CN109976150B - Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems - Google Patents
Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems Download PDFInfo
- Publication number
- CN109976150B CN109976150B CN201811433628.5A CN201811433628A CN109976150B CN 109976150 B CN109976150 B CN 109976150B CN 201811433628 A CN201811433628 A CN 201811433628A CN 109976150 B CN109976150 B CN 109976150B
- Authority
- CN
- China
- Prior art keywords
- control
- under
- indirect
- actuated
- direct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101710163391 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公布了一类欠驱动多输入多输出系统的集中式自抗扰控制方法,其特征在于:将欠驱动系统分为直接驱动部分和间接驱动部分,根据直接驱动部分的当前状态和目标状态,设计直接驱动部分的虚拟控制量;利用统一的扩张状态观测器对欠驱动部分的扰动和不确定部分进行统一估计并补偿,并设计间接驱动部分的虚拟控制量;将直接和间接驱动部分的虚拟控制量有机组合后形成综合控制量,实现了欠驱动系统的集中控制;运用Lyapunov方法将控制系统的反馈控制增益和系统误差方程中Hurwitz稳定矩阵极点配置相关联,保证了系统的稳定性,也将待整定的控制系统增益集中为极点配置一个参数;整个控制系统结构紧凑,鲁棒性和抗干扰能力强、参数整定容易,具有通用性。
The invention discloses a centralized active disturbance rejection control method for a type of underactuated multiple-input multiple-output system. , design the virtual control variable of the direct drive part; use the unified extended state observer to uniformly estimate and compensate the disturbance and uncertainty part of the underactuated part, and design the virtual control variable of the indirect drive part; The virtual control variables are organically combined to form a comprehensive control variable, which realizes the centralized control of the underactuated system. The Lyapunov method is used to associate the feedback control gain of the control system with the pole configuration of the Hurwitz stability matrix in the system error equation, which ensures the stability of the system. The gain of the control system to be set is also concentrated as a pole to configure a parameter; the entire control system has a compact structure, strong robustness and anti-interference ability, easy parameter setting, and universality.
Description
技术领域technical field
本发明涉及一类欠驱动多输入多输出(MIMO)系统集中式自抗扰控制方法,属于自动控制领域。The invention relates to a centralized active disturbance rejection control method for a type of underdriven multiple-input multiple-output (MIMO) system, belonging to the field of automatic control.
背景技术Background technique
欠驱动系统是指系统控制输入数目小于系统自由度的一类非线性系统。相比全驱动系统,欠驱动系统由于减少了部分执行器,使其成本低、轻巧灵活、能耗少、易维护,这些特点使得欠驱动系统在机器人、柔性装置、起重机械、基准系统等领域应用广泛。然而,由于欠驱动系统输入数量缺失、非线性、参数摄动、多目标、易受干扰等特点,使得其控制难度较高,至今仍被认为是自动控制领域的主要开放问题之一。An underactuated system refers to a class of nonlinear systems in which the number of system control inputs is less than the system degrees of freedom. Compared with the full-drive system, the under-actuated system reduces part of the actuators, making it low cost, light and flexible, low energy consumption, and easy to maintain. Wide range of applications. However, due to the lack of input quantity, nonlinearity, parameter perturbation, multi-objective, and susceptibility to interference, the underactuated system is difficult to control, and it is still considered as one of the main open problems in the field of automatic control.
为了使问题简化,欠驱动系统常采用模型线性化方法进行处理,虽有一定效果,但由于不能补偿名义模型和实际对象的差别,外部扰动、模型不确定性很容易使控制系统不稳定。采用部分反馈线性化方法设计欠驱动系统控制器,是欠驱动系统稳定控制的常用方法,但这种方法只能保证欠驱动系统的一部分状态量被控制,能否完成控制目标依赖于位形结构。通过将驱动变量和欠驱动变量组合成复合变量,使欠驱动系统转化成全驱动系统,釆用全驱动系统的控制方法设计控制器,也在欠驱动系统控制器的设计中应用较多,但这种方法在模型中存在不确定性、外界干扰严重的情况下鲁棒性差;分别设计驱动变量和欠驱动变量的一级滑模面,然后组合成二级滑模面,并应用滑模控制方法设计实现欠驱动系统控制器,有利于提高欠驱动系统的鲁棒性,但在实际应用时仍然存在抖动问题。为降低欠驱动系统参数摄动、外界干扰、非线性耦合项影响,常采用多状态反馈的解耦算法,导致控制结构复杂、待参数整定过多。智能控制方法,如神经网络、模糊系统和学习算法等也被用于欠驱动系统的控制实验,但模糊控制需要借鉴专家经验,经过模糊推理得到模糊控制器的输出,神经网络需要大量的训练来获得内部权值,学习算法需要长时间的在线学习,这就大大增加了控制器的设计和调整难度,使其工程应用困难。而且,目前欠驱动系统的控制主要是利用直接、间接驱动部分的动力学耦合作用,通过各种不同的控制策略使某特定的欠驱动系统实现特定运动,不便推广到具有更多自由度的一般欠驱动系统。In order to simplify the problem, the underactuated system is often dealt with by the model linearization method. Although it has a certain effect, because it cannot compensate the difference between the nominal model and the actual object, the external disturbance and model uncertainty can easily make the control system unstable. The partial feedback linearization method is used to design the controller of the underactuated system, which is a common method for the stability control of the underactuated system, but this method can only ensure that a part of the state quantity of the underactuated system can be controlled, and whether the control target can be achieved depends on the configuration structure. . By combining the actuated variable and the underactuated variable into a composite variable, the underactuated system is transformed into a full actuated system. The control method of the full actuation system is used to design the controller, which is also widely used in the design of the underactuated system controller. This method has poor robustness when there are uncertainties in the model and serious external interference; the first-order sliding mode surfaces of the driving variables and the under-actuated variables are designed separately, and then combined into a second-level sliding mode surface, and the sliding mode control method is applied. The design and implementation of the underactuated system controller is beneficial to improve the robustness of the underactuated system, but the problem of jitter still exists in practical applications. In order to reduce the influence of parameter perturbation, external disturbance and nonlinear coupling term of the underactuated system, the decoupling algorithm of multi-state feedback is often used, which leads to the complicated control structure and too many parameters to be set. Intelligent control methods, such as neural networks, fuzzy systems and learning algorithms, are also used in the control experiments of underactuated systems, but fuzzy control needs to learn from expert experience and obtain the output of the fuzzy controller through fuzzy reasoning. To obtain internal weights, the learning algorithm requires long-term online learning, which greatly increases the difficulty of controller design and adjustment, making it difficult to apply in engineering. Moreover, the control of the current underactuated system mainly uses the dynamic coupling effect of the direct and indirect drive parts to make a specific underactuated system achieve a specific motion through various control strategies, which is inconvenient to generalize to a general system with more degrees of freedom. underactuated system.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明公布了一类欠驱动MIMO系统集中式自抗扰控制方法,该方法按照以下步骤实施:In view of the above-mentioned problems, the present invention discloses a centralized active disturbance rejection control method for an underdriven MIMO system, and the method is implemented according to the following steps:
步骤A,根据欠驱动MIMO模型特点,将其拆分为直接驱动部分(1)和间接驱动部分(2),其具体流程为:Step A, according to the characteristics of the underdriven MIMO model, it is divided into a direct drive part (1) and an indirect drive part (2), and the specific process is as follows:
对于m输入,n输出的欠驱动MIMO系统(1≤m<n):For an underdriven MIMO system with m inputs, n outputs (1≤m<n):
式(1)所示的欠驱动系统的独立控制变量个数小于系统自由度,将其分为直接驱动部分(2) 和间接驱动部分(3),直接驱动部分是接受驱动器的直接激励,并产生等输出的部分,所对应的输入输出的自由度相等,间接驱动部分通过与直接驱动自由度的非线性耦合,来实现相关执行器的动作,因此,可在设计直接驱动部分的虚拟控制量和间接驱动部分的虚拟控制量的基础上,再将这两个部分的控制量进行有机组合,形成系统的实际控制量ui,实现对欠驱动系统所有自由度的控制;考虑到ui由虚拟控制量和若干个对ui有影响的虚拟控制量组成,为描述方便,定义间接控制部分j对直接控制部分i的影响系数有影响时,没有影响时,为简单起见,将和对ui有影响的虚拟控制量进行线性组合,作为直接驱动部分i的实际控制量,即 The number of independent control variables of the underactuated system shown in formula (1) is less than the system degree of freedom, and it is divided into a direct drive part (2) and an indirect drive part (3). For the part that generates equal output, the corresponding input and output degrees of freedom are equal. The indirect drive part realizes the action of the relevant actuator through nonlinear coupling with the direct drive degree of freedom. Therefore, the virtual control quantity of the direct drive part can be designed. and the virtual control quantity of the indirect drive part On the basis of , the control quantities of these two parts are organically combined to form the actual control quantity u i of the system to realize the control of all degrees of freedom of the underactuated system; considering that ui is controlled by the virtual control quantity and several virtual control quantities that have an impact on u i composition, for the convenience of description, define the influence coefficient of the indirect control part j to the direct control part i when it affects without influence, For simplicity, the and the virtual control quantity that affects u i Perform a linear combination as the actual control amount of the direct drive part i, that is
步骤B,根据直接驱动部分的当前状态和目标状态,设计直接驱动部分的虚拟控制量;Step B, design the virtual control quantity of the direct drive part according to the current state and the target state of the direct drive part;
假定欠驱动MIMO系统(1)的目标状态为为使系统(1)收敛于目标点,需要对系统进行状态反馈,直接驱动部分控制量的设计符合分离性原理,采用常规的PD 反馈控制;Assume that the target state of the underdriven MIMO system (1) is In order to make the system (1) converge to the target point, it is necessary to perform state feedback on the system. The design of the direct drive part of the control variable conforms to the principle of separation, and the conventional PD feedback control is adopted;
将欠驱动MIMO系统的直接驱动部分表示为:The direct drive part of an underdriven MIMO system is expressed as:
采用常规比例-微分(PD)反馈控制,设计yi的虚拟控制量:Using conventional proportional-derivative (PD) feedback control, the virtual control quantity of yi is designed:
其中,ki1,ki2为反馈控制量增益,xi,为直接驱动部分的当前状态值,通过相关传感器测得。Among them, k i1 , k i2 are feedback control gain, x i , It is the current state value of the direct drive part, measured by the relevant sensor.
步骤C,设计线性扩张状态观测器,估计间接驱动部分的状态、扰动和不确定性部分,并设计间接驱动部分的虚拟控制量,其具体流程为:Step C, design a linear expansion state observer, estimate the state, disturbance and uncertainty part of the indirect driving part, and design the virtual control quantity of the indirect driving part, and the specific process is as follows:
式(3)所述的欠驱动MIMO系统的间接驱动部分可表示为The indirect drive part of the underdriven MIMO system described in equation (3) can be expressed as
为便于分析,将式(6)进一步表示为:For the convenience of analysis, formula (6) is further expressed as:
其中,bj为bji的估计值,fj(·)为状态量yj环的总和扰动,包括yj环的内扰、外扰和系统不确定性部分, Among them, b j is the estimated value of b ji , f j ( ) is the total disturbance of the state quantity y j loop, including the internal disturbance, external disturbance and system uncertainty of the y j loop,
设未知扰动fj(·)有界且可微,(δi,是正实数),令xj1=yj,xj1=fj(·),则式(7)可扩张为:Let the unknown perturbation f j ( ) be bounded and differentiable, (δ i , is a positive real number), let x j1 =y j , x j1 = f j ( ), Then formula (7) can be expanded as:
其中, in,
根据式(8)设计线性扩张状态观测器(LESO):The linear expansion state observer (LESO) is designed according to equation (8):
其中,Zj=[zj1 zj2 zj3]T是向量Xj的状态估计,是yj的状态估计,L是观测增益向量,采用基于迭代步长h的三阶线性扩张状态观测器的参数序列, where Z j =[z j1 z j2 z j3 ] T is the state estimate of the vector X j , is the state estimate of y j , L is the observation gain vector, using the parameter sequence of the third-order linearly expanded state observer based on the iteration step h,
将yj的虚拟控制量设计为:The virtual control quantity of y j is designed as:
将和式(10)代入式(7),可得:Will Substitute equation (10) into equation (7), we can get:
其中,下标k=m+1,m+2,…,j-1,j+1,…,n,ej3为yj的总和扰动fj(·)与其估计值zj3的误差, ej3=fj(·)-zj3;Among them, the subscript k=m+1,m+2,...,j-1,j+1,...,n, e j3 is the error of the summation disturbance f j ( ) of y j and its estimated value z j3 , e j3 =f j ( )-z j3 ;
从式(11)中可以看出,当ej3收敛于0时,最终系统将不受fj(·)的影响,而实际由控制量控制,对也采用PD控制律设计,即:It can be seen from equation (11) that when e j3 converges to 0, the final system will not be affected by f j ( ), but is actually controlled by the variable control, yes The PD control law design is also used, namely:
其中,kj1,kj2为反馈控制量增益。Among them, k j1 , k j2 are feedback control amount gains.
步骤D,将直接驱动部分和间接驱动部分的虚拟控制量进行有机组合组成,构成欠驱动系统的线性反馈控制量(LESF):In step D, the virtual control quantities of the direct drive part and the indirect drive part are organically combined to form the linear feedback control quantity (LESF) of the underactuated system:
由于间接驱动部分要由驱动器进行间接控制,间接驱动部分的控制量将对驱动器的实际控制量产生影响,因此,需将直接驱动部分和间接驱动部分的控制量进行合成,以实现欠驱动系统所有自由度的控制,为简单起见,采用线性组合方式作为系统控制量:Since the indirect drive part is indirectly controlled by the driver, the control value of the indirect drive part will affect the actual control value of the driver. Therefore, the control quantities of the direct drive part and the indirect drive part need to be synthesized to realize all the underactuated system. For the control of degrees of freedom, for the sake of simplicity, a linear combination method is used as the system control quantity:
对直接驱动部分,将式(13)代入式(2)可得:For the direct drive part, substitute equation (13) into equation (2) to get:
对间接驱动部分,将式(13)代入式(3)可得:For the indirect drive part, substitute equation (13) into equation (3) to get:
将扩张状态观测器的观测误差定义为ej=[ej1,ej2,ej3]T,则:Define the observation error of the extended state observer as e j =[e j1 ,e j2 ,e j3 ] T , then:
将欠驱动MIMO系统的误差定义为ψ(t)=[ψ1,Ψ2,Ψ3,Ψ4,…,ψ2n-1,ψ2n]T,则:The error of the underdriven MIMO system is defined as ψ(t)=[ψ 1 , ψ 2 , ψ 3 , ψ 4 ,...,ψ 2n-1 ,ψ 2n ] T , then:
根据以上各式,将系统误差微分方程更新为:According to the above formulas, the system error differential equation is updated as:
因此,和可扩张为:therefore, and Can be expanded to:
其中,Aψ为ψ(t)的系数矩阵,Aei为ei的系数矩阵;Among them, A ψ is the coefficient matrix of ψ(t), and A ei is the coefficient matrix of e i ;
为使Aψ为Hurwitz稳定矩阵,将Aψ的特征值都配置在点上,即In order to make A ψ a Hurwitz stable matrix, the eigenvalues of A ψ are arranged at the point up, that is
求解式(20),可得:Solving equation (20), we can get:
其中,为方程(20)的解,集体的解析式由实际系统决定,则:in, is the solution of equation (20), the collective analytical expression is determined by the actual system, then:
即对于输入输出数目均为m的MIMO系统而言,不论m和n的数值为多少,式(23)所述的自抗扰控制控制量始终只有一个可调参数 That is, for a MIMO system with m inputs and outputs, no matter what the values of m and n are, there is always only one adjustable parameter for the ADRC control quantity described in equation (23).
本发明的有益效果是:利用统一的扩张状态观测器对欠驱动系统的扰动和不确定部分进行统一估计并补偿,提高了系统的鲁棒性和自抗扰能力;将直接和间接驱动部分的虚拟控制量有机组合后形成的综合控制量,实现了系统自由度的集中控制;运用Lyapunov方法将控制系统的反馈控制增益和系统误差方程中Hurwitz稳定矩阵极点配置相关联,保证了系统的稳定性,也将待整定的控制系统增益集中为极点配置一个参数,综合形成了欠驱动系统集中式自抗扰控制器;用本发明设计的控制系统结构集中,待整定参数小,设计容易,具有通用性。The beneficial effects of the present invention are: using a unified extended state observer to uniformly estimate and compensate the disturbance and uncertain parts of the underactuated system, thereby improving the robustness and auto-disturbance rejection capability of the system; The synthetic control variables formed by the organic combination of virtual control variables realize the centralized control of the degrees of freedom of the system; the Lyapunov method is used to correlate the feedback control gain of the control system with the pole configuration of the Hurwitz stability matrix in the system error equation to ensure the stability of the system , the gain of the control system to be set is also concentrated as a pole and a parameter is configured, and a centralized active disturbance rejection controller for an underactuated system is formed comprehensively; the control system designed by the invention has a centralized structure, small parameters to be set, easy design, and universal sex.
附图说明Description of drawings
图1为欠驱动系统集中式自抗扰控制流程图;Fig. 1 is the flow chart of the centralized active disturbance rejection control of the underactuated system;
图2为本发明控制的二级倒立摆仿真结果,图中的三条曲线自上至下分别表示小车位移 x(t)、一级摆杆摆角θ1(t)、二级摆杆摆角θ2(t)。Fig. 2 is the simulation result of the secondary inverted pendulum controlled by the present invention. The three curves in the figure represent the trolley displacement x(t), the primary pendulum swing angle θ 1 (t), the secondary pendulum pendulum angle from top to bottom, respectively. θ 2 (t).
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面以深圳市元创兴科技有限公司生产的直线二级倒立摆为例,对本发明进行详细描述。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be described in detail below by taking the linear secondary inverted pendulum produced by Shenzhen Yuanchuangxing Technology Co., Ltd. as an example.
直线二级倒立摆的系统模型可表示为:The system model of the linear second-order inverted pendulum can be expressed as:
其中: in:
状态方程中的六个状态量x,θ1,θ2,分别代表小车位移、小车速度、摆杆1角度、摆杆1角速度、摆杆2角度、摆杆2角速度,其它各符号的含义及具体数值见表1。The six state quantities x in the state equation, θ 1 , θ 2 , They represent the cart displacement, cart speed,
表1元创兴直线二级倒立摆系统的物理参数Table 1 Physical parameters of Yuanchuangxing linear two-stage inverted pendulum system
将表1中的物理参数代入以上各式,求得:c11=52.797,c12=-16.100,c13=3.7407,c21=-44.5267, c22=-43.9288,c23=0.597。Substitute the physical parameters in Table 1 into the above equations, and obtain: c 11 =52.797, c 12 =-16.100, c 13 =3.7407, c 21 =-44.5267, c 22 =-43.9288, c 23 =0.597.
二级倒立摆的控制目标是当小车到达目标位置时,摆杆处于垂直稳定的平衡位置,因此倒立摆的目标状态为 The control goal of the secondary inverted pendulum is that when the trolley reaches the target position, the pendulum rod is in a vertically stable equilibrium position, so the target state of the inverted pendulum is
根据式(5)设计直接驱动部分,即小车位移的虚拟反馈控制量为:According to formula (5), the direct drive part is designed, that is, the virtual feedback control quantity of the trolley displacement is:
根据式(12)设计间接驱动部分,即摆杆1的摆角θ1和摆杆2的摆角θ2的虚拟控制量为:According to formula (12), the indirect drive part is designed, that is, the virtual control quantities of the
将式(25)-(27)代入式(13)中,得直线二级倒立摆的反馈控制量:Substituting equations (25)-(27) into equation (13), the feedback control amount of the linear second-order inverted pendulum is obtained:
根据式(22),b1,b2分别为c13,c23的估计值,取实际值,即:b1=c13,b2=c23。According to formula (22), b 1 and b 2 are estimated values of c 13 and c 23 respectively, and take the actual values, namely: b 1 =c 13 , b 2 =c 23 .
根据直线二级倒立摆的稳定点坐标,将系统误差定义为:According to the stable point coordinates of the second-order inverted pendulum of the straight line, the system error is defined as:
根据以上各式,得直线二级倒立摆的系统的误差微分方程:According to the above formulas, the error differential equation of the linear second-order inverted pendulum system is obtained:
对二级倒立摆的误差微分方程进行扩张,得:Expanding the error differential equation of the second-order inverted pendulum, we get:
其中:in:
根据式(21)有According to formula (21), we have
为简化运算过程,将表1中的系统参数代入之后,求解方程(30),可得:In order to simplify the operation process, after substituting the system parameters in Table 1, and solving equation (30), we can get:
根据b1=c13,b2=c23,可得b1=3.7407,b2=0.597,数值计算迭代步长根据系统硬件取h=0.001s,经过充分整定后,优选为10,将以上数据代入式(28),得出二级倒立摆的控制量:According to b 1 =c 13 , b 2 =c 23 , we can get b 1 =3.7407, b 2 =0.597, the numerical calculation iteration step size is h=0.001s according to the system hardware, after sufficient tuning, It is preferably 10. Substitute the above data into formula (28) to obtain the control amount of the secondary inverted pendulum:
假定小车的目标位置为0.2m,在5s处对小车施加10%的阶跃扰动,在8s处对二级摆杆施加10%的阶跃扰动,运用集中式自抗扰方法对二级倒立摆进行控制,实验结果如图2所示,结果表明小车在到达目标位置后,在无扰动情况下其运动范围小于0.002m,上下摆角度均趋近于0°,控制效果非常好;在5s处对小车施加10%的阶跃扰动后,上、下摆杆的摆动幅度都小于1.2°,且很快就趋于稳定,在8s处对上摆杆施加10%的阶跃扰动后,小车运动范围小于 0.02m,上、下摆杆的摆动幅度也都小于0.8°,且趋于稳定的时间小于2s,说明本发明的方法对欠驱动系统具有良好的稳定和抗干扰性能。Assuming that the target position of the car is 0.2m, a step disturbance of 10% is applied to the car at 5s, and a step disturbance of 10% is applied to the secondary pendulum at 8s. Control, the experimental results are shown in Figure 2, the results show that after the car reaches the target position, its motion range is less than 0.002m without disturbance, and the up and down swing angles are all close to 0°, and the control effect is very good; at 5s After applying a 10% step disturbance to the trolley, the swing amplitudes of the upper and lower swing rods are both less than 1.2° and tend to be stable soon. Less than 0.02m, the swing amplitudes of the upper and lower swing rods are also less than 0.8°, and the time to stabilize is less than 2s, indicating that the method of the present invention has good stability and anti-interference performance for the underactuated system.
如上所述,结合附图和说明所给出的方案内容,可以衍生出类似的技术方案。但凡是依据本发明的技术实质所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。As mentioned above, similar technical solutions can be derived in conjunction with the content of the solutions given in the drawings and descriptions. However, any simple modifications, equivalent changes and modifications made according to the technical essence of the present invention still fall within the scope of the technical solutions of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811433628.5A CN109976150B (en) | 2018-11-28 | 2018-11-28 | Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811433628.5A CN109976150B (en) | 2018-11-28 | 2018-11-28 | Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109976150A CN109976150A (en) | 2019-07-05 |
CN109976150B true CN109976150B (en) | 2020-12-18 |
Family
ID=67076144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811433628.5A Active CN109976150B (en) | 2018-11-28 | 2018-11-28 | Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109976150B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110426959B (en) * | 2019-08-09 | 2022-08-26 | 太原科技大学 | Crawler robot control system |
CN110989361B (en) * | 2019-12-25 | 2022-04-12 | 武汉科技大学 | A Grouped Fuzzy Control Method Based on Weight Online Optimization |
CN112180742B (en) * | 2020-11-09 | 2021-08-03 | 山东大学 | Method and system for stability control of offshore crane based on fractional disturbance observer |
CN112835293A (en) * | 2021-01-07 | 2021-05-25 | 中南大学 | A research method of bridge crane system stability based on nested saturation technology |
CN113353799A (en) * | 2021-06-08 | 2021-09-07 | 南京工业大学 | Swing suppression control method for double-pendulum tower crane with distributed mass loads |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103643027A (en) * | 2013-12-12 | 2014-03-19 | 中国兵器工业新技术推广研究所 | Control method of heat treatment resistance furnace based on linear order-reduction active disturbance rejection control technology |
CN104407514A (en) * | 2014-10-21 | 2015-03-11 | 河海大学常州校区 | Micro-gyroscope backstepping control method based on neural network state observer |
CN104932512A (en) * | 2015-06-24 | 2015-09-23 | 北京科技大学 | Quadrotor posture control method based on MIMO nonlinear uncertain backstepping approach |
CN105912011A (en) * | 2016-06-24 | 2016-08-31 | 天津理工大学 | Linear auto disturbance rejection control method for four-rotor aircraft attitude |
CN106527462A (en) * | 2016-12-02 | 2017-03-22 | 广西师范大学 | Unmanned aerial vehicle (UAV) control device |
CN106786768A (en) * | 2017-01-18 | 2017-05-31 | 中南大学 | A kind of power system load frequency active interference suppressing method and system |
CN106950999A (en) * | 2017-03-20 | 2017-07-14 | 浙江工业大学 | A kind of fitup Trajectory Tracking Control method of use Auto Disturbances Rejection Control Technique |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8180464B2 (en) * | 2002-04-18 | 2012-05-15 | Cleveland State University | Extended active disturbance rejection controller |
-
2018
- 2018-11-28 CN CN201811433628.5A patent/CN109976150B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103643027A (en) * | 2013-12-12 | 2014-03-19 | 中国兵器工业新技术推广研究所 | Control method of heat treatment resistance furnace based on linear order-reduction active disturbance rejection control technology |
CN104407514A (en) * | 2014-10-21 | 2015-03-11 | 河海大学常州校区 | Micro-gyroscope backstepping control method based on neural network state observer |
CN104932512A (en) * | 2015-06-24 | 2015-09-23 | 北京科技大学 | Quadrotor posture control method based on MIMO nonlinear uncertain backstepping approach |
CN105912011A (en) * | 2016-06-24 | 2016-08-31 | 天津理工大学 | Linear auto disturbance rejection control method for four-rotor aircraft attitude |
CN106527462A (en) * | 2016-12-02 | 2017-03-22 | 广西师范大学 | Unmanned aerial vehicle (UAV) control device |
CN106786768A (en) * | 2017-01-18 | 2017-05-31 | 中南大学 | A kind of power system load frequency active interference suppressing method and system |
CN106950999A (en) * | 2017-03-20 | 2017-07-14 | 浙江工业大学 | A kind of fitup Trajectory Tracking Control method of use Auto Disturbances Rejection Control Technique |
Non-Patent Citations (6)
Title |
---|
Approximate decoupling and output tracking for MIMO nonlinear systems with mismatched uncertainties via ADRC approach;Ze-Hao Wu,et al.;《Journal of the Franklin Institute》;20180630;第355卷(第9期);全文 * |
On performance analysis of ADRC for a class of MIMO lower-triangular nonlinear uncertain systems;Wenchao Xue,et al.;《ISA Transactions》;20141231;全文 * |
Study on Active Disturbance Rejection Controller Based on the Nonlinear MIMO Coupled System;Jiaji Zhang,et al.;《Advances in Communication Technology—2011 3rd World Congress in Applied Computing, Computer Science, and Computer Engineering (ACC 2011)》;20110716;全文 * |
一种多变量自抗扰控制结构的设计研究;刘倩 等;《华北电力大学学报》;20141130;第41卷(第6期);全文 * |
欠驱动智能水下机器人的自抗扰路径跟踪控制;万磊 等;《上海交通大学学报》;20141231;第48卷(第12期);全文 * |
欠驱动水面船舶航迹自抗扰控制研究;李荣辉;《CNKI中国博士学位论文全文数据库(电子期刊)工程科技II辑》;20131031;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109976150A (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109976150B (en) | Centralized Active Disturbance Rejection Control Method for a Class of Underdriven Multiple Input Multiple Output Systems | |
WO2022012155A1 (en) | Robust iterative learning control method for series inverted pendulums in finite frequency range | |
CN104698846B (en) | A kind of specified performance back stepping control method of mechanical arm servo-drive system | |
CN106647271B (en) | Adaptive proportional-integral control method for nonlinear systems based on neural network theory | |
Sheikholeslam et al. | Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems | |
CN105549395B (en) | Ensure the mechanical arm servo-drive system dead time compensation control method of mapping | |
CN105607473B (en) | The attitude error Fast Convergent self-adaptation control method of small-sized depopulated helicopter | |
CN105867139B (en) | A kind of aircraft robust control method of model reference adaptive | |
Yang et al. | SGD-based adaptive NN control design for uncertain nonlinear systems | |
CN100462877C (en) | Decoupling control methods for non-cubic systems in industrial processes | |
CN104991444B (en) | Non-linearity PID self-adaptation control method based on Nonlinear Tracking Differentiator | |
CN106094530A (en) | The Design of non-linear controllers method of inverted pendulum | |
CN111781835A (en) | A Design Method of Linear Active Disturbance Rejection Controller for Stabilizing Second-Order Inertia Plus Pure Lag System | |
CN111830989A (en) | A path tracking control method for unmanned ship based on internal model control and genetic algorithm | |
CN112596507A (en) | Sliding mode prediction fault-tolerant control method for multi-time-lag nonlinear system under sensor fault | |
CN110362110B (en) | Fixed self-adaptive neural network unmanned aerial vehicle track angle control method | |
CN106527125A (en) | Model-free control method in intelligent control | |
CN104834218B (en) | The dynamic surface control device structure and design method of a kind of Parallel-type Inverted Pendulum | |
CN116430724A (en) | Self-adaptive control strategy for improving motion balance of robot | |
CN105549385B (en) | Decoupling internal model control device, control system and the control method of multivariable time-lag non-minimum phase non-quadrant systems | |
CN102043380A (en) | Quadratic polynomial-based nonlinear compound PID (proportional-integral-differential) neural network control method | |
CN111776250B (en) | Error compensation control method of spacecraft assembly based on interferometric neural network | |
CN112731801B (en) | Symmetric dead zone nonlinear self-adaptive dynamic surface output feedback control method | |
CN107065576B (en) | Reaction-regeneration system optimal control method based on PSO-DMPC | |
CN113641193B (en) | Accurate tracking control method for non-minimum phase system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241203 Address after: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province Patentee after: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd. Country or region after: China Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932 Patentee before: CENTRAL SOUTH University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250327 Address after: Room 018, 2nd Floor, Building B, No. 22 Information Road, Haidian District, Beijing 100089 Patentee after: Beijing Qianqi Wanshu Technology Co.,Ltd. Country or region after: China Address before: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province Patentee before: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd. Country or region before: China |