure BDA0002036013650000065
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure BDA0002036013650000066
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure BDA0002036013650000067
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure BDA0002036013650000068
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure BDA0002036013650000069
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序谐波分量;In the formula,
Figure BDA0002036013650000057
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA0002036013650000058
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation,
Figure BDA0002036013650000059
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500000510
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500000511
Represents the negative-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the outer-layer transformation d-axis component;
Figure BDA00020360136500000512
represents the DC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the d-axis component of the outer transformation,
Figure BDA00020360136500000513
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner layer transformation of the d-axis component of the outer layer transformation,
Figure BDA00020360136500000514
represents the AC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure BDA00020360136500000515
represents the positive-sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure BDA00020360136500000516
represents the negative-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation;
Figure BDA00020360136500000517
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000061
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000062
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000063
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000064
Represents the negative sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;
Figure BDA0002036013650000065
represents the DC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000066
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the outer layer transforms the q-axis component through the inner layer transformation,
Figure BDA0002036013650000067
represents the AC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure BDA0002036013650000068
represents the positive-sequence harmonic component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure BDA0002036013650000069
Represents the negative sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;

步骤S52:0轴分量对应于外层旋转坐标系的直流目标量,如下式:Step S52: The 0-axis component corresponds to the DC target amount of the outer rotating coordinate system, as follows:

Figure BDA00020360136500000610
Figure BDA00020360136500000610

Figure BDA00020360136500000611
Figure BDA00020360136500000611

式中,

Figure BDA00020360136500000612
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure BDA00020360136500000613
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的d-轴直流目标量,
Figure BDA00020360136500000614
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure BDA00020360136500000615
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的q-轴直流目标量;In the formula,
Figure BDA00020360136500000612
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500000613
Represents the d-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system,
Figure BDA00020360136500000614
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation q-axis component,
Figure BDA00020360136500000615
Represents the q-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system;

步骤S53:将内嵌坐标变换的结果按照d轴和q轴分为一类,0轴分为另一类,以此来实现目标量和干扰量的解耦。Step S53: Divide the results of the embedded coordinate transformation into one category according to the d-axis and the q-axis, and the 0-axis into another category, so as to realize the decoupling of the target quantity and the interference quantity.

本发明提出的方法是一种多层的同步参考坐标系变换方法。有背景谐波的电气量在经历第一次同步参考坐标系变换(外层同步参考坐标系变换)后,所得到的d轴和q轴分量会由于背景谐波的缘故而包含纹波量。为了得到准确且唯一与正序基波相对应的旋转坐标系分量,需要对直流量和纹波量进行解耦。通过相位移动,将含有纹波的直流电气量整合成含有谐波的三相电气量,接着对含有谐波的三相电气量进行第二次同步参考坐标系变换。将内层坐标变换的结果按照d轴和q轴分为一类,0轴分为另一类,以此来实现目标量和干扰量的解耦。若目标量当中的纹波含量不满足精度要求,则在进行相位移动后,继续内嵌同步参考坐标变换,进一步解耦目标量和干扰量。The method proposed by the present invention is a multi-layer synchronous reference coordinate system transformation method. After the electrical quantity with background harmonics undergoes the first synchronous reference coordinate system transformation (outer synchronous reference coordinate system transformation), the resulting d-axis and q-axis components will contain ripple due to the background harmonics. In order to obtain an accurate and unique rotating coordinate system component corresponding to the positive-sequence fundamental wave, it is necessary to decouple the DC quantity and the ripple quantity. Through the phase shift, the DC electrical quantities containing ripples are integrated into three-phase electrical quantities containing harmonics, and then the second synchronous reference coordinate system transformation is performed on the three-phase electrical quantities containing harmonics. The results of the inner coordinate transformation are divided into one category according to the d-axis and q-axis, and the 0-axis is divided into another category, so as to realize the decoupling of the target amount and the interference amount. If the ripple content in the target quantity does not meet the accuracy requirements, after the phase shift is performed, the synchronous reference coordinate transformation will continue to be embedded to further decouple the target quantity and the interference quantity.

与现有技术相比,本发明有以下有益效果:本发明可以在有背景谐波的情况下,准确简便的实现同步参考坐标系变换。本发明能大大降低背景谐波向d-和q-轴直流分量的不良传递。相较于采用SRF和DDSRF技术的d-q解耦控制器相比有巨大优势。Compared with the prior art, the present invention has the following beneficial effects: the present invention can accurately and simply realize the transformation of the synchronous reference coordinate system under the condition of background harmonics. The present invention can greatly reduce the bad transfer of background harmonics to d- and q-axis DC components. Compared with the d-q decoupling controller using SRF and DDSRF technology, it has huge advantages.

附图说明Description of drawings

图1为本发明实施例的背景技术中DDSRF原理框图。FIG. 1 is a schematic block diagram of a DDSRF in the background technology of an embodiment of the present invention.

图2为本发明实施例的三种坐标变换技术下直流分量的纹波幅值对比。其中(a)为对应2次背景谐波的直流纹波幅值;(b)为对应5次背景谐波的直流纹波幅值;(c)为对应7次背景谐波的直流纹波幅值。FIG. 2 is a comparison of ripple amplitudes of DC components under three coordinate transformation technologies according to an embodiment of the present invention. (a) is the DC ripple amplitude corresponding to the 2nd background harmonic; (b) is the DC ripple amplitude corresponding to the 5th background harmonic; (c) is the DC ripple amplitude corresponding to the 7th background harmonic value.

图3为本发明实施例的流程示意图。FIG. 3 is a schematic flowchart of an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.

如图3所示,本实施例提供了一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,具体包括以下步骤:As shown in FIG. 3 , this embodiment provides a method for designing a d-q decoupling controller using embedded decoupling synchronous reference coordinate transformation, which specifically includes the following steps:

步骤S1:提取三相静止坐标系下的交流量;Step S1: extracting the AC quantity in the three-phase stationary coordinate system;

步骤S2:进行外层同步参考坐标系变换;Step S2: transform the outer layer synchronous reference coordinate system;

步骤S3:将d-q参考坐标系下直流目标量和谐波干扰量进行相位移动至三相量;Step S3: phase-shift the DC target quantity and the harmonic interference quantity in the d-q reference coordinate system to the three-phase quantity;

步骤S4:进行内嵌同步参考坐标系变换;Step S4: transform the embedded synchronous reference coordinate system;

步骤S5:对直流目标量和谐波干扰量进行解耦,得到直流目标量;Step S5: decoupling the DC target quantity and the harmonic interference quantity to obtain the DC target quantity;

步骤S6:判断纹波含量是否满足精度要求,若是,则进入步骤S7,否则返回步骤S3;Step S6: judging whether the ripple content meets the accuracy requirements, if so, go to step S7, otherwise return to step S3;

步骤S7:将直流目标量输入值d-q解耦控制器中。Step S7: Input the DC target quantity into the value d-q decoupling controller.

在本实施例中,步骤S3具体包括以下步骤:In this embodiment, step S3 specifically includes the following steps:

步骤S31:对比三相谐波的定义为:Step S31: Compare the definition of three-phase harmonics as:

Figure BDA0002036013650000091
Figure BDA0002036013650000091

对ua(t)=h(ωt+θ)函数进行平移,分别向不同方向平移t=1/3fn,其中fn的基波频率为50Hz,得到下式:Translate the u a (t)=h(ωt+θ) function, and translate t=1/3f n in different directions respectively, where the fundamental frequency of f n is 50Hz, and the following formula is obtained:

Figure BDA0002036013650000092
Figure BDA0002036013650000092

步骤S32:联立步骤S31中的两个公式得到:Step S32: Combine the two formulas in Step S31 to obtain:

Figure BDA0002036013650000093
Figure BDA0002036013650000093

在本实施例中,步骤S4具体为:采用下式对含有谐波的三相电气量进行内嵌同步参考坐标系变换:In this embodiment, step S4 is specifically: using the following formula to transform the embedded synchronous reference coordinate system for the three-phase electrical quantities containing harmonics:

udq0_new=T3s-dq(θ)u3s_newu dq0_new =T 3s-dq (θ)u 3s_new ;

式中,udq0_new表示经内层变换后的d-q参考坐标系分量,T3s-dq(θ)表示派克变换矩阵,u3s_new表示外层变换的结果进行相位移动后的三相静止参考坐标系分量。In the formula, u dq0_new represents the dq reference coordinate system component after the inner layer transformation, T 3s-dq (θ) represents the Parker transformation matrix, and u 3s_new represents the phase-shifted three-phase stationary reference coordinate system component of the outer layer transformation result. .

在本实施例中,步骤S5具体包括以下步骤:In this embodiment, step S5 specifically includes the following steps:

步骤S51:内层旋转坐标系的d轴、q轴分量是对应于外层旋转坐标系的纹波干扰量,如下式:Step S51: the d-axis and q-axis components of the inner rotating coordinate system are the ripple interference amount corresponding to the outer rotating coordinate system, as follows:

Figure BDA0002036013650000101
Figure BDA0002036013650000101

Figure BDA0002036013650000102
Figure BDA0002036013650000102

Figure BDA0002036013650000103
Figure BDA0002036013650000103

Figure BDA0002036013650000104
Figure BDA0002036013650000104

Figure BDA0002036013650000105
Figure BDA0002036013650000105

Figure BDA0002036013650000106
Figure BDA0002036013650000106

Figure BDA0002036013650000107
Figure BDA0002036013650000107

Figure BDA0002036013650000108
Figure BDA0002036013650000108

式中,

Figure BDA0002036013650000109
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure BDA00020360136500001010
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure BDA00020360136500001011
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure BDA00020360136500001012
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure BDA00020360136500001013
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure BDA00020360136500001014
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure BDA00020360136500001015
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure BDA00020360136500001016
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure BDA00020360136500001017
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure BDA0002036013650000111
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序基波分量;
Figure BDA0002036013650000112
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure BDA0002036013650000113
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure BDA0002036013650000114
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure BDA0002036013650000115
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure BDA0002036013650000116
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure BDA0002036013650000117
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure BDA0002036013650000118
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure BDA0002036013650000119
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure BDA00020360136500001110
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure BDA00020360136500001111
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序谐波分量;In the formula,
Figure BDA0002036013650000109
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500001010
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation,
Figure BDA00020360136500001011
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500001012
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500001013
Represents the negative-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the outer-layer transformation d-axis component;
Figure BDA00020360136500001014
represents the DC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the d-axis component of the outer transformation,
Figure BDA00020360136500001015
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner layer transformation of the d-axis component of the outer layer transformation,
Figure BDA00020360136500001016
represents the AC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure BDA00020360136500001017
represents the positive-sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure BDA0002036013650000111
represents the negative-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation;
Figure BDA0002036013650000112
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000113
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000114
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000115
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000116
Represents the negative sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;
Figure BDA0002036013650000117
represents the DC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure BDA0002036013650000118
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the outer layer transforms the q-axis component through the inner layer transformation,
Figure BDA0002036013650000119
represents the AC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure BDA00020360136500001110
represents the positive-sequence harmonic component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure BDA00020360136500001111
Represents the negative sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;

步骤S52:0轴分量对应于外层旋转坐标系的直流目标量,如下式:Step S52: The 0-axis component corresponds to the DC target amount of the outer rotating coordinate system, as follows:

Figure BDA00020360136500001112
Figure BDA00020360136500001112

Figure BDA00020360136500001113
Figure BDA00020360136500001113

式中,

Figure BDA00020360136500001114
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure BDA00020360136500001115
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的d-轴直流目标量,
Figure BDA00020360136500001116
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure BDA00020360136500001117
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的q-轴直流目标量;In the formula,
Figure BDA00020360136500001114
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure BDA00020360136500001115
Represents the d-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system,
Figure BDA00020360136500001116
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation q-axis component,
Figure BDA00020360136500001117
Represents the q-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system;

步骤S53:将内嵌坐标变换的结果按照d轴和q轴分为一类,0轴分为另一类,以此来实现目标量和干扰量的解耦。Step S53: Divide the results of the embedded coordinate transformation into one category according to the d-axis and the q-axis, and the 0-axis into another category, so as to realize the decoupling of the target quantity and the interference quantity.

本实施例提出的使得坐标变换后的解耦d、q轴分量完全不受背景谐波的影响。为了体现本实施例的效果,将三相静止坐标系的背景谐波设置为负序2次谐波、负序5次谐波和正序7次谐波。它们的幅值均为基波的10%。This embodiment proposes that the decoupled d and q-axis components after coordinate transformation are completely unaffected by background harmonics. In order to reflect the effect of this embodiment, the background harmonics of the three-phase stationary coordinate system are set to the second harmonic of negative sequence, the fifth harmonic of negative sequence, and the seventh harmonic of positive sequence. Their amplitudes are both 10% of the fundamental.

再分别运用SRF、DDSRF、NDSRF三种技术对含背景谐波的信号进行坐标变换,得到变换后直流分量的纹波幅值(标幺值),如图2所示。Then use SRF, DDSRF, NDSRF three technologies to coordinate transformation of the signal containing background harmonics, and obtain the ripple amplitude (per unit value) of the DC component after transformation, as shown in Figure 2.

通过观察图2可知,采用NDSRF技术的d-q解耦控制器能大大降低背景谐波向d-和q-轴直流分量的不良传递。相较于采用SRF和DDSRF技术的d-q解耦控制器相比有巨大优势。By observing Figure 2, it can be seen that the d-q decoupling controller using NDSRF technology can greatly reduce the bad transfer of background harmonics to the d- and q-axis DC components. Compared with the d-q decoupling controller using SRF and DDSRF technology, it has huge advantages.

本实施例提出的方法是一种多层的同步参考坐标系变换方法。有背景谐波的电气量在经历第一次同步参考坐标系变换(外层同步参考坐标系变换)后,所得到的d轴和q轴分量会由于背景谐波的缘故而包含纹波量。为了得到准确且唯一与正序基波相对应的旋转坐标系分量,需要对直流量和纹波量进行解耦。通过相位移动,将含有纹波的直流电气量整合成含有谐波的三相电气量,接着对含有谐波的三相电气量进行第二次同步参考坐标系变换。将内层坐标变换的结果按照d轴和q轴分为一类,0轴分为另一类,以此来实现目标量和干扰量的解耦。若目标量当中的纹波含量不满足精度要求,则在进行相位移动后,继续内嵌同步参考坐标变换,进一步解耦目标量和干扰量。The method proposed in this embodiment is a multi-layer synchronous reference coordinate system transformation method. After the electrical quantity with background harmonics undergoes the first synchronous reference coordinate system transformation (outer synchronous reference coordinate system transformation), the resulting d-axis and q-axis components will contain ripple due to the background harmonics. In order to obtain an accurate and unique rotating coordinate system component corresponding to the positive-sequence fundamental wave, it is necessary to decouple the DC quantity and the ripple quantity. Through the phase shift, the DC electrical quantities containing ripples are integrated into three-phase electrical quantities containing harmonics, and then the second synchronous reference coordinate system transformation is performed on the three-phase electrical quantities containing harmonics. The results of the inner coordinate transformation are divided into one category according to the d-axis and q-axis, and the 0-axis is divided into another category, so as to realize the decoupling of the target amount and the interference amount. If the ripple content in the target quantity does not meet the accuracy requirements, after the phase shift is performed, the synchronous reference coordinate transformation will continue to be embedded to further decouple the target quantity and the interference quantity.

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms. Any person skilled in the art may use the technical content disclosed above to make changes or modifications to equivalent changes. Example. However, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention still belong to the protection scope of the technical solutions of the present invention.

Claims (3)

1.一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,其特征在于:包括以下步骤:1. a d-q decoupling controller design method adopting embedded decoupling synchronous reference coordinate transformation, is characterized in that: comprise the following steps: 步骤S1:提取三相静止坐标系下的交流量;Step S1: extracting the AC quantity in the three-phase stationary coordinate system; 步骤S2:进行外层同步参考坐标系变换;Step S2: transform the outer layer synchronous reference coordinate system; 步骤S3:将d-q参考坐标系下直流目标量和谐波干扰量进行相位移动至三相量;Step S3: phase-shift the DC target quantity and the harmonic interference quantity in the d-q reference coordinate system to the three-phase quantity; 步骤S4:进行内嵌同步参考坐标系变换;Step S4: transform the embedded synchronous reference coordinate system; 步骤S5:对直流目标量和谐波干扰量进行解耦,得到直流目标量;Step S5: decoupling the DC target quantity and the harmonic interference quantity to obtain the DC target quantity; 步骤S6:判断纹波含量是否满足精度要求,若是,则进入步骤S7,否则返回步骤S3;Step S6: judging whether the ripple content meets the accuracy requirements, if so, go to step S7, otherwise return to step S3; 步骤S7:将直流目标量输入值d-q解耦控制器中;Step S7: input the DC target quantity into the d-q decoupling controller; 其中,步骤S3具体包括以下步骤:Wherein, step S3 specifically includes the following steps: 步骤S31:对比三相谐波的定义为:Step S31: Compare the definition of three-phase harmonics as:
Figure FDA0003133387990000011
Figure FDA0003133387990000011
对ua(t)=h(ωt+θ)函数进行平移,分别向不同方向平移t=1/3fn,其中fn的基波频率为50Hz,得到下式:Translate the u a (t)=h(ωt+θ) function, and translate t=1/3f n in different directions respectively, where the fundamental frequency of f n is 50Hz, and the following formula is obtained:
Figure FDA0003133387990000021
Figure FDA0003133387990000021
步骤S32:联立步骤S31中的两个公式得到:Step S32: Combine the two formulas in Step S31 to obtain:
Figure FDA0003133387990000022
Figure FDA0003133387990000022
2.根据权利要求1所述的一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,其特征在于:步骤S4具体为:采用下式对含有谐波的三相电气量进行内嵌同步参考坐标系变换:2. a kind of d-q decoupling controller design method adopting embedded decoupling synchronous reference coordinate transformation according to claim 1, is characterized in that: step S4 is specifically: adopt following formula to contain harmonic three-phase electrical The inline synchronous reference coordinate system transformation is performed on the quantity: udq0_new=T3s-dq(θ)u3s_newu dq0_new =T 3s-dq (θ)u 3s_new ; 式中,udq0_new表示经内层变换后的d-q参考坐标系分量,T3s-dq(θ)表示派克变换矩阵,u3s_new表示外层变换的结果进行相位移动后的三相静止参考坐标系分量。In the formula, u dq0_new represents the dq reference coordinate system component after the inner layer transformation, T 3s-dq (θ) represents the Parker transformation matrix, and u 3s_new represents the phase-shifted three-phase stationary reference coordinate system component of the outer layer transformation result. . 3.根据权利要求1所述的一种采用内嵌式解耦同步参考坐标变换的d-q解耦控制器设计方法,其特征在于:步骤S5具体包括以下步骤:3. a kind of d-q decoupling controller design method adopting embedded decoupling synchronous reference coordinate transformation according to claim 1, is characterized in that: step S5 specifically comprises the following steps: 步骤S51:内层旋转坐标系的d轴、q轴分量是对应于外层旋转坐标系的纹波干扰量,如下式:Step S51: the d-axis and q-axis components of the inner rotating coordinate system are the ripple interference amount corresponding to the outer rotating coordinate system, as follows:
Figure FDA0003133387990000023
Figure FDA0003133387990000023
Figure FDA0003133387990000024
Figure FDA0003133387990000024
Figure FDA0003133387990000031
Figure FDA0003133387990000031
Figure FDA0003133387990000032
Figure FDA0003133387990000032
Figure FDA0003133387990000033
Figure FDA0003133387990000033
Figure FDA0003133387990000034
Figure FDA0003133387990000034
Figure FDA0003133387990000035
Figure FDA0003133387990000035
Figure FDA0003133387990000036
Figure FDA0003133387990000036
式中,
Figure FDA0003133387990000037
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure FDA0003133387990000038
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure FDA0003133387990000039
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure FDA00031333879900000310
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure FDA00031333879900000311
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure FDA00031333879900000312
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure FDA00031333879900000313
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure FDA00031333879900000314
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure FDA00031333879900000315
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure FDA00031333879900000316
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序基波分量;
Figure FDA0003133387990000041
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的直流分量,
Figure FDA0003133387990000042
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序基波分量,
Figure FDA0003133387990000043
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的交流分量,
Figure FDA0003133387990000044
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的正序谐波分量,
Figure FDA0003133387990000045
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的d-轴分量的负序谐波分量;
Figure FDA0003133387990000046
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的直流分量,
Figure FDA0003133387990000047
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序基波分量,
Figure FDA0003133387990000048
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的交流分量,
Figure FDA0003133387990000049
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的正序谐波分量,
Figure FDA00031333879900000410
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的q-轴分量的负序谐波分量;
In the formula,
Figure FDA0003133387990000037
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure FDA0003133387990000038
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation,
Figure FDA0003133387990000039
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure FDA00031333879900000310
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure FDA00031333879900000311
Represents the negative-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the outer-layer transformation d-axis component;
Figure FDA00031333879900000312
represents the DC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the d-axis component of the outer transformation,
Figure FDA00031333879900000313
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner layer transformation of the d-axis component of the outer layer transformation,
Figure FDA00031333879900000314
represents the AC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure FDA00031333879900000315
represents the positive-sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the d-axis component of the outer transformation,
Figure FDA00031333879900000316
represents the negative-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the inner-layer transformation of the d-axis component of the outer layer transformation;
Figure FDA0003133387990000041
Represents the DC component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure FDA0003133387990000042
represents the positive-sequence fundamental wave component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure FDA0003133387990000043
represents the AC component of the d-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure FDA0003133387990000044
represents the positive-sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure FDA0003133387990000045
Represents the negative sequence harmonic component of the d-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;
Figure FDA0003133387990000046
represents the DC component of the q-axis component in the new rotated coordinate system obtained by the inner transformation of the q-axis component of the outer transformation,
Figure FDA0003133387990000047
represents the positive-sequence fundamental wave component of the q-axis component in the new rotating coordinate system obtained after the outer layer transforms the q-axis component through the inner layer transformation,
Figure FDA0003133387990000048
represents the AC component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure FDA0003133387990000049
represents the positive-sequence harmonic component of the q-axis component in the new rotated coordinate system obtained after the inner transformation of the outer transformation q-axis component,
Figure FDA00031333879900000410
Represents the negative sequence harmonic component of the q-axis component in the new rotating coordinate system obtained by the inner transformation of the q-axis component of the outer transformation;
步骤S52:0轴分量对应于外层旋转坐标系的直流目标量,如下式:Step S52: The 0-axis component corresponds to the DC target amount of the outer rotating coordinate system, as follows:
Figure FDA00031333879900000411
Figure FDA00031333879900000411
Figure FDA00031333879900000412
Figure FDA00031333879900000412
式中,
Figure FDA00031333879900000413
表示外层变换d-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure FDA0003133387990000051
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的d-轴直流目标量,
Figure FDA0003133387990000052
表示外层变换q-轴分量进行内层变换后得到的新旋转坐标系中的0-轴分量的直流分量,
Figure FDA0003133387990000053
表示三相静止坐标系下的交流量经过外层同步参考坐标系变换得到的q-轴直流目标量;
In the formula,
Figure FDA00031333879900000413
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation d-axis component,
Figure FDA0003133387990000051
Represents the d-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system,
Figure FDA0003133387990000052
Represents the DC component of the 0-axis component in the new rotating coordinate system obtained by the inner transformation of the outer transformation q-axis component,
Figure FDA0003133387990000053
Represents the q-axis DC target quantity obtained by transforming the AC quantity in the three-phase stationary coordinate system through the outer synchronous reference coordinate system;
步骤S53:将内嵌坐标变换的结果按照d轴和q轴分为一类,0轴分为另一类,以此来实现目标量和干扰量的解耦。Step S53: Divide the results of the embedded coordinate transformation into one category according to the d-axis and the q-axis, and the 0-axis into another category, so as to realize the decoupling of the target quantity and the interference quantity.
CN201910325121.6A 2019-04-22 2019-04-22 A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation Active CN109991844B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910325121.6A CN109991844B (en) 2019-04-22 2019-04-22 A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910325121.6A CN109991844B (en) 2019-04-22 2019-04-22 A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation

Publications (2)

Publication Number Publication Date
CN109991844A CN109991844A (en) 2019-07-09
CN109991844B true CN109991844B (en) 2021-08-31

Family

ID=67132923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910325121.6A Active CN109991844B (en) 2019-04-22 2019-04-22 A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation

Country Status (1)

Country Link
CN (1) CN109991844B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956352B2 (en) * 2001-03-19 2005-10-18 Abb Oy Vector control of an induction motor
CN101673952A (en) * 2009-08-14 2010-03-17 燕山大学 Precise phase locking method based on cross decoupling self-adaptive complex filter
CN102095915A (en) * 2010-11-24 2011-06-15 重庆大学 Voltage signal detecting device using multiple synchronous reference coordinate system transformation
CN103391095A (en) * 2013-07-18 2013-11-13 深圳市晶福源电子技术有限公司 Three-phase voltage unbalance phase-locked loop based on decoupling control
CN106410858A (en) * 2016-08-30 2017-02-15 成都麦隆电气有限公司 Software digital phase-locking method based on dual dq coordination conversion
US10215784B1 (en) * 2017-12-05 2019-02-26 Industrial Technology Research Institute Measuring apparatus including phase locked loop and measuring method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956352B2 (en) * 2001-03-19 2005-10-18 Abb Oy Vector control of an induction motor
CN101673952A (en) * 2009-08-14 2010-03-17 燕山大学 Precise phase locking method based on cross decoupling self-adaptive complex filter
CN102095915A (en) * 2010-11-24 2011-06-15 重庆大学 Voltage signal detecting device using multiple synchronous reference coordinate system transformation
CN103391095A (en) * 2013-07-18 2013-11-13 深圳市晶福源电子技术有限公司 Three-phase voltage unbalance phase-locked loop based on decoupling control
CN106410858A (en) * 2016-08-30 2017-02-15 成都麦隆电气有限公司 Software digital phase-locking method based on dual dq coordination conversion
US10215784B1 (en) * 2017-12-05 2019-02-26 Industrial Technology Research Institute Measuring apparatus including phase locked loop and measuring method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
解耦多同步参考坐标系电网电压同步信号检测方法;李珊瑚;《电工技术学报》;20111231;第26卷(第12期);全文 *

Also Published As

Publication number Publication date
CN109991844A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
CN106655276B (en) A phase-locking method suitable for three-phase grid voltage
CN102904568B (en) Self-adaptive grid-tied converter single phase soft phase-locked loop
CN103472282B (en) A kind of FBD harmonic current detecting method based on adaptive principle
CN109217371B (en) Voltage source type converter grid-connected system stability analysis method, device and system considering phase-locked loop influence
CN102590646A (en) Method for detecting positive sequence, negative sequence and harmonic current based on phase sequence filter
CN104333002B (en) A kind of based on ip-iq detection method with the hybrid active filter of Hysteresis control
CN104795822B (en) Have the detection of specified subharmonic and its compensation method of reactive-load compensation concurrently
CN103683292A (en) Parallel type quasi-proportional resonance active power filter and control method thereof
CN103267897A (en) A Three-Phase Phase-Locked Loop Based on Inverse Park Transformation
CN106410858A (en) Software digital phase-locking method based on dual dq coordination conversion
CN106532705A (en) Three-phase four-line APF calculation method of sub-harmonic compensation under multiple synchronous rotating coordinate systems
CN103647550A (en) Phase-locked loop method for dynamic voltage reactive compensation
CN103199532A (en) Non-delayed single-phase phase-locked loop second harmonic filtering method
CN107045082A (en) The synchronized phase open loop detection method of high accuracy and anti-noise jamming
CN103124074B (en) A kind of power quality compound compensation method
CN107561362A (en) A kind of SAI phase-locked loop methods suitable for non-ideal power network
CN111431210B (en) Phase-locked loop control method and system of three-phase grid-connected converter
CN109149598B (en) Subsynchronous oscillation suppression method and system based on near-end phase locking of power grid
Yang et al. Mitigation of background harmonics effect on MMC controller based on a novel coordinate transformation technique
CN109991844B (en) A d-q decoupling controller design method using embedded decoupling synchronous reference coordinate transformation
CN105403771A (en) Improved adaptive principle harmonic detection method
CN102856905B (en) Active power filter using load voltage feed-forward control
CN113964877A (en) A method and system for improving the grid-connected capability of wind turbines under voltage imbalance
CN108809301A (en) A kind of three-phase software phlase locking system and its phase-lock technique based on sliding DFT filtering principle
CN103368431B (en) A kind of MMC upper and lower bridge arm separation control method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant