CN109976384B - Autonomous underwater robot and path following control method and device - Google Patents
Autonomous underwater robot and path following control method and device Download PDFInfo
- Publication number
- CN109976384B CN109976384B CN201910188002.0A CN201910188002A CN109976384B CN 109976384 B CN109976384 B CN 109976384B CN 201910188002 A CN201910188002 A CN 201910188002A CN 109976384 B CN109976384 B CN 109976384B
- Authority
- CN
- China
- Prior art keywords
- underwater robot
- autonomous underwater
- inequality
- real
- autonomous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/12—Target-seeking control
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
本发明实施例提供一种自治水下机器人及路径跟随控制方法、装置,涉及机器人技术领域。获取搭建的自治水下机器人运动系统;根据物理学原理,生成所述自治水下机器人运动系统的非线性动态系统;接收所述定位模块获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写;基于自治水下机器人的干扰项、实时位置以及预设的输入‑状态稳定性理论,生成非线性鲁棒反步控制器,并对自治水下机器人运动系统进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。
Embodiments of the present invention provide an autonomous underwater robot and a path following control method and device, which relate to the technical field of robotics. Obtain the built autonomous underwater robot motion system; generate a nonlinear dynamic system of the autonomous underwater robot motion system according to the principles of physics; receive the real-time position of the autonomous underwater robot acquired by the positioning module, and The dynamic model is used to rewrite the real-time position; based on the interference term of the autonomous underwater robot, the real-time position and the preset input-state stability theory, a nonlinear robust backstepping controller is generated, and the autonomous underwater robot is The motion system is controlled so that the autonomous underwater robot can independently complete the precise path following operation and achieve stable work.
Description
技术领域technical field
本发明涉及机器人技术领域,具体而言,涉及一种自治水下机器人及路径跟随控制方法、装置。The invention relates to the technical field of robots, in particular to an autonomous underwater robot and a path following control method and device.
背景技术Background technique
自治水下机器人可在没有人工实时控制的情况下,代替或协助人类在水下完成各种艰苦或危险的工作,对其研发显得非常重要。水下机器人工作在充满未知和挑战的水下环境中,风、浪、流、深水压力等复杂的水下环境对水下机器人的运动干扰严重,传统的陆地机器人路径跟随控制无法简单推广到水下机器人路径跟随控制中,必须寻求复杂水下环境中的路径控制策略。Autonomous underwater robots can replace or assist humans to complete various difficult or dangerous tasks underwater without real-time human control, which is very important to its research and development. Underwater robots work in an unknown and challenging underwater environment. The complex underwater environment such as wind, waves, currents, and deep water pressure seriously interferes with the motion of underwater robots. The traditional path following control of land robots cannot be simply extended to water. In the path following control of the robot, the path control strategy in the complex underwater environment must be sought.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例的目的在于提供一种自治水下机器人及路径跟随控制方法、装置,以改善现有技术中水下环境对水下机器人的运动干扰严重的问题。In view of this, the purpose of the embodiments of the present invention is to provide an autonomous underwater robot and a path following control method and device, so as to improve the problem that the underwater environment seriously interferes with the movement of the underwater robot in the prior art.
本发明较佳实施例提供了一种自治水下机器人路径跟随控制方法,包括以下步骤:A preferred embodiment of the present invention provides a path following control method for an autonomous underwater robot, comprising the following steps:
获取搭建的自治水下机器人运动系统;其中,所述自治水下机器人运动系统包括推动器、负载、定位模块以及机器人基体;Acquiring the built autonomous underwater robot motion system; wherein, the autonomous underwater robot motion system includes a pusher, a load, a positioning module and a robot base;
根据物理学原理,生成所述自治水下机器人运动系统的非线性动态系统;其中,所述非线性动态系统包括所述自治水下机器人的动力学模型;According to the principle of physics, a nonlinear dynamic system of the autonomous underwater robot motion system is generated; wherein, the nonlinear dynamic system includes a dynamic model of the autonomous underwater robot;
接收所述定位模块获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写;receiving the real-time position of the autonomous underwater robot obtained by the positioning module, and rewriting the real-time position according to the dynamic model;
基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器;Generate a nonlinear robust backstepping controller based on the disturbance term, real-time position and preset input-state stability theory of the autonomous underwater vehicle;
基于所述非线性鲁棒反步控制器对自治水下机器人运动系统进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。The motion system of the autonomous underwater robot is controlled based on the nonlinear robust backstepping controller, so that the autonomous underwater robot can autonomously and independently complete the precise path following operation and achieve stable work.
优选地,所述自治水下机器人的动力学模型为:Preferably, the dynamic model of the autonomous underwater robot is:
其中,m是自治水下机器人的质量;r是自治水下机器人作业时的三维位置坐标,且r=[rx,ry,rz]T;Fm是所述推动器给自治水下机器人的驱动力,且Fm=[Fmx,Fmy,Fmz]T;Fd是自治水下机器人在水中运动时所受到的液体粘滞阻力,且Fd=[Fdx,Fdy,Fdz]T。Among them, m is the mass of the autonomous underwater robot; r is the three-dimensional position coordinate of the autonomous underwater robot during operation, and r = [r x , ry , r z ] T ; F m is the propeller to the autonomous underwater robot The driving force of the robot, and F m = [F mx , F my , F mz ] T ; F d is the liquid viscous resistance of the autonomous underwater robot when it moves in water, and F d =[F dx , F dy , F dz ] T .
优选地,接收所述定位模块获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写的步骤为:Preferably, the steps of receiving the real-time position of the autonomous underwater robot obtained by the positioning module, and rewriting the real-time position according to the dynamic model are:
将所述自治水下机器人的外观简化成球形,由斯托克斯公式得,Simplify the appearance of the autonomous underwater robot into a spherical shape, which is obtained by Stokes formula,
Fd=6πηRυ (2)F d =6πηRυ (2)
其中,η为自治水下机器人所处水环境的液体粘滞系数,R为自治水下机器人的半径,υ=[υx,υy,υz]T为自治水下机器人在水下作业时相对水环境的运动速度;Among them, η is the liquid viscosity coefficient of the water environment where the autonomous underwater robot is located, R is the radius of the autonomous underwater robot, υ = [υ x , υ y , υ z ] T is the autonomous underwater robot when the autonomous underwater robot is operating underwater The speed of movement relative to the water environment;
定义rd为自治水下机器人作业时的预设路径坐标,ro为自治水下机器人作业时由所述定位模块获得的实时位置的坐标,并对自治水下机器人水下作业时的路径跟随控制目标可转换成使位置误差e=rd-ro以及趋于0;Define r d as the preset path coordinates during the operation of the autonomous underwater robot, r o as the coordinates of the real-time position obtained by the positioning module during the operation of the autonomous underwater robot, and follow the path of the autonomous underwater robot during the underwater operation The control objective can be converted so that the position error e=r d -r o and tends to 0;
将公式(1)改写成状态空间表达式,进一步定义公式(1)变为:Rewrite formula (1) into a state space expression to further define Formula (1) becomes:
其中,以及 in, as well as
优选地,所述自治水下机器人的干扰项包括自治水下机器人水下作业时遇到的风、浪、流或深水压,将所述干扰项归结至系数Δ=[Δx,Δy,Δz]T中,并把Δ看成未知的有界系数向量,则公式(1)变为:Preferably, the interference term of the autonomous underwater robot includes wind, wave, current or deep water pressure encountered by the autonomous underwater robot during underwater operation, and the interference term is attributed to the coefficient Δ=[Δ x , Δ y , Δ z ] T , and regard Δ as an unknown bounded coefficient vector, then formula (1) becomes:
转换成状态空间表达式,公式(2)变为:Converted to a state space expression, Equation (2) becomes:
优选地,基于自治水下机器人的干扰项、实时位置与输入-状态稳定性理论,生成非线性鲁棒反步控制器的步骤包括:Preferably, based on the disturbance term, real-time position and input-state stability theory of the autonomous underwater vehicle, the step of generating a nonlinear robust backstepping controller includes:
基于输入-状态稳定性理论,生成非线性鲁棒反步控制器:Based on the input-state stability theory, a nonlinear robust backstepping controller is generated:
其中,k1,k2以及δ为非负控制增益。in, k1, k2 and δ are non-negative control gains.
对于所述非线性动态系统,建立如下的李雅普诺夫函数:For the nonlinear dynamic system, the following Lyapunov function is established:
对公式(7)进行求导得到:Taking the derivation of formula (7), we get:
由不等式by the inequality
其中δ>0;where δ>0;
将不等式(9)代入公式(8),可得:Substituting inequality (9) into formula (8), we get:
将所述非线性鲁棒反步控制器(6)代入不等式(10),得到:Substituting the nonlinear robust backstepping controller (6) into inequality (10), we get:
取一正数K=min{k1,k2},不等式(10)可简化为:Taking a positive number K=min{k 1 , k 2 }, inequality (10) can be simplified as:
对不等式(12)两边各乘e2Kt,并对其在[0,t]进行积分,得到:Multiplying both sides of inequality (12) by e 2Kt and integrating it in [0, t], we get:
对不等式(13)两边各作开平方运算,并将李雅普诺夫函数(7)代入不等式(13),得:Taking the square root operation on both sides of inequality (13), and substituting Lyapunov function (7) into inequality (13), we get:
不等式(14)反映整个路径跟随控制系统的输入-状态稳定性,并且其表明了在有界未知干扰的作用下,位置跟踪误差和速度跟踪误差的上界,如此,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。Inequality (14) reflects the input-state stability of the entire path following control system, and it shows the upper bound of the position tracking error and velocity tracking error under the action of bounded unknown disturbances, so that the autonomous underwater robot is autonomous and independent Complete precise path following jobs and achieve stable work.
本发明实施例还提供一种自治水下机器人路径跟随控制装置,包括:An embodiment of the present invention also provides a path following control device for an autonomous underwater robot, including:
运动系统获取单元,用于获取搭建的自治水下机器人运动系统;其中,所述自治水下机器人运动系统包括推动器、负载、定位模块以及机器人基体;a motion system acquisition unit, used for acquiring a built autonomous underwater robot motion system; wherein, the autonomous underwater robot motion system includes a pusher, a load, a positioning module and a robot base;
非线性系统生成单元,用于根据物理学原理,生成所述自治水下机器人运动系统的非线性动态系统;其中,所述非线性动态系统包括所述自治水下机器人的动力学模型;a nonlinear system generation unit, configured to generate a nonlinear dynamic system of the autonomous underwater robot motion system according to the principle of physics; wherein, the nonlinear dynamic system includes a dynamic model of the autonomous underwater robot;
改写单元,用于接收所述定位模块获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写;a rewriting unit, configured to receive the real-time position of the autonomous underwater robot acquired by the positioning module, and rewrite the real-time position according to the dynamic model;
控制器生成单元,用于基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器;A controller generation unit for generating a nonlinear robust backstepping controller based on the disturbance term, real-time position and preset input-state stability theory of the autonomous underwater vehicle;
控制单元,用于基于所述非线性鲁棒反步控制器对自治水下机器人运动系统进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。The control unit is used for controlling the motion system of the autonomous underwater robot based on the nonlinear robust backstepping controller, so that the autonomous underwater robot can independently complete the precise path following operation and realize stable work.
本发明实施例还提供一种自治水下机器人,包括处理器、存储器以及存储在所述存储器内的可执行代码,所述可执行代码能够被所述处理器执行以实现上述的路径跟随控制方法。An embodiment of the present invention further provides an autonomous underwater robot, including a processor, a memory, and executable code stored in the memory, where the executable code can be executed by the processor to implement the above-mentioned path following control method .
上述实施例中,通过构造自治水下机器人运动系统,并建立自治水下机器人运动系统的非非线性动态系统,并基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器对自治水下机器人运动系统进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。In the above-mentioned embodiment, by constructing the autonomous underwater robot motion system, and establishing the non-linear dynamic system of the autonomous underwater robot motion system, and based on the interference term of the autonomous underwater robot, the real-time position and the preset input-state stability According to the theory, a nonlinear robust backstepping controller is generated to control the motion system of the autonomous underwater robot, so that the autonomous underwater robot can independently complete the accurate path following operation and achieve stable work.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本发明第一实施例提供的自治水下机器人运动系统的结构示意图;1 is a schematic structural diagram of an autonomous underwater robot motion system provided by a first embodiment of the present invention;
图2为本发明第一实施例提供的自治水下机器人路径跟随控制方法的流程示意图;2 is a schematic flowchart of a path following control method for an autonomous underwater robot provided by the first embodiment of the present invention;
图3为本发明第二实施例提供的自治水下机器人路径跟随控制装置的结构示意图。FIG. 3 is a schematic structural diagram of a path following control device for an autonomous underwater robot according to a second embodiment of the present invention.
图标:100-自治水下机器人运动系统;10-推动器;20-负载;30-定位模块;40-机器人基体;210-运动系统获取单元;220-非线性系统生成单元;230-改写单元;240-控制器生成单元;250-控制单元。Icons: 100-autonomous underwater robot motion system; 10-propeller; 20-load; 30-positioning module; 40-robot base; 210-motion system acquisition unit; 220-nonlinear system generation unit; 230-rewrite unit; 240 - controller generation unit; 250 - control unit.
具体实施方式Detailed ways
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和生成。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and generated in a variety of different configurations. Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures. Meanwhile, in the description of the present invention, the terms "first", "second", etc. are only used to distinguish the description, and cannot be understood as indicating or implying relative importance.
请参阅图1,本发明第一实施例提供了一种自治水下机器人路径跟随控制方法,包括以下步骤:Referring to FIG. 1, the first embodiment of the present invention provides a path following control method for an autonomous underwater robot, including the following steps:
S101,获取搭建的自治水下机器人运动系统100。其中,如图2所示,所述自治水下机器人运动系统100包括推动器10、负载20、定位模块30以及机器人基体40。S101 , acquiring a built autonomous underwater
S102,根据物理学原理,生成所述自治水下机器人运动系统100的非线性动态系统;其中,所述非线性动态系统包括所述自治水下机器人的动力学模型。S102, according to the principles of physics, generate a nonlinear dynamic system of the autonomous underwater
具体地,在本实施例中,所述自治水下机器人的动力学模型为:Specifically, in this embodiment, the dynamic model of the autonomous underwater robot is:
其中,m是自治水下机器人的质量;r是自治水下机器人作业时的三维位置坐标,且r=[rx,ry,rz]T;Fm是所述推动器10给自治水下机器人的驱动力,且Fm=[Fmx,Fmy,Fmz]T;Fd是自治水下机器人在水中运动时所受到的液体粘滞阻力,且Fd=[Fdx,Fdy,Fdz]T。Among them, m is the mass of the autonomous underwater robot; r is the three-dimensional position coordinate of the autonomous underwater robot during operation, and r = [r x , ry , r z ] T ; F m is the
S103,接收所述定位模块30获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写。S103: Receive the real-time position of the autonomous underwater robot obtained by the
具体地,将所述自治水下机器人的外观简化成球形,由斯托克斯公式得,Specifically, the appearance of the autonomous underwater robot is simplified into a spherical shape, which is obtained by Stokes formula,
Fd=6πηRυ (2)F d =6πηRυ (2)
其中,η为自治水下机器人所处水环境的液体粘滞系数,R为自治水下机器人的半径,υ=[υx,υy,υz]T为自治水下机器人在水下作业时相对水环境的运动速度;Among them, η is the liquid viscosity coefficient of the water environment where the autonomous underwater robot is located, R is the radius of the autonomous underwater robot, υ = [υ x , υ y , υ z ] T is the autonomous underwater robot when the autonomous underwater robot is operating underwater The speed of movement relative to the water environment;
定义rd为自治水下机器人作业时的预设路径坐标,ro为自治水下机器人作业时由所述定位模块30获得的实时位置的坐标,并对自治水下机器人水下作业时的路径跟随控制目标可转换成使位置误差e=rd-ro以及趋于0;Definition r d is the preset path coordinate during the operation of the autonomous underwater robot, r o is the coordinate of the real-time position obtained by the
将公式(1)改写成状态空间表达式,进一步定义公式(1)变为:Rewrite formula (1) into a state space expression to further define Formula (1) becomes:
其中,以及 in, as well as
S104,基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器。S104, a nonlinear robust backstepping controller is generated based on the disturbance term, real-time position and preset input-state stability theory of the autonomous underwater robot.
其中,所述自治水下机器人的干扰项包括自治水下机器人水下作业时遇到的风、浪、流或深水压,将所述干扰项归结至系数Δ=[Δx,Δy,Δz]T中,并把Δ看成未知的有界系数向量,则公式(1)变为:Wherein, the interference term of the autonomous underwater robot includes wind, wave, current or deep water pressure encountered by the autonomous underwater robot during underwater operation, and the interference term is attributed to the coefficient Δ=[Δ x , Δ y , Δ z ] T , and regard Δ as an unknown bounded coefficient vector, then formula (1) becomes:
转换成状态空间表达式,公式(2)变为:Converted to a state space expression, Equation (2) becomes:
基于自治水下机器人的干扰项、实时位置与输入-状态稳定性理论,生成非线性鲁棒反步控制器的步骤包括:Based on the disturbance term, real-time position and input-state stability theory of autonomous underwater vehicles, the steps to generate a nonlinear robust backstepping controller include:
基于输入-状态稳定性理论,生成非线性鲁棒反步控制器:Based on the input-state stability theory, a nonlinear robust backstepping controller is generated:
其中,k1,k2以及δ为非负控制增益。in, k1, k2 and δ are non-negative control gains.
对于所述非线性动态系统,建立如下的李雅普诺夫函数:For the nonlinear dynamic system, the following Lyapunov function is established:
对公式(7)进行求导得到:Taking the derivation of formula (7), we get:
由不等式by the inequality
其中δ>0;where δ>0;
将不等式(9)代入公式(8),可得:Substituting inequality (9) into formula (8), we get:
将所述非线性鲁棒反步控制器(6)代入不等式(10),得到:Substituting the nonlinear robust backstepping controller (6) into inequality (10), we get:
取一正数K=min{k1,k2},不等式(10)可简化为:Taking a positive number K=min{k 1 , k 2 }, inequality (10) can be simplified as:
对不等式(12)两边各乘e2Kt,并对其在[0,t]进行积分,得到:Multiplying both sides of inequality (12) by e 2Kt and integrating it in [0, t], we get:
对不等式(13)两边各作开平方运算,并将李雅普诺夫函数(7)代入不等式(13),得:Taking the square root operation on both sides of inequality (13), and substituting Lyapunov function (7) into inequality (13), we get:
S105,基于所述非线性鲁棒反步控制器对自治水下机器人运动系统100进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。S105, the autonomous underwater
如上述的不等式(14)所示,该不等式反映整个路径跟随控制系统的输入-状态稳定性,并且其表明了在有界未知干扰的作用下,位置跟踪误差和速度跟踪误差的上界。进一步的,如果干扰消失,位置及速度跟踪误差都可收敛至0。选择合适的控制参数k1,k2以及δ,所设计的路径跟随控制器(见公式(6))会使得自治水下机器人路径跟随系统运行稳定。As shown in inequality (14) above, this inequality reflects the input-state stability of the entire path following control system, and it shows the upper bounds of position tracking error and velocity tracking error under the action of bounded unknown disturbances. Further, if the disturbance disappears, both the position and velocity tracking errors can converge to zero. Selecting appropriate control parameters k1, k2 and δ, the designed path following controller (see formula (6)) will make the autonomous underwater robot path following system run stably.
综上所述,通过构造自治水下机器人运动系统100,并建立自治水下机器人运动系统100的非非线性动态系统,并基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器对自治水下机器人运动系统100进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。To sum up, by constructing the autonomous underwater
请参考图3,本发明第二实施例还提供一种自治水下机器人路径跟随控制装置,包括:Please refer to FIG. 3 , the second embodiment of the present invention also provides a path following control device for an autonomous underwater robot, including:
运动系统获取单元210,用于获取搭建的自治水下机器人运动系统100;其中,所述自治水下机器人运动系统100包括推动器10、负载20、定位模块30以及机器人基体40。The motion
非线性系统生成单元220,用于根据物理学原理,生成所述自治水下机器人运动系统100的非线性动态系统;其中,所述非线性动态系统包括所述自治水下机器人的动力学模型。The nonlinear
其中,在本实施例中,所述自治水下机器人的动力学模型为:Wherein, in this embodiment, the dynamics model of the autonomous underwater robot is:
其中,m是自治水下机器人的质量;r是自治水下机器人作业时的三维位置坐标,且r=[rx,ry,rz]T;Fm是所述推动器给自治水下机器人的驱动力,且Fm=[Fmx,Fmy,Fmz]T;Fd是自治水下机器人在水中运动时所受到的液体粘滞阻力,且Fd=[Fdx,Fdy,Fdz]T。Among them, m is the mass of the autonomous underwater robot; r is the three-dimensional position coordinate of the autonomous underwater robot during operation, and r = [r x , ry , r z ] T ; F m is the propeller to the autonomous underwater robot The driving force of the robot, and F m = [F mx , F my , F mz ] T ; F d is the liquid viscous resistance of the autonomous underwater robot when it moves in water, and F d =[F dx , F dy , F dz ] T .
改写单元230,用于接收所述定位模块30获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写。The
其中,在本实施中的改写单元230当中,用于接收所述定位模块获取的所述自治水下机器人的实时位置,并根据所述动力学模型对所述实时位置进行改写的步骤为:Wherein, in the
将所述自治水下机器人的外观简化成球形,由斯托克斯公式得,Simplify the appearance of the autonomous underwater robot into a spherical shape, which is obtained by Stokes formula,
Fd=6nηRυ (22)F d =6nηRυ (22)
其中,η为自治水下机器人所处水环境的液体粘滞系数,R为自治水下机器人的半径,υ=[υx,υy,υz]T为自治水下机器人在水下作业时相对水环境的运动速度;Among them, η is the liquid viscosity coefficient of the water environment where the autonomous underwater robot is located, R is the radius of the autonomous underwater robot, υ = [υ x , υ y , υ z ] T is the autonomous underwater robot when the autonomous underwater robot is operating underwater The speed of movement relative to the water environment;
定义rd为自治水下机器人作业时的预设路径坐标,ro为自治水下机器人作业时由所述定位模块获得的实时位置的坐标,并对自治水下机器人水下作业时的路径跟随控制目标可转换成使位置误差e=rd-ro以及趋于0;Define r d as the preset path coordinates during the operation of the autonomous underwater robot, r o as the coordinates of the real-time position obtained by the positioning module during the operation of the autonomous underwater robot, and follow the path of the autonomous underwater robot during the underwater operation The control objective can be converted so that the position error e=r d -r o and tends to 0;
将公式(21)改写成状态空间表达式,进一步定义公式(21)变为:Rewrite formula (21) into a state space expression to further define Equation (21) becomes:
其中,以及 in, as well as
控制器生成单元240,用于基于自治水下机器人的干扰项、实时位置以及预设的输入-状态稳定性理论,生成非线性鲁棒反步控制器。The
其中,在本实施例的控制器生成单元240中,所述自治水下机器人的干扰项包括自治水下机器人水下作业时遇到的风、浪、流或深水压,将所述干扰项归结至系数Δ=[Δx,Δy,Δz]T中,并把Δ看成未知的有界系数向量,则公式(21)变为:Wherein, in the
转换成状态空间表达式,公式(22)变为:Converted to a state space expression, Equation (22) becomes:
优选地,在控制器生成单元240中,用于基于自治水下机器人的干扰项、实时位置与输入-状态稳定性理论,生成非线性鲁棒反步控制器的步骤包括:Preferably, in the
基于输入-状态稳定性理论,生成非线性鲁棒反步控制器:Based on the input-state stability theory, a nonlinear robust backstepping controller is generated:
其中,k1,k2以及δ为非负控制增益。in, k1, k2 and δ are non-negative control gains.
对于所述非线性动态系统,还包括建立单元,所述建立单元包括建立如下的李雅普诺夫函数:For the nonlinear dynamic system, a building unit is also included, and the building unit includes establishing the following Lyapunov function:
对公式(27)进行求导得到:Derivation of formula (27) yields:
由不等式by the inequality
其中δ>0;where δ>0;
将不等式(29)代入公式(28),可得:Substituting inequality (29) into equation (28), we get:
将所述非线性鲁棒反步控制器(26)代入不等式(210),得到:Substituting the nonlinear robust backstepping controller (26) into inequality (210), we get:
取一正数K=min{k1,k2},不等式(210)可简化为:Taking a positive number K=min{k 1 , k 2 }, inequality (210) can be simplified as:
对不等式(212)两边各乘e2Kt,并对其在[0,t]进行积分,得到:Multiplying both sides of inequality (212) by e 2Kt and integrating it in [0, t], we get:
对不等式(213)两边各作开平方运算,并将李雅普诺夫函数(7)代入不等式(213),得:Taking the square root operation on both sides of inequality (213), and substituting Lyapunov function (7) into inequality (213), we get:
控制单元250,用于基于所述非线性鲁棒反步控制器对自治水下机器人运动系统100进行控制,使得自治水下机器人自主独立完成精确路径跟随作业并实现稳定工作。如上述的不等式(214)所示,该不等式反映整个路径跟随控制系统的输入-状态稳定性,并且其表明了在有界未知干扰的作用下,位置跟踪误差和速度跟踪误差的上界。进一步的,如果干扰消失,位置及速度跟踪误差都可收敛至0。选择合适的控制参数k1,k2以及δ,所设计的路径跟随控制器(见公式(26))会使得自治水下机器人路径跟随系统运行稳定。The
本发明第三实施例还提供一种自治水下机器人,包括处理器、存储器以及存储在所述存储器内的可执行代码,所述可执行代码能够被所述处理器执行以实现上述的路径跟随控制方法。A third embodiment of the present invention also provides an autonomous underwater robot, including a processor, a memory, and executable code stored in the memory, the executable code being executable by the processor to implement the above-mentioned path following Control Method.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910188002.0A CN109976384B (en) | 2019-03-13 | 2019-03-13 | Autonomous underwater robot and path following control method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910188002.0A CN109976384B (en) | 2019-03-13 | 2019-03-13 | Autonomous underwater robot and path following control method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109976384A CN109976384A (en) | 2019-07-05 |
CN109976384B true CN109976384B (en) | 2022-02-08 |
Family
ID=67078679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910188002.0A Expired - Fee Related CN109976384B (en) | 2019-03-13 | 2019-03-13 | Autonomous underwater robot and path following control method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109976384B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034865B (en) * | 2020-08-12 | 2021-10-08 | 浙江大学 | A Track Tracking Control Method for Fully Driven Underwater Vehicle Based on Optimization Algorithm |
CN112947077B (en) * | 2021-01-29 | 2021-10-29 | 哈尔滨工程大学 | A Robust Trajectory Tracking Control Method for AUV Based on Switching Performance Function Technology |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014067683A1 (en) * | 2012-10-30 | 2014-05-08 | Total Sa | A method for controlling navigation of an underwater vehicle |
WO2016042374A1 (en) * | 2014-09-16 | 2016-03-24 | Cgg Services Sa | Device and method for deblending simultaneous shooting data using annihilation filter |
CN105955034A (en) * | 2016-07-04 | 2016-09-21 | 厦门理工学院 | Offset-free trajectory tracking prediction control method for disturbed hypersonic aircraft |
WO2016148110A1 (en) * | 2015-03-16 | 2016-09-22 | 古河電気工業株式会社 | Adhesive tape for semiconductor wafer processing |
EP3113971A2 (en) * | 2014-03-05 | 2017-01-11 | C&C Technologies, Inc. | Underwater inspection system using an autonomous underwater vehicle ("auv") in combination with a laser micro bathymetry unit (triangulation laser) and high-definition camera |
CN106444794A (en) * | 2016-09-20 | 2017-02-22 | 哈尔滨工程大学 | Sliding-mode control method for parameter-free driving-insufficient UUV (Unmanned Underwater Vehicle) vertical plane route tracking |
CN106444806A (en) * | 2016-09-27 | 2017-02-22 | 哈尔滨工程大学 | Under-actuated AUV (autonomous underwater vehicle) three-dimensional trajectory tracking control method based on biological speed regulation |
CN107807522A (en) * | 2017-10-17 | 2018-03-16 | 西北工业大学 | Underwater robot track following backstepping control method |
CN108008631A (en) * | 2017-11-29 | 2018-05-08 | 中国地质大学(武汉) | A kind of underwater robot path following method, equipment and storage device |
CN108170151A (en) * | 2017-07-24 | 2018-06-15 | 西北工业大学 | The adaptive motion control device and its method of a kind of underwater robot |
CN108594655A (en) * | 2018-03-30 | 2018-09-28 | 厦门理工学院 | A kind of two-articulated robot tracking design of fuzzy control method |
CN109050835A (en) * | 2018-08-06 | 2018-12-21 | 江苏科技大学 | Full driving autonomous underwater robot structure and recycling three-dimensional path tracking |
CN109343350A (en) * | 2018-11-20 | 2019-02-15 | 清华大学 | A Path Tracking Control Method for Underwater Robots Based on Model Predictive Control |
CN109426150A (en) * | 2017-08-25 | 2019-03-05 | 南京理工大学 | Load simulator backstepping control method based on extended state observer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160116912A1 (en) * | 2014-09-17 | 2016-04-28 | Youval Nehmadi | System and method for controlling unmanned vehicles |
-
2019
- 2019-03-13 CN CN201910188002.0A patent/CN109976384B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014067683A1 (en) * | 2012-10-30 | 2014-05-08 | Total Sa | A method for controlling navigation of an underwater vehicle |
EP3113971A2 (en) * | 2014-03-05 | 2017-01-11 | C&C Technologies, Inc. | Underwater inspection system using an autonomous underwater vehicle ("auv") in combination with a laser micro bathymetry unit (triangulation laser) and high-definition camera |
WO2016042374A1 (en) * | 2014-09-16 | 2016-03-24 | Cgg Services Sa | Device and method for deblending simultaneous shooting data using annihilation filter |
WO2016148110A1 (en) * | 2015-03-16 | 2016-09-22 | 古河電気工業株式会社 | Adhesive tape for semiconductor wafer processing |
CN105955034A (en) * | 2016-07-04 | 2016-09-21 | 厦门理工学院 | Offset-free trajectory tracking prediction control method for disturbed hypersonic aircraft |
CN106444794A (en) * | 2016-09-20 | 2017-02-22 | 哈尔滨工程大学 | Sliding-mode control method for parameter-free driving-insufficient UUV (Unmanned Underwater Vehicle) vertical plane route tracking |
CN106444806A (en) * | 2016-09-27 | 2017-02-22 | 哈尔滨工程大学 | Under-actuated AUV (autonomous underwater vehicle) three-dimensional trajectory tracking control method based on biological speed regulation |
CN108170151A (en) * | 2017-07-24 | 2018-06-15 | 西北工业大学 | The adaptive motion control device and its method of a kind of underwater robot |
CN109426150A (en) * | 2017-08-25 | 2019-03-05 | 南京理工大学 | Load simulator backstepping control method based on extended state observer |
CN107807522A (en) * | 2017-10-17 | 2018-03-16 | 西北工业大学 | Underwater robot track following backstepping control method |
CN108008631A (en) * | 2017-11-29 | 2018-05-08 | 中国地质大学(武汉) | A kind of underwater robot path following method, equipment and storage device |
CN108594655A (en) * | 2018-03-30 | 2018-09-28 | 厦门理工学院 | A kind of two-articulated robot tracking design of fuzzy control method |
CN109050835A (en) * | 2018-08-06 | 2018-12-21 | 江苏科技大学 | Full driving autonomous underwater robot structure and recycling three-dimensional path tracking |
CN109343350A (en) * | 2018-11-20 | 2019-02-15 | 清华大学 | A Path Tracking Control Method for Underwater Robots Based on Model Predictive Control |
Non-Patent Citations (10)
Title |
---|
Nonlinear path following control of autonomous underwater vehicles: Under-actuated and fully-actuated cases;Xianbo Xiang,等;《Proceedings of the 33rd Chinese Control Conference》;20140730;全文 * |
Path following for an autonomous underwater vehicle using GP-LOS;Xiao Yang,等;《OCEANS 2016 - Shanghai》;20160413;全文 * |
PSO approach for a PID back-stepping control method in stabilizing an underactuated X4-AUV;Nurfadzillah Harun,等;《2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS)》;20171220;全文 * |
Robust path following control of underactuated AUV subject to multiple uncertainties;Yuwei Zhang,等;《 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)》;20180812;全文 * |
USV跟踪运动仿真研究;邵成等;《水雷战与舰船防护》;20161115(第04期);全文 * |
基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究;杨超等;《机器人》;20180212(第03期);全文 * |
基于动态反馈的AUV水平面路径跟踪控制;赵杰梅等;《浙江大学学报(工学版)》;20180823(第08期);全文 * |
基于神经网络的自治水下机器人广义预测控制;张铭钧等;《机器人》;20080115(第01期);全文 * |
水下机器人路径控制与仿真;徐亮等;《北京航空航天大学学报》;20051231(第02期);全文 * |
漂浮基空间机械臂T-S模糊鲁棒控制;洪昭斌等;《厦门理工学院学报》;20160228(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109976384A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2018143003A1 (en) | Robot path generating device and robot system | |
CN112218744A (en) | System and method for learning agile movement of multi-legged robot | |
CN109857100B (en) | Composite track tracking control algorithm based on inversion method and fast terminal sliding mode | |
Pipatpaibul et al. | Application of online iterative learning tracking control for quadrotor UAVs | |
Poonawala et al. | Leader-follower formation control of nonholonomic wheeled mobile robots using only position measurements | |
Mishra et al. | Robust task-space motion control of a mobile manipulator using a nonlinear control with an uncertainty estimator | |
Decré et al. | Extending the iTaSC constraint-based robot task specification framework to time-independent trajectories and user-configurable task horizons | |
Wu et al. | Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots | |
CN109976384B (en) | Autonomous underwater robot and path following control method and device | |
Ribeiro et al. | Nonlinear model predictive visual path following control to autonomous mobile robots | |
Pambudi et al. | Simulation design of trajectory planning robot manipulator | |
Zhu et al. | A neurodynamics control strategy for real-time tracking control of autonomous underwater vehicles | |
Zarei et al. | Experimental study on shared-control of a mobile robot via a haptic device with an optimal velocity obstacle based receding horizon control approach | |
Farid et al. | Computationally efficient algorithm to generate a waypoints-based trajectory for a quadrotor UAV | |
Cho et al. | Sensorless variable admittance control for human–robot interaction of a dual-arm social robot | |
Elyoussef et al. | Simulation results and practical implementation of a PD-super-twisting second order sliding mode tracking control for a differential wheeled mobile robot | |
Hehn et al. | A frequency domain iterative feed-forward learning scheme for high performance periodic quadrocopter maneuvers | |
Karray et al. | Adaptive and sliding mode control of a mobile manipulator actuated by DC motors | |
EP4394531A1 (en) | Method for constructing controller for robot, motion control method and apparatus for robot, and robot | |
EP4488773A1 (en) | Method for constructing controller of robot, motion control method for robot and apparatuses, and robot | |
Habibnejad Korayem et al. | Non-singular terminal sliding mode control design for wheeled mobile manipulator | |
Argiropoulos et al. | Two-layer adaptive trajectory tracking controller for quadruped robots on slippery terrains | |
CN112632803A (en) | Tracking control method and device, electronic equipment and storage medium | |
Lee et al. | Arc-length based two-step robot motion teaching method for dynamic tasks | |
CN116728393A (en) | Robot control method and robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220208 |